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Self-Parametric Instability in Spatially Extended Systems
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We study the stability of almost homoclinic homogeneous limit cycles with respect to spatiotemporal
perturbations. It is shown that they are generically unstable. The instability is either the phase instability
or a finite wavelength period doubling instability.
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Bifurcations which occur in one parameter families of
dynamical systems play an important role in the under-
standing of universal physical phenomena [1]. In this Let-
ter we report on the existence of a new type of instability
which arises in spatially extended systems. We name it
“self-parametric” instability since it is the consequence
of anharmonicity of a spatially homogeneous limit cycle
which acts as a parametric forcing on itself. More precisely
we consider a partial differential equation which possesses
a spatially independent time-periodic solution. This solu-
tion is assumed to be stable with respect to homogeneous
perturbations. We demonstrate that this solution is generi-
cally unstable in respect to inhomogeneous perturbations,
when it approaches an Andronov homoclinic bifurcation
[2]. The instability is either the Kuramoto phase instabil-
ity [3] or a finite period doubling instability which occurs
at finite wavelength. As for the Turing instability [4], the
typical length which emerges in the latter case is intrinsic
and not related to the particular geometry of the system.

Let u � �u1, u2, . . . , un� be a set of n scalar fields which
obey the following equation:

≠tu � f�u, �=� . (1)

The physical system described by Eq. (1) is assumed
to be space and time translationally invariant and space
isotropic. Let F�u� � f�u, 0� denote the vector field
associated with the homogeneous solutions of the partial
differential equation:

≠tu � F�u� . (2)

Let uh�t� be a given stable solution of Eq. (2). A small
inhomogeneous perturbation y�t, �r� obeys the linear
equation

≠ty � L�t�y 1 D�t, �=2�y , (3)

where L�t� � DF�Duu�uh�t� and the inhomogeneous
linear operator D�t, �=� [it satisfies D�t, 0� � 0] is defined
as D�t, �=2� � Df�DUu�uh�t� 2 L�t�. At the leading
order in the space derivatives (i.e., for long wavelength
perturbations), the inhomogeneous term appears as a
time-dependent generalized diffusion operator:

≠tyk � L�t�yk 2 k2D�t�yk 1 O�k4� , (4)

where the yk is the amplitude of the Fourier mode charac-
terized by a wave vector �k. Far from singularities, for small
0031-9007�01�86(5)�807(3)$15.00 ©
k, the stability of the homogeneous solution with respect to
spatiotemporal fluctuations appears then as a regular per-
turbation of the stability of the homogeneous solution. The
Lyapunov exponents sk of the homogeneous solution are
a function of k2 [sh are the Lyapunov exponents of uh�t�
of Eq. (2)],

sk � sh 1 O�k2� . (5)
(i) In the case where uh is a stable homogeneous station-

ary solution, the perturbation cannot lead to an instability,
unless either the operator L or D is singular. In the latter
case, the instability is actually the Turing instability [4].

(ii) In the case where uh�t� is a stable homogeneous
time-periodic solution, there exists a Goldstone mode, due
to the time translation invariance. The existence of this
neutral phase mode for the homogeneous solution is at
the origin of the Kuramoto phase instability [3] for long
wavelength perturbations. The criteria of instability simply
depend on the sign of the coefficient of the k2 term in the
“phase” Floquet exponent [5].

We now focus our attention on the singular case where
the limit cycle approaches a saddle fixed point (Andronov
bifurcation [2]). Since this bifurcation occurs already for
planar vector fields, we simplify our analysis by consider-
ing only two components scalar field u � �u1, u2�. We
first analyze the homogeneous vector field close to the
periodic solution uh�t� � ���uh,1�t�, uh,2�t����, far from the
Andronov bifurcation. Let F0�t� be the flow of the equa-
tion ≠ty � L�t�y [i.e., y�t� � F0�t�y�0�] in the local
frame [5] [ �uh�t� and Rp�2 �uh�t�; here Rp�2 represents the
rotation of p�2]. This flow takes the form

F0�t� �

µ
1 a�t�
0 b�t�

∂
,

where the time-dependent functions a�t� and b�t� are eas-
ily computed from the two by two matrix L�t� and the so-
lution uh�t�. The monodromy matrix M � F0�T �, where
T represents the period of the limit cycle, has two eigen-
values (Floquet multipliers) s1 � 1 and s2 � b�T �. The
limit cycle is stable when 0 , b�T � , 1. For small jkj,
the Floquet multipliers become

sf � 1 1 s
�2�
f k2 1 O�k4�

and
sa � b�T � 1 s�2�

a k2 1 O�k4� .

The phase instability occurs in the case s
�2�
f . 0.
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Close to the Andronov bifurcation the above analysis
becomes singular. As shown by Andronov [2] the stabil-
ity of the limit cycle can be studied by decomposing the
monodromy map of the vector field into two parts (see
Fig. 1). One, singular (FS

0 ), close to the saddle fixed
point, can be computed from the linear approximation of
808
the equations and the other, regular (FR
0 ), far from the limit

cycle. We have

F0�T � � FS
0 �FR

0 � . (6)

The linear operator L�t� when uh�t� is close to the saddle
fixed point is
L�t� �

µ
0 �2et�11l�dle�1 1 l����d2l2 1 e2t�11l�e2�
0 �1 1 l� �d2l2 2 e2t�11l�e2���d2l2 1 e2t�11l�e2�

∂
.

