
Semantic Modelling of Dependency Relations

between Life Cycle Analysis Processes

Benjamin Bertin, Marian Scuturici, Jean-Marie Pinon, and Emmanuel Risler

Université de Lyon, CNRS,
INSA-Lyon, LIRIS, UMR5205

20 Avenue Albert Einstein, F-69621 Villeurbanne Cedex
{benjamin.bertin,marian.scuturici,jean-marie.pinon}@liris.cnrs.fr

Université de Lyon, CNRS
INSA-Lyon, ICJ, UMR5208

21 avenue Capelle, F-69621 Villeurbanne Cedex
emmanuel.risler@insa-lyon.fr

Abstract. Life Cycle Assessment provides a well-accepted methodology
for modelling environmental impacts of human activities. This methodol-
ogy relies on the decomposition of a studied system into interdependent
processes. Several organisations provide processes databases containing
several thousands of processes with their interdependency links. The usual
work-flow to manage those databases is based on the manipulation of in-
dividual processes which turns out to be a very harnessing work. We pro-
pose a new work-flow for LCA inventory databases maintenance based on
the addition of semantic information to the processes they contained. This
method eases considerably the modelling process and also offers a more
understandable model of the dependencies links. In this paper, we explain
our approach and some key parts of the implementation. We also present
a case study based on the U.S. electricity production and an experiment
on the scalability of our implementation.

Keywords: Environmental information management, Life Cycle As-
sessment, Ontology.

1 Introduction

In order to reduce the environmental impact of human activities it is necessary
to model and evaluate the environmental effects of those activities. This is the
objective of the Life Cycle Assessment (LCA) method[3], which aims at deter-
mining the environmental impacts of a product, a service or, generally speaking,
any human activity. This method can take into account all the life cycle stages
of a product such as manufacture, use and recycling. LCA can assess various
environmental impacts like greenhouse gases emissions or chemical products dis-
semination.

An LCA study is composed of four phases[3]. The first one consists of the defi-
nition of the goal and scope of the studied system. In the second one, the studied

A. Auweter et al. (Eds.): ICT-GLOW 2012, LNCS 7453, pp. 109–124, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



110 B. Bertin et al.

system is factorized into interrelated elementary processes associated to environ-
mental impacts in order to achieve a Life Cycle Inventory (LCI). Elementary
processes are related to specific stages of a life cycle or to any human activ-
ities (e.g., energy production, fertilizer spreading, air plane trips, etc.). Those
processes can depend on other processes, for instance: car production depends
on steel production. In the last two phases we perform the analysis and the
interpretation of the environmental impacts.

The accepted methodology for the LCI is to use an Input/Output (I/O)
matrix[12] to model inter-process interactions or interactions between processes
and the environment. In order to calculate the impacts of processes, we need to
solve the linear equation system corresponding to the I/O matrix.

Several agencies and companies provide Life Cycle Inventories databases[7][1]
[2] that are used by LCA practitioners to do an LCA study. But those databases
can contain thousands of processes linked together. The model is therefore diffi-
cult to understand unless the practitioners do an in-depth analysis. Yet, seman-
tic similarities are noticeable in LCI databases. The dependency links between
processes in LCI databases contain many network constructions that are both
topologically and semantically close. For instance, in order to produce electricity
from coal it is necessary to transport it. In an LCI database, we can find sev-
eral processes corresponding to electricity production from coal for every type
of coal that can be used to produce electricity (lignite coal, bituminous coal
or sub-bituminous coal). Those processes are all linked to several merchandise
transportation processes depending on the transportation systems (the coal can
be transported using a truck, a barge, etc.).

But, if this information is scattered into the I/O matrix or if we look at all the
processes independently, it is hard to understand that in order to produce elec-
tricity from coal it is always necessary to transport it. Meanwhile, maintaining
all those relationships can be tedious if we need to update several semantically
close relations. For instance, if we want to add a new mode of transport to trans-
port coal, we would have to add a dependency link between this process and all
the electricity production from coal processes.

