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Abstract. We consider solutions which are homogeneous in space, periodic in time, and
close to being homoclinic for a partial differential equation. We show that such solutions
are generically unstable with respect to large wavelength perturbations, and that the
instability can be of two different types: either the well-known Kuramoto phase insta
bility, or a fundamentally different kind of instability, called self-parametric, displaying a
period-doubling and an intrinsic wavelength. We also consider the case where the spatial
parity symmetry breaks.

1. Introduction

Codimension one bifurcations of simple solutions (fixed points and limit
cycles) of ordinary differential equation have been extensively studied, in
particular by the Russian school [4]. They are frequently observed in Phys
ical, Chemical and Biological systems. This is indeed one of the great merit
of the Poincare qualitative theory [10] and the Andronov [1] subsequent
work to provide a language in order to describe the behavior of complex sys
tems when some external parameters are varied, particularly in situations
where the equations governing those systems are not exactly known (coarse
systems). Unfolding a bifurcation among ODEs, and adding to the resulting
family of ODEs a spatial dimension and spatial coupling terms (of low order
in space derivatives), one obtains what we call a spatial unfolding of the
bifurcation. Spatial unfoldings are well understood for local bifurcations
([6]), but, to our knowledge, they have not been much studied for global
ones like Andronov homoclinic bifurcation. This study is the subject of this
paper.

We consider PDEs of the form

(1)

i.e. invariant with respect to translations of time (autonomous) and space.
Here u is in R d

, d ::::: 1, and for simplicity the space variable x is one-
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dimensional (x E R). Spatially homogeneous solutions of this PDE are
solutions of the equation

du
dt = F(u,O) = f(u) (2)

(we write f(u) for F(u,O)), which is an autonomous ordinary differential
equation in dimension d.

Among the solutions of equation (2), of prime interest are those which
correspond to an asymptotic behavior, in particular attractive fixed points
and attractive periodic orbits. Consider a solution t f-+ Uh(t) of equation
(2) which is an attractive (linearly stable) periodic orbit. The correspond
ing homogeneous solution for the PDE (1) is thus stable with respect to
homogeneous perturbations. We adress the question of the behavior of
inhomogeneous perturbations. A small inhomogeneous perturbation u(x, t)
of Uh(t) obeys the equation

This equation being linear, it reduces in Fourier coordinates to

EJ(u(k) = DF(Uh(t), ik)u(k)

(3)

(4)

which is just an ordinary differential equation parametrized by k, with
periodic coefficients.

It turns out that the behavior of inhomogeneous perturbations of Uh(t)
is, without further hypotheses, by far a too general problem. An interesting
way to make this problem more specific, altogether preserving some gener
ality, is to look at it close to a bifurcation : normal forms or unfoldings of
bifurcations are both "particular" and "universal" examples. Here we will
suppose that the solution t f-+ Uh(t) is close to an Andronov homoclinic
bifurcation, and we will denote by fL the bifurcation parameter (we suppose
that fL < 0 and fL is close to 0, the bifurcation occurring at fL = 0).

At leading order in space derivatives, equation (4) reads

:t u(k) = (L(t) + ikC(t) - k2 D(t) + O(lkI 3
) )u(k) (5)

where L(t), C(t), D(t) are d x d real matrices which are periodic) in time
(remark that L(t) is nothing else than Df(Uh(t))).

Differential equation (5) depends on two small parameters fL and k,
and we know that, when k = 0, a homoclinic bifurcation occurs at fL = O.
The main question is : are the spatial effects destabilizing or not? in other
words, is the homogeneous bifurcation anticipated (for k i- 0, before fL = 0)
by another bifurcation due to the spatial effects ? We will see that the
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answer is always (generically) "yes", and study the nature of the instability,
together with its weakly nonlinear development. This instability result was
announced in [3] and proved in [11] and [5J. It holds in any dimension d ~ 2
(see [11]), but here, for simplicity, we shall restrict ourselves to the case
d = 2.

