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This paper is concerned with damped hyperbolic gradient systems of the
form

αutt + ut = −∇V (u) + uxx ,

where the spatial domain is the whole real line, the state variable u is
multidimensional, α is a positive quantity, and the potential V is coercive
at infinity. For such systems, under generic assumptions on the potential,
the asymptotic behaviour of every bistable solution — that is, every solution
close at both ends of space to spatially homogeneous stable equilibria — is
described. Every such solution approaches, far to the left in space a stacked
family of bistable fronts travelling to the left, far to the right in space a stacked
family of bistable fronts travelling to the right, and in between relaxes towards
stationary solutions. In the absence of maximum principle, the arguments
are purely variational. This extends previous results obtained in companion
papers about the damped wave equation or parabolic gradient systems, in
the spirit of the program initiated in the late seventies by Fife and McLeod
about the global asymptotic behaviour of bistable solutions.
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1 Introduction
This paper deals with the global dynamics of nonlinear hyperbolic systems of the form

(1.1) αutt + ut = −∇V (u) + uxx ,

where the time variable t and the space variable x are real, the spatial domain is the
whole real line, the function (x, t) 7→ u(x, t) takes its values in Rd with d a positive
integer, α is a positive quantity, and the nonlinearity is the gradient of a scalar potential
function V : Rd → R, which is assumed to be regular (of class C2) and coercive at infinity
(see hypothesis (Hcoerc) in subsection 2.1 on the following page).

The aim of this paper is to extend to hyperbolic systems of the form (1.1) the results
describing the global asymptotic behaviour of bistable solutions obtained in [34, 36] for
parabolic systems of the form

(1.2) ut = −∇V (u) + uxx .

As was already observed by several authors, the long-time asymptotics of solutions of the
two systems (1.1) and (1.2) present strong similarities, see [14] and references therein.
The common feature of theses two systems that will be extensively used in this paper
is the existence — at least formally — of an energy functional, not only for solutions
considered in the laboratory frame (at rest), but also for solutions considered in every
frame travelling at a constant speed.

If (v, w) is a pair of vectors of Rd, let v ·w and |v| =
√
v · v denote the usual Euclidean

scalar product and the usual Euclidean norm, respectively, and let us write simply v2 for
|v|2. If (x, t) 7→ u(x, t) is a solution of system (1.1), the (formal) energy of the solution
reads

(1.3) E [u(·, t)] =
∫
R

(α
2 ut(x, t)2 + 1

2ux(x, t)2 + V
(
u(x, t)

))
dx ,

and its time derivative reads, at least formally,

(1.4) d

dt
E [u(·, t)] = −

∫
R
ut(x, t)2 dx ≤ 0 .

In the parabolic case α = 0, the same properties hold with the same expression for the
energy (the inertial term involving α vanishes); by the way, an additional feature in this
case is the fact that the parabolic system (1.2) is nothing but the (formal) gradient of
energy functional (1.3) (this does not hold for hyperbolic system (1.1)).

A striking feature of both systems (1.1) and (1.2) is the fact that a formal (Lyapunov)
energy functional exists not only in the laboratory frame, but also in every frame travelling
at a constant speed (see sub-subsection 3.3.2 on page 15 and specifically equality (3.9)).
In the parabolic case, this is known for long and was in particular used by P. C. Fife and
J. B. McLeod to prove global convergence towards bistable fronts and to study the global
behaviour of bistable solutions in the scalar case d equals 1, [11–13]. More recently, this
property received a detailed attention from several authors (among which S. Heinze, C.
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B. Muratov, Th. Gallay, and the author [15, 18, 22, 33]), and it was shown that this
structure is sufficient (in itself, that is without the use of the maximum principle) to
prove results of global convergence towards travelling fronts. In the hyperbolic case, a
similar strategy was successfully applied by Th. Gallay and R. Joly in the scalar case d
equals 1 to prove global stability of travelling fronts for a bistable potential [14]. These
ideas have been applied since in different contexts, to prove either global convergence or
just existence results, see for instance [1–9, 20, 23–28]. Using the same strategy, a full
description of the global asymptotic behaviour of every bistable solution was recently
obtained for parabolic systems [34, 36]. Roughly speaking, such a solution must approach:

• far to the right a stacked family of fronts travelling to the right,

• far to the left a stacked family of fronts travelling to the left,

• in between a pattern made of bistable stationary solutions (possibly a singe homo-
geneous stable equilibrium) getting slowly away from one another.

The aim of this paper is to extend this result to the case of hyperbolic systems of the
form (1.1) (Theorem 1 on page 11). This will also provide an extension of the global
stability result obtained par Gallay and Joly in the scalar case d equals 1 [14].

2 Assumptions, notation, and statement of the results
2.1 Semi-flow in uniformly local Sobolev space and coercivity hypothesis
Let us assume that the potential function V : Rd → R is of class C2 and that this potential
function is strictly coercive at infinity in the following sense:

lim
R→+∞

inf
|u|≥R

u · ∇V (u)
|u|2

> 0(Hcoerc)

(or in other words there exists a positive quantity ε such that the quantity u · ∇V (u) is
greater than or equal to ε |u|2 as soon as |u| is large enough).

System (1.1) defines a local semi-flow on the uniformly local energy space

H1
ul(R,Rd) × L2

ul(R,Rd) ,

and, according to hypothesis (Hcoerc), this semi-flow is actually global (see Proposition 3.1
on page 12). Let us denote by (St)t≥0 this semi-flow.

In the following, a solution of system (1.1) will refer to a function

R × [0,+∞) → Rd , (x, t) 7→ u(x, t) ,

such that the function u0 : x 7→ u(x, t = 0) is in H1
ul(R,Rd), the function ũ0 : x 7→

ut(x, t = 0)) is in L2
ul(R,Rd), and

(
u(·, t), ut(·, t)

)
equals St(u0, ũ0) for every nonnegative

time t.
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2.2 Minimum points and bistable solutions
2.2.1 Minimum points

Everywhere in this paper, the term “minimum point” denotes a point where a function —
namely the potential V — reaches a local or global minimum.
Notation. Let M denote the set of nondegenerate minimum points of V :

M = {u ∈ Rd : ∇V (u) = 0 and D2V (u) is positive definite} .

2.2.2 Bistable solutions

Let us recall the following definition, already stated in [36].

Definition 2.1 (bistable solution). A solution (x, t) 7→ u(x, t) of system (1.1) is called a
bistable solution if there are two (possibly equal) points m− and m+ in M such that the
quantities

lim sup
x→−∞

|u(x, t) −m−| and lim sup
x→+∞

|u(x, t) −m+|

both approach 0 as time goes to +∞. More precisely, such a solution is called a bistable
solution connecting m− to m+ (see figure 2.1).

Figure 2.1: A bistable solution connecting m− to m+.

2.3 Stationary solutions, travelling fronts, terraces, asymptotic pattern
2.3.1 Stationary solutions and travelling fronts

Let c be a real quantity. A function

ϕ : R → Rd, ξ 7→ ϕ(ξ)

is the profile of a wave travelling at the speed c (or is a stationary solution if c vanishes)
for the parabolic system (1.2) if the function (x, t) 7→ ϕ(x−ct) is a solution of this system,
that is if ϕ is a solution of the differential system

(2.1) ϕ′′ = −cϕ′ + ∇V (ϕ) .
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In this case, for every real quantity x0, the function

(x, t) 7→ ϕ
(√

1 + αc2 x− ct− x0
)

is a solution of the hyperbolic system (1.1), more precisely a wave travelling at the
physical speed σ related to the parabolic speed c by

σ = c√
1 + αc2

⇐⇒ c = σ√
1 − ασ2

.

System (2.1) can be viewed as a damped oscillator (or a conservative oscillator if c
vanishes) in the potential −V , the speed c playing the role of the damping coefficient.
Notation. If m− and m+ are critical points of V and c is a real quantity, let Φc(m−,m+)
denote the set of nonconstant global solutions of system (2.1) connecting m− to m+.
With symbols,

Φc(m−,m+) =
{
ϕ : R → Rd : ϕ is a nonconstant global solution of system (2.1)
and ϕ(ξ) −−−−→

ξ→−∞
m− and ϕ(ξ) −−−−→

ξ→+∞
m+

}
.

And, if the quantity c is positive, let Φc(m+) denote the set of nonconstant global and
bounded solutions of system (2.1) converging to m+ at the right end of space. With
symbols,

Φc(m+) =
{
ϕ : R → Rd : ϕ is a nonconstant global solution of system (2.1)
and sup

ξ∈R
|ϕ(ξ)| < +∞ and ϕ(ξ) −−−−→

ξ→+∞
m+

}
.

If ϕ is an element of some set Φc(m−,m+), then it follows from system (2.1) that

(2.2) V (m+) − V (m−) = c

∫
R
ϕ′(ξ)2 dξ .

2.3.2 Propagating terrace of bistable travelling fronts

This sub-subsection is devoted to several definitions. Their purpose is to enable a compact
formulation of the main result of this paper (Theorem 1 below). Some comments on the
terminology and related references are given at the end of this sub-subsection.

Definition 2.2 (propagating terrace of bistable travelling fronts, figure 2.2). Let m−
and m+ be two points of M (satisfying V (m−) ≤ V (m+)). A function

T : R × [0,+∞) → Rd, (x, t) 7→ T (x, t)

is called a propagating terrace of bistable fronts travelling to the right, connecting m− to
m+, if there exists a nonnegative integer q such that:

1. if q equals 0, then m− = m+ and, for every real quantity x and every nonnegative
time t,

T (x, t) = m− = m+ ;
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Figure 2.2: Propagating terrace of (bistable) fronts travelling to the right (σi denotes the
“physical” speed corresponding to ci, that is: σi = ci/

√
1 + αc2

i ).

2. if q equals 1, then there exist
• a positive quantity c1,
• and a function ϕ1 in Φc1(m−,m+) (that is, the profile of a bistable front

travelling at parabolic speed c1 and connecting m− to m+),
• and a C1-function t 7→ x1(t), defined on [0,+∞), and such that x′

1(t) goes to
the quantity c1/

√
1 + αc2

1 (the corresponding physical speed) as time goes to
+∞,

such that, for every real quantity x and every nonnegative time t,

T (x, t) = ϕ1
[√

1 + αc2
1
(
x− x1(t)

)]
;

3. if q is not smaller than 2, then there exists q−1 points m1, . . . ,mq−1 in M, satisfying
(if m+ is denoted by m0 and m− by mq)

V (m0) > V (m1) > · · · > V (mq) ,

and there exist q positive quantities c1, . . . , cq satisfying

c1 ≥ · · · ≥ cq ,

and for each integer i in {1, . . . , q}, there exist:
• a function ϕi in Φci(mi,mi−1) (that is, the profile of a bistable front travelling

at parabolic speed ci and connecting mi to mi−1),
• and a C1-function t 7→ xi(t), defined on [0,+∞), and such that x′

i(t) goes to
the quantity ci/

√
1 + αc2

i (the corresponding physical speed) as time goes to
+∞,

such that, for every integer i in {1, . . . , q − 1},

xi+1(t) − xi(t) → +∞ as t → +∞ ,
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and such that, for every real quantity x and every nonnegative time t,

T (x, t) = m0 +
q∑

i=1

(
ϕi

[√
1 + αc2

i

(
x− xi(t)

)]
−mi−1

)
.

Remark. Item 2 may have been omitted in this definition, since it boils down to item 3
with q equals 1.

A propagating terrace of bistable fronts travelling to the left may be defined similarly.

2.3.3 Standing terrace of bistable stationary solutions

The next three definitions deal with stationary solutions. They are exactly identical to
those of [34, 36].

Figure 2.3: Standing terrace (with four items, q = 4).

Definition 2.3 (standing terrace of bistable stationary solutions, figure 2.3). Let v be a
real quantity and let m− and m+ be two points of M such that both quantities V (m−)
and V (m+) are equal to v. A function

T : R × [0,+∞) → Rd, (x, t) 7→ T (x, t)

is called a standing terrace of bistable stationary solutions, connecting m− to m+, if there
exists a nonnegative integer q such that:

1. if q equals 0, then m− = m+ and, for every real quantity x and every nonnegative
time t,

T (x, t) = m− = m+ ;

2. if q = 1, then there exist:
• a bistable stationary solution ϕ1 connecting m− to m+,
• and a C1-function t 7→ x1(t) defined on [0,+∞) and satisfying x′

1(t) → 0 as
time goes to +∞,

such that, for every real quantity x and every nonnegative time t,

T (x, t) = ϕ1
(
x− x1(t)

)
;
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3. if q is not smaller than 2, then there exist q − 1 (not necessarily distinct) points
m1, . . . ,mq−1 in M, all in the level set V −1({v}), and if m− is denoted by m0 and
m+ by mq, then for each integer i in {1, . . . , q}, there exist:

• a bistable stationary solution ϕi connecting mi−1 to mi,
• and a C1-function t 7→ xi(t) defined on [0,+∞) and satisfying x′

i(t) → 0 as
time goes to +∞,

such that, for every integer i in {1, . . . , q − 1},

xi+1(t) − xi(t) → +∞ as t → +∞ ,

and such that, for every real quantity x and every nonnegative time t,

T (x, t) = m0 +
q∑

i=1

[
ϕi
(
x− xi(t)

)
−mi−1

]
.

Remark. Once again item 2 may have been omitted in this definition, since it boils down
to item 3 with q equals 1.

The terminology “propagating terrace” was introduced by A. Ducrot, T. Giletti, and
H. Matano in [10] (and subsequently used by several other authors [16, 17, 21, 29–32])
to denote a stacked family (a layer) of travelling fronts in a (scalar) reaction-diffusion
equation. This led the author to keep the same terminology in the present context.
This terminology is convenient to denote objects that would otherwise require a long
description. It is also used in the companion papers [34, 35]. Additional comments on
this terminological choice can be found in [34].

2.3.4 Energy of a bistable stationary solution and of a standing terrace

Definition 2.4 (energy of a bistable stationary solution). Let x 7→ u(x) be a bistable
stationary solution connecting two points m− and m+ of M, and let v denote the quantity
V (m+) (which is equal to V (m−)). The quantity

E [u] =
∫
R

(1
2
∣∣u′(x)

∣∣2 + V
(
u(x)

)
− v

)
dx

is called the energy of the (bistable) stationary solution u. Observe that this integral
converges, since u(x) approaches its limits m− and m+ at both ends of space at an
exponential rate.

Definition 2.5 (energy of a standing terrace). Let v denote a real quantity and let T
denote a standing terrace of bistable stationary solutions connecting two points of M
in the level set V −1({v}). With the notation of the two definitions above, the quantity
E [T ] defined as

1. if q equals 0, then E [T ] = 0,
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2. if q equals 1, then E [T ] = E [ϕ1],

3. if q is not smaller than 2, then E [T ] = ∑q
i=1 E [ϕi],

is called the energy of the standing terrace T .

2.3.5 Bistable asymptotic pattern

The next definition is identical to the one of [34].

Figure 2.4: Bistable asymptotic pattern.

Definition 2.6 (bistable asymptotic pattern, figure 2.4). Let mleft and mright be two
points of M. A function

P : R × [0,+∞) → Rd, (x, t) 7→ P(x, t)

is called a bistable asymptotic pattern connecting mleft to mright if there exist:

• two points mcentre-left and mcentre-right in M, belonging to the same level set of V ,

• and a propagating terrace Tleft of bistable fronts travelling to the left, connecting
mleft to mcentre-left,

• and a standing terrace Tcentre of bistable stationary solutions, connecting mcentre-left
to mcentre-right,

• and a propagating terrace Tright of bistable fronts travelling to the right, connecting
mcentre-right to mright,

such that, for every real quantity x and for every nonnegative time t,

P(x, t) =
[
Tleft(x, t) −mcentre-left

]
+ Tcentre(x, t) +

[
Tright(x, t) −mcentre-right

]
.

2.4 Generic hypotheses on the potential
2.4.1 Escape distance

Notation. For every u in Rd, let σ
(
D2V (u)

)
denote the spectrum (the set of eigenvalues)

of the Hessian matrix of V at u, and let λmin(u) denote the minimum of this spectrum:

(2.3) λmin(u) = min
(
σ
(
D2V (u)

))
.
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Definition 2.7 (Escape distance of a nondegenerate minimum point). For every m in
M, let us call Escape distance of m, and let us denote by δEsc(m), the supremum of the
set

(2.4)
{
δ ∈ [0, 1] : for all u in Rd satisfying |u−m| ≤ δ, λmin(u) ≥ 1

2λmin(m)
}
.

Since the quantity λmin(u) varies continuously with u, this Escape distance δEsc(m) is
positive (thus in (0, 1]). In addition, for all u in Rd such that |u−m| is not larger than
δEsc(m), the following inequality holds:

(2.5) λmin(u) ≥ 1
2λmin(m) .

2.4.2 Breakup of space translation invariance for stationary solutions and travelling
fronts

For every real quantity c, for every ordered pair (m−,m+) of points of M, and for every
function ϕ in Φc(m−,m+),

sup
ξ∈R

|ϕ(ξ) −m−| > δEsc(m−) and sup
ξ∈R

|ϕ(ξ) −m+| > δEsc(m+)

(assertion 4 of Lemma 8.1 on page 88). See figure 2.5. Thus, for c in R and (m−,m+)

Figure 2.5: Every function in Φc(m−,m+) escapes at least at distance δEsc(m−) of m− and
at distance δEsc(m+) of m+; every function in Φ0(m+,m+) escapes at least at distance
δEsc(m+) of m+.

in M2, let us introduce the set of normalized profiles of bistable fronts travelling at the
parabolic speed c/stationary solutions connecting m− to m+, defined as

(2.6)
Φc,norm(m−,m+) =

{
ϕ ∈ Φc(m−,m+) : |ϕ(0) −m+| = δEsc(m+)
and |ϕ(ξ) −m+| < δEsc(m+) for all ξ > 0

}
,

see figure 2.6. And if c is positive, let us introduce the set of normalized profiles of
bounded waves travelling at the parabolic speed c and “invading” m+, defined as

Φc,norm(m+) =
{
ϕ ∈ Φc(m+) : |ϕ(0) −m+| = δEsc(m+) and
|ϕ(ξ) −m+| < δEsc(m+) for all ξ in (0,+∞)

}
.
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Figure 2.6: Normalized (standing or travelling) bistable front.

2.4.3 Statement of the generic hypotheses

The main result of this paper (Theorem 1 below) requires additional generic hypotheses
on the potential V , that will now be stated. A formal proof of the genericity (with respect
to the potential V ) of these hypotheses is provided in [19].

(Honly-bist) For every m+ in M and every positive quantity c,

Φc(m+) =
⋃

m−∈M
Φc(m−,m+) ,

or equivalently Φc,norm(m+) =
⋃

m−∈M
Φc,norm(m−,m+) .

In the next two hypotheses, the subscript “disc” refers to the concept of “discontinuity”
or “discreteness”.

(Hdisc-c) For every m+ in M, the set{
c in (0,+∞) : Φc(m+) ̸= ∅

}
has an empty interior.

(Hdisc-Φ) For every point m+ in M and every real quantity c, the set{(
ϕ(0), ϕ′(0)

)
: ϕ ∈ Φc,norm(m+)

}
is totally discontinuous — if not empty — in R2d. That is, its connected components
are singletons. Equivalently, the set Φc,norm(m+) is totally disconnected for the
topology of compact convergence (uniform convergence on compact subsets of R).

The next hypothesis will be required to ensure that the number of travelling fronts
involved in the asymptotic behaviour of a bistable solution is finite.

(Hcrit-val) The set of critical values of V , that is the set{
V (u) : u ∈ Rd and ∇V (u) = 0

}
,

is finite.
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The next hypothesis will be used (as in [34, 36]) to describe the relaxation of the solution
between the propagating terraces of bistable travelling fronts.

(Honly-min) Every critical point of V that belongs to the same level set as a point of M
is itself in M.

In other words, for all points u1 and u2 in Rd,[
∇V (u1) = ∇V (u2) = 0 and V (u1) = V (u2) and D2V (u1) > 0

]
=⇒ D2V (u2) > 0 .

Finally, let us call (G) the union of these five generic hypotheses:

(Honly-bist) and (Hdisc-c) and (Hdisc-Φ) and (Hcrit-val) and (Honly-min).(G)

2.5 Main results
Theorem 1 (global asymptotic behaviour). Let V denote a function in C2(Rd,R) satis-
fying the coercivity hypothesis (Hcoerc) and the generic hypotheses (G). Then, for every
bistable solution (x, t) 7→ u(x, t) of system (1.1), there exists a bistable asymptotic pattern
P such that

sup
x∈R

|u(x, t) − P(x, t)| → 0 as t → +∞ .

In this statement the convergence towards the asymptotic pattern is expressed with a
uniform norm, but it follows from the proof that the same limit holds for the uniformly
local H1

ul × L2
ul-norm. Here is an additional conclusion to this theorem.

Proposition 2.8 (residual asymptotic energy). Assume that the assumptions of The-
orem 1 hold. With the notation of this theorem, if Tcentre denotes the standing terrace
involved in P and if vcentre denotes the value taken by V at each of the two points of M
connected by Tcentre, then, for every small enough positive quantity ε,∫ εt

−εt

(α
2 ut(x, t)2 + 1

2ux(x, t)2 + V
(
u(x, t)

)
− vcentre

)
dx → E [Tcentre] as t → +∞ .

These statements are identical to [34, Theorem 1 and Proposition 2.8] (which are
concerned with the parabolic case).

2.6 Additional questions
Let us briefly mention some questions that are naturally raised by this result; analogous
questions were already discussed in [34, 36], where additional comments can be found.

• Does the correspondence between a solution and its asymptotic pattern display
some form of regularity? (some results and comments on this question can be
found, in the parabolic case, in [34]).

• Does Theorem 1 hold without hypothesis (Hdisc-c)?

• Is is possible to provide quantitative estimates on the rate of convergence of a
solution towards its asymptotic pattern ?
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2.7 Organization of the paper
The organization of this paper closely follows that of the companion paper [34] where
the parabolic case is treated.

• The next section 3 is devoted to some preliminaries (existence of solutions, asymp-
totic compactness, preliminary computations on spatially localized functionals,
notation).

• The main step in the proof of Theorem 1 is Proposition 4.1 “invasion implies
convergence” which is proved in section 4 (this section takes a large part of the
paper). This proves the approach towards the terraces of bistable fronts travelling
to the left and to the right.

• The relaxation behind these terraces of bistable travelling fronts is pursued in
sections 5 and 6.

• Finally, combining all these results, the proofs of Theorem 1 and Proposition 2.8
are combined together in section 7.

• Elementary properties of the profiles of travelling fronts are recalled in section 8.

3 Preliminaries
As everywhere else, let us consider a function V in C2(Rd,R) satisfying the coercivity
hypothesis (Hcoerc).