Thus, we propose a new methodology to model an LCI database based on the
semantics of the processes. In our approach, we semantically index the processes
and we use this semantic indexing to semantically regroup the processes. Then,
we use those groups to model the dependency links between multiple processes.
With this methodology we address the two problems we identified: we offer a
bird’s eye view of the database and we ease the database management using
the regrouped processes. Our model is based on the coexistence of two digraphs.
The first one, called the macro-graph, contains dependencies between regrouped
processes (or macro-processes). The second one, called the detailed-graph, is a
transposition of the I/O matrix. In our approach, the modelling process consists
in creating dependency links between macro-processes instead of creating depen-
dency relations between individual processes. Due to the potential presence of
cycles in the digraph, we cannot calculate the impacts of processes contained
in the macro-graph. Hence, those relations are translated into inter-process



Semantic Modelling of Dependency Relations between LCA Processes 111

relations in the detailed-graph (in order to calculate the impacts of processes
as it is usually done with the I/O matrix).

The rest of this paper is structured as follows. The second section contains
a brief description of the usual LCI model. In the third section, we present a
case study based on a data set extracted from the National Renewable Energy
Laboratory LCI Database[2]. In this paper, we restricted our study to electricity
production processes only. In the fourth section we explain our model. The fifth
section contains the translation method of the macro-relations contained in the
macro-graph into relations between processes in the detailed-graph. The last
section contains the results of this method applied to the NREL data set and
experimental results that prove the scalability of the translation algorithm. Some
parts of this work have already been presented in [4]. In this paper we focus on
the methodology and we propose a new formalization and a new implementation
for the translation method.

2 Life Cycle Inventory Model

The goal of Life cycle assessment methodology is to evaluate the environmen-
tal impacts of, for instance, a product or a company’s activity. This can be
achieved by creating an inventory of elementary flows from and to the environ-
ment, for every step of a product’s production process or for every activity of
a company[9][10]. In the LCA terminology, these steps or activities are called
processes.

A process is associated with environmental impacts (e.g., the greenhouse gases
emitted or the resulting water pollution) and with other processes. For instance,
it is necessary to extract and transport coal in order to run a coal power plant.
The total amount of environmental impacts of a process is the sum of its own
impacts (i.e., that are not from its predecessors) and the impacts of its predeces-
sors multiplied by a scalar dependency coefficient. The environmental impacts
of a process can be expressed as a linear combination of other processes envi-
ronmental impacts. Let p be a process and I(p) its cumulated environmental
impacts. We denote by p0, . . . , pn the preceding processes of p (often called up-
stream processes of p), and by c0, . . . , cn the dependencies coefficients between
upstream processes. We denote by I(p0), . . . , I(pn) the cumulated environmental
impacts of p’s upstream processes and by Idirect(p) its own impacts. We have:

I(p) = Idirect(p) +

n∑

i=0

(I(pi) ∗ ci)

The usual model is based on an Input/Output matrix A. For n processes, this
is a n× n matrix, where aij is the dependency coefficient between process i and
process j. This matrix depicts flows to and from the technosphere1. These flows
are named elementary flows. The m different impacts produced by n processes

1 The McGraw-Hill Dictionary of Environmental Science defines this term as: The part
of the physical environment affected through building or modification by humans.



112 B. Bertin et al.

are modelled in a n×m matrix B, where bij is the jth impact of the ith process.
This matrix depicts flows from the technosphere to the ecosphere2.

The I/O matrix can also be represented using a digraph. Let G(V,E) be the
digraph representing dependency links between processes. The vertices set V is
the set of processes. We also denote this set of processes by P . The edges set E
contain the relations between processes and the set of weights associated to the
edges is the set of coefficients. We also denote this set of coefficients by C. Let
p and p0, . . . , pn be vertices then an edge between pi and p means that process
p depends on pi.

For instance, in order to produce electricity from coal we need to extract the
coal. We can model the dependency relations between the electricity production
from coal process and the extraction process by creating an edge between the
vertices corresponding to those processes (see Figure 1)3.

Fig. 1. Detailed-graph for the electricity production from coal process showing its
dependency relation with the coal extraction process. This relation is weighted with
the quantity of coal required to produce 1Kw of electricity.

Determining the impacts for a specific process requires to recursively calculate
the impacts of its predecessors. As explained in [15], the I/O matrix can be
considered as a basic system of linear equations. Thus it is possible to calculate
the impacts of the processes using iterative methods4 or any direct method (like
the Gaussian elimination)[19].

Interestingly for our proposition, there is one condition for the matrix to be
computable: the linear equations system must converge. For instance, if we say
that in order to produce one gallon of oil, we need to consume more than one
gallon of oil, then an iterative algorithm to solve the linear equations system will

2 The U.S. Environmental Agency defines this term as: The “bio-bubble” that contains
life on earth, in surface waters, and in the air.