We shall moreover see that the instability can be of two types : either
the well-known Kuramoto phase instability, of a fundamentally different
kind of instability, which occurs with a period-doubling and at an intrinsic
wavelength. To this respect this second instability shares features analogous
to the classical parametric instability. We called it "self-parametric" since
it can be viewed as the result of a self-forcing of the oscillations, when the
cycle becomes highly anharmonic through the approach of a fixed point.

It is often the case that the system described by the PDE (1) admits
an additional parity symmetry with respect to the space variable x. In
this case, there exists a linear involution I of R d such that the equation
is invariant by the transformation (x, u) f---> (-x, Iu). We will say in the
following that the problem considered here (the local study around Uh) is
(x ~ -x)-invariant if the PDE admits a symmetry (x, u) f---> (-x, Iu), and
if moreover vector coordinates of Uh(t) vanish identically (i.e. IUh = Uh).
If this is the case, the linear PDE (3) around Uh involves only derivatives
of even order, and in equation (5), the "convective" matrix G(t) vanishes
identically. We will distinguish along the paper between cases where (x ~
-x)-invariance holds or not.

2. Preliminaries

We suppose that t f---> Uh(t) is a periodic solution of the homogeneous
equation (2) (denote by T its period). Along this paragraph, we forget that
Uh depends on the parameter p, and is close to a homoclinic bifurcation,
and we recall basic computations that will be used later.

Denote by <I>k(t) the flow of the differential equation (5) over one period
T. For k = 0, <I>o(T) is a first return (monodromy) map for the differential
equation (2) around Uh(.), thus one of its eigenvalue is always equal to 1 (it
corresponds to phase translation, in the direction of the flow). We suppose
that Uh is linearly stable with respect to homogeneous perturbations, i.e.
that all the other eigenvalues of <I>o(T) are strictly inside the unit circle.

For k close to 0, the eigenvalues of <I>k(T) are close to those of <I>o(T),
let us denote by A(k) the one which is close to 1. The stability with respect
to the wavenumber k depends on the size of IA(k)1 with respect to 1. Write

A(k) = 1 + kAl + k2A2 + O(lkI3).

The coefficient A2 is real, while Al has a vanishing real part.
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(a) (x +-+ -x)-invariant case. In this case C(.) == 0, ..\1 vanishes, and the
stability with respect to large wavelength perturbations is given by the sign
of "\2, If..\2 < 0, then Uh(') is phase stable, while it exhibits the well-known
phase Kuramoto instability ([8]) if ..\2 > 0.

x <--> -x invariant case non x <--> -x invariant case

Figure 1. Behavior of >"(k) for Ikl small.

(b) Non (x +-+ -x)-invariant case. In this case C(.) is not identically
vanishing, thus ..\1 is generically nonvanishing and purely imaginary. Write
)'1 = i>'1' The stability with respect to small k now depends on both coef
ficients >-1 and "\2, More precisely, if -..\2 > >-i (resp. -..\2 < >-i), then Uh(')
is stable (resp. unstable) with respect to sufficiently small wavenumbers k.

FORMAL COMPUTATION OF )'1 AND A2

Let el(t) = f(Uh(t)) and e2(t) = Rot1r / 2(el(t)), t E R. This defines a local
frame (el(')' e2(.)) along the periodic solution Uh(')' Let us formulate the
differential equation (5) using coordinates in this local frame. It takes the
form

where a, b, ej, and dj are real and T-periodic. Write

B; = eJ>(v)dv.

The quantity B1j is equal to the second eigenvalue of <po(T) (the first one
being equal to 1). By hypothesis (linear stability), it belongs to ]0; 1[.