3.1 Global existence of solutions and attracting ball for the flow
Let us consider the functional space (uniformly local energy space)

X = H1
ul(R,Rd) × L2

ul(R,Rd) ,

and, for every (u, v) in X, let

∥(u, v)∥X =
√

∥u∥2
H1

ul(R,Rd) + ∥v∥2
L2

ul(R,Rd) .

The following proposition is stated and proved in [14] in the case n = 1 (see Proposition
2.1 of [14]). The proof is identical in the case of systems n > 1. In the statement of this
proposition, existence of an attracting ball for the L∞-norm is redundant; the reason for
this redundancy is that the radius Ratt,∞ of an attracting ball for the L∞-norm will be
explicitly used in several estimates.

Proposition 3.1 (global existence of solutions and attracting ball). For every initial
condition (u0, ũ0) in X, system (1.1) has a unique solution global solution u in the space

C0([0,+∞), H1
ul(R,Rd)

)
∩ C1([0,+∞), L2

ul(R,Rd)
)
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satisfying u(0) = u0 and ut(0) = ũ0. In addition, there exist positive quantities Ratt,X
and Ratt,∞ depending only on V and α (radius of attracting balls for the X-norm and
the L∞-norm, respectively), such that, for every large enough positive quantity t,

∥x 7→ u(x, t)∥L∞(R,Rd) ≤ Ratt,∞ and
∥∥x 7→

(
u(x, t), ut(x, t)

)∥∥
X

≤ Ratt,X .

3.2 Asymptotic compactness of the solutions
The following proposition reproduces Proposition 2.3 of [14].

Proposition 3.2 (asymptotic compactness). For every solution

u ∈ C0([0,+∞), H1
ul(R,Rd)

)
∩ C1([0,+∞), L2

ul(R,Rd)
)

of system (1.1) and for every sequence
(
(xn, tn)

)
n∈N in R × [0,+∞) such that tn goes

to +∞ as n goes to +∞, there exists a subsequence (still denoted by
(
(xn, tn)

)
n∈N) and

there exists an entire solution

u ∈ C0(R, H1
ul(R,Rd)

)
∩ C1(R, L2

ul(R,Rd)
)

of system (1.1) such that, for all positive quantities L and T , both quantities

sup
s∈[−T,T ]

∥y 7→ u(xn + y, tn + s) − u(y, s)∥H1([−L,L],Rd)

and sup
s∈[−T,T ]

∥ut(xn + y, tn + s) − ut(y, s)∥L2([−L,L],Rd)

go to 0 as n goes to +∞.

3.3 Time derivative of (localized) energy and L2-norm of a solution in a
standing or travelling frame

Let (x, t) 7→ u(x, t) be a solution of system (1.1), and let m be a point of M.

3.3.1 Standing frame

As in [14], taking the scalar product of system (1.1) either with ut or with u − m
and integrating this scalar product with respect to space leads to the following two
functionals: the “energy” (Lagrangian):∫

R

(α
2 ut(x, t)2 + 1

2ux(x, t)2 + V
(
u(x, t)

)
− V (m)

)
dx ,

and the following “variant of the L2-norm of the distance to m”:∫
R

(
α
(
u(x, t) −m

)
· ut(x, t) + 1

2
(
u(x, t) −m

)2)
dx .
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To simplify the presentation, let us assume (only in this subsection 3.3) that

m = 0Rd and V (m) = V (0Rd) = 0 .

In order to ensure the convergence of such integrals, it is necessary to localize the
integrands. Let x 7→ ψ(x) denote a function in the space W 2,1(R,R) (that is a function
belonging to L1(R), together with its first and second derivatives). Then, the time
derivatives of these two functionals — localized by ψ(x) — read:

(3.1) d

dt

∫
R
ψ
(α

2 u
2
t + 1

2u
2
x + V (u)

)
dx =

∫
R

(−ψu2
t − ψ′ux · ut) dx ,

and

(3.2) d

dt

∫
R
ψ
(
αu · ut + 1

2u
2
)
dx =

∫
R

(
ψ
(
−u · ∇V (u) − u2

x + αu2
t

)
+ ψ′′

2 u2
)
dx .

Let us see how these two functionals can be appropriately combined in order to prove, say,
the local stability of the homogeneous solution u ≡ m (here u ≡ 0Rd). The combination
must fulfil two properties (provided that the solution is close to 0Rd): coercivity and
decrease with time. If the coefficient of the second functional is equal to 1, then in order
to ensure decrease with time, the (positive) coefficient of the first functional must be
larger than α (so that the term +αu2

t in the time derivative of the second functional be
properly balanced); assume that this coefficient is equal to α+ β, where β is a positive
quantity to be chosen appropriately. In short, let us consider the following combination:

(3.3) (α+ β) × energy + L2 variant .

• With respect to the local coercivity, using the inequality

αu · ut ≥ −α2

2 u2
t − 1

2u
2 ,

the combination (3.3) is bounded from below by the integral of an integrand made
of ψ times the expression

βα

2 u2
t + α+ β

2 u2
x + (α+ β)V (u) .

• With respect to the decrease, neglecting the terms involving the derivatives of ψ,
the time derivative of the combination (3.3) reduces to the integral of an integrand
made of ψ times the expression

−βu2
t − u · ∇V (u) − u2

x .

In view of these two expressions, a reasonable choice is (as is [14]) to choose β = α, or in
other words to introduce the following combined functional:

(3.4) 2α× energy + L2 variant =
∫
R
ψ
(
α2u2

t + αu2
x + 2αV (u) + αu · ut + 1

2u
2
)
dx .
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3.3.2 Travelling frame

Let c and tinit and xinit denote three real quantities (the “parabolic” speed, origin of time,
and initial origin of space for the travelling frame, see figure 4.5 on page 33), with tinit
nonnegative. Usually, besides the parabolic speed c in (0,+∞), it is convenient to define
the physical speed σ in (0, 1/

√
α), these two speeds being related by

σ = c√
1 + αc2

⇐⇒ c = σ√
1 − ασ2

.

Let us introduce the function (ξ, s) 7→ v(ξ, s) defined, for every real quantity ξ and
nonnegative quantity s, as

v(ξ, s) = u(x, t) ,

where (ξ, s) and (x, t) are related by

t = tinit + s and x = xinit + σs+ ξ√
1 + αc2

⇐⇒ ξ =
√

1 + αc2(x− xinit) − cs .

The evolution system for the function (ξ, s) 7→ v(ξ, s) reads

(3.5) αvss + vs − 2αcvξs = −∇V (v) + cvξ + vξξ .

Let us introduce a function (ξ, s) 7→ ψ(ξ, s) such that, for every nonnegative quantity s,
the function ξ 7→ ψ(ξ, s) belongs to W 2,1(R,R) and its time derivative ξ 7→ ψs(ξ, s) is
defined and belongs to L1(R,R). As in [14], the natural analogues for the travelling frame
of the two functionals considered above in a standing frame will now be introduced; again,
they are obtained by taking the scalar product of system (3.5) either with vs or with v
and integrating this scalar product with respect to space. The time derivatives of the
resulting functionals read:

(3.6)

d

ds

∫
R
ψ
(α

2 v
2
s + 1

2v
2
ξ + V (v)

)
dξ =∫

R

[
ψs

(α
2 v

2
s + 1

2v
2
ξ + V (v)

)
− (ψ + αcψξ)v2

s + (cψ − ψξ)vξ · vs

]
dξ ,

and

(3.7)

d

ds

∫
R
ψ
(
αv · vs + 1

2v
2 − 2αcv · vξ

)
dξ =∫

R

[
ψs

(
αv · vs + 1

2v
2 − 2αcv · vξ

)

+ ψ
(
−v · ∇V (v) − v2

ξ + αv2
s − 2αcvξ · vs

)
+ ψξξ − cψξ

2 v2
]
dξ .
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Remark. Subtracting and adding the same quantity αc2ψv2
s to the integrand on the

right-hand side of equality (3.6), this equality becomes

(3.8)

d

ds

∫
R
ψ
(α

2 v
2
s + 1

2v
2
ξ + V (v)

)
dξ =∫

R

[
−(1 + αc2)ψv2

s + ψs

(α
2 v

2
s + 1

2v
2
ξ + V (v)

)
+ (cψ − ψξ)(αcv2

s + vξ · vs)
]
dξ ,

so that if ψ(ξ, s) is replaced with ecξ, the previous equality reduces (formally) to

(3.9) d

ds

∫
R
ecξ
(α

2 v
2
s + 1

2v
2
ξ + V (v)

)
dξ = −(1 + αc2)

∫
R
ecξv2

s dξ .

Remark. The second (“L2 variant”) integral (left-hand side of (3.7)) can be rewritten
(after an integration by parts, assuming that the function ψ does not vanish) as

(3.10)
∫
R
ψ
(
αv · vs + 1

2v
2 − 2αcv · vξ

)
dξ =

∫
R
ψ
(
αv · vs + 1

2v
2 + αc

ψξ

ψ
v2
)
dξ .

Let us assume that

• ψ varies slowly with time,

• and that ψ does not vanish,

• and that the ratio ψξ/ψ is either small or close to c,

• and that the function ψξξ − cψξ is small,

and let us again wonder what would be an appropriate combination of these two functionals
(those of (3.6) and (3.7)), to recover altogether decrease with time and coercivity where
v is small. Once again, if the coefficient of the second functional is equal to 1, then
the coefficient of the first functional must be larger than α (to ensure decrease due to
dissipation). Once again, let us write α+ β for the coefficient of the first functional, or
in other words let us consider, again, the combination (3.3).

• With respect to the coercivity, again using the inequality

αv · vs ≥ −α2

2 v2
s − 1

2v
2 ,

the combination (3.3) (using the expression of the right-hand side of (3.10) for the
second functional) is bounded from below by the integral of an integrand made of
ψ times the expression

αβ

2 v2
s + α+ β

2 v2
ξ + (α+ β)V (v) + αc

ψξ

ψ
v2 .
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• With respect to the decrease with time, neglecting terms that are small according
to the assumptions on ψ, the time derivative of the combination (3.3) is bounded
from above by the integral of an integrand made of ψ times the following expression
(using rather expression (3.6) for the time derivative of the localized energy):

(3.11)
(
−β − (α+ β)αcψξ

ψ

)
v2

s +
(
c(β − α) − (α+ β)ψξ

ψ

)
vξ · vs − v · ∇V (v) − v2

ξ .

As in the case of a standing frame, it thus turns out that a reasonable choice is β = α
(as in [14]), and even that this choice is especially relevant here since it fires one of the
terms in the derivative (the term with the factor β − α). The corresponding combined
functional thus reads

(3.12) 2α× energy +L2 variant =
∫
R
ψ

[
α2v2

s+αv2
ξ +2αV (v)+αv·vs+

(1
2+αcψξ

ψ

)
v2
]
dξ ,

and expression (3.11) simplifies into

−α
(
1 + 2αcψξ

ψ

)
v2

s − 2αψξ

ψ
vξ · vs − v · ∇V (v) − v2

ξ .

If ψξ/ψ is close to zero, this last quantity is roughly equal to

−αv2
s − v · ∇V (v) − v2

ξ ,

and if ψξ/ψ is close to c, it is roughly equal to

(3.13) −α(1 + 2αc2)v2
s − 2αcvξ · vs − v · ∇V (v) − v2

ξ ,

and using the inequality

−2αcvξ · vs ≤ 2α2c2v2
s + 1

2v
2
ξ ,

it follows that this last expression (3.13) is less than or equal to

−αv2
s − v · ∇V (v) − 1

2v
2
ξ ;

in both cases this provides the desired decrease with time (provided that v is close to
0Rd).

3.4 Miscellanea
3.4.1 Second order estimates for the potential around a minimum point

Lemma 3.3 (second order estimates for the potential around a minimum point). For
every m in M and every vector u in Rd satisfying |u−m| ≤ δEsc(m), the following
estimates hold:

V (u) − V (m) ≥ λmin(m)
4 (u−m)2 ,(3.14)

and (u−m) · ∇V (u) ≥ λmin(m)
2 (u−m)2 ,(3.15)

and (u−m) · ∇V (u) ≥ V (u) − V (m) .(3.16)
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Proof. The three inequalities follow from inequality (2.5) on page 9 ensured by the
definition of δEsc(m) and from three variants of Taylor’s theorem with Lagrange remainder
applied to the function f defined on [0, 1] by f(θ) = V

(
m+θ(u−m)

)
(see [36, Lemma 3.3]).

3.4.2 Maximum split between the minimum values of the potential

Notation. Let us introduce the quantity

(3.17)
∆V = max{V (m1) − V (m2) : (m1,m2) ∈ M2}

= max{V (m) : m ∈ M} − min(V ) ,

where min(V ) is the minimum value of V (v) over all v in Rd.

4 Invasion implies convergence
4.1 Definitions and hypotheses
As everywhere else, let us consider a function V in C2(Rd,R) satisfying the coercivity
hypothesis (Hcoerc). Let us consider a point m in M, an ordered pair (initial condition)
(u0, ũ0) in X, and the solution (x, t) 7→ u(x, t) of system (1.1) corresponding to this initial
condition. Let us make the following hypothesis, illustrated by figure 4.1.

Figure 4.1: Illustration of hypotheses (Hhom-right) and (Hinv).

(Hhom-right) There exists a positive quantity σhom and a C1-function

xhom : [0,+∞) → R , satisfying x′
hom(t) → σhom as t → +∞ ,

such that, for every positive quantity L, the quantity∥∥∥y 7→
(
u
(
xhom(t) + y, t

)
−m,ut

(
xhom(t) + y, t

))∥∥∥
H1([−L,L],Rd)×L2([−L,L],Rd)

goes to 0 as time goes to +∞.
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For every t in [0 + ∞), let us denote by xEsc(t) the supremum of the set{
x ∈

(
−∞, xhom(t)

]
: |u(x, t) −m| = δEsc(m)

}
,

with the convention that xEsc(t) equals −∞ if this set is empty. In other words, xEsc(t) is
the first point at the left of xhom(t) where the solution “Escapes” at the distance δEsc(m)
from the stable homogeneous equilibrium m. This point will be called the “Escape
point” (with an upper-case “E”, by contrast with another “escape point” that will be
introduced later, with a lower-case “e” and a slightly different definition). Observe that,
if xEsc(t) > −∞, then

(4.1)
∣∣u(xEsc(t), t

)∣∣ = δEsc(m) and |u(x, t)| < δEsc(m) for all x in
(
xEsc(t), xhom(t)

)
.

Let us consider the upper limit of the mean speeds between 0 and t of this Escape point:

σEsc = lim sup
t→+∞

xEsc(t)
t

,

and let us make the following hypothesis, stating that the area around xhom(t) where the
solution is close to m is “invaded” from the left at a nonzero (mean) speed.
(Hinv) The quantity σEsc is positive.

4.2 Statement
The aim of section 4 is to prove the following proposition (illustrated by figure 4.2), which
is the main step in the proof of Theorem 1. The first assertion of this proposition is that

Figure 4.2: Illustration of Proposition 4.1.

the mean “physical” speed σEsc is smaller than 1/
√
α; thus it is legitimate to use the

following notation for the “parabolic” counterpart of that speed:

cEsc = σEsc√
1 − ασ2

Esc

.

Proposition 4.1 (invasion implies convergence). Assume that V satisfies the coercivity
hypothesis (Hcoerc) and the generic hypotheses (Honly-bist) and (Hdisc-c) and (Hdisc-Φ),
and, keeping the definitions and notation above, let us assume that for the solution under
consideration hypotheses (Hhom-right) and (Hinv) hold. Then the following conclusions
hold.
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1. The mean speed σEsc is smaller than 1/
√
α.

2. There exist:
• a point mnext in M satisfying V (mnext) < V (m),
• a profile of travelling front ϕ in ΦcEsc,norm(mnext,m),
• C1-functions t 7→ xhom-next(t) and t 7→ x̃Esc(t) defined on [0,+∞) and with

values in R,
such that, as time goes to +∞, the following limits hold:

x̃Esc(t) − xEsc(t) → 0 and x̃′
Esc(t) → σEsc ,

and
xEsc(t) − xhom-next(t) → +∞ and x′

hom-next(t) → σEsc ,

and
sup

x∈[xhom-next(t) , xhom(t)]

∣∣∣∣u(x, t) − ϕ
(√

1 + αc2
Esc
(
x− xEsc(t)

))∣∣∣∣ → 0 ,

and, for every positive quantity L, the norm in H1([−L,L],Rd) × L2([−L,L],Rd)
of the function

y 7→
(
u
(
xhom-next(t) + y, t

)
−mnext, ut

(
xhom-next(t) + y, t

))
goes to 0.

In this statement, the very last conclusion is partly redundant with the previous one.
The reason why this last conclusion is stated this way is that it emphasizes the fact that
a property similar to (Hhom-right) is recovered “behind” the travelling front. As can be
expected this will be used to prove Theorem 1 by re-applying Proposition 4.1 as many
times as required (to the left and to the right), as long as “invasion of the equilibria
behind the last front” occurs.

4.3 Set-up for the proof, 1
4.3.1 Assumptions holding up to changing the origin of time

Let us keep the notation and assumptions of subsection 4.1, and let us assume that the
hypotheses (Hcoerc) and (Honly-bist) and (Hdisc-c) and (Hdisc-Φ) and (Hhom-right) and (Hinv)
of Proposition 4.1 hold.

• According to Proposition 3.1 on page 12, it may be assumed (without loss of
generality, up to changing the origin of time) that, for all t in [0,+∞),

∥x 7→ u(x, t)∥L∞(R,Rd) ≤ Ratt,∞(4.2)
and

∥∥x 7→
(
u(x, t), ut(x, t)

)∥∥
X

≤ Ratt,X .(4.3)
• According to (Hhom-right), it may be assumed (without loss of generality, up to

changing the origin of time) that, for all t in [0,+∞),

(4.4) x′
hom(t) ≥ 0 .
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4.3.2 Normalized potential and corresponding solution

For notational convenience, let us introduce:

• a new “normalized” potential V † : Rd → R, v 7→ V †(v),

• and the corresponding solution u† : R × [0,+∞) → R, (x, t) 7→ u†(x, t),

defined as
V †(v) = V (m+ v) − V (m) and u†(x, t) = u(x, t) −m.

Thus the origin 0Rd of Rd is to V † what m is to V , it is a nondegenerate minimum point
for V † (with V †(0Rd) = 0), and u† is a solution of system (1.1) with potential V † instead
of V ; and, for all (x, t) in R × [0,+∞),

V †(u†(x, t)
)

= V
(
u(x, t)

)
− V (m) .

It follows from inequalities (3.14) to (3.16) that, for all v in Rd satisfying |v| ≤ δEsc(m),

V †(v) ≥ λmin(m)
4 v2 ,(4.5)

and v · ∇V †(v) ≥ λmin(m)
2 v2 ,(4.6)

and v · ∇V †(v) ≥ V †(v) ,(4.7)

and it follows from definition (3.17) of ∆V that

(4.8) min
v∈Rd

V †(v) ≥ −∆V .

4.3.3 Looking for another definition of the escape point

Unfortunately, the Escape point xEsc(t) presents a significant drawback: there is no
reason why it should display any form of continuity (it may jump back and forth while
time increases). This lack of control is problematic with respect to the purpose of writing
down a dissipation argument precisely around the position in space where the solution
escapes from m.

The answer to this will be to define another “escape point” (this one will be denoted
by “xesc(t)” — with a lower-case “e” — instead of xEsc(t)). This second definition is a bit
more involved than that of xEsc(t), but the resulting escape point will have the significant
advantage of growing at a finite (and even bounded) rate (Lemma 4.9 on page 28). The
material required to define this escape point is introduced in the next subsection.

4.4 Firewall function in the laboratory frame
4.4.1 Definition

Let

(4.9) κ0 = min
(1

4 ,
1

4α,
√
λmin(m)

4
)
.
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In this sub-subsection, only the following properties of κ0 will be used (to derive inequality
(4.16) below):

(4.10) κ0 ≤ 1
2 and ακ0 ≤ 1

2 and κ2
0

2 ≤ λmin(m)
8 .

The slightly more stringent definition (4.9) of κ0 will enable us to reuse this quantity in
section 5 (see in particular subsection 5.3).

Let us introduce the weight function ψ0 defined as

ψ0(x) = exp(−κ0 |x|) .

For x̄ in R, let Tx̄ψ0 denote the translate of ψ0 by x̄, that is the function defined as

Tx̄ψ0(x) = ψ0(x− x̄) .

For every real quantity x and nonnegative quantity t, following expression (3.4) on
page 14, let

E†
0(x, t) = α

2 u
†
t(x, t)2 + 1

2u
†
x(x, t)2 + V †(u†(x, t)

)
,(4.11)

and F †
0 (x, t) = 2αE†

0(x, t) + αu†(x, t) · u†
t(x, t) + 1

2u
†(x, t)2(4.12)

=
(
α2(u†

t)2 + α(u†
x)2 + 2αV †(u†) + αu† · u†

t + 1
2(u†)2

)
(x, t) ,(4.13)

and let us introduce the “firewall” function F0 defined, for every real quantity x̄ and
nonnegative quantity t, as

F0(x̄, t) =
∫
R
Tx̄ψ0(x)F †

0 (x, t) dx .

4.4.2 Upper bound

Lemma 4.2 (firewall upper bound). For every nonnegative time t and for every real
quantity x̄,

(4.14) F0(x̄, t) ≤
∫
R
Tx̄ψ0(x)

[3α2

2 (u†
t)2 + α(u†

x)2 + 2αV †(u†) + (u†)2
]
dx .

Proof. Inequality (4.14) follows from the definition (4.12) of F †
0 (x, t) and from the

inequality

αu† · u†
t ≤ α2

2 (u†
t)2 + 1

2(u†)2 .
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4.4.3 Linear decrease up to pollution

For t in [0,+∞), let us introduce the set

ΣEsc,0(t) =
{
x ∈ R :

∣∣∣u†(t)
∣∣∣ > δEsc(m)

}
.

Lemma 4.3 (firewall linear decrease up to pollution). There exist positive quantities
νF0 and KF0, both depending only on α and V and m, such that for every real quantity
x̄ and every nonnegative time t,

(4.15) ∂tF0(x̄, t) ≤ −νF0 F0(x̄, t) +KF0

∫
ΣEsc,0(t)

Tx̄ψ0(x) dx .

Proof. According to expressions (3.1) and (3.2) on page 14, for every real quantity x̄ and
nonnegative time t,

∂tF0(x̄, t) =
∫
R

[
Tx̄ψ0

(
−α(u†

t)2 − (u†
x)2 −u† · ∇V †(u†)

)
− 2αTx̄ψ

′
0u

†
x ·u†

t + Tx̄ψ
′′
0

2 (u†)2
]
dx .