3 Processes and dependency coefficients are associated to a functional unit. The value
of a coefficient depends on its unit. In our example, if the impacts of the electricity
production from coal process are expressed in produced Kw, and the impacts of
the extraction process are expressed in Kg of extracted coal. Then, the unit of the
coefficient is expressed in Kw per Kg and can be determined, for instance, considering
the average quantity of coal necessary to produce one Kw of electricity. In order to
keep our explanation simple, we do not consider the units of the processes and the
coefficients in this paper.

4 Life Cycle Inventory data is subject to uncertainty. It is therefore possible to use an
iterative method and stop the algorithm if the delta obtained between two iterations
is smaller than the uncertainty. This could significantly lower the computation time
compared to a direct method.



Semantic Modelling of Dependency Relations between LCA Processes 113

not converge. The system converges when the spectral radius of the matrix A is
less than 1 [18]. The potential presence of cycles forbids us to directly calculate
the impacts of processes in the macro-graph. Therefore, we need to convert the
latter into a detailed-graph and apply a linear equations system solving method.

3 Case Study: Electricity Production in the U.S.

The National Renewable Energy Laboratory (NREL) provides an LCI
Database containing inventory data for electricity production for every 27 U.S.
subregions[2].

Fig. 2. Sequence from the studied data set extracted from the NREL’s LCI Database

These subregions are defined by the U.S. EPA’s Emissions and Generation
Resource Integrated Database (eGRID)[6]. An eGRID subregion represents a
portion of the US power grid that is contained within a single North America
Electric Reliability Council (NERC) region, and generally represents sections of
the power grid, which have similar emissions and resource mix characteristics,
and may be partially isolated by transmission constraints.

The NREL’s LCI data can be exported in the ecospold format[17] as Excel
spreadsheets or XML documents. This is a common data exchange format widely
used in the LCA community. Besides including some meta-data for each process
(provenance, comments, etc.), it includes dependencies between processes with
the dependency coefficients. Some processes in this database are not detailed
and flagged as “dummy” processes. So we do not have a complete data set in



114 B. Bertin et al.

terms of dependency relations. But, even after pruning these dummy processes,
the data set is still complex enough to illustrate our proposition. Figure 2 shows
the detailed-graph corresponding to this data set limited to 7 subregions. This
data set restricted to those subregions contains 27 processes and 72 inter-process
relations (the whole database contains 593 processes).

As mentioned in the introduction, even on this simple data set, it is hard to
understand the dependency links for semantically close processes. Meanwhile,
managing this data set to add a new process or a new dependency link can be
tedious. For instance, if we want to add a new mode of transport to transport
coal, we have to add a dependency link between this process and all the electricity
production from coal processes. In this article we use this case study to exemplify
the different parts of our proposition.

4 A Methodology Based on Three Graphs

Our approach is based on the existence of two layers of directed graphs. The
first graph, called the detailed-graph, contains the dependency relations between
processes. The second graph, called the macro-graph, contains the relations be-
tween groups of processes (or macro-processes). The macro-graph offers a sim-
plified view of the data contained in the detailed-graph and eases the expression
of new dependency relations between semantically close processes. In order to
semantically regroup processes, we choose to index them with a set of keywords
that are stored in an ontology[8][14] (here is the third graph). The vocabulary
of this simple ontology is composed of keywords and predicates to create binary
relations between those keywords.

Using this ontology, we can regroup processes and dependency coefficients
into semantic groups. A macro-process is similar to a multidimensional matrix,
where each dimension is a set of keywords. Those dimensions are described using
a query over the ontology. We can create dependency relations between those
macro-process using macro-coefficients, in the same way that we create depen-
dency relations between processes using individual coefficients.

The methodology based on those three graphs is summarized in Figure 3.
With this methodology, if we want to create a new LCI database, we have to
follow six steps. During the first one we need to create the keywords ontology.
In the second step we create some macro-processes using the ontology. Those
macro-processes reference several processes depending on the keywords coordi-
nates of the cells in the macro-processes. Because the database is empty, in the
third step, individual processes are automatically created according to the co-
ordinates of the macro-processes cells. Then, in the fourth step, we can create
dependency relations between the macro-processes. Finally, the macro-graph is
automatically translated into a detailed-graph in the fifth step and, in the sixth
step, the coefficients are extracted and the impacts are calculated solving the
corresponding linear equation system.