For k close to 0, denote by Ek the (unique) vector belonging to the
eigendirection of <Pk(T) corresponding to the eigenvalue ..\(k) and having
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first coordinate equal to 1. Write Ek = (1, Yk). For k = 0, we have YO = o.
For t E R, write Ek(t) = (h(t)Ek, write Ek(t) = (Xk(t), Yk(t)), and write

Xk(t) = 1 + kx1(t) + k2x2(t) +... and Yk(t) = kYl(t) + k2Y2(t) + ...

The relation Ek(T) = A(k)Ek(O) yields

Al = xl(T), Yl(t) = Yl, A2 = x2(T), and Y2(T) = Y2(0) + AIYl(O),

and the differential equation (6) reads, at the first order in k,

dXl .
- = aYl + ~Cl
dt

dYl .di = bYl + ~C3,

and, at the second order in k,

dX2dt = aY2 + i(CIXl + c2yd - d1

dY2 .di = bY2 + ~(C3Xl + c4yd - d3·

(a) (x <-+ -x)-invariant case. In this case C(.) == o. Thus, Xl == 0,
Yl == 0, Y2(.) is the unique T-periodic solution of the differential equa
tion ~~ = bY - d3, i.e. Y2(t) = B6Y2(0) - J6 B~d3(S)ds, where Y2(0)
-(1 - B;f)-l J5 B;d3(s)ds, and we obtain

Al = 0 and A2 =1T
(aY2 - dd(s)ds.

(b) Non (x <-+ -x)-invariant case. Here C(.) "¥'- 0, Yl(.) is the unique
T-periodic solution of the differential equation dd~ = bY + iC3, Xl(t) =

J6(aYl + iCl)(S)ds, Y2(.) is the unique solution of the differential equation
dX = bY + i(C3Xl + C4Yl) - d3 satisfying Y2(T) = Y2(0) + AIYl(O), and Al
and ).2 read

Al = xl(T), and A2 =1T
(aY2 + i(CIXl + c2yd - dd(s)ds.

3. Homoclinic bifurcation

Now we suppose again that the periodic solution Uh depends on the pa
rameter fJ -:; 0, and that a homoclinic bifurcation occurs at fJ = 0 for this
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solution. We denote by U 1-+ fo(u) the function u 1-+ f(u) when !1 = O. We
place ourselves close to the bifurcation, i.e. we suppose that !1 is close to 0
but strictly negative; thus, f(.) is close to (but different from) fo(.).

We suppose that fo(O) = 0 = f(O), that D fo(O) reads (b; b~)'

where 0 < b+ < -L, and that the differential equation ~~ = fo(u) admits
a solution Uh,O(.) homoclinic to the fixed point 0, and we suppose that the
trajectories of Uh (.) and Uh,O (.) are close.

----- ...

o
----

.s!!!. = f(u)
dt

Figure 2. Homoclinic and almost homoclinic orbits.

We are going to show that, for !1 < 0 close enough to 0, the periodic
solution Uh (.) is always (generically) linearly unstable with respect to inho
mogeneous perturbations. In the (x <-> -x)-invariant case, this result was
conjectured in [2]' announced in [3], and rigorously proved in [11]. The case
where the (x <-> -x)-symmetry breaks was considered in [5].

Consider the differential equation (6) (in the local frame along Uh(.))
where the origin of times is fixed on a section ~ transverse to some point
of the trajectory of Uh,O(.) (see the figure). We can write down a similar
differential equation in the local frame of the homoclinic solution Uh,O (.)
let us write it

aO)+ik(Cl,O C2,0)_k2 (d1,0
bo C3,0 C4,0 d3,0

This differential equation is not periodic any more, its coefficients are limits
(on any bounded time interval) of the coefficients of (6) when !1 -> O. We
have bo(t) -> b+ - b_ when t -> +00, bo(t) -> L - b+ when t -> -00,
ao(t) -> 0 when t -> ±oo, and each coefficient Cj,o(t) (resp. dj,o(t)) admits
limits when t -> +00 and t -> -00, say Cj.o.+ and Cj,O,- (resp. dj,o,+ and
dj •o,_).
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Following Andronov's classical idea, we are going to decompose the
periodic solution Uh(.) into two parts, one close to and the other one far
from the fixed point O. Let 6 be a small positive parameter. Denote by T+
(resp. T_) the first positive time when Uh (.) enters (resp. escapes) the box
of size 26 centered in O. Denote by To the time between T+ and T_ where
Uh(.) belongs to the diagonal x = y (see the figure). The quantities T_ -To
and To - T+ are both large, but T_ - To is larger than To - T+ (more