Since ∣∣ψ′
0(·)

∣∣ = κ0ψ0 and ψ′′
0(·) ≤ κ2

0ψ0

(indeed ψ′′
0 equals κ2

0ψ0 plus a Dirac mass of negative weight), it follows that

∂tF0(x̄, t) ≤
∫
R
Tx̄ψ0

[
−α(u†

t)2 − (u†
x)2 − u† · ∇V †(u†) + 2ακ0

∣∣∣u†
x · u†

t

∣∣∣+ κ2
0

2 (u†)2
]
dx .

Using the inequality
2
∣∣∣u†

x · u†
t

∣∣∣ ≤ (u†
x)2 + (u†

t)2 ,

it follows that

∂tF0(x̄, t) ≤
∫
R
Tx̄ψ0

(
α(−1 + κ0)(u†

t)2 + (−1 + ακ0)(u†
x)2 − u† · ∇V †(u†) + κ2

0
2 (u†)2

)
dx ,

and, according to the conditions (4.10) on κ0, it follows that

(4.16) ∂tF0(x̄, t) ≤
∫
R
Tx̄ψ0

(
−α

2 (u†
t)2 − 1

2(u†
x)2 − u† · ∇V †(u†) + λmin(m)

8 (u†)2
)
dx .

Let νF0 be a positive quantity to be chosen below. It follows from the previous inequality
and from the upper bound (4.14) of Lemma 4.2 that
(4.17)

∂tF0(x̄, t) + νF0F0(x̄, t) ≤
∫
R
Tx̄ψ0

[
α

2 (−1 + 3ανF0)(u†
t)2 +

(
−1

2 + ανF0

)
(u†

x)2

− u† · ∇V †(u†) +
(λmin(m)

8 + νF0

)
(u†)2 + 2ανF0V

†(u†)
]
dx .
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In view of this expression and of inequalities (4.6) and (4.7) on page 21, let us assume
that νF0 is small enough so that

(4.18) 3ανF0 ≤ 1 and ανF0 ≤ 1
2 and νF0 ≤ λmin(m)

8 and 2ανF0 ≤ 1
2 ;

the quantity νF0 may be chosen as

(4.19) νF0 = min
( 1

4α,
λmin(m)

8
)
.

Then, it follows from (4.17) and (4.18) that

(4.20) ∂tF0(x̄, t)+νF0F0(x̄, t) ≤
∫
R
Tx̄ψ0

[
−u†·∇V †(u†)+λmin(m)

4 (u†)2+1
2
∣∣∣V †(u†)

∣∣∣] dx .
According to (4.6) and (4.7), the integrand of the integral at the right-hand side of this
inequality is nonpositive as long as x is not in ΣEsc,0(t). Therefore this inequality still
holds if the domain of integration of this integral is changed from R to ΣEsc,0(t). Besides,
observe that, in terms of the “initial” potential V and solution u(x, t), the factor of Tx̄ψ0
under the integral of the right-hand side of this last inequality reads

−(u−m) · ∇V (u) + λmin(m)
4 (u−m)2 + 1

2 |V (u) − V (m)| ,

Thus, if KF0 denotes the maximum of the previous expression over all possible values for
u, that is, according to the L∞-bound (4.2) on page 20 on the solution, the (positive)
quantity

(4.21) KF0 = max
v∈Rd, |v|≤Ratt,∞

[
−(v−m) ·∇V (v)+ λmin(m)

4 (v−m)2 + 1
2 |V (v) − V (m)|

]
,

then inequality (4.15) follows from (4.20) (with the domain of integration of the integral
on the right-hand side restricted to ΣEsc,0(t)). Observe that KF0 depends only on α and
V . This finishes the proof of Lemma 4.3.

4.4.4 Coercivity up to pollution

For every nonnegative time t and for every real quantity x̄, let

(4.22) Q0(x̄, t) =
∫
R
Tx̄ψ0(x)

(
αu†

t(x, t)2 + u†
x(x, t)2 + u†(x, t)2) dx .

The reason for the factor α in front of the term u†
t(x, t)2 in this definition of Q0(x̄, t) is

that it slightly simplifies the expression of the time derivative of Q0 in Lemma 4.8 on
page 27). However dropping this factor α would only induce minor changes. Let

(4.23) ΣEsc,0(t) =
{
x ∈ R :

∣∣∣u†(x, t)
∣∣∣ > δEsc(m)

}
.
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Lemma 4.4 (firewall coercivity up to pollution). There exist a positive quantity εF0,coerc
and a nonnegative quantity KF0,coerc, both depending only on α and V , such that for
every real quantity x̄ and every nonnegative quantity t,

(4.24) F0(x̄, t) ≥ εF0,coerc Q0(x̄, t) −KF0,coerc

∫
ΣEsc,0(t)

Tx̄ψ0(x) dx .

Proof. By polarization,

(4.25) αu† · u†
t =

(
α

√
3
2u

†
t

)
·
(√2

3u
†
)

≥ −3
4α

2(u†
t)2 − 1

3(u†)2 ,

thus for every real quantity x̄ and nonnegative quantity t,

F0(x̄, t) ≥
∫
R
Tx̄ψ0

(1
4α

2(u†
t)2 + α(u†

x)2 + 2αV †(u†) + 1
6(u†)2

)
dx .

According to inequality (4.5) on page 21, the term 2αV †(u†) is nonnegative when x is not
in the set ΣEsc,0(t). As a consequence, the previous inequality still holds if the integration
domain of this term is reduced to this set. In other words,

F0(x̄, t) ≥
∫
R
Tx̄ψ0

(1
4α

2(u†
t)2 + α(u†

x)2 + 1
6(u†)2

)
dx+ 2α

∫
ΣEsc,0(t)

Tx̄ψ0 V
†(u†) dx

≥ min
(α

4 ,
1
6
)
Q0(x̄, t) + 2α

(
min
v∈Rd

V †(v)
) ∫

ΣEsc,0(t)
Tx̄ψ0(x) dx .(4.26)

Thus, according to inequality (4.8), introducing the quantities εF0,coerc and KF0,coerc
as

εF0,coerc = min
(α

4 ,
1
6
)

and KF0,coerc = 2α∆V ,

inequality (4.24) follows from inequality (4.26). Lemma 4.4 is proved.

4.4.5 Elementary inequalities involving u(·, ·) and Q0(·, ·) and F0(·, ·) and ∂tF0(·, ·)
and ∂tQ0(·, ·)

The aim of the following definitions and statements is to prove Lemma 4.9 below, providing
a bound on the speed at which a spatial domain where the solution u (respectively u†)
is close to m (respectively to 0Rd) can be “invaded”. This lemma involves the two
“hull functions” ηno-esc,Q0 and ηno-esc,F0 controlling F0(·, ·) and Q0(·, ·) respectively. The
definition of these two hull functions is based on the three quantities δesc,Q0(m) and
δesc,F0(m) and L that will be defined now with Lemma 4.9 as a purpose. Let

(4.27) δesc,Q0(m) =
√

2
1 + κ0

δEsc(m) .

Lemma 4.5 (Q0 controls
∣∣∣u†
∣∣∣). For every real quantity x̄ and every nonnegative quantity

t, the following assertion holds

Q0(x̄, t) ≤ δesc,Q0(m)2 =⇒
∣∣∣u†(x̄, t)

∣∣∣ ≤ δEsc(m) .
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Proof. Let v denote a function in H1
ul(R,Rd). Then,

v(0)2 = ψ0(0)v(0)2

≤ 1
2

∫
R

∣∣∣∣ ddx(ψ0(x)v(x)2)∣∣∣∣ dx
≤ 1

2

∫
R

(∣∣ψ′
0(x)

∣∣ v(x)2 + 2ψ0(x)v(x) · v′(x)
)
dx

≤ 1
2

∫
R
ψ0(x)

(
(1 + κ0)v(x)2 + v′(x)2) dx

≤ 1 + κ0
2

∫
R
ψ0(x)

(
v(x)2 + v′(x)2) dx ,

and the conclusion follows from the definitions (4.27) of δesc,Q0(m) and (4.22) of Q0(·, ·).

Let
δesc,F0(m) =

√
εF0,coerc

8 δesc,Q0(m) ,

and let L be a positive quantity satisfying the following properties (that will be used
below)

KF0,coerc
εF0,coerc

2
κ0

exp(−κ0L) ≤ 1
8δesc,Q0(m)2(4.28)

and KF0
2
κ0

exp(−κ0L) ≤ νF0 δesc,F0(m)2

4 .(4.29)

namely

L = 1
κ0

log
[
max

(16
κ0

KF0,coerc
εF0,coerc

1
δesc,Q0(m)2 ,

8
κ0

KF0

νF0 δesc,F0(m)2

)]
.

Those requirements on L are related to the fact that∫
R\[−L,L]

ψ0(x) dx = 2
κ0

exp(−κ0L) .

Lemma 4.6 (F0 controls Q0). For every real quantity x̄ and every nonnegative quantity
t,

F0(x̄, t) ≤ δesc,F0(m)2

and, for all x in [x̄− L, x̄+ L] ,
∣∣∣u†(x, t)

∣∣∣ ≤ δEsc(m)

 =⇒ Q0(x̄, t) ≤ 1
4δesc,Q0(m)2 .

Proof. This assertion is an immediate consequence of the coercivity property (4.24) for
F0(·, ·), the definition of the quantity δesc,F0(m) above, and the first property (4.28)
satisfied by the quantity L.
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Lemma 4.7 (F0 remains small far from ΣEsc,0(t)). For every real quantity x̄ and every
nonnegative quantity t,

F0(x̄, t) ≥ 1
2δesc,F0(m)2

and, for every x in [x̄− L, x̄+ L] ,
∣∣∣u†(x, t)

∣∣∣ ≤ δEsc(m)

 =⇒ ∂tF0(x̄, t) < 0 .

Proof. This assertion is an immediate consequence of the decrease property (4.15) and
the second property (4.29) satisfied by the quantity L.

Lemma 4.8 (bound on growth of Q0). There exists a positive quantity
KQ0,growth, depending only on α and V , such that, for every real quantity x̄ and every
nonnegative quantity t,

∂tQ0(x̄, t) ≤ KQ0,growth .

Proof. For every real quantity x̄ and every nonnegative quantity t,

∂tQ0(x̄, t) = 2
∫
R

[
Tx̄ψ0

(
u†

t ·
(
−u†

t − ∇V †(u†)
)

+ u† · u†
t

)
− Tx̄ψ

′
0 u

†
x · u†

t

]
dx

= 2
∫
R

[
Tx̄ψ0

(
ut ·

(
−ut − ∇V (u)

)
+ (u−m) · ut

)
− Tx̄ψ

′
0 ux · ut

]
dx ,

thus the conclusion follows from the bounds (4.2) and (4.3) on page 20 for the solution.

4.5 Upper bound on the invasion speed
Let us introduce the following two “no-escape hull” functions

ηno-esc,Q0 : R → R ∪ {+∞} and ηno-esc,F0 : R → R ∪ {+∞}

defined as

Figure 4.3: Graphs of the hull functions ηno-esc,Q0 and ηno-esc,F0 .

ηno-esc,Q0(x) =



+ ∞ for x < 0 ,
δesc,Q0(m)2

2
(
1 − x

2L
)

for 0 ≤ x ≤ L ,

δesc,Q0(m)2

4 for x ≥ L ,

27



and

ηno-esc,F0(x) =
{

+ ∞ for x < L ,

δesc,F0(m)2 for x ≥ L ,

see figure 4.3, and let us introduce the positive quantity σno-esc (“no-escape speed”)
defined as

σno-esc = 4LKQ0,growth
δesc,Q0(m)2 .

This quantity depends on α and V and m (only). The following lemma is a variant of
[36, Lemma 4.6].

Lemma 4.9 (bound on invasion speed). For all real quantities xleft and xright and every
nonnegative time t0, if for all x in R the following properties holds:

Q0(x, t0) ≤ max
(
ηno-esc,Q0(x− xleft), ηno-esc,Q0(xright − x)

)
and F0(x, t0) ≤ max

(
ηno-esc,F0(x− xleft), ηno-esc,F0(xright − x)

)
,

then, for every time t greater than or equal to t0 and for all x in R, the following two
inequalities hold

Q0(x, t) ≤ max
(
ηno-esc,Q0

(
xleft − σno-esc (t− t0)

)
, ηno-esc,Q0

(
xright + σno-esc (t− t0) − x

))
,

F0(x, t) ≤ max
(
ηno-esc,F0

(
xleft − σno-esc (t− t0)

)
, ηno-esc,F0

(
xright + σno-esc (t− t0) − x

))
.

Proof. The proof follows from Lemmas 4.5 to 4.8. It is almost identical to the proof of
[36, Lemma 4.6] (see also [34, Lemma 4.5 and figure 4.5]). The details are skipped.

4.6 Set-up for the proof, 2: escape point and associated speeds
With the notation and results of the previous subsections in hand, let us pursue the
set-up for the proof of Proposition 4.1 “invasion implies convergence”. According to
hypothesis (Hhom-right), it may be assumed, up to changing the origin of time, that, for
all t in [0,+∞) and for all x in R,

(4.30)
Q0(x, t) ≤ max

(
ηno-esc,Q0

(
x−

(
xhom(t) − 1

))
, ηno-esc,Q0

(
xhom(t) − x

))
and F0(x, t) ≤ max

(
ηno-esc,F0

(
x−

(
xhom(t) − 1

))
, ηno-esc,F0

(
xhom(t) − x

))
.

As a consequence, for all t in [0,+∞), the set

Ihom(t) =
{
xℓ ≤ xhom(t) : for all x in R ,

Q0(x, t) ≤ max
(
ηno-esc,Q0(x− xℓ), ηno-esc,Q0

(
xhom(t) − x

))
and

F0(x, t) ≤ max
(
ηno-esc,F0(x− xℓ), ηno-esc,F0

(
xhom(t) − x

))}
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is a nonempty interval (containing [xhom(t) − 1, xhom(t)]) that must be bounded from
below. Indeed, if at a certain time it was not bounded from below — in other words
if it was equal to (−∞, xhom(t)] — then according to Lemma 4.9 this would remain
unchanged in the future, thus according to Lemma 4.5 the point xEsc(t) would remain
equal to −∞ in the future, a contradiction with hypothesis (Hinv).

For all t in [0,+∞), let

(4.31) xesc(t) = inf
(
Ihom(t)

)
(thus xesc(t) > −∞).

Somehow like xEsc(t), this point represents the first point at the left of xhom(t) where the
solution u (respectively u†) “escapes” (in a sense defined by the functions Q0 and F0 and
the no-escape hulls ηno-esc,Q0 and ηno-esc,F0) at a certain distance from m (respectively
from 0Rd). In the following, this point xesc(t) will be called the “escape point” (by
contrast with the “Escape point” xEsc(t) defined before). According to the first of the
“hull inequalities” (4.30) and Lemma 4.5 (“Q0 controls u†”), for all t in [0,+∞),

(4.32) xEsc(t) ≤ xesc(t) ≤ xhom(t) − 1 and ΣEsc,0(t) ∩ [xEsc(t), xhom(t)] = ∅ ,

and, according to hypothesis (Hhom-right),

(4.33) xhom(t) − xesc(t) → +∞ as t → +∞ .

The big advantage of xesc(·) with respect to xEsc(·) is that, according to Lemma 4.9, the
growth of xesc(·) is more under control. More precisely, according to this lemma, for all
nonnegative quantities t and s,

(4.34) xesc(t+ s) ≤ xesc(t) + σno-esc s .

For every s in [0,+∞), let us consider the “upper and lower bounds of the variations of
xesc(·) over all time intervals of length s”:

Figure 4.4: Illustration of the bounds (4.35).
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xesc(s) = sup
t∈[0,+∞)

xesc(t+ s) − xesc(t) and xesc(s) = inf
t∈[0,+∞)

xesc(t+ s) − xesc(t) ,

see figure 4.4. According to these definitions and to inequality (4.34) above, for all t and
s in [0,+∞),

(4.35) −∞ ≤ xesc(s) ≤ xesc(t+ s) − xesc(t) ≤ xesc(s) ≤ σno-esc s .

Let us consider the four limit mean speeds:

σesc-inf = lim inf
t→+∞

xesc(t)
t

and σesc-sup = lim sup
t→+∞

xesc(t)
t

and
σesc-inf = lim inf

s→+∞

xesc(s)
s

and σesc-sup = lim sup
s→+∞

xesc(s)
s

.

The following inequalities follow from these definitions and from hypothesis (Hinv):

−∞ ≤ σesc-inf ≤ σesc-inf ≤ σesc-sup ≤ σesc-sup ≤ σno-esc and 0 < σEsc ≤ σesc-sup .

The four limit mean speeds defined just above will turn out to be equal. The proof of
this equality is based on the “relaxation scheme” that will be set up in subsection 4.8
below. To this end, an additional estimate on these speeds (namely, the fact that they are
smaller than the maximum speed of propagation 1/

√
α) is required. This is the purpose

of the next subsection.

4.7 Further (subsonic) bound on invasion speed, preparation
The next subsection will be devoted to the relaxation scheme in a travelling frame that is
the core of the proof of Theorem 1. This relaxation scheme will require an upper bound
on the parabolic speed of the travelling frame, in other words it will require that the
physical speed of the travelling frame be (strictly) subsonic (without this requirement all
estimates would literally blow up). The aim of this subsection is to define the value of this
upper bound (namely the quantity cupp defined below). Using the relaxation scheme set
up in the next subsection, it will be proved later (Lemma 4.18 in sub-subsection 4.8.13)
that the (upper) limit mean speed σesc-sup is not larger than this (subsonic) bound cupp.

These observations and statements are very similar to (and much inspired by) those
made by Gallay and Joly in [14]. To define the subsonic bound on invasion speed, these
authors used a Poincaré inequality in the weighted Sobolev spaces H1

c (R,Rd) (see [14,
subsection 4.2]). Although based on the same idea, the definition of cupp below is slightly
different and suits better the purpose pursued here (that is, the convergence towards a
stacked family of travelling fronts).

Let us recall the quantity ∆V defined in sub-subsection 3.4.2 on page 18 and let us
introduce the (positive) quantities
(4.36)

cupp = 4∆V

δEsc(m)2 min
(

1
2 ,

λmin(m)
4

) + 1 and EEsc = 1
4δEsc(m)2 min

(1
2 ,
λmin(m)

4
)
.
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These two quantities depend on α and V and m (only). The following lemma provides
a justification for this value of cupp and will be used in sub-subsection 4.8.13 to prove
Lemma 4.18 stating that the (upper) limit mean speed σesc-sup is not larger than cupp.
Note that the “+1” in the definition of cupp is only to ensure that cupp is nonzero (and
actually not smaller than 1), since the quantity ∆V may be equal to 0 (if the set M is
reduced to a single point).

Lemma 4.10 (positive energy at Escape point when travelling frame speed is large
positive). For every function w in H1

ul(R,Rd) and every quantities ξ0 and c satisfying
the conditions

|w(ξ0)| = δEsc(m) and |w(ξ)| ≤ δEsc(m) for all ξ in [ξ0, ξ0 + 1] and c ≥ cupp ,

the following estimate holds:

(4.37)
∫ ξ0+1

−∞
ecξ
(1

2w
′(ξ)2 + V †(w(ξ)

))
dξ ≥ EEsce

cξ0 .

Proof. Let us introduce a function w in H1
ul(R,Rd) and quantities ξ0 and c satisfying the

hypotheses above. Then, according to inequality (4.5) on page 21,∫ ξ0+1

−∞
ecξ
(1

2w
′(ξ)2 + V †(w(ξ)

))
dξ

≥
∫ ξ0

−∞
ecξ(−∆V ) dξ +

∫ ξ0+1

ξ0
ecξ
(1

2w
′(ξ)2 + λmin(m)

4 w(ξ)2
)
dξ

≥ ecξ0

(
−∆V

c
+ min

(1
2 ,
λmin(m)

4
) ∫ ξ0+1

ξ0

(
w′(ξ)2 + w(ξ)2 dξ

)
.

Let us denote by θ the affine function taking the value 1 at ξ0 and 0 at ξ0 + 1, namely
defined as θ(ξ) = ξ0 + 1 − ξ. Then,

δEsc(m)2 = w(ξ0)2 = θ(ξ0)w(ξ0)2

= −
∫ ξ0+1

ξ0

d

dξ

(
θ(ξ)w(ξ)2) dξ

= −
∫ ξ0+1

ξ0

(
θ′(ξ)w(ξ)2 + 2θ(ξ)w(ξ)w′(ξ)

)
dξ

≤ 2
∫ ξ0+1

ξ0

(
w(ξ)2 + w′(ξ)2) dξ .

It follows from these two inequalities that∫ ξ0+1

−∞
ecξ
(1

2w
′(ξ)2 + V †(w(ξ)

))
dξ ≥ ecξ0

(
−∆V

c
+ 1

2 min
(1

2 ,
λmin(m)

4
)
δEsc(m)2

)
,

and in view of the definitions (4.36) of cupp and EEsc, inequality (4.37) follows. Lemma 4.10
is proved.
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4.8 Relaxation scheme in a travelling frame
The aim of this subsection is to set up an appropriate relaxation scheme in a travelling
frame. This means defining an appropriate localized energy and controlling the “flux”
terms occurring in the time derivative of this localized energy. The considerations made
in subsection 3.3 on page 13 will be put in practice.

4.8.1 Notation for the travelling frame

Let us keep the notation and hypotheses introduced above (since the beginning of
subsection 4.3), and let us introduce the following real quantities that will play the role
of “parameters” for the relaxation scheme below:

• the “initial time” tinit of the time interval of the relaxation;

• the initial position xinit of the origin of the travelling frame;

• the “parabolic” speed c of the travelling frame and its “physical” speed σ, related
by

σ = c√
1 + αc2

⇐⇒ c = σ√
1 − ασ2

;

• a quantity ξcut-init that will be the the position of the maximum point of the weight
function y 7→ χ(y, tinit) localizing energy at initial time t = tinit (this weight function
is defined below).

Let us recall the (positive) quantity cupp defined in the previous sub-subsection and let
us make on these parameters the following hypotheses:

(4.38) 0 ≤ tinit and 0 < c ≤ cupp and 0 ≤ ξcut-init .

The relaxation scheme will be applied several time in the next pages, for various choices
of this set of parameters.

For every real quantity ξ and every nonnegative quantity s, let

v(ξ, s) = u†(x, t)

where (ξ, s) and (x, t) are related by

t = tinit + s and x = xinit + σs+ ξ√
1 + αc2

⇐⇒ ξ =
√

1 + αc2(x− xinit) − cs ,

see figure 4.5. The system satisfied by v(·, ·) reads

αvss + vs − 2αcvξs = −∇V †(v) + cvξ + vξξ .

Let κ (rate of decrease of the weight functions) and ccut (speed of the cutoff point in the
travelling frame) be two positive quantities, small enough so that the following conditions
be satisfied:

(4.39) ακc ≤ 1
6
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Figure 4.5: Space coordinate ξ and time coordinate s in the travelling frame, and
parameters tinit and xinit and c and ξcut-init.