If we add a new macro-process to an already existing LCI database, the pro-
cesses it references can already exists. Hence, we would enrich the dependency



Semantic Modelling of Dependency Relations between LCA Processes 115

Fig. 3. The proposed methodology. The first part contains the keyword ontology. The
second part contains two macro-nodes referencing some processes shown in the third
part (those processes are indexed with keywords). The fourth part contains the macro-
graph and is translated into the detailed-graph in the fifth part. The sixth part contains
the I/O matrix extracted from the detailed-graph.

network of those processes. Furthermore, as the macro-processes are defined us-
ing the ontology, we can edit macro-processes by just editing the ontology.

The following subsections explain our keywords ontology with the semantic
indexing and the macro-graph.

4.1 The Keywords Ontology

Processes and coefficients are indexed and identified using keywords: there is
only one process or coefficient associated to a specific set of keywords, e.g., the
process corresponding to using a truck is indexed using the keywords Transport
and Truck. We define the notion of indexed process as follows:

Definition 1. Let k1, . . . , kn be keywords. An indexed process pi is a pair com-
posed of impacts and a set of keywords denoted by pi = (I(p),Kp), where Kp =
{k1, . . . , kn}.
Similarly, we define the notion of indexed coefficient as follows:

Definition 2. Let k1, . . . , kn be keywords. An indexed coefficient ci is a pair
composed of a scalar value and a set of keywords denoted by ci = (V (c),Kc),
where Kc = {k1, . . . , kn}.
A macro-process or a macro-coefficient form a multidimensional matrix where
dimensions are distinct sets of keywords. Therefore, there is only one process or
coefficient associated to each coordinate5.

5 The coordinates correspond to the Cartesian product of the dimensions.



116 B. Bertin et al.

The keywords are organized in an ontology which is used to dynamically
define groups. A set of keywords, called dimension, is the result of a query over
the ontology. Considering the ontology in Figure 4, we can build a dimension
containing all transportation systems with a query retrieving all the keywords
linked to the keyword Transportation system, considering only the predicate is a.
If we want to create a dimension containing only transportation systems running
on oil, we can use a query to retrieve the intersection of the keywords linked to
the keyword Transportation system with the predicate is a and the keywords
linked to the keyword Oil with the predicate uses.

The vocabulary of our ontology is easily represented using RDF[11], with the
following triples expressed in the turtle syntax[5], assuming that we have an
XML namespace ex for our ontology:

ex:Keyword rdf:type rdfs:class;

ex:Predicate [

rdf:type rdf:Property;

rdfs:range ex:Keyword;

rdfs:domain ex:Keyword

] .

The ontology shown in Figure 4 corresponds to the following RDF statements:

Fig. 4. Ontology example for
transportation systems. Nodes are
keywords and edges’ labels are
predicates.

ex:transportationSystem

rdf:type ex:Keyword;

ex:is_a rdf:type ex:Predicate;

ex:truck ex:is_a

ex:transportationSystem;

ex:barge ex:is_a

ex:transportationSystem;

ex:train ex:is_a

ex:transportationSystem;

ex:train ex:uses ex:oil;

ex:barge ex:uses ex:oil;

ex:train ex:uses

ex:electricity;

Using RDF, a dimension is expressed via a SPARQL[16] query. For instance,
the query to get all the keywords describing a transportation system is:

SELECT ?keyword

WHERE { ?keyword es:is_a ex:transportationSystem. }

Any change made to the keywords ontology can trigger an update to pre-
viously defined dimensions, therefore it will update already defined groups. For
instance: if a new transportation system is added to the ontology shown in Figure
4 (like air-plane), every macro-process or macro-coefficient having a dimension
containing transportation system keywords will be updated.



Semantic Modelling of Dependency Relations between LCA Processes 117

4.2 The Macro-graph Layer

We can create dependency relations between macro-processes using macro-coeffi-
cients (those relations are calledmacro-relations). The macro-processes and their
dependencies are represented in a weighted digraph GM (V,E), where the ver-
tices set V is the set containing the macro-processes, the edges set E is the
set of dependency relations between groups of processes, and the set of weights
associated to the edges is the set of macro-coefficients. Macro-processes and
macro-coefficients are called macro-nodes. The correspondence between the In-
put/Output methodology and this approach is obvious: a macro-coefficient con-
tain a block of the I/O matrix.

The macro-graph eases the model comprehension and offers a new way to
model the dependency relations between processes based on the manipulation
of the keywords ontology. Instead of creating several dependency relations be-
tween semantically close processes, we can create one macro-relation between
two macro-processes.