precisely, the ratio ~~-=-~ is close to ~ > 1).
For t E [T_; T+L i.e. when Uh(t) lies inside the small box, we have

(
a(t)) _ (0)b(t) - RoL21:1(t) L - b+ + ...

where 8(t) is the angle h, el(t)) (here El = (1,0) and el(t) = f(Uh(t))
is the speed vector), and the remaining terms "... " are small if 6 and f-l

are close to O. The angle 8(t) is close to -7r/2 for t - To « 0, close to
o for t - To » 0, and jumps between these two values during a bounded
time interval around To. Thus the qualitative behaviors of a(t) and b(t)
for t E IT+; T-I are as follows (see figure 3): the coefficient b(.) is close to
b+ - L for t - To « 0, close to L - b+ for t - To » 0, and jumps between
these two values during a bounded time interval around To ; the coefficient
a(.) is close to 0 except during this bounded time interval, where it takes
finite positive values between 0 and b+ - L.

I

b(t)

I

b_-b+ -------------------------~--~-~-~--~-=--~-~-------------------

Figure 3. Behavior of a(t) and b(t) for t E [T+; T_].
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3.1. (X +--t -X)-INVARIANT CASE

(a) Phase instability. We are first going to estimate ),2. We know that Y2
is the unique T-periodic solution of the differential equation !fit = by - d3 .

Let us consider the limit when JL ----7 0 of this equation, i.e.

dy
- = boY - d3 o·
dt '

The asymptotic behavior of bo and d3,o show that this equation admits a
unique solution y_(.) (resp. y+(.)) which is bounded when t ----7 -00 (resp.
when t ----7 +00). Generically, these two solutions are different and the sign
of y_(.) - y+(.) is constant (remark that the only case where this genericity
result does not hold is when the matrix D(t) is proportional to the identity:
in this case the coefficient d3 (.) vanishes identically, and so do y_, and y+ ;
the periodic solution Uh (.) is then stable, because the coupling has only a
trivial stabilizing effect).

The sign of y_ (.) - y+ (.) governs the nature of the instability. Indeed,
when t ----7 +00, Iy-(')I ----7 +00 and has the sign of y_(.) - y+(.). The fact
that T_ - To > To - T+ shows that the behavior of Y2(.) is the following:
on [T_ - T; T+J (i.e. when Uh is "far" from 0), it is very close to y_(.) ; on
[T+; To], IY2(.)1 grows exponentially and Y2 has the same sign as y_ - y+ ;
IY2(.)1 takes a maximal value around t = To, and decreases exponentially
afterwards. Thus, the main contribution in the expression ),2 = J:J' (aY2 -

Y. (t) f

T+-T To-T/

!y)t)
,
,,

lOT 0 T+ To 1 T

Figure 4. Behaviors of yo(.), y+(.), and y_(.) on R.

dt) (s )ds is the integral of aY2 on a bounded interval around t = To. As a > 0
on this interval, we see that ),2 is large and has the sign of y_ (.) - y+ (.).
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The conclusion is that, if y_(.) - y+(.) > 0, then the periodic solution
Uh (.) is phase unstable close to the homoclinic bifurcation.

(b) Self-parametric instability. If y_(.) - y+(.) < 0, then Uh(.) is phase
stable, i.e. stable with respect to values of k (very) close to 0. We are going
to see, however, that in this case another instability holds, with respect to
small but finite values of k.