Take the initial coordinates along the eigenvectors of
the saddle fixed point, and up to a time rescaling, suppose
that the expanding eigenvalue is 1 and denote by 2l the
contracting one. Denote by e the bifurcation parameter,
i.e., the distance between the stable manifold of the saddle
fixed point and the limit cycle as it enters the “linear box”
of size d.

The condition l . 1 guarantees the stability of the al-
most homoclinic homogeneous limit cycle. Elementary
calculations allow us to estimate F

S
0 and F

R
0 . At the lead-

ing order in e

FS
0 �

µ
1 ld�e

0 l2�e�d�l21

∂

and

FR
0 �

µ
1 a
0 b

∂
.

Here a and b are functions of e�d which remain finite as
e ! 0 for small but finite d. The form of F

S
0 deserves

comment. Athough this matrix has distinct eigenvalues [1
and l2�e�d�l21], it can hardly be put in a diagonal form
because its two eigenvectors are almost parallel. An ampli-
tude perturbation of the limit cycle when it enters the linear
box transforms into a strong phase perturbation. Close
to the Andronov bifurcation, there is a strong coupling
between amplitude and phase perturbations, and even if
one of the Floquet multipliers [l2�e�d�l21b] tends to zero
while the other remains finite, no dimensional reduction is
possible.

The instability of the almost homoclinic limit cycle by
respect to spatiotemporal perturbations is closely related
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Φ0
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RΦ0
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FIG. 1. Andronov decomposition of the flow.
to the nature of the singularity induced by the saddle fixed
point. The perturbated monodromy map [Fk � F

S
k �FR

k �]
is easily computed for small k. The perturbation inside
the linear box is explicitly computed, while perturbation
techniques are used outside the linear box where the flow
is regular. The determinant of the monodromy map tends
to zero as e ! 0, for d small enough but finite while its
trace diverges. Indeed, writing

FR
k � FR

0 1 k2

µ
w x
y z

∂
, (7)

we see that tr�Fk� reads

tr�Fk� � tr�F0� 1
d

e
k2� y 1 · · ·� . (8)

The quantity y is generically nonzero and arbitrary large
in modulus if d is small enough, and the remaining terms
“· · ·” are dominated by the term d

e k2y (see [6] for rigorous
results). In particular, we see that if k2 .

d

e , then tr�Fk�
is large. This establishes the instability and shows that its
nature is governed by the sign of y. For positive y as one
of the Floquet multipliers diverges to 1`, the instability
of the limit cycle is the Kuramoto phase instability. For
negative y, as one of the Floquet multipliers diverges to
2`, the instability is a period doubling instability. Away
from the bifurcation, the trace as a function of k2 becomes
a regular curve (see Fig. 2). Although the Kuramoto phase
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FIG. 2. Floquet multipliers as functions of jkj for Eqs. (11)
and (12) for m � 0.1. The dashed lines represent the Floquet
multipliers in the case of the phase instability (b � 1). The
solid lines represent the real parts of the Floquet multipliers in
the case of the finite wave number period doubling instability
(b � 21).
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(a)

(b) (c)
FIG. 3. x-t diagram of the component X of solutions
of Eqs. (11) and (12) (size of the domain L � 150, m �
5 3 1022). (a) Phase turbulence (b � 21); (b) regular period
doubling finite wave vector pattern (b � 1); (c) irregular period
doubling finite wave vector pattern (b � 1, but with different
initial conditions).

instability arises at zero wavelength, the period doubling
instability is characterized by a finite wave number.

The weakly nonlinear development of the latter in-
stability involves two order parameters, the amplitude
of the period doubling bifurcation, and the phase mode.
The order parameter equations, close to the instability
onset, read

≠tA � �m 2 mc�A 6 jAj2A 1 afxxA 1 bf2
xA 1 Axx ,

(9)

≠tf � dfxx 1 f2
x 1 hjAj2, (10)

and

u�t� � uh�t 2 f� 1 A exp�ik0x�z �t 2 f� 1 c.c. 1 hot,

where z �t� is the Floquet eigenmode corresponding to the
period doubling [z �t 1 T � � 2z �t�, z �t 1 2T � � z �t�],
and k0 is the wavelength of the instability. In order to
illustrate the nonlinear development of the instability, let
us consider the following simple example:

≠tX � Y 1 =2X 2 b=2Y , (11)

≠tY � �m 2 X�Y 2 X 1 X2 1 =2Y 1 b=2X . (12)

The limit cyle appears when m � 0 and disappears for
m � 0.135 through an Andronov homoclinic bifurcation.
The matrix of the partial derivatives has been chosen in
order to simplify the analysis of the instability. In par-
ticular, for such a matrix we have y ~ b; for positive b

the instability of the limit cycle is thus the Kuramoto phase
instability, and for negative b, it is the period doubling in-
stability. Figure 3 shows the nonlinear evolution of the two
different instabilities. The case b � 0 is nongeneric and
corresponds to y � 0.

Although this instability has been observed in physical
[7] and chemical systems [8] and model equations [9],
no clear explanation of the genericity of the mechanism
was proposed. We have related this instability to the self-
parametric forcing of a homogeneous periodic solution. In
two dimensional systems subcritical hexagons are ruled out
near the onset by the symmetry induced by the period dou-
bling which do not permit quadratic terms in the amplitude
equations [10].
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