Because the LCA modelling can contain cycles between processes, it is not
possible to calculate impacts of processes directly on the macro-graph. We need
to translate the relations between macro-processes into relations between pro-
cesses. In other words, we need to translate the edges of the macro-graph into
edges in the detailed-graph. Then, we can extract the coefficients matrix in or-
der to compute impacts as it is usually performed in the LCA methodology. We
will explain this procedure in the next section. First, we need to formalize our
approach.

Macro-nodes Definitions

Let S be an ontology. We denote by P(S) the set of subsets of S without
the empty set. We call dimensions the elements of P(S) and we denote by
P(P(S)) the set of subsets of P(S). A macro-node is valid only if it has distinct
dimensions, i.e., if its dimensions have no keywords in common. We define the
concept of dimension set consistency as follows:

Definition 3. An element D ∈ P(P(S)),D = (D0, . . . , Dn), is called consis-
tent if ∀(i, j) ∈ N

2, i �= j,Di ∩Dj = ∅.
In order not to have any ambiguity in the choice of processes to link together
when a macro-relation is translated into a set of relations in the detailed-graph,
dimensions of the macro-nodes involved in a macro-relation must not match
more than one dimension of the other macro-nodes. A dimension can match
another dimension if their intersection is not empty. We define the concept of
dimensions sets compatibility as follows:

Definition 4. Two elements D and D ′ of P(P(S)) are compatible if the fol-
lowing properties are true:

∀D ∈ D , Card{D′ ∈ D ′|D ∩D′ �= ∅} ≤ 1
∀D′ ∈ D ′, Card{D ∈ D |D′ ∩D �= ∅} ≤ 1



118 B. Bertin et al.

Example: let D = {D1, D2}, D ′ = {D3}, D ′′ = {D4} be three dimensions such
that D1 = {A,B}, D2 = {C,E}, D3 = {A,F} and D4 = {B,C}. We say that D
and D ′ are compatible, while D and D ′′ are incompatible becauseD1∩D4 = {B}
and D2 ∩D4 = {C}.

Having properly defined dimensions and restrictions to the notion of dimen-
sion, we can now define what is a macro-process as follows:

Definition 5. Let P i be the set of indexed processes. A macro-process is an
ordered pair (D ,P), where D = (D0, . . . , Dn) is a consistent set of dimensions
and P is an application P : D0 × · · · ×Dn → P i.

Another notation for a macro-process is based on the enumeration of its pro-
cesses: Gp = (D , Pp) = ({D1, . . . , Dn}, {pi1, . . . , pim}) = ({D1, . . . , Dn}, {(I(p1),
Kp1), . . . , (I(pn),Kpm)}).

Similarly we can define what is a macro-coefficient as follows:

Definition 6. Let Ci be the set of indexed coefficients. A macro-coefficient is an
ordered pair (D ,C ), where D = (D0, . . . , Dn) is a consistent set of dimensions
and C is an application C : D0 × · · · ×Dn → Ci.

We can also express a macro-coefficient as an enumeration: Gc = (D ,C ) =
({D1, . . . , Dn}, {ci1, . . . , cin}) = ({D1, . . . , Dn}, {(V (c1),Kc1), . . . , (V (cn),Kcn)}).

By extending the definition on dimensions set compatibility, two macro-
processes GP1 = (D1,P1) and GP2 = (D2,P2) are compatible only if D1 and
D2 are compatible. A macro-relation between an upstream macro-processGP1, a
macro-coefficient Gc and a downstream macro-process GP2 is valid only if those
three macro-nodes are compatible. That is to say that GP1 must be compatible
with Gc and GP2, Gc must be compatible with GP2.
Example: Let GP1 be a macro-process containing transportation system pro-
cesses, such that GP1 = ({{Truck,Barge }},P1). Let GC be a macro-coefficient
containing dependency coefficients between transportation processes and some
electricity production processes such that GC = ({ {Truck,Barge}, {Electri-
-city}, {Coal,Oil}}, c). We can state that GP1 and GC are compatible. Figure
5 shows a simplified graphical representation of those macro-nodes. The nota-
tion pTruck used in this representation conveys that this process, referenced in
GP1, is indexed by the keyword Truck and the coefficient cTruck,Electricity,Coal,
referenced in GC , is indexed by the keywords Truck, Electricity and Coal.