Denote by <I>r (resp. <I>~) the flow of the differential equation (6) between
the times T_ - T and T+, i.e. outside of the small box of size 28 (resp.
between the times T+ and T_, i.e. inside the small box of size 28). The
composition <I>~ 0 <I>r represents the flow over one period.

Let us write <I>{; = (~ ~). The flow <I>r is a perturbation of <I>{; which

remains non-singular when one approaches the homoclinic bifurcation; we
can thus write

<I>r = <I>~ + k
2 (~ ;) + O(k

2
).

Remark that the quantity y in this expression of <I>r is the value at time T+
of the solution of the differential equation ~ = by-d3 , with initial condition°at time T_ - T. If 8 is sufficiently small, the behavior of this solution is
once again governed by the behavior of y_ ; it grows exponentially, and
has the sign of y_ - y+ (thus negative in the case considered here) when
t approaches T+. Thus, the value y at time T+ is negative and arbitrarily
large if 8 is sufficiently small.

Let us write <I>~ = (~ ~). If IILI equals the distance of Uh (T+) (i.e.

at the entrance of the small box) to the stable manifold of 0, and denoting
8-1 1ILI by sand ILI/b+ by I, we find that

T/ = 1(1 + O(8))S-l+O(d) and (= 1 2(1 + O(8))S'"Y-l+O(d).

The very singular form of <I>~ deserves comments. Although this linear map
has distinct eigenvalues (namely 1 and T/), it can hardly be put in a diagonal
form because its two eigenvectors are almost parallel. An amplitude per
turbations of the limit cycle when it enters the small box transforms into
a strong phase perturbation. There is thus a strong coupling between am
plitude and phase perturbations, and even if one of the Floquet multipliers
(() tends to zero while the other remains finite, no dimensional reduction
is possible.

The flow <I>~ is a perturbation of <I>~ which becomes singular when one
approaches the homoclinic bifurcation; nevertheless, we have the following
estimate:
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where qk = EO(k2
). Denote by Tk the trace of cI>~ 0 cI>f The previous

expressions of cI>~ and cI>~ show that

Tk = qk(To + ryk2 (y + 0(1))).

If y is sufficiently large (i.e. if 8 is sufficiently small), and if ryk2 is large (i.e.
if k 2 » E), we see that the dominant term in this expression of Tk is the
term qkryk2y ; it is large and negative. As on the other hand the determinant
of cI>~ 0 cI>~ is small, we see finally that, when k 2 is small but k 2 » E, this
first return map has two real eigenvalues, one close to 0, and the other one
large negative. This proves the instability in this case.

3.2. NON (X <-7 -X)-INVARIANT CASE

In this case, the same kind of computation as in the previous paragraph
(period doubling instability) can be achieved. It shows that, generically,
for Ikl small but Ikl » E, the trace of the monodromy map cI>~ 0 cI>~ has
a large modulus (and an argument close to ±1f/2), which proves already
the instability. Nevertheless, we want to be more precise and show that
the instability occurs for arbitrarily small values of k, i.e. that the phase
instability criterion -.\2 < >-r holds.

Write YI = ii)I and Xl = iXI. Then ih is defined as the unique T
periodic solution of the differential equation ~~ = by + C3. Consider the
corresponding limit differential equation:

dy
-d = boy + C3 o·t '

Again, this differential equation admits a unique solution y_ (.) (resp. y+ (.))
which is bounded when t ---+ -00 (resp. when t ---+ +00). Generically, these
two solutions are different, and the sign of y_(.) - y+(.) is constant.