(this condition will be used in Lemma 4.12 on page 35, lower bound on the firewall
function) and
(4.40)

(c+ κ)
(
2ακ+ ccut(α+ 1/2)

)
≤ 1

2 and αccut(c+ κ)(c+ 1) ≤ 1
4

and c+ κ

2
(
κ+ ccut

(
1 + α(2c+ 1)

))
≤ λmin(m)

8 and 2αccut(c+ κ) ≤ 1
4

(these conditions will be used to derive the upper bound (4.40) on the time derivative of
the firewall). These two quantities may be chosen as

κ = min
( 1

16αcupp
,

1√
α
,
λmin(m)
16cupp

,

√
λmin(m)

4
)

and ccut = 1
cupp + κ

min
( 1

2(2α+ 1) ,
1

4α(cupp + 1) ,
1

8α,
λmin(m)

8
(
1 + α(2cupp + 1)

)) .
4.8.2 Localized energy

For every real quantity s, let us introduce the two intervals

Imain(s) = (−∞, ξcut-init + ccuts] and Iright(s) = [ξcut-init + ccuts,+∞) ,

and let us introduce the function χ(ξ, s) (weight function for the localized energy) defined
as

χ(ξ, s) =
{

exp(cξ) if ξ ∈ Imain(s) ,
exp

(
(c+ κ)(ξcut-init + ccuts) − κξ

)
if ξ ∈ Iright(s) ,

see figure 4.6, and, for all s in [0,+∞), let us define the “energy” E(s) by

E(s) =
∫
R
χ(ξ, s)E†(ξ, s) dξ , where E†(ξ, s) = α

2 vs(ξ, s)2 + 1
2vξ(ξ, s)2 + V †(v(ξ, s)

)
.
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Figure 4.6: Graphs of the weight functions χ(ξ, s) and ψ(ξ, s).

4.8.3 Time derivative of the localized energy

For every nonnegative quantity s, let us define the “dissipation” D(s) by

(4.41) D(s) =
∫
R
χ(ξ, s) vs(ξ, s)2 dξ .

Lemma 4.11 (time derivative of the localized energy). For every nonnegative quantity
s,

(4.42)
E ′(s) ≤ − (1 + αc2)D(s)

+ (c+ κ)
∫

Iright(s)
χ

[
α(2c+ ccut) + 1

2 v2
s + ccut + 1

2 v2
ξ + ccutV

†(v)
]
dξ .

Proof. According to expression (3.8) on page 16 for the derivative of a localized energy
and from the definition (4.41) of D(s),

(4.43) E ′(s) = −(1+αc2)D(s)+
∫
R

[
χs

(α
2 v

2
s + 1

2v
2
ξ +V †(v)

)
+(cχ−χξ)(αcv2

s +vξ ·vs)
]
dξ .

It follows from the definition of χ that

χs(ξ, s) =
{

0 if ξ ∈ Imain(s) ,
ccut(c+ κ)χ(ξ, s) if ξ ∈ Iright(s) ,

and
(cχ− χξ)(ξ, s) =

{
0 if ξ ∈ Imain(s) ,
(c+ κ)χ(ξ, s) if ξ ∈ Iright(s) .

Thus it follows from (4.43) that

E ′(s) = −(1 + αc2)D(s)

+ (c+ κ)
∫

Iright(s)
χ

[
ccut

(α
2 v

2
s + 1

2v
2
ξ + V †(v)

)
+ (αcv2

s + vξ · vs)
]
dξ ,
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and using the inequality
vξ · vs ≤ 1

2v
2
ξ + 1

2v
2
s ,

it follows that

E ′(s) ≤ − (1 + αc2)D(s)

+ (c+ κ)
∫

Iright(s)
χ

[(αccut
2 + αc+ 1

2
)
v2

s +
(ccut

2 + 1
2
)
v2

ξ + ccutV
†(v)

]
dξ .

and inequality (4.42) follows. Lemma 4.11 is proved.

4.8.4 Firewall function

A second function (the “firewall”) will now be defined, to get some control over the
second term of the right-hand side of inequality (4.42). Let us introduce the function
ψ(ξ, s) (weight function for the firewall function) defined as

ψ(ξ, s) =

 exp
(
κ
(
ξ − (ξcut-init + ccuts)

))
χ(ξ, s) if ξ ∈ Imain(s) ,

χ(ξ, s) if ξ ∈ Iright(s) ,

see figure 4.6. For every real quantity ξ and every nonnegative quantity s, following
expression (3.12) on page 17, let

(4.44)
F †(ξ, s) = 2αE†(ξ, s) + αv(ξ, s) · vs(ξ, s) +

(1
2 + αc

ψξ(ξ, s)
ψ(ξ, s)

)
v(ξ, s)2

=
(
α2v2

s + αv2
ξ + 2αV †(v) + αv · vs +

(1
2 + αc

ψξ

ψ

)
v2
)

(ξ, s) ,

and let
F(s) =

∫
R
ψ(ξ, s)F †(ξ, s) dξ .

4.8.5 Lower bound on the firewall function

Lemma 4.12 (lower bound on the firewall function). For every nonnegative quantity s,

(4.45) F(s) ≥
∫
R
ψ(ξ, s)

[α2

4 vs(ξ, s)2 + αvξ(ξ, s)2 + 2αV †(v(ξ, s)
)]
dξ .

Proof. According to the polarization inequality (4.25) on page 25 and since the ratio
ψξ/ψ is greater than or equal to −κ, the following inequality holds for every real quantity
ξ and every nonnegative quantity s:

F †(ξ, s) ≥ α2

4 v2
s + αv2

ξ + 2αV †(v) +
(1

6 − αcκ
)
v2 .

Thus inequality (4.45) follows from condition (4.39) on page 32 satisfied by κ.
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4.8.6 Energy decrease up to firewall and pollution

For every nonnegative quantity s, let

ΣEsc(s) =
{
ξ ∈ R : |v(ξ, s)| > δEsc(m)

}
.

Lemma 4.13 (energy decrease up to firewall and pollution). There exist nonnegative
quantities KE,F and KE,Esc, depending on α and V and m (only), such that for every
nonnegative quantity s,

(4.46) E ′(s) ≤ −(1 + αc2)D(s) +KE,FF(s) +KE,Esc

∫
ΣEsc(s)

ψ(ξ, s) dξ .

Proof. For every nonnegative quantity s, since χ(ξ, s) = ψ(ξ, s) for all ξ in Iright(s), it
follows from inequality (4.42) of Lemma 4.11 that (substituting χ with ψ and replacing
V †(v) by its absolute value),

E ′(s) + (1 + αc2)D(s) ≤

(c+ κ)
∫

Iright(s)
ψ

[
α(2c+ ccut) + 1

2 v2
s + ccut + 1

2 v2
ξ + ccut

∣∣∣V †(v)
∣∣∣] dξ ,

and since the integrand of the integral on the right-hand side of this inequality is
nonnegative, this inequality still holds if the domain of integration is changed from
Iright(s) to R.

Let KE,F be a positive quantity to be chosen below. According to (4.45), it follows
that, for every nonnegative quantity s,

E ′(s)+(1 + αc2)D(s) −KE,FF(s) ≤
∫
R
ψ

[((c+ κ)
(
α(2c+ ccut) + 1

)
2 − α2KE,F

4
)
v2

s

+
((c+ κ)(ccut + 1)

2 − αKE,F
)
v2

ξ + (c+ κ)ccut
∣∣∣V †(v)

∣∣∣− 2αKE,FV
†(v)

]
dξ .

Thus, introducing the quantity KE,F as

KE,F = max
[2(cupp + κ)

(
α(2cupp + ccut) + 1

)
α2 ,

(cupp + κ)(ccut + 1)
2α ,

(cupp + κ)ccut
2α

]
(this quantity depends only on α and V ), it follows that

E ′(s) + (1 + αc2)D(s) −KE,FF(s) ≤
∫
R
ψ
[
(c+ κ)ccut

∣∣∣V †(v)
∣∣∣− 2αKE,FV

†(v)
]
dξ .

As long as ξ is not in ΣEsc(s), it follows from (4.5) that V †(v) is nonnegative and it
follows from the last condition defining KE,F that the integrand of the integral at the
right-hand side of this last inequality is nonpositive. As a consequence, this inequality
still holds if the integration domain of this integral is changed from R to ΣEsc(s). Namely,
(4.47)

E ′(s) + (1 + αc2)D(s) −KE,FF(s) ≤
∫

ΣEsc(s)
ψ
[
(c+ κ)ccut

∣∣∣V †(v)
∣∣∣− 2αKE,FV

†(v)
]
dξ

≤
[
(c+ κ)ccut + 2αKE,F

] ∫
ΣEsc(s)

ψ
∣∣∣V †(v)

∣∣∣ dξ .
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Thus, introducing the quantity KE,Esc as

KE,Esc =
(
(cupp + κ)ccut + 2αKE,F

)
max

u∈Rd, |u|≤Ratt,∞
|V (u) − V (m)| ,

inequality (4.46) follows from (4.47). Lemma 4.13 is proved.

4.8.7 Relaxation scheme inequality, 1

For every nonnegative quantity s, let

G(s) =
∫

ΣEsc(s)
ψ(ξ, s) dξ .

Let sfin be a nonnegative quantity (denoting the length of the time interval on which the
relaxation scheme will be applied). It follows from Lemma 4.13 that

(4.48) (1+αc2)
∫ sfin

0
D(s) ds ≤ E(0)−E(sfin)+KE,F

∫ sfin

0
F(s) ds+KE,Esc

∫ sfin

0
G(s) ds .

This is the first version of the relaxation scheme inequality that is the key argument
to prove Proposition 4.1 (invasion implies convergence). The aim of the two next
sub-subsection is to gain some control over the quantities F(s) and G(s).

4.8.8 Firewall upper bound

The following lemma is the “travelling frame” analogue of Lemma 4.2.

Lemma 4.14 (firewall upper bound). For every nonnegative quantity s,

(4.49) F(s) ≤
∫
R
ψ
[3α2

2 v2
s + αv2

ξ + 2αV †(v) +
(
1 + αc(c+ κ)

)
v2
]
dξ .

Proof. Inequality (4.49) follows from the definition (4.44) on page 35 of F †(ξ, s), from
the fact that ψξ/ψ is bounded from above by c+ κ, and from the inequality

αv · vs ≤ α2

2 v2
s + 1

2v
2 .

4.8.9 Firewall linear decrease up to pollution

The following lemma is the “travelling frame” analogue of Lemma 4.3.

Lemma 4.15 (firewall linear decrease up to pollution). There exist positive quantities νF
and KF , depending on α and V and m (only), such that for every nonnegative quantity
s,

(4.50) F ′(s) ≤ −νFF(s) +KFG(s) .
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Proof. According to expressions (3.6) and (3.7) on page 15 for the time derivatives of the
functionals in a travelling frame, for every nonnegative quantity s,

F ′(s) =
∫
R

[
αψs

(
αv2

s + v2
ξ + 2V †(v)

)
− 2α

(
ψ + αcψξ

)
v2

s + 2α(cψ − ψξ)vξ · vs

+ ψs

(
αv · vs + 1

2v
2 − 2αcv · vξ

)
+ ψ

(
−v · ∇V †(v) − v2

ξ + αv2
s − 2αcvξ · vs

)
+ ψξξ − cψξ

2 v2
]
dξ .

Simplifying the terms involving ψ v2
s and those involving ψ vξ · vs, and rearranging terms,

it follows that

F ′(s) =
∫
R

[
α
(
−ψ − 2αcψξ + αψs

)
v2

s +
(
−ψ + αψs

)
v2

ξ − ψv · ∇V †(v)

− 2αψξvξ · vs + ψs + ψξξ − cψξ

2 v2 + αψs
(
2V †(v) + v · vs − 2cv · vξ

)]
dξ .

According to the definition of ψ,

ψs(ξ, s) =
{

− κccutψ(ξ, s) if ξ ∈ Imain(s) ,
(c+ κ)ccutψ(ξ, s) if ξ ∈ Iright(s) ,

and
cψ(ξ, s) − ψξ(ξ, s) =

{
− κψ(ξ, s) if ξ ∈ Imain(s) ,
(c+ κ)ψ(ξ, s) if ξ ∈ Iright(s) ,

and, for all ξ in R, if δξcut-init+ccuts(·) denotes the Dirac mass at ξ = ξcut-init + ccuts, then

ψξξ(ξ, s) − cψξ(ξ, s) = κ(c+ κ)ψ(ξ, s) − (c+ 2κ) exp
[
c(ξcut-init + ccuts)

]
δξcut-init+ccuts(ξ) .

As a consequence, the following inequalities hold for all values of the arguments:

(4.51) |ψs| ≤ ccut(c+ κ)ψ and ψξξ − cψξ ≤ κ(c+ κ)ψ

Thus, for every nonnegative quantity s, it follows from the previous expression of F ′(s)
that

F ′(s) ≤
∫
R
ψ

[
α
(
−1 − 2αcψξ

ψ
+ αccut(c+ κ)

)
v2

s +
(
−1 + αccut(c+ κ)

)
v2

ξ − v · ∇V †(v)

− 2αψξ

ψ
vξ · vs + (ccut + κ)(c+ κ)

2 v2 + αccut(c+ κ)
(
2
∣∣∣V †(v)

∣∣∣+ |v · vs| + 2c |v · vξ|
)]
dξ .

Using the inequalities

−2αψξ

ψ
vξ · vs ≤ 1

2v
2
ξ + 2 α2ψ

2
ξ

ψ2 v
2
s and |v · vs| ≤ 1

2v
2 + 1

2v
2
s and 2 |v · vξ| ≤ v2 + v2

ξ ,
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it follows that

F ′(s) ≤
∫
R
ψ

[
α
(
−1 − 2αcψξ

ψ
+ αccut(c+ κ) + 2α

ψ2
ξ

ψ2 + ccut(c+ κ)
2

)
v2

s

+
(
−1 + 1

2 + αccut(c+ κ)(c+ 1)
)
v2

ξ − v · ∇V †(v)

+ (c+ κ)
((ccut + κ)

2 + αccut
2 + αcccut

)
v2 + 2αccut(c+ κ)

∣∣∣V †(v)
∣∣∣] dξ .

Observe that the following equality holds, be the argument ξ in Imain(s) or in Iright(s):

−2αcψξ

ψ
+ 2α

ψ2
ξ

ψ2 = −2αψξ

ψ
· cψ − ψξ

ψ
= 2ακ(c+ κ) .

Thus, the previous inequality becomes

F ′(s) ≤
∫
R
ψ

[
α
(
−1 + (c+ κ)

(
2ακ+ ccut(α+ 1/2)

))
v2

s +
(
−1

2 + αccut(c+ κ)(c+ 1)
)
v2

ξ

− v · ∇V †(v) + c+ κ

2
(
κ+ ccut

(
1 + α(2c+ 1)

))
v2 + 2αccut(c+ κ)

∣∣∣V †(v)
∣∣∣] dξ .

According to the conditions (4.40) on page 33 on κ and ccut, it follows that

(4.52) F ′(s) ≤
∫
R
ψ
[
−α

2 v
2
s − 1

4v
2
ξ + λmin(m)

8 v2 − v · ∇V †(v) + 1
4
∣∣∣V †(v)

∣∣∣] dξ .
Let νF be a positive quantity to be chosen below. It follows from the previous inequality
and from the upper bound (4.49) on F(s) that
(4.53)

F ′(s) + νFF(s) ≤
∫
R
ψ

[
α

2 (−1 + 3ανF )v2
s +

(
−1

4 + ανF
)
v2

ξ − v · ∇V †(v)

+
(λmin(m)

8 + νF
(
1 + αc(c+ κ)

))
v2 +

(1
4 + 2ανF

) ∣∣∣V †(v)
∣∣∣] dξ .

In view of this inequality and of inequalities (4.6) and (4.7) on page 21, let us assume
that νF is small enough so that
(4.54)

3ανF ≤ 1 and ανF ≤ 1
4 and νF

(
1 + αc(c+ κ)

)
≤ λmin(m)

8 and 2ανF ≤ 1
4 ;

The quantity νF may be chosen as

νF = min
( 1

8α,
λmin(m)

8
(
1 + αcupp(cupp + κ)

)) .
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Then, it follows from (4.53) and (4.54) that

(4.55) F ′(s) + νFF(s) ≤
∫
R

[
−v · ∇V †(v) + λmin(m)

4 v2 + 1
2
∣∣∣V †(v)

∣∣∣] dξ .
According to (4.6) and (4.7), the integrand of the integral at the right-hand side of this
inequality is nonpositive as long as ξ is not in ΣEsc(s). Therefore this inequality still
holds if the domain of integration of this integral is changed from R to ΣEsc(s). Besides,
observe that, in terms of the “initial” potential V and solution u(x, t), the factor of ψ
under the integral of the right-hand side of this last inequality reads

−(u−m) · ∇V (u) + λmin(m)
4 (u−m)2 + 1

2 |V (u) − V (m)| .

Thus, if KF denotes the quantity KF0 defined in (4.21) on page 24, then, according to the
L∞-bound (4.2) on page 20 on the solution, inequality (4.50) follows from (4.55) (with
the domain of integration of the integral on the right-hand side restricted to ΣEsc(s)).
This finishes the proof of Lemma 4.15.

4.8.10 Firewall nonnegativity up to pollution

For every nonnegative quantity s, let

ΣEsc(s) = {ξ ∈ R : |v(ξ, s)| > δEsc(m)} .

Lemma 4.16 (firewall nonnegativity up to pollution). For every nonnegative quantity s,

(4.56) F(s) ≥ −2α∆V

∫
ΣEsc(s)

ψ(ξ, s) dξ .

Proof. According to inequality (4.5) on page 21 the quantity V †(v) is nonnegative for ξ
in R\ΣEsc(s). Thus, inequality (4.56) follows from the lower bound (4.45) of Lemma 4.12
on page 35 and from inequality (4.8) on page 21. Lemma 4.16 is proved.

4.8.11 Relaxation scheme inequality, 2

For every nonnegative quantity sfin, inequality (4.50) yields∫ sfin

0
F(s) ds ≤ 1

νF

(
F(0) − F(sfin) +KF

∫ sfin

0
G(s) ds

)
,

and in view of inequality (4.56) of Lemma 4.16 (firewall coercivity up to pollution term),

−F(sfin) ≤ 2α∆V G(sfin) .

Thus the “relaxation scheme” inequality (4.48) becomes

(4.57)
(1 + αc2)

∫ sfin

0
D(s) ds ≤E(0) − E(sfin) + KE,F

νF
F(0) + 2α∆V KE,F

νF
G(sfin)

+
(KE,F KF

νF
+KE,Esc

) ∫ sfin

0
G(s) ds .

This is the second version of the relaxation scheme inequality. The aim of the next
sub-subsection is to gain some control over the quantity G(s).
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4.8.12 Control over the pollution in the time derivative of the firewall function

For every nonnegative quantity s, let

(4.58)
ξhom(s) =

√
1 + αc2(xhom(tinit + s) − xinit − σs

)
,

and ξesc(s) =
√

1 + αc2(xesc(tinit + s) − xinit − σs
)
,

and ξEsc(s) =
√

1 + αc2(xEsc(tinit + s) − xinit − σs
)
,

see figures 4.1 and 4.2 on page 18 and on page 19. According to properties (4.32) on
page 29 for the set ΣEsc,0(t), for all s in [0,+∞),

ΣEsc(s) ⊂ (−∞, ξesc(s)] ∪ [ξhom(s),+∞) ,

thus, introducing the quantities

Gback(s) =
∫ ξesc(s)

−∞
ψ(ξ, s) dξ and Gfront(s) =

∫ +∞

ξhom(s)
ψ(ξ, s) dξ ,

it follows that, for all s in [0,+∞),

G(s) ≤ Gback(s) + Gfront(s) .

The aim of this sub-subsection is to prove the bounds on Gback(s) and Gfront(s) provided
by the next lemma.
Lemma 4.17 (upper bounds on Gback(s) and Gfront(s)). For every nonnegative quantity
s, the following estimates hold:

Gback(s) ≤ 1
κ

exp
(
(c+ κ) ξesc(s) − κ ξcut-init − κ ccuts

)
,(4.59)

Gfront(s) ≤ 1
κ

exp
[
(c+ κ) ξcut-init + (c+ κ)(ccut + κ)s− κ ξhom(0)

]
.(4.60)

Proof. The integrand ψ(ξ, s) in the expression of Gback(s) and Gfront(s) is less than or
equal to

exp
[
(c+ κ) ξ − κ(ξcut-init + ccut s)

]
for Gback(s) ,

and exp
[
(c+ κ)(ξcut-init + ccut s) − κ ξ

]
for Gfront(s) .

Thus, by explicit calculation,

Gback(s) ≤ 1
c+ κ

exp
[
(c+ κ)ξesc(s) − κξcut-init − κ ccuts

]
,

and inequality (4.59) follows.
Concerning Gfront(s), since x′

hom(·) is nonnegative (inequality (4.4) on page 20), for all
s in [0,+∞),

ξ′
hom(s) ≥ −c thus ξhom(s) ≥ ξhom(0) − cs .

By explicit calculation, it follows that

Gfront(s) ≤ 1
κ

exp
[
(c+ κ) ξcut-init +

(
(c+ κ) ccut + κ c

)
s− κ ξhom(0)

]
and inequality (4.60) follows. Lemma 4.17 is proved.
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4.8.13 Further (subsonic) bound on invasion speed

Statement. Up to now, the quantity cupp has only been used to state hypothesis (4.38),
which assumes that the parabolic speed of the travelling frame under consideration does
not exceed this quantity. Now, the relaxation scheme set up above will be applied in
order to prove that this quantity cupp is indeed an upper bound for the speed of invasion.
The aim of this sub-subsection is to prove the following lemma.

Lemma 4.18 (invasion speed is subsonic). The following inequality holds

σesc-sup ≤ cupp√
1 + αc2

upp
.

It follows from this lemma that the mean speed σesc-sup is smaller than 1/
√
α (which

proves conclusion 1 of Proposition 4.1). If σupp denotes the “physical” counterpart of
cupp and cesc-sup denotes the “parabolic” counterpart of σesc-sup, that is

σupp = cupp√
1 + αc2

upp
and cesc-sup = σesc-sup√

1 − ασ2
esc-sup

,

then the conclusion of Lemma 4.18 may be stated under the form of the following two
equivalent inequalities:

σesc-sup ≤ σupp ⇐⇒ cesc-sup ≤ cupp .