5 Translation from the Macro-graph to the
Detailed-Graph

In order to calculate the impacts of the processes involved in a macro-relations
between two macro-processes, we have to convert the macro-relation into a set
of detailed-relations. A macro-relation is an edge in the macro-graph, weighted
with a macro-coefficient. We denote such a relation by ((GP1, GP2), Gc), where
GP1 and GP2 are macro-processes and Gc is a macro-coefficient. This relation is



Semantic Modelling of Dependency Relations between LCA Processes 119

GP1 Truck Barge

pTruck pBarge

GP2 Electricity

Coal pElectricity,Coal

Electricity Electricity

GC Coal Oil

Truck cTruck,Electricity,Coal cTruck,Electricity,Oil

Barge cBarge,Electricity,Coal cBarge,Electricity,Oil

Fig. 5. Graphical representations of two macro-processes GP1 and GP2 and a macro-
coefficient GC . GP1 contains transportation processes and is composed of one dimen-
sion. GP2 contains the electricity production from coal process and is composed of
two dimensions. GC contains coefficients between GP1 and a macro-process containing
electricity production processes (such as GP2) and is composed of three dimensions.

translated into a set of detailed-relations, i.e., a set of edges in the detailed-graph,
denoted by {((pi, pj), cij)}, where pi and pj are processes and cij is a coefficient.
We only create a detailed-relation between two processes and a coefficient shar-
ing a common indexation. Figure 6 shows the macro-graph corresponding to the
macro-relation ((GP1, GP2), Gc) and its conversion into a detailed-graph. GP1,
GP2 and Gc are the groups shown in Figure 5. This translation procedure re-
quires that we introduce two notions: the union of two dimensions sets and the
matching number between two dimensions sets.

Fig. 6. The macro-graph on the left side contains a macro-relation between GP1 (con-
taining transportation system processes) and GP2 (containing the electricity produc-
tion from coal process) and is converted into the detailed-graph shown on the right
side

The union of two dimensions sets is the union of the following three sets: 1) the
intersection of the dimensions of the two sets that have a not empty intersection;
2) all the dimensions of the first set that do not intersect any dimension of the
second set; 3) all the dimensions of the second set that do not intersect any
dimension of the first set6.

6 This operation is different than the union of two sets or the union of two indexed fam-
ily of sets. For instance, let D1 = {{A,B,C}} and D2 = {{A, B,D}, {E, F}} be two
dimensions. The union of those two dimensions set is: D1∪D D2 = {{A,B}, {E,F}},
because {A,B,C} ∩ {A,B,D} = {A,B} and {E,F} does not intersect any dimen-
sion of D1.



120 B. Bertin et al.

Definition 7. We denote by ∪D the union operator between two dimensions
sets such that, for two dimensions sets D1 and D2:

D1 ∪D D2 ={D1 ∩D2 | D1 ∈ D1 ∧D2 ∈ D2 ∧D1 ∩D2 �= ∅}
∪ {D1 | D1 ∈ D1 ∧ ∀D2 ∈ D2, D1 ∩D2 = ∅}
∪ {D2 | D2 ∈ D2 ∧ ∀D1 ∈ D1, D2 ∩D1 = ∅}

The matching number between two dimensions sets is the number of pairs of
dimensions belonging to the two sets that have a not empty intersection.

Definition 8. We denote by α(D1,D2) the matching number between two di-
mensions sets D1 and D2, such that:

α(D1,D2) = card({(D1, D2)|D1 ∈ D1 ∧D2 ∈ D2 ∧D1 ∩D2 �= ∅})

With those two definitions, we can define the translation rule for a macro-relation
((GP1, GP2), Gc). Let GP1 and GP2 be two macro-processes, Gc be a macro-
coefficient and ((GP1, GP2), Gc) be an edge in the macro-graph. The translation
rule for this edge into the detailed-graph is described as follows:

((G1, G2), Gc) → {((p1, p2), c) | p1 ∈ P i ∧ p2 ∈ P i ∧ c ∈ Ci

∧ card(Kp1 ∩Kc) = α(D1,Dc)

∧ card((Kp1 ∪Kc) ∩Kp2) = α(D1 ∪D Dc,D2)}

When we want to translate a macro-relation, we need to try to associate every
process of the upstream macro-process GP1 with a coefficient from the macro-
coefficient Gc and with a process of the downstream macro-processGP2. Because
the three involved macro-nodes must be compatible, if the cardinal of the in-
tersection between the keywords of an upstream process pu and the keywords
of a coefficient c equals the matching number α(D1,Dc), both elements have a
common indexation and could be part of a detailed-relation. The result of the
combination of pu and c would be indexed by the union of their keywords. The
condition card((Kp1 ∪Kc) ∩Kp2) = α(D1 ∪D Dc,D2) acts in the same way for
the association of this combination with a downstream process pd.