As in the previous paragraph, the behaviour of IYI(.)I is the following:
it grows exponentially on [T+; To], and decreases exponentially on [To; T_J
(on these two intervals YI(') has the sign of y_(.) - y+(.)). The quantity
IYI(t)1 thus takes a maximal value when t is around To. We deduce from
this the behavior of IXI(t)1 = IJ~(aYI + cd(s)dsl : it grows very fast when
t belongs to a bounded interval around To, and varies much slower outside
of this interval. We have

dY2 b - - d----;]1 = Y2 - C3 X I - C4YI - 3·

The constraint Y2(T) = Y2(0) - Xl (T)ih(O) yields

Y2(0)(1- Bl) = -xI(T)YI(O) - faT B;( -C3XI - C4YI - d3)(s)ds.
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Figure 5. Behaviors of Xl(t) and iil(t) for t E [O;TJ.

Now, according to the behaviors of b and a, we have, for 8 sufficiently small,
on one hand

and on the other hand

rT
B; ( -C3Xl - c4ih - d3) (s)ds -::= Xl (T) rT

B;c3(s)ds.io iT-
Finally, we obtain IY2(0)1 « IXl(T)j, which shows that maXtE[O;TIIY2(t)1 «
Xl (T)2, and finally that

This proves the instability.

3.3. NONLINEAR BEHAVIOR

In summary, close to an Andronov bifurcation, a limit cycle is always un
stable with respect to spatially inhomogeneous perturbations. Depending
on the form of the coupling, this instability is either the phase instability
or the self-parametric instability.

For the phase instability, amplitude equation with u(t, x) = Uh(t - ¢) is
the well known Kuramoto-Sivashinsky equation ([8]) :

(7)

For the self-parametric instability in the (x +-+ -x)-invariant case, the
non linear amplitude equation with u(t,x) = Uh(t - ¢) + Aeikox((t - ¢) +
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c.c. + ... reads :

fLA ± alAI2A + a<Pxx A + {3<P3< + Axx

o<pxx + <P3c + 77IAI 2

(8)

(9)

where ((t) is the Floquet eigenvector corresponding to the period doubling.
We show numerical computation of the following equations:

Ut

Vt

v + --YUx + U xx - {3vxx

(fL - u)v - U + u2 + {3uxx + V xx

(10)

(11)

The homogeneous part of this equation admits a stable periodic solution
for 0 < fL < 0.135 which disappears via an Andronov bifurcation.

A B c

Figure 6. Numerical simulation of equations (10) and (ll).

Results appear on figure 6 where abcissa is for the spatial coordinate
and ordinate is for time. The intensity of gray corresponds to the value
of u.

1. For A the parameters are fL = 0.075, {3 = 1, I = o. For these values
of parameter the system exhibits a phase instability. There is no wave
number selected.

2. For B the parameters are fL = 0.075, {3 = -1, I = o. The system
exhibits this stable pattern after a bifurcation from the homogeneous
state. It clearly shows period doubling, and a wave length is selected.

3. For C the parameters are fL = 0.075, {3 = -1, I = 0.35. The case is
more involved and the limit cycle is unstable for small wavenumber
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(phase instability) and is also unstable for a finite wavenumber with a
negative real part of the Floquet multiplier. On this diagram there are
traces of phase instability and of self-parametric instability.

4. Conclusion

We have shown that spatially homogeneous time periodic solutions of par
tial differential equations generically become unstable with respect to in
homogeneous perturbations when they approach a saddle fixed point (i.e.
a homoclinic bifurcation). Although we restricted ourselves to dimension
d = 2 for the field variable u, this result still holds in any higher dimension
([11]). Moreover we have seen that the instability can be of two different
types: either the classical Kuramoto phase instability of a "self-parametric"
instability, occurring with a period-doubling at a finite wavelength. We have
related this second instability to the self-parametric forcing of the homo
geneous periodic solution. Although this generic instability was observed
in physical ([9]) and chemical systems ([7]) and model equations ([12]), no
clear explanation of the mechanism was proposed up to now.

When the parity symmetry is broken, we have proved that a phase
instability (instability with respect to arbitrarily large wavelength) always
occurs close to the bifurcation. If this breaking is small and occurs in a
system which previously displayed a self-parametric instability, we have
co-existence of both instabilities.
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