Idea of the proof. The idea of the proof of Lemma 4.18 is due to Gallay and Joly, see
[14, Lemma 5.2]). The principle is that, if the previous relaxation scheme is applied in a
travelling frame with a parabolic speed c greater than or equal to cupp, then, according to
Lemma 4.10 on page 31, the following lower bound holds (for the quantity EEsc defined
in (4.36) on page 30):∫ ξEsc(s)+1

−∞
ecξ
(α

2 vs(ξ, s)2 + 1
2vξ(ξ, s)2 + V †(v(ξ, s)

))
dξ ≥ EEsc exp

(
ξEsc(s)

)
,

and as a consequence the same kind of lower bound holds for the localized energy E(s)
defined in sub-subsection 4.8.2. On the other hand, the relaxation scheme inequality (4.57)
provides an upper bound for this localized energy, and under appropriate conditions this
will enable us to prove that this localized energy remains bounded from above. Finally, it
will follow from these bounds that the Escape point ξEsc(s) must itself be bounded from
above. It will turn out that this is contradictory with arbitrarily large positive values of
the escape point ξesc(s), and in turn contradictory with a mean speed cesc-sup exceeding
cupp.

Set-up. Let us proceed by contradiction and assume that the converse assertion holds:

σupp < σesc-sup , or equivalently, cupp < cesc-sup .
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Let ε denote a positive quantity, small enough so that

σupp < σesc-sup − ε ,

and let us make in addition the following technical hypothesis (see the comment below
after the statement of Lemma 4.19):

(4.61) ε <
1√

1 + αc2
upp

κccut
2(cupp + κ) .

Origin of time intervals. The following lemma provides appropriate time intervals
where the relaxation scheme will be applied. Here are the features of these time intervals:

• the mean speed of the escape point is almost maximal on them;

• their length is arbitrarily large;

• for a given length they occur at arbitrarily large positive times.

Lemma 4.19 (time intervals with controlled length and large positive left endpoints
where mean speed of escape point is almost maximal). For every positive integer n, there
exists a sequence (tn,p)p∈N of positive quantities going to +∞ as p goes to +∞, and such
that, for every nonnegative integer p,

(4.62) xesc(tn,p + n) − xesc(tn,p) ≥ (σesc-sup − ε)n .

The technical hypothesis (4.61) above will be used in the proof of Lemma 4.21 on page 46,
stating that the escape point ends “far to the right” at the end of the relaxation scheme
that is going to be considered.

Proof of Lemma 4.19. If the converse was true, then there would exist a positive integer
n and a positive time t0 such that, for every time t greater than or equal to t0,

xesc(t+ n) − xesc(t)
n

≤ σesc-sup − ε

and this would imply that

lim sup
s→+∞

sup
t∈[0,+∞)

xesc(t+ s) − xesc(t1)
s

≤ σesc-sup − ε ,

a contradiction with the definition of σesc-sup.

For every positive integer n, let us introduce a sequence (tn,p)p∈N satisfying the
conclusions of Lemma 4.19 above, and let p(n) and x

(n)
init denote a nonnegative integer

and a real quantity to be chosen below. Finally, let us take the following notation:

t
(n)
init = tn,p(n) .
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The relaxation scheme set up in the previous sub-subsection will be applied with the
following set of parameters:

tinit = t
(n)
init and xinit = x

(n)
init and c = cupp and ξcut-init = 0 .

Let us denote by

ξ(n)
esc (·) and ξ

(n)
Esc(·) and χ(n)(·, ·) and E(n)(·) and F (n)(·)

and ξ
(n)
hom(·) and G(n)

back(·) and G(n)
front(·)

the objects defined in the previous sub-subsections (with the same notation except the
“(n)” superscripts to emphasize the fact that these objects depend on n). The relaxation
scheme will be considered on a time interval of length sfin = n, that is between the
times t(n)

init and t(n)
init + n. Observe that, according to the conclusion (4.62) of Lemma 4.19,

whatever the choice of p(n) and x
(n)
init,

(4.63) ξ
(n)
esc (n) − ξ

(n)
esc (0)

n
≥
√

1 + c2
upp(σesc-sup − ε− σupp) > 0 ,

see figure 4.7.

Figure 4.7: Definition of the quantity xinit(n). An increase of x(n)
init translates the graph

of x 7→ ξ
(n)
esc (s) downwards. The value chosen for x(n)

init is the least one so that this graph
remains below the slope starting from the origin on the interval [0, n]. The figure aims at
displaying the assertion of Lemma 4.21, that is the fact that ξ(n)

esc (n) goes to +∞ as n
goes to +∞.

To set up this relaxation scheme there still remains to define the two quantities p(n)
and x

(n)
init. The purpose is to make this choice in such a way that the following two

conditions be fulfilled:

• the quantity E(n)(n) (the localized energy in travelling frame at the end of the
relaxation time interval) remains bounded as n goes to +∞;

• the quantity ξ(n)(n) (the escape point in travelling frame at the end of the relaxation
time interval) goes to +∞ as n goes to +∞.
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Origin of space. Guided by expression inequality (4.59) on Gback(·), let us choose the
quantity x(n)

init as the least real quantity such that, for every s in the interval [0, n], the
following condition be fulfilled:

(4.64) (cupp + κ)ξ(n)
esc (s) ≤ κccut

2 s ,

see figure 4.7.
According to definition (4.58)

ξ(n)
esc (s) =

√
1 + αc2

upp
(
x(n)

esc (t(n)
init + s) − x

(n)
init − σupps

)
,

thus in other words, let us choose the quantity x(n)
init as

(4.65) x
(n)
init = sup

s∈[0,n]
xesc(t(n)

init + s) −
(
σupp + κccut

2
√

1 + αc2
upp(cupp + κ)

)
s

(according to inequality (4.34) on page 29 controlling the increase of xesc(·), this supremum
is finite). Condition (4.64) will ensure that the terms involving G(n)

back(·) in the relaxation
scheme inequality (4.57) remain bounded.

The relevance of this definition for the quantity x(n)
init is justified by the following two

lemmas.

Origin of time intervals: upper bound on the final energy.

Lemma 4.20 (upper bound on the energy at the end of the time intervals). For every
positive integer n, if the integer p(n) is chosen large enough, then the “final” energy
E(n)(n) is bounded from above by a quantity that does not depend on n.

Proof. The proof is based of the relaxation scheme inequality (4.57). Thus, let us consider
the various terms involved in this inequality.

First, let us observe that since the quantity ξcut-init is equal to 0, the quantities E(n)(0)
and F (n)(0) are bounded from above by quantities depending only on α and V (this
follows from the bound (4.3) on page 20 for the solution).

Now, according to inequalities (4.59) and (4.64), for every s in [0, n]),

G(n)
back(s) ≤ 1

κ
exp(−κccuts/2) ,

and this ensures that the terms involving G(n)
back(·) in inequality (4.57) are bounded from

above by quantities that do not depend on n.
Finally, let us deal with the function G(n)

front(·). According to inequality (4.60), for every
nonnegative quantity s,

G(n)
front(s) ≤ 1

κ
exp

(
(cupp + κ)(ccut + κ)s− κξ

(n)
hom(0)

)
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and according to definition (4.58),

ξ
(n)
hom(0) =

√
1 + αc2

upp

(
xhom(t(n)

init) − x
(n)
init

)
.

On the other hand, according to the definition of x(n)
init and to inequality (4.34) on page 29

controlling the increase of xesc(·),

(4.66) x
(n)
init ≤ xesc(t(n)

init) + σno-escn ,

thus
ξ

(n)
hom(0) ≥

√
1 + αc2

upp

(
xhom(t(n)

init) − xesc(t(n)
init) − σno-escn

)
and this shows that the quantity ξ(n)

hom(0) is arbitrarily large positive provided that the
integer p(n) is chosen large enough (depending on n). As a consequence, if the integer p(n)
is chosen large enough (depending on n), then the terms involving G(n)

front(·) in inequality
(4.57) are bounded from above by quantities that do not depend on n. Lemma 4.20 is
proved.

Length of time intervals: final position of escape point.

Lemma 4.21 (escape point ends up far to the right in travelling frame). The following
convergence holds:

ξ(n)
esc (n) → +∞ as n → +∞ .

Proof. According to inequality (4.63) and to definition (4.58) on page 41,

ξ(n)
esc (n) ≥

√
1 + αc2

upp(σesc-sup − ε− σupp)n+ ξ(n)
esc (0)

≥
√

1 + αc2
upp
(
(σesc-sup − ε− σupp)n+ xesc(t(n)

init) − x
(n)
init
)
.

Now, according to the definition (4.65) of x(n)
init, there exists a quantity sn in [0, n] such

that
x

(n)
init ≤ 1 + xesc(t(n)

init + sn) −
(
σupp + κccut

2
√

1 + αc2
upp(cupp + κ)

)
sn .

It follows from the two previous inequalities that

xesc(t(n)
init + sn) − xesc(t(n)

init) ≥

(σesc-sup − ε− σupp)n+
(
σupp + κccut

2
√

1 + αc2
upp(cupp + κ)

)
sn − 1 − ξ

(n)
esc (n)√

1 + αc2
upp

,

thus, provided that sn is nonzero,

xesc(t(n)
init + sn) − xesc(t(n)

init)
sn

≥

σesc-sup − ε+ κccut

2
√

1 + αc2
upp(cupp + κ)

− 1
sn

− ξ
(n)
esc (n)

sn

√
1 + αc2

upp
.
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Let us proceed by contradiction and assume that there exists a quantity C such that, for
arbitrarily large positive values of n, the quantity ξ

(n)
esc (n) is not larger than C. Then,

according to inequality (4.63), for such values of n the quantity ξ(n)
esc (0) is large negative,

and according to inequality (4.34) controlling the growth of xesc(·), the quantity sn must
be large positive. According to the technical hypothesis (4.61), it follows that, for such
large enough positive values of n,

xesc(t(n)
init + sn) − xesc(t(n)

init)
sn

> σesc-sup ,

a contradiction with the definition of σesc-sup. Lemma 4.21 is proved.

Origin of time intervals: upper bound on the final energy, variant. The following
lemma is a slight variant of Lemma 4.20 above.

Lemma 4.22 (boundedness of energy at the end of the time intervals, variant). For
every positive integer n, if the integer p(n) is chosen large enough, then the quantity∫ ccutn

−∞
ecξ
(α

2 v
(n)
s (ξ, n)2 + 1

2v
(n)
ξ (ξ, n)2 + V †(v(n)(ξ, n)

))
dξ

is bounded from above by a quantity that does not depend on n.

Proof. According to the definition ((4.58)) of ξhom(·),

ξ
(n)
hom(n) =

√
1 + αc2

upp
(
xhom(t(n)

init + n) − x
(n)
init − σuppn

)
,

thus, according to inequality ((4.66)),

ξ
(n)
hom(n) ≥

√
1 + αc2

upp
(
xhom(t(n)

init + n) − xesc(t(n)
init) − (σno-esc + σupp)n

)
.

Thus, for every positive quantity n, if the integer p(n) is chosen large enough, then the
quantity ξ

(n)
hom(n) is arbitrarily large positive, and in particular greater than the point

ccutn.
In this case, according to the definition of the localized energy E(·) and of the weight

function χ(·, ·), since χ(n)(ξ, n) equals ecξ for every ξ in the interval (−∞, ccutn], the
following inequality holds:

E(n)(n) ≥
∫ ccutn

−∞
ecξ
(α

2 v
(n)
s (ξ, n)2 + 1

2v
(n)
ξ (ξ, n)2 + V †(v(n)(ξ, n)

))
dξ

+
∫ +∞

ξhom(n)
χ(n)(ξ, n)V †(v(n)(ξ, n)

)
dξ .

According to the definition of the weight function χ(·, ·), the second integral of the
right-hand side of this inequality is arbitrarily close to 0 if the quantity ξ(n)

hom(n) is large
enough positive, or in other words if the integer p(n) is chosen large enough. In view of
Lemma 4.20, this finishes the proof of Lemma 4.22.
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Let us assume from now on that for every positive integer n, the integer p(n) is chosen
large enough so that the conclusions of Lemmas 4.20 to 4.22 be satisfied, and so that (as
assumed in the proof of Lemma 4.22),

(4.67) ccutn ≤ ξ
(n)
hom(n) .

Upper bound for Escape point in travelling frame. Last not least, the definition of the
quantity cupp in subsection 4.7 on page 30 (and the fact that the speed of the travelling
frame under consideration is as large as cupp) will now finally be used to prove the
following lemma.

Lemma 4.23 (upper bound for Escape point in travelling frame). The quantity ξ(n)
Esc(n)

remains bounded from above as n goes to +∞.

Proof. According to inequalities (4.32) and (4.64) on page 29 and on page 45, for every
positive integer n,

(4.68) ξ
(n)
Esc(n) + 1 ≤ ξ(n)

esc (n) + 1 ≤ ccut
2 n+ 1 ,

thus as soon as n is large enough,

ξ
(n)
Esc(n) + 1 ≤ ccutn ,

and it follows from Lemma 4.22 and from inequality (4.67) that the quantity

∫ ξ
(n)
Esc(n)+1

−∞
ecξ
(1

2v
(n)
ξ (ξ, n)2 + V †(v(n)(ξ, n)

))
dξ

is bounded from above by a quantity that does not depend on n. On the other hand,
according to Lemma 4.10 on page 31 (involving the positive quantity EEsc),∫ ξ

(n)
Esc(n)+1

−∞
ecξ
(1

2v
(n)
ξ (ξ, n)2 + V †(v(n)(ξ, n)

))
dξ ≥ exp

(
cξ

(n)
Esc(n)

)
EEsc ,

and the conclusion follows.

Convergence towards zero around escape point. The final step is provided by the
following lemma that will turn out to be contradictory to the definition of the escape
point xesc(·).

Lemma 4.24 (convergence towards zero around escape point). For every positive quantity
L, the integral

∫ ξ
(n)
esc (n)+L

ξ
(n)
esc (n)−L

(
v(n)

s (ξ, n)2 + v
(n)
ξ (ξ, n)2 + v(n)(ξ, n)2) dξ

goes to 0 as n goes to +∞.
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Proof. Let L denote a positive quantity. According to Lemmas 4.21 and 4.23 and to
inequalities (4.67) and (4.68), for every large enough positive integer n, the following
inequalities hold:

ξ
(n)
Esc(n) ≤ ξ(n)

esc (n) − L ≤ ξ(n)
esc (n) ≤ ξ(n)

esc (n) + L ≤ ccutn ≤ ξ
(n)
hom(n) .

Then, it follows from these inequalities that∫ ccutn

−∞
ecξ
(α

2 v
(n)
s (ξ, n)2 + 1

2v
(n)
ξ (ξ, n)2 + V †(v(n)(ξ, n)

))
dξ

≥
∫ ξ

(n)
Esc(n)

−∞
ecξV †(v(n)(ξ, n)

)
dξ +∫ ccutn

ξ
(n)
Esc(n)

ecξ
(α

2 v
(n)
s (ξ, n)2 + 1

2v
(n)
ξ (ξ, n)2 + λmin(m)

4 v(n)(ξ, n)2
)
dξ

≥ − ∆v

c
eξ

(n)
Esc(n) + min

(α
2 ,

1
2 ,
λmin(m)

4
)
eξ

(n)
Esc(n)−L

∫ ξ
(n)
esc (n)+L

ξ
(n)
esc (n)−L

(
v(n)

s (ξ, n)2

+ v
(n)
ξ (ξ, n)2 + v(n)(ξ, n)2

)
dξ .

In view of Lemmas 4.21 to 4.23, the conclusion follows. Lemma 4.24 is proved.

End of the proof.

End of the proof of Lemma 4.18. For every positive integer n, let us denote by t′n the
time t(n)

init +n. It follows from Lemma 4.24 that, for every positive quantity L, the quantity∫ xesc(t′
n)+L

xesc(t′
n)−L

(
ut(x, t′n)2 + ux(x, t′n)2 + u(x, t′n)2) dx

goes to 0 as n goes to +∞. In view of the definitions of the functions F0(·, ·) and Q0(·, ·)
in sub-subsection 4.4.1 on page 21, and according to the bound (4.3) on page 20 for the
solution, it follows that, for every positive quantity L, both quantities

sup
{∣∣F0

(
x̄, t′n

)∣∣ : x̄ ∈ [xesc(t′n) − L, xesc(t′n) + L]
}

and sup
{
Q0
(
x̄, t′n

)
: x̄ ∈ [xesc(t′n) − L, xesc(t′n) + L]

}
go to 0 as n goes to +∞, a contradiction with the definition of the “escape” point xesc(·)
in subsection 4.6 on page 28. Lemma 4.18 on page 42 is proved.

4.8.14 Relaxation scheme inequality, final

From now on the relaxation scheme will always be applied with the following choice for
xinit:

xinit = xesc(tinit) .
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The aim of this sub-subsection is to take advantage of this additional hypothesis and of
the estimates of sub-subsection 4.8.12 and of Lemma 4.18 on page 42 to provide a more
explicit version of the relaxation scheme inequality (4.57) on page 40.

The following additional technical hypothesis will be required to prove the next lemma
providing another expression for the upper bound on Gback(s)

(4.69) σesc-sup − κccut

4(cupp + κ)
√

1 + αc2
upp

≤ σ .

This hypothesis is satisfied as soon as the physical speed σ is close enough to σesc-sup (or
equivalently as soon as the parabolic speed c is close enough to cesc-sup). It ensures that
the escape point ξesc(s) remains “more and more far away to the left” with respect to
the position ξcut-init + ccut s of the cut-off, as s increases.

Lemma 4.25 (new upper bound on Gback(s)). There exists a positive quantity K[(u0, ũ0)],
depending on α and V and m and the initial condition (u0, ũ0), such that for every
nonnegative quantity s the following estimates hold:

(4.70) Gback(s) ≤ K[(u0, ũ0)] exp(−κ ξcut-init) exp
(

− κ ccut
2 s

)
.

Proof. According to inequality (4.59) on page 41,

(4.71) Gback(s) ≤ 1
κ

exp(−κ ξcut-init) exp
(
(c+ κ) ξesc(s) − κ ccut

2 s
)

exp
(
−κ ccut

2 s
)
.

Let us us denote by β(s) the argument of the second exponential of the right-hand side
of this last inequality:

β(s) =(c+ κ) ξesc(s) − κ ccut
2 s

=(c+ κ)
(√

1 + αc2(xesc(tinit + s) − xesc(tinit)
)

− cs
)

− κ ccut
2 s

≤(c+ κ)
(√

1 + αc2xesc(s) − cs
)

− κ ccut
2 s

≤(c+ κ)
√

1 + αc2(xesc(s) − σesc-sups
)

+
(
(c+ κ)

(√
1 + αc2σesc-sup − c

)
− κ ccut

2
)
s .

Besides, according to the condition (4.69) on the “physical” speed σ, the following
inequality holds:

(c+ κ)
(√

1 + αc2σesc-sup − c
)

≤ κ ccut
4 ,

thus, for every nonnegative quantity s,

β(s) ≤ (c+ κ)
√

1 + αc2(xesc(s) − σesc-sups
)

− κ ccut
4 s ,

and according to the definition of σesc-sup this quantity goes to −∞ as s goes to +∞.
The following (nonnegative) quantity

β̄[(u0, ũ0)] = sup
s≥0

(cupp + κ)
√

1 + αc2(xesc(s) − σesc-sups
)

− κ ccut
4 s
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is an upper bound for all the values of β(s), for all s in [0,+∞). This quantity depends
on V and on the function x 7→ xesc(s), in other words on the initial condition (u0, ũ0),
but not on the parameters tinit and c and ξcut-init of the relaxation scheme. Let

K[(u0, ũ0)] = 1
κ

exp
(
β̄[(u0, ũ0)]

)
;

with this notation, the upper bound (4.70) on Gback(s) follows from inequality (4.71).

Let us introduce the quantities

K1 = 2α∆V KE,F
νF

and K2 = KE,F KF
νF

+KE,Esc

and
KG,back[(u0, ũ0)] = K[(u0, ũ0)]

(
K1 + 2

κccut
K2

)
,

and, for every nonnegative quantity s, the quantity

KG,front(s) =
(
K1 + K2

(cupp + κ)(ccut + κ)
)1
κ

exp
(
(cupp + κ)(ccut + κ)s

)
.

Then, for every nonnegative quantity sfin, according to inequalities (4.60) on Gfront(s) and
(4.70) on Gback(s), the relaxation scheme inequality (4.57) on page 40 can be rewritten as

(4.72)

(1 + αc2)
∫ sfin

0
D(s) ds ≤ E(0) − E(sfin)

+ KE,F
νF

F(0) +KG,back[(u0, ũ0)] exp(−κ ξcut-init)

+KG,front(sfin) exp
(
(cupp + κ) ξcut-init

)
exp

(
−κ ξhom(0)

)
.

This is the last version of the relaxation scheme inequality. The nice feature is that it has
exactly the same form as in the parabolic case treated in [34] (actually, the sole difference
is the value of the factor in front of the integral of the left-hand side, but this detail plays
absolutely no role in the arguments carried out in [34]).

4.9 Convergence of the mean invasion speed
The aim of this subsection is to prove the following proposition.

Proposition 4.26 (mean invasion speed). The following equalities hold:

σesc-inf = σesc-sup = σesc-sup .

Proof. Let us proceed by contradiction and assume that

σesc-inf < σesc-sup .
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Let us take and fix a positive quantity σ (“physical speed”) if c denotes the corresponding
“parabolic speed” defined as

c = σ√
1 − ασ2

⇐⇒ σ = c√
1 + αc2

,

then the following conditions are satisfied:

σesc-inf < σ < σesc-sup ≤ σ + κccut

4(cupp + κ)
√

1 + αc2
upp

and Φc(m) = ∅ .

The first condition is satisfied as soon as c is less than and close enough to cesc-sup, thus
existence of a quantity c satisfying the two conditions follows from hypothesis (Hdisc-c).

The contradiction will follow from the relaxation scheme set up in subsection 4.8. The
main ingredient is: since the set Φc(m) is empty, some dissipation must occur permanently
around the escape point in a referential travelling at physical speed σ. This is stated by
the following lemma.

Lemma 4.27 (nonzero dissipation in the absence of travelling front). There exist positive
quantities L and εdissip such that

lim inf
t→+∞

∫ 1

−1

(∫ L

−L

(
ut
(
xesc(t) + y, t+ s

)
+ σux

(
xesc(t) + y, t+ s

))2
dy

)
ds ≥ εdissip .

Proof of Lemma 4.27. Let us proceed by contradiction and assume that the converse is
true. Then, there exists a sequence (tn)n∈N∗ in [1,+∞) going to +∞ as n goes to +∞
such that, for every positive integer n,

(4.73)
∫ 1

−1

(∫ n

−n

(
ut
(
xesc(tn) + y, tn + s

)
+ σux

(
xesc(tn) + y, tn + s

))2
dy

)
ds ≤ 1

n
.