Implementation

The matching number between two dimensions sets calculation requires to count
the number of pairs of dimensions that have a not empty intersection. The two
dimensions sets are consistent because the macro-nodes in a macro-relation are
consistent between each other. So, we can store every keyword of the second
dimensions set into a hash table. Then, we can test if any of the keywords of
each dimension of the first dimensions set is in this hash table. Hence, we only
have to iterate on only one of the two dimensions.

The calculation of the union of two dimensions sets D1 and D2 is also done
using a hash table to determine if a keyword in D1 can be found in a dimension



Semantic Modelling of Dependency Relations between LCA Processes 121

of D2. We explore all the dimensions of D1 and, if one dimension has a not null
intersection with a dimension of D2, we store the result of the intersection and
we mark both the dimensions of D1 and D2 as already used. Then, we just have
to add all the unused dimensions of the two dimensions sets to the result. This
algorithm is presented in listing 1. We consider that we have a data structure to
store a dimension set and another one to store a dimension, and that both have
a ’+=’ operator.

Algorithm 1. Calculation of the union of two dimensions sets

Input: D1,D2

hashTable ← hash table containing the keywords of D2

union ← ∅ // union is a dimensions set

forall the dimension ∈ D1 do
newDimension ← ∅
forall the keyword ∈ dimension do

if keyword ∈ hashTable then
newDimension += keyword
mark dimension as already used

if newDimension = ∅ then
union += dimension

else
union += newDimension

forall the unused dimension ∈ D2 do
union += dimension

return union

The algorithm detailed in the listing 2 is the implementation of the translation
rule for a macro-relation ((GP1, GP2), Gc). We consider that we have a data
structure to store a process or a coefficient offering a property to access their
indexation, this property is named keyword). We also have a data structure to
store detailed-relations offering a ’+=’ operator.

Algorithm 2. Translation of a macro-relation into a set of detailed-
relations
Input: GP1,GP2,Gc

detailedRelations ← ∅
forall the p1 ∈ GP1.processes do

forall the c ∈ Gc.coefficients do
if p1.keyword ∩ c.keyword = alpha(D1,Dc) then

forall the p2 ∈ GP2.processes do
if (p1.keyword ∪D c.keyword) ∩ p2.keyword =
alpha(D1 ∪D Dc,Dc) then

detailedRelations += ((p1,p2),c)
return detailedRelations



122 B. Bertin et al.

6 Experiments

As explained in the second section, the detailed-graph shown in Figure 2 con-
tains the detailed-graph for the electricity production processes in the NREL LCI
Database. In this dataset, we have 27 processes and 72 inter-process relations.
After applying our methodology on this data set, we obtained the macro-graph
shown in Figure 7. In this macro-graph, we have 13 macro-processes and 17
macro-relations, therefore we have 17 macro-coefficients. But we can reduce the
number of macro-coefficients to 12 if we use macro-relations that do not link all
the elements contained in the macro-nodes together, as in the example shown
in Figure 6. For instance, the Transports macro-process can be linked to ev-
ery electricity macro-process using a macro-coefficient. This macro-coefficient
would contain all the dependency coefficients between transportation systems
processes and the electricity production processes. We can even use only 8 macro-
coefficients if we store all the dependency coefficients between every electricity
production macro-process to the eGRID macro-process.

Fig. 7. The macro-graph of the studied data set extracted from the NREL’s LCI
Database

We also conducted some scalability tests on the translation algorithm to make
sure that we can convert an important amount of macro-relations in a reason-
able time7. This experiment tested the conversion of a macro-relation involving

7 This methodology is intended to be used in a Software as a Service application.
Hence, it is necessary to have a sufficiently optimized algorithm to translate the
macro-relations into detailed-relations in a reasonable amount of time.



Semantic Modelling of Dependency Relations between LCA Processes 123

Fig. 8. Calculation time for the conversion algorithm of macro-relations depending on
the number of processes included in the upstream macro-process

macro-nodes with a growing number of elements. Therefore, we generated an
upstream macro-process with only one dimension and a growing number of key-
words, so a growing number of processes. Then, we generated a downstream
macro-process and a macro-coefficient related to the generated upstream macro-
process. We also tested an optimization of this algorithm: we added a hash table
to store all the coefficients in the macro-coefficients and we index this hash ta-
ble with hash keys created with the common keywords between the dimensions
of the upstream macro-process and the dimensions of the macro-coefficient. We
conducted this experiment on a PC equipped with a Core i5-750 and 4GB of
memory and the algorithms were implemented in PHP. We plan to use this
language for the SaaS application as well. The results shown in Figure 8 con-
tain a discontinuity around 5000 processes. This is due to a reallocation of the
data structure used to store the detailed-relations. We limited our experiment to
macro-nodes containing 10000 processes because, to the best of our knowledge,
the most important LCI database contains 4000 processes[7].

7 Conclusions and Future Work

In this papaer, we proposed a new methodology to model LCI using an ontology
and relations between semantic groups of processes. The key benefits of this
approach is to offer a more understandable model of LCI databases and provide
an ontology driven way to create relations between processes.

We plan to implement our model using OWL[13] with description logic rules
and a semantic reasoner and study the impact performance of the system on
existing LCI data sets. Moreover, processes indexation using keywords stored
in an ontology can also be used to answer queries like: what is the impact of
processes indexed with a keyword (or a set of keywords) on a specific process.



124 B. Bertin et al.

For instance, we can get the impacts of transport processes on the electricity
production for a specific eGRID subregion. This can be done by restricting the
calculation to upstream processes indexed by a specific keyword.

References

1. GABI Life Cycle Inventory Databases PE International,
http://www.gabi-software.com/ (last accessed: December 16, 2011)

2. U.S. Life Cycle Inventory Database. National Renewable Energy Laboratory,
http://www.nrel.gov/lci/ (last accessed: September 1, 2011)

3. ISO 14044 (2006): Environmental Management – Life Cycle Assessment – require-
ments and guidelines. International standard, International Organisation for Stan-
dardisation (ISO) (2006)

4. Bertin, B., Scuturici, M., Pinon, J.M., Risler, E.: A Semantic Approach to Life
Cycle Assessment Applied on Energy Environmental Impact Data Management.
In: Workshop on Energy Data Management in Conjunction with EDBT (2012)

5. Beckett, D.: Turtle Terse RDF Triple Language. W3C Recommendation (2011)
6. Pechan, E.H., Associates., Inc.: The Emissions & Generation Resource Integrated

Database for 2010 Technical Support Document. U.S. Environmental Protection
Agency, Washington, D.C (2010)

7. Frischknecht, R.: G Rebitzer. The ecoinvent database system: a comprehensive
web-based LCA database. Journal of Cleaner Production (2005)

8. Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowl-
edge Acquisition (1993)

9. Guinée, J.B.: Handbook on Life Cycle Assessment: Operational Guide to the ISO
Standards. Springer, New York (2002)

10. Heijungs, R., Suh, S.: The computational structure of life cycle assessment. Kluwer
Academic Publishers, Dordrecht (2002)

11. Klyne, G., Carroll, J.J. (eds.): Resource Description Framework (RDF): Concepts
and Abstract Syntax. W3C Recommendation (2004)

12. Leontief, W.: Input-Output Analysis, pp. 53–83. University of British Columbia
Press (1986)

13. McGuinness, D., van Harmelen, F. (eds.): OWL 2 Web Ontology Language Docu-
ment Overview. W3C Recommendation (2009)

14. McGuinness, D.L.: Ontologies come of age. In: The Semantic Web: Why, What,
and How, pp. 171–192. MIT Press (2002)

15. Peters, G.P.: Efficient Algorithms for Life Cycle Assessment, Input-Output Analy-
sis, and Monte-Carlo Analysis. The International Journal of Life Cycle Assessment
(2007)

16. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQLQuery Language for RDF.W3C
Recommendation (2008)

17. Frischknecht, R., Jungbluth., N., Althaus, H., et al.: Introduction The ecoinvent
Database: Overview and Methodological Framework. The International Journal of
Life Cycle Assessment (2005)

18. Varga, R.: Matrix Iterative Analysis. Series in Computational Mathematics.
Springer (2010)

19. Nicholson, W.K.: Elementary linear algebra with applications. PWS-Kent Publish-
ing Company (1990)

http://www.gabi-software.com/
http://www.nrel.gov/lci/

	Semantic Modelling of Dependency Relations between Life Cycle Analysis Processes
	Introduction
	Life Cycle Inventory Model
	Case Study: Electricity Production in the U.S.
	A Methodology Based on Three Graphs
	The Keywords Ontology
	The Macro-graph Layer

	Translation from the Macro-graph to the Detailed-Graph
	Experiments
	Conclusions and Future Work
	References