By compactness (Proposition 3.2 on page 13), up to replacing the sequence (tn)n∈N by a
subsequence, it may be assumed that there exists an entire solution

ū ∈ C0(R, H1
ul(R,Rd)

)
∩ C1(R, L2

ul(R,Rd)
)

of system (1.1) such that, for every positive quantity L, both quantities

sup
s∈[−1,1]

∥∥y 7→ u
(
xesc(tn) + y, tn + s

)
− ū(y, s)

∥∥
H1([−L,L],Rd)

and sup
s∈[−1,1]

∥∥y 7→ ut
(
xesc(tn) + y, tn + s

)
− ūt(y, s)

∥∥
L2([−L,L],Rd)

go to 0 as n goes to +∞. Let us consider the entire solution

v̄ ∈ C0(R, H1
ul(R,Rd)

)
∩ C1(R, L2

ul(R,Rd)
)

of system (3.5) defined as

v̄(ξ, s) = ū

(
ξ√

1 + αc2
+ σs, s

)
.
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It follows from inequality (4.73) that the function s 7→ v̄s(·, s) vanishes in

C0([−1, 1], L2(R,Rd)
)

and as a consequence the function ϕ defined as ϕ(ξ) = v̄(ξ, 0) is a solution of the
differential system (2.1) governing the profiles of waves travelling at the parabolic speed
c for system (1.1). According to the properties of the escape point (4.32) and (4.33) on
page 29,

sup
ξ∈[0,+∞)

|ϕ(ξ) −m| ≤ δEsc(m) ,

thus it follows from assertion 1 of Lemma 8.1 on page 88 that ϕ(ξ) goes to m as ξ goes to
+∞. On the other hand, according to the bound (4.2) on the solution, |ϕ(·)| is bounded
(by Ratt,∞), and since Φc(m) is empty, it follows from hypothesis (Honly-bist) that ϕ(·) is
identically equal to m, a contradiction with the definition of xesc(·).

The remaining of the proof of Proposition 4.26 is almost identical to the parabolic
case treated in [34], where more explanations and details can be found. The next step is
the choice of the time interval and the travelling frame (at physical speed σ) where the
relaxation scheme will be applied. Here is a first attempt.

Lemma 4.28 (large excursions to the right and returns for escape point in travelling
frame). There exist sequences (tn)n∈N and (sn)n∈N and (s̄n)n∈N of real quantities such
that the following properties hold.

1. For every n in N, the following inequalities hold: 0 ≤ tn and 0 ≤ sn ≤ s̄n ;

2. xesc(tn + sn) − xesc(tn) − σsn goes to +∞ as n goes to +∞ ;

3. For every n in N, the following inequality holds: xesc(tn + s̄n) − xesc(tn) − σs̄n ≤ 0 .

Proof of Lemma 4.28. The proof is identical to that of [34, Lemma 4.13].

Let τ denote a (large) positive quantity, to be chosen below. The following lemma
provides appropriate time intervals to apply the relaxation scheme.

Lemma 4.29 (escape point remains to the right and ends up to the left in travelling
frame, controlled duration). There exist sequences (t′n)n∈N and (s′

n)n∈N such that, for
every n in N, the following properties hold:

1. 0 ≤ t′n and τ ≤ s′
n ≤ 2τ ,

2. for all s in [0, τ ], the following inequality holds: xesc(t′n + s) − xesc(t′n) − σs ≥ 0 ,

3. xesc(t′n + s′
n) − xesc(t′n) − σs′

n ≤ 1 ,

and such that
t′n → +∞ as n → +∞ .

Proof of Lemma 4.29. The proof is identical to that of [34, Lemma 4.14].
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Continuation of the proof of Proposition 4.26. For every n in N, the relaxation scheme
will be applied with the following parameters:

tinit = t′n and xinit = xesc(tinit) and σ as chosen above, and ξcut-init = 0

(the relaxation scheme thus depends on n). Let us denote by

v(n)(·, ·) and E(n)(·) and D(n)(·) and F (n)(·) and ξesc
(n)(·) and ξhom

(n)(·)

the objects defined in subsection 4.8 (with the same notation except the “(n)” superscript
that is here to remind that all these objects depend on the integer n). By definition the
quantity ξesc

(n)(0) equals zero, and according to the conclusions of Lemma 4.29,

ξesc
(n)(s) ≥ 0 for all s in [0, τ ] and ξesc

(n)(s′
n) ≤

√
1 + αc2 .

The following two lemmas will be shown to be in contradiction with the relaxation scheme
final inequality (4.72) on page 51.

Lemma 4.30 (bounds on energy and firewall at the ends of relaxation scheme). The
quantities E(n)(0) and F (n)(0) are bounded from above and the quantity E(n)(s′

n) is bounded
from below, and these bounds are uniform with respect to τ and n.

Proof of Lemma 4.30. The proof is identical to that of [34, Lemma 4.15].

Lemma 4.31 (large dissipation integral). The quantity∫ s′
n

0
D(n)(s) ds

goes to +∞ as τ goes to +∞, uniformly with respect to n.

Proof of Lemma 4.31. The proof is identical to that of [34, Lemma 4.16].

End of the proof of Proposition 4.26. According to Lemma 4.30, and since ξhom
(n)(0)

goes to +∞ as n goes to +∞, the right-hand side of inequality (4.72) on page 51 is
bounded, uniformly with respect to τ , provided that n (depending on τ) is large enough.
This is contradictory to Lemma 4.31, and completes the proof of Proposition 4.26 on
page 51.

According to Proposition 4.26, the three quantities σesc-inf and σesc-sup and σesc-sup are
equal; let

σesc

denote their common value, and let us consider the corresponding “parabolic speed” cesc
defined as

cesc = σesc√
1 − ασ2

esc
⇐⇒ σesc = cesc√

1 + αc2
esc

.
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4.10 Further control on the escape point
Proposition 4.32 (mean invasion speed, further control). The following equality holds:

σesc-inf = σesc .

Proof. The proof is identical to that of [34, Proposition 4.17].

4.11 Dissipation approaches zero at regularly spaced times
For every t in [1,+∞), the following set{
ε in (0,+∞) :

∫ 1

−1

(∫ 1/ε

−1/ε

(
ut
(
xesc(t) +y, t+ s

)
+σescux

(
xesc(t) +y, t+ s

))2
dy

)
ds ≤ ε

}
is (according to the bound (4.3) on page 20 for the solution) a nonempty interval (which
by the way is unbounded from above). Let

δdissip(t)

denote the infimum of this interval. This quantity measures to what extent the solution is,
at time t and around the escape point xesc(t), close to be stationary in a frame travelling
at physical speed σesc. The goal is to to prove that

δdissip(t) → 0 as t → +∞ .

Proposition 4.33 below can be viewed as a first step towards this goal.

Proposition 4.33 (regular occurrence of small dissipation). For every positive quantity
ε, there exists a positive quantity T (ε) such that, for every t in [0,+∞),

inf
t′∈[t,t+T (ε)]

δdissip(t′) ≤ ε .

Proof. The proof is identical to that of [34, Proposition 4.19].

4.12 Relaxation
Proposition 4.34 (relaxation). The following assertion holds:

δdissip(t) → 0 as t → +∞ .

Proof. The proof is identical to that of [34, Proposition 4.21].
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4.13 Convergence
The end of the proof of Proposition 4.1 on page 19 (“invasion implies convergence”) is a
straightforward consequence of Proposition 4.34. Let us call upon the notation xEsc(t)
and xesc(t) and xhom(t) introduced in subsections 4.1 and 4.6. Recall that, according
to properties (4.32) on page 29 and to the hypotheses of Proposition 4.1, for every
nonnegative time t,

−∞ ≤ xEsc(t) ≤ xesc(t) ≤ xhom(t) < +∞ .

However, by contrast with the parabolic case treated in [34], the point xEsc(t) cannot be
used to “track” the position of the travelling front approached by the solution around this
point, since the solution lacks the required regularity in order the functiont 7→ xEsc(t) to
be of class C1. A convenient way to get around this difficulty is to use the decomposition
of the solution into two parts, one regular, and one going to zero as time goes to +∞, as
stated by the following lemma (reproduced from [14]).

Recall the notation X of subsection 3.1 on page 12 and let

Y = H2
ul(R,Rd) ×H1

ul(R,Rd) ,

and, for every nonnegative time t, let U(t) =
(
u(·, t), ut(·, t)

)
denote the “position /

impulsion” form of the solution. According to Proposition 3.1 on page 12,

U ∈ C0([0,+∞), X
)
.

Lemma 4.35 (“smooth plus small” decomposition, [14]). There exists

Usmall ∈ C0([0,+∞), X
)

and Usmooth ∈ C1([0,+∞), X
)

∩ C0([0,+∞), Y
)

such that: U equals Usmooth + Usmall and

(4.74) ∥Usmall(t)∥X → 0 at an exponential rate as t → +∞ ,

and

(4.75) sup
t≥0

∥Usmooth∥Y < +∞ .

Proof. Let

A = 1
α

(
0 α

∂2
x − 1 −1

)
and F (u, ut) = 1

α

(
0

u− ∇V (u)

)
,

and let U0 = U(0) = (u0, ũ0) denote the initial condition for the solution under consid-
eration. Then, for every nonnegative time t, the following representation holds for the
solution at time t:

(4.76) U(t) = etAU0 +
∫ t

0
e(t−s)AF

(
U(s)

)
ds

thus Usmall(t) and Usmooth(t) may be chosen as the first and the second term of the
right-hand side of this equality, respectively. For more details see [14, p. 113]. Observe
by the way that this decomposition is not unique.
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For every t in [0,+∞), let us write

(4.77) Usmooth(t) =
(
usmooth(t), ∂tusmooth(t)

)
and Usmall(t) =

(
usmall(t), ∂tusmall(t)

)
,

and let us denote by xEsc-smooth(t) the supremum of the set{
x ∈ (−∞, xhom(t)] : |usmooth(t)| = δEsc(m)

}
,

with the convention that xEsc-smooth(t) equals −∞ if this set is empty.

Lemma 4.36 (distance between xEsc-smooth(t) and xesc(t) remains bounded). The fol-
lowing limit holds:

lim sup
t→+∞

xesc(t) − xEsc-smooth(t) < +∞ .

Proof. Let us proceed by contradiction and assume that the converse holds. Then there
exists a sequence (tn)n∈N of nonnegative times going to +∞ such that

(4.78) xesc(tn) − xEsc-smooth(tn) → +∞ as n → +∞ .

Let us proceed as in the proof of Lemma 4.27 on page 52. By compactness (Proposition 3.2
on page 13), up to replacing the sequence (tn)n∈N by a subsequence, it may be assumed
that there exists an entire solution

ū ∈ C0(R, H1
ul(R,Rd)

)
∩ C1(R, L2

ul(R,Rd)
)

of system (1.1) such that, for every positive quantity L, both quantities

sup
t∈[−1,1]

∥∥y 7→ u
(
xesc(tn) + y, tn + t

)
− ū(y, t)

∥∥
H1([−L,L],Rd) ,

and sup
t∈[−1,1]

∥∥y 7→ ut
(
xesc(tn) + y, tn + t

)
− ūt(y, t)

∥∥
L2([−L,L],Rd)

go to 0 as n goes to +∞. Let us consider the entire solution

v̄ ∈ C0(R, H1
ul(R,Rd)

)
∩ C1(R, L2

ul(R,Rd)
)

of system (3.5) defined as

v̄(ξ, s) = ū

(
ξ√

1 + αc2
esc

+ σescs, s

)
.

It follows from Proposition 4.34 on page 55 that the function s 7→ v̄s(·, s) vanishes in
C0([−1, 1], L2(R,Rd)

)
, and as a consequence the function ϕ defined as ϕ(ξ) = v̄(ξ, 0) is a

solution of system (2.1) for the physical speed cesc, or equivalently is the profile of a wave
travelling at the speed cesc for system (1.1). According to the properties of the escape
point (4.32) and (4.33) on page 29,

sup
ξ∈[0,+∞)

|ϕ(ξ) −m| ≤ δEsc(m) ,
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thus it follows from assertion 1 of Lemma 8.1 on page 88 that ϕ(ξ) goes to m as ξ goes
to +∞. In addition, according to the bound (4.2) on the solution, |ϕ(·)| is bounded (by
Ratt,∞). In addition again, according to the definition of xesc(·), the function ϕ cannot
be identically equal to m. In short, the function ϕ belongs to the set Φcesc(m).

On the other hand, it follows from hypothesis (4.78), from the definition of xEsc-smooth(·),
and from the asymptotics (4.74) for Usmall(·), that

sup
ξ∈R

|ϕ(ξ) −m| ≤ δEsc(m) ,

a contradiction with assertion 2 of Lemma 8.1 on page 88. Lemma 4.36 is proved.

Lemma 4.37 (vicinity of Escape points and transversality). The following conclusions
hold:

xEsc-smooth(t) − xEsc(t) → 0 as t → +∞ ,(4.79)

and lim sup
t→+∞

(
usmooth

(
xEsc-smooth(t), t

)
−m

)
· ∂xusmooth

(
xEsc-smooth(t), t

)
< 0 .(4.80)

Proof. Let us proceed by contradiction and assume that it is not true that both conclusions
(4.79) and (4.80) hold. Then there exists a sequence (tn)n∈N of nonnegative times going
to +∞ such that:

1. either lim sup
n→+∞

|xEsc-smooth(tn) − xEsc(tn)| > 0,

2. or for every positive integer n

usmooth
((
xEsc-smooth(tn), tn

)
−m

)
· ∂xusmooth

(
xEsc-smooth(tn), tn

)
≥ − 1

n
.

Proceeding as in the proof of Lemma 4.36 above, and according to this lemma, it may
be assumed, up to replacing the sequence (tn)n∈N by a subsequence, that there exists a
function ϕ in the set Φcesc(m), such that, for every positive quantity L,

(4.81)
∥∥∥∥x 7→ u

(
xEsc-smooth(tn) + x, tn

)
− ϕ

(√
1 + αc2

escx
)∥∥∥∥

H1([−L,L],Rd)
→ 0

as n goes to +∞. It follows from this assertion, from the definition of the quantity
xEsc-smooth(·), and from the asymptotics (4.74) for Usmall(·), that

|ϕ(0) −m| = δEsc(m) and |ϕ(ξ) −m| ≤ δEsc(m) for every positive quantity ξ .

Thus, it follows from assertion 3 of Lemma 8.1 on page 88 that

|ϕ(ξ) −m| < δEsc(m) for every positive quantity ξ .
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In other words ϕ actually belongs to the set Φcesc,norm(m). Thus it follows from assertion
2 of Lemma 8.1 on page 88 that(

ϕ(ξ) −m
)

· ϕ′(ξ) < 0 for every ξ in [0,+∞) ,

and this shows that
lim

n→+∞
|xEsc-smooth(tn) − xEsc(tn)| = 0 .

Thus case 1 above cannot hold.
On the other hand, since both ϕ(·) and usmooth(,̇·) are of class C1, it follows from the

limit (4.81) and from the asymptotics (4.74) for Usmall(·) that(
usmooth

(
xEsc-smooth(tn), tn

)
−m

)
· ∂xusmooth

(
xEsc-smooth(tn), tn

)
→
(
ϕ(0) −m

)
· ϕ′(0)

as n goes to +∞, and since this limit is a negative quantity, this shows that case 2 above
cannot hold either, a contradiction. Lemma 4.37 is proved.

Lemma 4.38 (smoothness and asymptotic speed of xEsc-smooth(·)). The function
t 7→ xEsc-smooth(t) is of class C1 on a neighbourhood of +∞ and

(4.82) x′
Esc-smooth(t) → σesc as t → +∞ .

Proof. Let us introduce the function

f : Rd × [0,+∞) → R, (x, t) 7→ 1
2
((
usmooth(x, t) −m

)2 − δEsc(m)2
)
.

According to the regularity of usmooth(·, ·) (Lemma 4.35 on page 56), this function is of
class at least C1, and, for every large enough time t, the quantity f

(
xEsc-smooth(t), t

)
is

equal to zero, and it follows from inequality (4.80) that

∂xf
(
xEsc-smooth(t), t

)
=
(
usmooth

(
xEsc-smooth(t), t

)
−m

)
· ∂xusmooth

(
xEsc-smooth(t), t

)
< 0 .

Thus it follows from the Implicit Function Theorem that the function x 7→ xEsc-smooth(t)
is of class (at least) a neighbourhood of +∞, and that, for every large enough time t,

x′
Esc-smooth(t) = −

∂tf
(
xEsc-smooth(t), t

)
∂xf

(
xEsc-smooth(t), t

)
= −

usmooth
((
xEsc-smooth(t), t

)
−m

)
· ∂tusmooth

(
xEsc-smooth(t), t

)
(
usmooth

(
xEsc-smooth(t), t

)
−m

)
· ∂xusmooth

(
xEsc-smooth(t), t

) .(4.83)

According to inequality (4.80), the denominator of this expression remains bounded away
from zero as time goes to +∞. On the other hand, according to Lemma 4.36 and to
Proposition 4.34 on page 55 and to the asymptotics (4.74) for Usmall(·) and to the the
bounds (4.75) on Usmooth(·),

∂tusmooth
(
xEsc-smooth(t) + ξ, t

)
+ σesc∂x

(
xEsc-smooth(t) + ξ, t

)
→ 0 as t → +∞ .

Thus the limit (4.82) follows from expression (4.83) above. Lemma 4.38 is proved.
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The next lemma is the only place throughout the proof of Proposition 4.1 where
hypothesis (Hdisc-Φ) — which is part of the generic hypotheses (G) — is required.

Lemma 4.39 (convergence around Escape point). There exists a function ϕ in the set
Φcesc,norm(m) such that, for every positive quantity L, both quantities
(4.84)∥∥∥∥x 7→ u(x, t) − ϕ

(√
1 + αc2

esc
(
x− xEsc-smooth(t)

))∥∥∥∥
H1
(

[xEsc(t)−L,xEsc(t)+L],Rd
) , and∥∥∥∥x 7→ ut(x, t) + cescϕ

′
(√

1 + αc2
esc
(
x− xEsc-smooth(t)

))∥∥∥∥
L2
(

[xEsc(t)−L,xEsc(t)+L],Rd
)

go to 0 as time goes to +∞. In particular, the set Φcesc,norm(m) is nonempty.

Proof. Take a sequence (tn)n∈N of positive times going to +∞ as n goes to +∞. Pro-
ceeding as in the proof of Lemma 4.36 above, and according to this lemma, it may be
assumed, up to replacing the sequence (tp)n∈N by a subsequence, that there exists a
function ϕ in the set Φcesc(m) such that, for every positive quantity L, both quantities∥∥∥∥y 7→ u

(
xEsc-smooth(tn) + y, tn

)
− ϕ

(√
1 + αc2

escy

)∥∥∥∥
H1
(

[−L,L],Rd
) and∥∥∥∥y 7→ ut

(
xEsc-smooth(tn) + y, t

)
+ cescϕ

′
(√

1 + αc2
escy

)∥∥∥∥
L2
(

[−L,L],Rd
)

go to 0 as n goes to +∞. According to the definition of xEsc-smooth(·) and to the
asymptotics (4.74) for Usmall(·), it follows that

|ϕ(0) −m| = δEsc(m) and |ϕ(ξ) −m| ≤ δEsc(m) for all ξ in [0,+∞) ,

thus, according to assertion 2 of Lemma 8.1 on page 88, it follows that ϕ actually belongs
to the set Φcesc,norm(m).

Let L denote the set of all possible limits (in the sense of uniform convergence on
compact subsets of R) of sequences of maps

y 7→ u
(
xEsc-smooth(t′n) + y, t′n

)
for all possible sequences (t′n)n∈N such that t′n goes to +∞ as n goes to +∞. This set L is
included in the set Φcesc,norm(m), and, because the semi-flow of system (1.1) is continuous
on X, this set L is a continuum (a compact connected subset) of H1

ul(R,Rd).
Since on the other hand — according to hypothesis (Hdisc-Φ) — the set Φcesc,norm(m) is

totally disconnected in H1
ul(R,Rd), this set L must actually be reduced to the singleton

{ϕ}. Lemma 4.39 is proved.

Lemma 4.40 (convergence up to xhom(t)). For every positive quantity L,

sup
x∈[xEsc(t)−L,xhom(t)]

∣∣∣∣u(x, t) − ϕ

(√
1 + αc2

esc
(
x− xEsc-smooth(t)

))∣∣∣∣ → 0 as t → +∞ .

Proof. The proof is identical to the proof of [34, Lemma 4.40].
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4.14 Homogeneous point behind the travelling front
According to hypothesis (Honly-bist), the limit

lim
ξ→−∞

ϕ(ξ)

exists and belongs to M; let us denote by mnext this limit. The following lemma completes
the proof of Proposition 4.1 (“invasion implies convergence”).

Lemma 4.41 (“next” homogeneous point behind the front). There exists a R-valued
function xhom-next, defined and of class C1 on a neighbourhood of +∞, such that the
following limits hold as time goes to +∞:

xEsc(t) − xhom-next(t) → +∞ and x′
hom-next(t) → σesc

and sup
x∈[xhom-next(t),xhom(t)]

∣∣∣∣u(x, t) − ϕ

(√
1 + αc2

esc
(
x− xEsc-smooth(t)

))∣∣∣∣ → 0 ,

and, for every positive quantity L,

(4.85)

∥∥y 7→ u
(
xhom-next(t) + y, t

)
−mnext

∥∥
H1([−L,L],Rd) → 0 ,

and
∥∥y 7→ ut

(
xhom-next(t) + y, t

)∥∥
L2([−L,L],Rd) → 0 .

Proof. The proof is identical to the proof of [34, Lemma 4.41]. The convergence toward
0 of the quantities (4.84) yields the limits (4.85).

This completes the proof of conclusion 2 of Proposition 4.1. Proposition 4.1 is proved.

5 No invasion implies relaxation
As everywhere else, let us consider a function V in C2(Rd,R) satisfying the coercivity
hypothesis (Hcoerc). The aim of this section is to prove Proposition 5.1 below. The
arguments are similar to those of [34, section 5], where more details and comments can
be found.

5.1 Definitions and hypotheses
Let us consider two points m− and m+ in M and a solution (x, t) 7→ u(x, t) of system
(1.1) defined on R × [0,+∞). Without assuming that this solution is bistable, let us
make the following hypothesis (Hhom), which is similar to hypothesis (Hhom-right) made
in section 4 (“invasion implies convergence”), but this time both to the right and to the
left in space (see figure 5.1).

(Hhom) There exist a positive quantity σhom,+ and a negative quantity σhom,− and
C1-functions

xhom,+ : [0,+∞) → R satisfying x′
hom,+(t) → σhom,+ as t → +∞

and xhom,− : [0,+∞) → R satisfying x′
hom,−(t) → σhom,− as t → +∞
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Figure 5.1: Illustration of hypothesis (Hhom) and of Proposition 5.1.

such that, for every positive quantity L, both quantities∥∥∥y 7→
(
u
(
xhom,+(t) + y, t

)
−m+, ut

(
xhom,+(t) + y, t

))∥∥∥
H1([−L,L])×L2([−L,L])

and
∥∥∥y 7→

(
u
(
xhom,−(t) + y, t

)
−m−, ut

(
xhom,−(t) + y, t

))∥∥∥
H1([−L,L])×L2([−L,L])

go to 0 as time goes to +∞.

For every t in [0,+∞), let us denote by xEsc,+(t) the supremum of the set{
x ∈ R : xhom,−(t) ≤ x ≤ xhom,+(t) and |u(x, t) −m+| = δEsc(m+)

}
(with the convention that xEsc,+(t) equals −∞ if this set is empty), and let us denote by
xEsc,−(t) the infimum of the set{

x ∈ R : xhom,−(t) ≤ x ≤ xhom,+(t) and |u(x, t) −m−| = δEsc(m−)
}

(with the convention that xEsc,−(t) equals +∞ if this set is empty). Let

σEsc,+ = lim sup
t→+∞

xEsc,+(t)
t

and σEsc,− = lim inf
t→+∞

xEsc,+(t)
t

,

see figure 5.1. It follows from the definitions of xEsc,− and xEsc,+(t) that, for all t in
[0,+∞),

xhom,−(t) ≤ xEsc,−(t) and xEsc,+(t) ≤ xhom,+(t)

thus
σhom,− ≤ σEsc,− and σEsc,+ ≤ σhom,+ .

If the quantity σEsc,+ was positive or if the quantity σEsc,− was negative, this would mean
that the corresponding equilibrium is “invaded” at a nonzero mean speed, a situation
already studied in section 4. Let us introduce the following (converse) “no invasion”
hypothesis.

(Hno-inv) The following inequalities hold:

σEsc,− ≥ 0 and σEsc,+ ≤ 0 .
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5.2 Statement
The aim of section 5 is to prove the following proposition.

Proposition 5.1 (no invasion implies relaxation). Assume that V satisfies hypothesis
(Hcoerc) and that the solution (x, t) 7→ u(x, t) under consideration satisfies hypotheses
(Hhom) and (Hno-inv). Then the following conclusions hold.

1. The quantities V (m−) and V (m+) are equal.

2. There exists a nonnegative quantity Eres-asympt[u] (“residual asymptotic energy”)
such that, for all quantities σ− in (σhom,−, 0) and σ+ in (0, σhom,+),

(5.1)
∫ σ+t

σ−t

[α
2 ut(x, t)2 + 1

2ux(x, t)2 + V
(
u(x, t)

)
−V (m±)

]
dx → Eres-asympt[u]

as time goes to +∞.

3. The following limits hold as time goes to +∞:

(5.2) sup
x∈[xhom,−(t) , xhom,+(t)]

∫ x+1

x−1
ut(z, t)2 dz → 0 ,

and, for every quantity ε which is positive and smaller than |σhom,−| and than
σhom,+,

(5.3) sup
x∈[xhom,−(t),−εt]

|u(x, t) −m−| → 0 and sup
x∈[εt,xhom,+(t)]

|u(x, t) −m+| → 0 .

5.3 Relaxation scheme in a standing or almost standing frame
5.3.1 Principle

The aim of this subsection is to set up an appropriate relaxation scheme in a standing
or almost standing frame. This means defining an appropriate localized energy and
controlling the “flux” terms occurring in the time derivative of that localized energy. The
argument will be quite similar to that of subsection 4.8 on page 32 (the relaxation scheme
in the travelling frame), the main difference being that the speed of the travelling frame
will now be either equal or close to zero, and as a consequence the weight function for
the localized energy will be defined with a cut-off on the right and another on the left,
instead of a single one; accordingly firewall functions will be introduced to control the
fluxes along each of these cuts-off.

Let us keep the notation and hypotheses of subsection 5.1, and let us assume that
hypotheses (Hcoerc) and (Hhom) and (Hno-inv) of Proposition 5.1 hold. According to
Proposition 3.1 on page 12, it may be assumed (without loss of generality, up to changing
the origin of times) that, for all t in [0,+∞),

∥x 7→ u(x, t)∥L∞(R,Rd) ≤ Ratt,∞(5.4)
and

∥∥x 7→
(
u(x, t), ut(x, t)

)∥∥
X

≤ Ratt,X .(5.5)
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5.3.2 Notation for the travelling frame

As in subsection 4.8 on page 32, let us introduce as parameters the “parabolic” speed c
of the travelling frame and its “physical” speed σ related by

σ = c√
1 + αc2

⇐⇒ c = σ√
1 − ασ2

.

To simplify the notation (that is, to avoid writing absolute values), let us assume that
these speeds are nonnegative, namely:

c ≥ 0 , or equivalently σ ≥ 0 .

By contrast with subsection 4.8, the other parameters — namely tinit and xinit and
ξcut-init — are not be required here. The relaxation scheme will be applied in the next
subsection 5.4 for a speed c very close or equal to zero.

Let us introduce the function (ξ, t) 7→ v(ξ, t), defined for every real quantity ξ and
every nonnegative time t by

v(ξ, t) = u(x, t)
where x and ξ are related by

x = σt+ ξ√
1 + αc2

⇐⇒ ξ =
√

1 + αc2x− ct .

The evolution system for the function (ξ, t) 7→ v(ξ, t) reads

αvtt + vt − 2αcvξt = −∇V (v) + cvξ + vξξ .

5.3.3 Choice of the parameters and conditions on the speed c

A localized energy and two firewall functions associated with this solution will now be
introduced. Let us denote by κ0(m−) and by κ0(m+) the quantities defined in (4.9) on
page 21 for the two points m− and m+, and let

κ0 = min
(
κ0(m−), κ0(m+)

)
and λmin = min

(
λmin(m−), λmin(m+)

)
.

Let

(5.6) ccut,0 = min
(
σhom,+

2 ,
|σhom,−|

2 ,
1

4α+ 2 ,
λmin

8κ0
(
1 + α(κ0 + 1)

)) ,
and let us assume that the (nonnegative) quantity c is small enough so that the following
inequalities be satisfied:

(5.7) c ≤ κ0
6 and c ≤ 1√

α
and c ≤ ccut,0

6 ,

and

(5.8) αc(κ0 + c) ≤ 1
6 .

64



According to (Hhom) and (Hno-inv) and to the choice of ccut,0 above, there exists a
nonnegative time T such that, for every time t greater than or equal to T ,

(5.9)
xhom,−(t) ≤ −11

6 ccut,0t and − 1
6
√

2
ccut,0t ≤ xEsc,−(t)

and xEsc,+(t) ≤ 1
6
√

2
ccut,0t and 11

6 ccut,0t ≤ xhom,+(t) .

5.3.4 Notation “±”

Let us adopt, for the remaining of this section 5 and in the next section 6, the following
convention: the symbol “±” denotes one the the signs “+” and “−”, this sign remaining
the same along a whole expression, an equality/inequality between two expressions, or a
definition.

5.3.5 Normalized potential

Let us introduce the “normalized” potential V ‡ : Rd → R, v 7→ V ‡(v) defined as

(5.10) V ‡(v) = V (v) − max
(
V (m−), V (m+)

)
.

As a consequence max
(
V ‡(m−), V ‡(m+)

)
= 0, and ∇V and ∇V ‡ are equal. With the

convention above, it follows from inequalities (3.14) to (3.16) that, for all v in Rd satisfying
|v −m±| ≤ δEsc(m±),

(v −m±) · ∇V ‡(v) ≥ λmin
2 (v −m±)2 ,(5.11)

and (v −m±) · ∇V ‡(v) ≥ V ‡(v) − V ‡(m±) .(5.12)

5.3.6 Localized energy

For every time t, let us introduce the three intervals

Ileft(t) = (−∞,−ccut,0t] ,
and Imain(t) = [−ccut,0t, ccut,0t] ,
and Iright(t) = [ccut,0t,+∞) ,

and let us introduce the functions χ0(ξ, t) and χ(ξ, t) (weight function for the localized
energy) defined on R × [0,+∞) as

χ0(ξ, t) =
{

1 if ξ ∈ Imain(t) ,
exp

(
−κ0(|ξ| − ccut,0t)

)
if ξ ̸∈ Imain(t) ,

and χ(ξ, t) = ecξχ0(ξ, t) ,

see figures 5.2 and 5.3. For all t in [0,+∞), let us define the “energy” E(t) by

E(t) =
∫
R
χ(ξ, t)E‡(ξ, t) dξ , where E‡(ξ, t) = α

2 vt(ξ, t)2 + 1
2vξ(ξ, t)2 + V ‡(v(ξ, t)

)
.

The notation χ and E is the same as in sub-subsection 4.8.2 but the definitions above are
slightly different from those introduced in sub-subsection 4.8.2.
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Figure 5.2: Graphs of functions ξ 7→ χ0(ξ, t) and ξ 7→ ψ0,+(ξ, t) and ξ 7→ ψ0,−(ξ, t).

Figure 5.3: Graphs of the weight functions ξ 7→ χ(ξ, t) and ξ 7→ ψ+(ξ, t) and ξ 7→ ψ−(ξ, t).

5.3.7 Time derivative of the localized energy

For every nonnegative quantity t, let

(5.13) D(t) =
∫
R
χ(ξ, t) vt(ξ, t)2 dξ .

Lemma 5.2 (time derivative of the localized energy). For every nonnegative time t,

(5.14)
E ′(t) ≤ − (1 + αc2)D(t)

+κ0

∫
R\Imain(t)

χ

[
α(ccut,0 + 2c) + 1

2 v2
t + ccut,0 + 1

2 v2
ξ + ccut,0V

‡(v)
]
dξ .

Proof. It follows from from expression (3.8) on page 16 (time derivative of a localized
energy) that for all t in [0,+∞),

(5.15) E ′(t) = −(1+αc2)D(t)+
∫
R

(
χt

(α
2 v

2
t + 1

2v
2
ξ +V ‡(v)

)
+(cχ−χξ)(αcv2

t +vξ ·vt)
)
dξ .

It follows from the definition of χ that

χt(ξ, t) = ecξ∂tχ0(ξ, t) =
{

0 if ξ ∈ Imain(t) ,
κ0ccut,0χ(ξ, t) if ξ ̸∈ Imain(t) ,

and

(cχ− χξ)(ξ, t) = −ecξ∂ξχ0(ξ, t) =
{

0 if ξ ∈ Imain(t) ,
sgn(ξ)κ0 χ(ξ, t) if ξ ̸∈ Imain(t) .
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Thus it follows from (5.15) that, for all t in [0,+∞),

E ′(t) = − (1 + αc2)D(t)

+ κ0

∫
R\Imain(t)

χ

(
ccut,0

(α
2 v

2
t + 1

2v
2
ξ + V ‡(v)

)
+ sgn(ξ)(αcv2

t + vξ · vt)
)
dξ ,

and using the inequality
sgn(ξ)vξ · vt ≤ 1

2v
2
ξ + 1

2v
2
t ,

inequality (5.14) follows. Lemma 5.2 is proved.

5.3.8 Firewall functions

Proceeding as in sub-subsection 4.8.4 on page 35 two firewall functions will be introduced
in order to control the right-hand side of this inequality. Let us introduce the functions
ψ0,+(ξ, t) and ψ0,−(ξ, t) and ψ+(ξ, t) and ψ−(ξ, t) (weight functions for those firewall
functions) defined as

ψ0,−(ξ, t) = exp
(
−κ0 |ξ + ccut,0t|

)
,

and ψ0,+(ξ, t) = exp
(
−κ0 |ξ − ccut,0t|

)
,

and
ψ−(ξ, t) = ecξψ0,−(ξ, t) and ψ+(ξ, t) = ecξψ0,+(ξ, t) ,

see figures 5.2 and 5.3. Observe that

χ(ξ, t) = ψ−(ξ, t) for ξ ∈ Ileft(t) and χ(ξ, t) = ψ+(ξ, t) for ξ ∈ Iright(t) .

For every nonnegative time t, let

F±(t) =
∫
R
ψ±(ξ, t)F ‡

±(ξ, t) dξ ,

where

(5.16)

F ‡
±(ξ, t) = 2α

(
E‡(ξ, t) − V ‡(m±)

)
+
(
α
(
v −m±

)
· vt +

(1
2 + αc

∂ξψ±
ψ±

)
(v −m±)2

)
(ξ, t)

=
(
α2v2

t + αv2
ξ + 2α

(
V ‡(v) − V ‡(m±)

)
+ α(v −m±) · vt

+
(1

2 + αc
∂ξψ±
ψ±

)
(v −m±)2

)
(ξ, t) .
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5.3.9 Lower bounds on the firewall functions

Lemma 5.3 (lower bounds on the firewall functions). For every nonnegative quantity t,

(5.17) F±(t) ≥
∫
R
ψ±(ξ, t)

[α2

4 vt(ξ, t)2 + αvξ(ξ, t)2 + 2α
(
V ‡(v(ξ, t)

)
− V ‡(m±)

)]
dξ .

Proof. Observe that

∂ξψ± = cψ± + ecξ∂ξψ0,± thus |∂ξψ±| ≤ (κ0 + c)ψ± .

As a consequence, it follows from the polarization inequality (4.25) on page 25 that, for
every real quantity ξ and every nonnegative quantity t,

F ‡
±(ξ, t) ≥ α2

4 v2
t + αv2

ξ + 2α
(
V †(v) − V †(m±) +

(1
6 − αc(κ0 + c)

)
(v −m±)2 ,

thus inequality (5.17) follows from condition (5.8) on page 64 satisfied by c.

5.3.10 Energy decrease up to firewalls and pollution

For every nonnegative time t, let

ΣEsc,±(t) = {ξ ∈ R : |v(ξ, t) −m±| > δEsc(m±)} ,

and let

(5.18) G±(t) =
∫

ΣEsc,±(t)
ψ±(ξ, t) dξ .

Lemma 5.4 (energy decrease up to firewalls and pollution). There exist nonnegative
quantities KE,F ,0 and KE,Esc,0, depending on α and V and m+ and m− (only), such that
for every nonnegative time t,

(5.19)
E ′(t) ≤ − (1 + αc2)D(t) +KE,F ,0

(
F+(t) + F−(t)

)
+KE,Esc,0

(
G−(t) + G+(t)

)
.

Proof. For every nonnegative time t, since χ(ξ, t) = ψ−(ξ, t) for all ξ in Ileft(t) and
χ(ξ, t) = ψ+(ξ, t) for all ξ in Iright(t), it follows from inequality (5.14) that (substituting
χ with ψ− or ψ+ and adding the nonnegative quantities −V ‡(m−) and −V ‡(m+))

E ′(t) + (1 + αc2)D(t) ≤

κ0

∫
Ileft(t)

ψ−

[
α(ccut,0 + 2c) + 1

2 v2
t + ccut,0 + 1

2 v2
ξ + ccut,0

(
V ‡(v) − V ‡(m−)

)]
dξ

+κ0

∫
Iright(t)

ψ+

[
α(ccut,0 + 2c) + 1

2 v2
t + ccut,0 + 1

2 v2
ξ + ccut,0

(
V ‡(v) − V ‡(m+)

)]
dξ .
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After replacing the quantities V ‡(v) − V ‡(m±) by their absolute values and extending to
R the integration domains of these two integrals, the inequality still holds and reads

E ′(t) + (1 + αc2)D(t) ≤

κ0

∫
R
ψ−

[
α(ccut,0 + 2c) + 1

2 v2
t + ccut,0 + 1

2 v2
ξ + ccut,0

∣∣∣V ‡(v) − V ‡(m−)
∣∣∣] dξ

+κ0

∫
R
ψ+

[
α(ccut,0 + 2c) + 1

2 v2
t + ccut,0 + 1

2 v2
ξ + ccut,0

∣∣∣V ‡(v) − V ‡(m+)
∣∣∣] dξ .

Let KE,F ,0 be a positive quantity to be chosen below. According to (5.17), it follows that,
for every nonnegative time t,

E ′(t) + (1 + αc2)D(t) −KE,F ,0
(
F−(t) + F+(t)

)
≤∫

R
ψ−

[(κ0
(
α(ccut,0 + 2c) + 1

)
2 − α2KE,F ,0

4
)
v2

t +
(κ0(ccut,0 + 1)

2 − αKE,F ,0
)
v2

ξ

+ κ0ccut,0
∣∣∣V ‡(v) − V ‡(m−)

∣∣∣− 2αKE,F ,0
(
V ‡(v) − V ‡(m−)

)]
dξ

+
∫
R
ψ+

[(κ0
(
α(ccut,0 + 2c) + 1

)
2 − α2KE,F ,0

4
)
v2

t +
(κ0(ccut,0 + 1)

2 − αKE,F ,0
)
v2

ξ

+ κ0ccut,0
∣∣∣V ‡(v) − V ‡(m+)

∣∣∣− 2αKE,F ,0
(
V ‡(v) − V ‡(m+)

)]
dξ .

Thus, introducing the quantity KE,F ,0 as

KE,F ,0 = max
[2κ0

(
α(ccut,0 + 2) + 1

)
α2 ,

κ0(ccut,0 + 1)
2α ,

κ0ccut,0
2α

]
,

(this quantity depends only on α and V ), it follows that

(5.20)

E ′(t)+(1 + αc2)D(t) −KE,F ,0
(
F−(t) + F+(t)

)
≤∫

R
ψ−
[
κ0ccut,0

∣∣∣V ‡(v) − V ‡(m−)
∣∣∣− 2αKE,F ,0

(
V ‡(v) − V ‡(m−)

)]
dξ

+
∫
R
ψ+
[
κ0ccut,0

∣∣∣V ‡(v) − V ‡(m+)
∣∣∣− 2αKE,F ,0

(
V ‡(v) − V ‡(m+)

)]
dξ .

According to the choice of KE,F ,0, the integrand of the first (resp. the second) integral of
the right-hand side of this inequality is nonpositive as long as ξ is not in ΣEsc,−(t) (resp.
ΣEsc,+(t)). As a consequence this inequality still holds if the integration domains of these
integrals are restricted to ΣEsc,−(t) and ΣEsc,+(t), respectively. Thus, introducing the
quantity KE,Esc,0 as

KE,Esc,0 =
(
κ0ccut,0 + 2αKE,F ,0

)
max

v∈Rd, |v|≤Ratt,∞, m∈{m−,m+}
|V (v) − V (m)| ,

inequality (5.19) follows from (5.20). Lemma 5.4 is proved.
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5.3.11 Firewalls upper bounds

Lemma 5.5 (firewalls upper bounds). For every nonnegative time t,

(5.21) F±(t) ≤
∫
R
ψ±
[3α2

2 v2
t +αv2

ξ +2α
(
V †(v)−V (m±)

)
+
(
1+αc(κ0+c)

)
(v−m±)2

]
dξ .

Proof. Inequality (5.21) follows from the definition (5.16) on page 67 of F ‡
±(ξ, s), from

the fact that ∂ξψ±/ψ is bounded from above by κ0 + c, and from the inequality

α(v −m±) · vt ≤ α2

2 v2
t + 1

2(v −m±)2 .

5.3.12 Firewalls linear decrease up to pollution

Let us denote by νF0(m−) and KF0(m−) (νF0(m+) and KF0(m+)) the quantities denoted
by νF0 and KF0 in the proof of Lemma 4.3 on page 23, when the minimum point m of
Lemma 4.3 is replaced with m− (with m+).

Lemma 5.6 (firewalls linear decrease up to pollution). For every nonnegative quantity t,

(5.22) F ′
±(t) ≤ −νF0(m±)F±(t) +KF0(m±)G±(t) .

Proof. The proof is very similar to that of Lemma 4.15 on page 37; however, since the
definitions of the various parameters and functions are slightly different, the details of
the calculations are provided. Proceeding as in the beginning of the proof of Lemma 4.15,
it follows that, for all nonnegative time t,

F ′
±(t) =

∫
R

[
α
(
−ψ± − 2αc∂ξψ± + α∂tψ±

)
v2

t +
(
−ψ± + α∂tψ±

)
v2

ξ

− ψ±(v −m±) · ∇V ‡(v) − 2α∂ξψ±vξ · vt +
∂tψ± + ∂2

ξψ± − c∂ξψ±

2 (v −m±)2

+ α∂tψ±
(
2
(
V ‡(v) − V ‡(m±)

)
+ (v −m±) · vt − 2c(v −m±) · vξ

)]
dξ .

According to the definition of ψ±, for all (ξ, t) in R × [0,+∞) (omitting the arguments
(ξ, t) of ψ± and of their derivatives),

∂tψ± = ecξ∂tψ0,± thus |∂tψ±| = ccut,0κ0ψ± ,

cψ± − ∂ξψ± = −ecξ∂ξψ0,± thus |cψ± − ∂ξψ±| = κ0ψ± ,

∂2
ξψ± − c∂ξψ± = ∂ξ(ecξ∂ξψ0,±)

= ecξ(c∂ξψ0,± + ∂2
ξψ0,±) thus ∂2

ξψ± − c∂ξψ± ≤ κ0(κ0 + c)ψ±
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(compare with the bounds (4.51) on page 38). Thus, for every nonnegative time t, it
follows from the previous expression of F ′

±(t) that

F ′
±(t) ≤

∫
R
ψ±

[
α
(
−1 − 2αc∂ξψ±

ψ±
+ αccut,0κ0

)
v2

t + (−1 + αccut,0κ0)v2
ξ

− (v −m±) · ∇V ‡(v) − 2α∂ξψ±
ψ±

vξ · vt + κ0(ccut,0 + κ0 + c)
2 (v −m±)2

+ αccut,0κ0
(
2
∣∣∣V ‡(v) − V ‡(m±)

∣∣∣+ |(v −m±) · vt| + 2c |(v −m±) · vξ|
)]
dξ .

Using the inequalities

−2α∂ξψ±
ψ±

vξ · vt ≤ 1
2v

2
ξ + 2α2 (∂ξψ±)2

ψ2
±

v2
t

and |(v −m±) · vt| ≤ 1
2(v −m±)2 + 1

2v
2
t

and 2 |(v −m±) · vξ| ≤ (v −m±)2 + v2
ξ ,

it follows that

F ′
±(t) ≤

∫
R
ψ±

[
α
(
−1 − 2αc∂ξψ±

ψ±
+ αccut,0κ0 + 2α(∂ξψ±)2

ψ2
±

+ ccut,0κ0
2

)
v2

t

+
(
−1 + 1

2 + αccut,0κ0(c+ 1)
)
v2

ξ − (v −m±) · ∇V ‡(v)

+ κ0
(ccut,0 + κ0 + c

2 + αccut,0
2 + αcccut,0

)
(v −m±)2

+ 2αccut,0κ0
∣∣∣V ‡(v) − V ‡(m±)

∣∣∣] dξ .
Observe that the following equality holds, for all values of argument ξ:

−2αc∂ξψ±
ψ±

+ 2α(∂ξψ±)2

ψ2
±

= −2α∂ξψ±
ψ±

· cψ± − ∂ξψ±
ψ±

≤ 2ακ0(κ0 + c) .

Thus, the previous inequality becomes

F ′
±(t) ≤

∫
R
ψ±

[
α
(
−1 + κ0

(
2α(κ0 + c) + ccut,0(α+ 1/2)

))
v2

t

+
(
−1

2 + αccut,0κ0(c+ 1)
)
v2

ξ − (v −m±) · ∇V ‡(v)

+ κ0
2
(
κ0 + c+ ccut,0

(
1 + α(2c+ 1)

))
(v −m±)2 + 2αccut,0κ0

∣∣∣V ‡(v) − V ‡(m±)
∣∣∣] dξ .
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It follows from the definitions (4.9) of κ0 and (5.6) of ccut,0 and the conditions (5.7) on c
that

κ0
(
2α(κ0 + c) + ccut,0(α+ 1/2)

)
≤ 1

2 and αccut,0κ0(c+ 1) ≤ 1
4

and κ0
2
(
κ0 + c+ ccut,0

(
1 + α(2c+ 1)

))
≤ λmin

8 and 2αccut,0κ0 ≤ 1
4 ;

thus it follows from the previous inequality that

F ′
±(t) ≤

∫
R
ψ±

[
− α

2 v
2
t − 1

4v
2
ξ − (v −m±) · ∇V ‡(v) + λmin

8 (v −m±)2

+ 1
4
∣∣∣V ‡(v) − V ‡(m±)

∣∣∣] dξ ,
and it follows from the upper bound (5.21) of Lemma 5.5 on F(t) that

F ′
±(t)+νF0(m±)F±(t) ≤

∫
R
ψ±

[
α

2 (−1 + 3ανF0(m±))v2
t +

(
−1

4 + ανF0(m±)
)
v2

ξ

− (v −m±) · ∇V ‡(v) +
(λmin

8 + νF0(m±)
(
1 + αc(κ0 + c)

))
(v −m±)2

+
(1

4 + 2ανF0(m±)
) ∣∣∣V ‡(v) − V ‡(m±)

∣∣∣] dξ .
Thus it follows from the definition (4.19) of νF0(m±) that

F ′
±(t) + νF0(m±)F±(t) ≤

∫
R
ψ±

[
− (v −m±) · ∇V ‡(v) + λmin

4 (v −m±)2

+ 1
2
∣∣∣V ‡(v) − V ‡(m±)

∣∣∣] dξ .
In view of the L∞-bound (5.4) on page 63 for the solution, the end of the proof is identical
to that of Lemma 4.15.

5.3.13 Control over pollution

The following lemma calls upon the notation T introduced for inequalities (5.9).

Lemma 5.7 (control over pollution). For every time t greater than or equal to T ,

(5.23) G±(t) ≤ 5
2κ0

exp
(
−κ0ccut,0

2 t
)
.
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Proof. For every nonnegative time t, let

ξhom,−(t) =
√

1 + αc2xhom,−(t) − ct and ξEsc,−(t) =
√

1 + αc2xEsc,−(t) − ct

and ξEsc,+(t) =
√

1 + αc2xEsc,+(t) − ct and ξhom,+(t) =
√

1 + αc2xhom,+(t) − ct .

Assume that the time t is greater than or equal to T ; and observe that according to (5.7)
the quantity

√
1 + αc2 is not larger than

√
2. Then it follows from hypotheses (5.9) and

from the two last hypotheses of (5.7) that

(5.24)
ξhom,−(t) ≤ −5

3ccut,0t and −1
3ccut,0t ≤ ξEsc,−(t) ,

and ξEsc,+(t) ≤ 1
3ccut,0t and 5

3ccut,0t ≤ ξhom,+(t) ,

see figure 5.4. According to the definition of xEsc,+(t) and xEsc,−(t),

Figure 5.4: Illustration of the notation and assumptions for the proof of Proposition 5.1.

ΣEsc,−(t) ⊂ (−∞, ξhom,−(t)] ∪ [ξEsc,−(t),+∞)
and ΣEsc,+(t) ⊂ (−∞, ξEsc,+(t)] ∪ [ξhom,+(t),+∞) .

Let us introduce the quantities

Gfront,−(t) =
∫ ξhom,−(t)

−∞
ψ−(ξ, t) dξ and Gback,−(t) =

∫ +∞

ξEsc,−(t)
ψ−(ξ, t) dξ ,

and Gback,+(t) =
∫ ξEsc,+(t)

−∞
ψ+(ξ, t) dξ and Gfront,+(t) =

∫ +∞

ξhom,+(t)
ψ+(ξ, t) dξ .

Then, it follows from the definition (5.18) of G±(t) that

G−(t) ≤ Gfront,−(t) + Gback,−(t) and G+(t) ≤ Gfront,+(t) + Gback,+(t) .

According to the definition of ψ+ and ψ− and according to hypotheses (5.7) and inequal-
ities (5.24) it follows from explicit calculations that:

Gfront,−(t) ≤ 1
κ0 + c

exp
(
ccut,0κ0t+ (κ0 + c)ξhom,−(t)

)
≤ 1
κ0 + c

exp
(
−κ0ccut,0

2 t
)
,

Gback,−(t) ≤ 1
κ0 − c

exp
(
−ccut,0κ0t− (κ0 − c)ξEsc,−(t)

)
≤ 1
κ0 − c

exp
(
−κ0ccut,0

2 t
)
,

Gback,+(t) ≤ 1
κ0 + c

exp
(
−ccut,0κ0t+ (κ0 + c)ξEsc,+(t)

)
≤ 1
κ0 − c

exp
(
−κ0ccut,0

2 t
)
,

Gfront,+(t) ≤ 1
κ0 − c

exp
(
ccut,0κ0t− (κ0 − c)ξhom,+(t)

)
≤ 1
κ0 + c

exp
(
−κ0ccut,0

2 t
)
.
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It follows that
G±(t) ≤ 2κ0

κ2
0 − c2 exp

(
−κ0ccut,0

2 t
)
,

and since according to the conditions (5.7) the (nonnegative) quantity c is not larger
than κ0/6, inequality (5.23) follows. Lemma 5.7 is proved.

5.3.14 Energy decrease up to pollution

Lemma 5.8 (firewall linear decrease up to pollution, 2). There exists a positive quantity
K ′

F , depending only on α and V and m− and m+, such that, for every time t greater
than or equal to T ,

(5.25) F ′
±(t) ≤ −νF0(m±)F±(t) +K ′

F exp
(
−κ0ccut,0

2 t
)
.

Proof. Introducing the positive quantity K ′
F defined as

K ′
F = 5

2κ0
max

(
KF0(m−),KF0(m+)

)
,

inequality (5.25) follows from inequality (5.22) of Lemma 5.6 and inequality (5.23) of
Lemma 5.7. Lemma 5.8 is proved.

Lemma 5.9 (energy decrease up to pollution). There exist positive quantities νE and
KE , depending only on α and V , such that, for every time t greater than or equal to T ,

(5.26) E ′(t) ≤ −(1 + αc2)D(t) +KE exp
(
−νE(t− T )

)
.

Proof. Let
νE = min

(
νF0(m−), νF0(m+), κ0ccut,0

4

)
.

According to Grönwall’s inequality, it follows from inequalities (5.25) of Lemma 5.8 that,
for every time t greater than or equal to T ,

F±(t) ≤ exp
(
−νF0(m±)(t− T )

)
F±(T )

+K ′
F

∫ t

T
exp

(
−νF0(m±)(t− s)

)
exp

(
−κ0ccut,0

2 s
)
ds

≤ exp
(
−νE(t− T )

(
max

(
F±(T ), 0

)
+K ′

F exp
(
−κ0ccut,0

2 T
)
×

∫ t

T
exp

(
−
(
νF0(m±) − νE

)
(t− s)

)
exp

(
−
(κ0ccut,0

2 − νE
)
(s− T )

)
ds

)

≤ exp
(
−νE(t− T )

) (
max

(
F±(T ), 0

)
+K ′

F

∫ t

T
exp

(
−κ0ccut,0

4 (s− T )
)
ds

)
≤
(

max
(
F±(T ), 0

)
+ 4K ′

F
κ0ccut,0

)
exp

(
−νE(t− T )

)
.(5.27)
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According to the H1
ul ×L2

ul-bound (5.5) on page 63 for the solution, there exists a positive
quantity Fmax, depending only on α and V and m− and m+, such that

F+(T ) ≤ Fmax and F−(T ) ≤ Fmax .

Thus, introducing the nonnegative quantity

KE = 2KE,F ,0
(
Fmax + 4K ′

F
κ0ccut,0

)
+ 5KE,Esc,0

κ0
,

inequality (5.26) follows from inequalities (5.19) of Lemma 5.4, inequality (5.23) of
Lemma 5.7, and inequality (5.27). Lemma 5.9 is proved.

Inequality (5.26) of Lemma 5.9 is the key ingredient that will be applied in the next
subsection 5.4.

5.4 Nonnegative asymptotic energy
Let us keep the notation and hypotheses introduced since the beginning of section 5. For
every quantity c close enough to 0 so that hypotheses (5.7) on page 64 be satisfied, and
for every nonnegative time t and real quantity ξ, let us denote by

v(c)(ξ, t) and χ(c)(ξ, t) and E(c)(t) and D(c)(t)

the functions defined as in subsection 5.3, with the same notation except the “(c)”
superscript that is here to remind that these objects depend on the quantity c. For every
such c, let us introduce the quantity E(c)(+∞) in R ∪ {−∞} defined as

E(c)(+∞) = lim inf
t→+∞

E(c)(t) .

According to estimate (5.26) on the time derivative of the energy, for every such c,

(5.28) E(c)(t) → E(c)(+∞) as t → +∞ ,

and let us call “asymptotic energy at the speed c” this quantity. The aim of this subsection
is to prove the following proposition.

Proposition 5.10 (nonnegative asymptotic energy). The quantity E(0)(+∞) (the asymp-
totic energy at speed zero) is nonnegative.

The proof proceeds through the following lemmas and corollaries, that are rather
direct consequences of the relaxation scheme set up in the previous subsection 5.3, and
in particular of the estimate (5.26) on the time derivative of the energy.

Since according to the definition of V ‡ the maximum of V ‡(m+) and V ‡(m−) is equal
to zero, it may be assumed (without loss of generality) that

(5.29) V ‡(m+) = 0 .
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Lemma 5.11 (nonnegative asymptotic energy in frames travelling at small nonzero
speed). For every quantity c close enough to zero so that hypotheses (5.7) on page 64 be
satisfied, if in addition c is positive, then

E(c)(+∞) ≥ 0 .

Proof. See [34, Lemma 5.9].

Corollary 5.12 (almost nonnegative energy in a travelling frame). For every quantity c
close enough to zero so that hypotheses (5.7) on page 64 be satisfied, if in addition c is
positive, then, for every time t greater than or equal to T ,

E(c)(t) ≥ −KE
νE

exp
(
−νE(t− T )

)
.

Proof. The proof follows from previous Lemma 5.11 and inequality (5.26).

Lemma 5.13 (continuity of energy with respect to the speed at c = 0). For every
nonnegative quantity t,

E(c)(t) → E(0)(t) as c → 0 .
Proof. For all t in (0,+∞),

E(0)(t) =
∫
R
χ(0)(x, t)

(α
2 ut(x, t)2 + 1

2ux(x, t)2 + V ‡(u(x, t)
))
dx ,

and, for every quantity c close enough to zero so that hypotheses (5.7) on page 64 be
satisfied,

E(c)(t) =
∫
R
χ(c)(ξ, t)

(α
2 v

(c)
t (ξ, t)2 + 1

2v
(c)
ξ (ξ, t)2 + V ‡(v(c)(ξ, t)

))
dξ .

Thus, since v(c)(·, ·) is related to u(·, ·) by

u(x, t) = v(c)(ξ, t) where ξ =
√

1 + αc2x− ct ,

it follows that

E(c)(t) =
∫
R
χ(c)(

√
1 + αc2x− ct, t)

(
α

2
(
ut(x, t) + c

ux(x, t)√
1 + αc2

)2
+ 1

2(1 + αc2)ux(x, t)2

+ V ‡(u(x, t)
))√

1 + αc2 dx .

The result thus follows from the continuity of χ(c)(·, ·) with respect to c and from the on
the derivatives of u(·, ·) ensured by Proposition 3.1 on page 12.

Corollary 5.14 (almost nonnegative energy in a standing frame). For every time t
greater than or equal to T ,

(5.30) E(0)(t) ≥ −KE
νE

exp
(
−νE(t− T )

)
.

Proof. Inequality (5.30) follows from Corollary 5.12 and Lemma 5.13.

Proposition 5.10 (“nonnegative asymptotic energy”) follows from Corollary 5.14.
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5.5 End of the proof of Proposition 5.1
Lemma 5.15 (integrability of dissipation in a standing frame). The function

t 7→ D(0)(t)

is integrable on [0,+∞).

Proof. The statement follows from Proposition 5.10 (“nonnegative asymptotic energy”)
and from estimate (5.26) on the time derivative of energy.

Corollary 5.16 (relaxation — centre area). The following limit holds:

(5.31) sup
x∈[−ccut,0t,ccut,0t]

∫ x+1

x−1
ut(y, t)2 dy → 0 as t → +∞ .

Proof. Let us proceed by contradiction and assume that the converse holds. Then there
exists a positive quantity ε and a sequence

(
(xn, tn)

)
n∈N in R × [0,+∞) such that tn

goes to +∞ as n goes to +∞ and such that, for every n in N, xn is in the interval
[−ccut,0tn, ccut,0tn] and

(5.32)
∫ +1

−1
ut(xn + y, tn)2 dy ≥ ε .

According to Proposition 3.2 on page 13 (“asymptotic compactness”), up to replacing
the sequence

(
(xn, tn)

)
n∈N by a subsequence, it may be assumed that the sequence of

functions (u, ut)(xn + ·, tn + ·) converges in the space

C0
(
[−1, 1], H1([−1, 1],Rd)× L2([−1, 1],Rd))

to some limit (ū, ūt) that satisfies system (1.1). It follows from (5.32) that∫ 1

−1
ūt(y, 0)2 dy ≥ ε , thus

∫ 1

−1

(∫ 1

−1
ūt(y, 0)2 dy

)
dt > 0 ,

and as a consequence,

lim inf
n→+∞

∫ 1

−1

(∫ 1

−1
ut(xn + y, tn + t)2 dy

)
dt > 0 ,

a contradiction with the integrability of t 7→ D(0)(t) (Lemma 5.15). Corollary 5.16 is
proved.

Lemma 5.17 (relaxation — non centre area). For every positive quantity ε, both
quantities

(5.33)
sup

x∈[xhom,−(t),−εt]

∫ x+1

x−1

(
ut(y, t)2 + ux(y, t)2 +

(
u(y, t) −m−)2

)
dy

and sup
x∈[xhom,+(t),εt]

∫ x+1

x−1

(
ut(y, t)2 + ux(y, t)2 +

(
u(y, t) −m+)2

)
dy

go to 0 as time goes to +∞.
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Proof. Since the distance between the interval [xhom,−(t),−εt] and the set ΣEsc,−(t) and
the distance between the interval [εt, xhom,+(t)] and the set ΣEsc,+(t) both go to +∞ as
time goes to +∞, assertion (5.33) can be derived (for instance) from inequality (4.15) of
Lemma 4.3 on page 23 (“firewall decrease up to pollution term” in the laboratory frame)
and inequality (4.24) of Lemma 4.4 on page 25 (“firewall coercivity up to pollution term”
in the laboratory frame).

Lemma 5.18 (V (m−) equals V (m+)). The following equalities hold:

V ‡(m−) = V ‡(m+) = 0 , or in other words V (m−) = V (m+) .

Proof. It follows from the definition (5.10) of V ‡ and from the assumption (5.29) that
V ‡(m+) equals 0 and that V ‡(m−) is nonpositive. If V ‡(m−) was negative, then,
according to Lemma 5.17 above (and according to the bounds (5.4) on the solution), the
following estimate would hold:

E(0)(t) ∼ V ‡(m−) ccut,0 t as t → +∞ ,

a contradiction with Proposition 5.10. Lemma 5.18 is proved.

Lemma 5.19 (convergence towards asymptotic energy). For every quantity σ− in
(σhom,−, 0) and every quantity σ+ in (0, σhom,+),

(5.34)
∫ σ+t

σ−t

(α
2 ut(x, t)2 + 1

2ux(x, t)2 + V
(
u(x, t)

))
dx → E(0)(+∞) as t → +∞ .

Proof. According to (5.28) the quantity

E(0)(t) =
∫
R
χ(0)(x, t)

(α
2 ut(x, t)2 + 1

2ux(x, t)2 + V ‡(u(x, t)
))
dx

goes to E(0)(+∞) as time goes to +∞, and according to Lemma 5.18, V ‡(·) equals
V (·) − V (m±). The fact that the same asymptotic behaviour holds for the integral in
(5.34) (whatever the values of σ− and σ+) can (once again) be derived from inequality
(4.15) of Lemma 4.3 on page 23 (“firewall decrease up to pollution term” in the laboratory
frame). Lemma 5.19 is proved.

Proof of Proposition 5.1. All statements of Proposition 5.1 have been proved:

1. equality between V (m−) and V (m+) is stated in Lemma 5.18;

2. limits (5.2) and (5.3) are stated in Corollary 5.16 and Lemmas 5.17 and 5.18;

3. according to Proposition 5.10 the quantity E(0)(+∞) is nonnegative, and, denoting
by Eres-asympt[u] this quantity, the limit (5.1) is stated in Lemma 5.19.

Proposition 5.1 is proved.
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6 Convergence
The aim of this section is to prove Proposition 6.1 below. This statement extends
Proposition 5.1 under additional hypotheses.

6.1 Set-up
6.1.1 Hypotheses

As everywhere else, let us consider a function V in C2(Rd,R) satisfying the coercivity
hypothesis (Hcoerc). Let us consider two points m− and m+ of M, and a solution
(x, t) 7→ u(x, t) of system (1.1). Let us assume that hypotheses (Hhom) and (Hno-inv)
of Proposition 5.1 hold, and let us keep all the notation of section 5, together with
the notation usmooth and usmall introduced after Lemma 4.35, ensuring (for all (x, t) in
R × [0,+∞)) the decomposition

(6.1) u(x, t) = usmooth(x, t) + usmall(x, t) .

6.1.2 Notation

According to Proposition 5.1, the quantities V (m−) and V (m+) are equal.
Notation. Let

v = V (m−) = V (m+) ,

and
Mv = M ∩ V −1({v}) = {m ∈ M : V (m) = v} ,

and let Φ0(v) denote the union, for all ordered pairs (m1,m2) of points of Mv, of the
sets Φ0(m1,m2) defined in sub-subsection 2.3.1:

(6.2) Φ0(v) =
⊔

(m1,m2)∈M2
v

Φ0(m1,m2) .

For every function ξ 7→ ϕ(ξ) in Φ0(v), let

I(ϕ) =
⋃
ξ∈R

{(
ϕ(ξ), ϕ′(ξ)

)}
denote the “image” of ϕ, and let I(

(
Φ0(v)

)
denote the union of all images of bistable

stationary solutions connecting minimum points in the level set V −1({v}):

I(
(
Φ0(v)

)
=

⋃
ϕ∈Φ0(v)

I(ϕ) .
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6.1.3 Additional hypotheses

Let us introduce the following hypotheses.

(Honly-min(v)) All critical points of V in the level set V −1({v}) are nondegenerate
minimum points. In other words, for every v in Rd,

V (v) = v and ∇V (v) = 0 =⇒ D2V (v) is positive definite.

(Hdisc-Φ0
(v)) For every m1 in Mv, the set⊔

m2∈Mv

{(
ϕ(0), ϕ′(0)

)
: ϕ ∈ Φ0,norm(m1,m2)

}
is totally disconnected in R2d (that is, its connected components are singletons).
Equivalently, the set

(6.3) Φ0,norm(v) =
⋃

(m1,m2)∈M2
v

Φ0,norm(m1,m2)

is totally disconnected for the topology of compact convergence (uniform convergence
on compact subsets of R).

6.2 Statement
Proposition 6.1 (approach to the set of bistable stationary solutions / to a standing
terrace of bistable solutions). Assume that the potential V satisfies the coercivity hypothesis
(Hcoerc) and that hypotheses (Hhom) and (Hno-inv) hold for the solution (x, t) 7→ u(x, t)
under consideration. Then, in addition to the conclusions of Proposition 5.1, the following
conclusions hold.

1. If hypothesis (Honly-min(v)) holds, then the quantity

sup
x∈Imain(t)

dist
((
u(x, t), ∂xusmooth(x, t)

)
, I
(
Φ0(v)

))
goes to 0 as time goes to +∞.

2. If both hypotheses (Honly-min(v)) and (Hdisc-Φ0(v)) hold, then there exists a standing
terrace of bistable stationary solutions (x, t) 7→ T (x, t), connecting m− to m+, such
that the quantity

(6.4) sup
x∈Imain(t)

|u(x, t) − T (x, t)|

goes to 0 as time goes to +∞. In addition, the residual asymptotic energy
Eres-asympt[u] of the solution equals the energy E [T ] of this standing terrace.
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6.3 Approach to normalized Hamiltonian level set zero for a sequence of
times

Let us introduce the normalized potential function V ‡ defined as in (5.10) on page 65,
and the normalized Hamiltonian H‡ defined as

H‡ : Rd × Rd → R, (u, v) 7→ 1
2v

2 − V ‡(u) .

The goal of this subsection is to prove the following lemma.

Lemma 6.2 (approach to normalized Hamiltonian level set zero for a sequence of times).
Assume that hypotheses (Hcoerc) and (Hhom) and (Hno-inv) hold. Then the following limit
holds:

(6.5) lim inf
t→+∞

sup
x∈Imain(t)

∣∣∣H‡(usmooth(x, t), ∂xusmooth(x, t)
)∣∣∣ = 0 .

Since this lemma does not require hypotheses (Honly-min(v)) and (Hdisc-Φ0(v)), let
us ignore these two additional hypotheses throughout this subsection. They will be
introduced, when necessary, in the forthcoming subsections.

Let us introduce the function D̂(0)(·) defined, for every nonnegative time t, as

D̂(0)(t) =
∫
R
χ0(x, t)∂2

t usmooth(x, t)2 dx ,

where χ0 is the function defined in sub-subsection 5.3.6. In the parabolic case, Lemma 6.2
can be derived from the integrability of the function t 7→ D(0)(t) on [0,+∞), see [36,
Lemma 8.1]. In the hyperbolic case considered here, the integrability on [0,+∞) of
D̂(0)(t) will also be needed.

6.3.1 Integrability of t 7→ D̂(0)(t)

The aim of this sub-subsection is to prove the following lemma (the proof will require
several steps).

Lemma 6.3 (integrability of the square integral of utt). The function

t 7→ D̂(0)(t)

is integrable on [0,+∞).

For every real quantity x and nonnegative time t, let

w(x, t) = ∂tusmooth(x, t) , so that D̂(0)(t) =
∫
R
χ0(x, t)wt(x, t)2 dx .

According to its definition (4.76) and (4.77), the function usmall satisfies the system

α∂2
t usmall + ∂tusmall = −usmall + ∂2

xusmall ,
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so that, according to system (1.1) and the decomposition (6.1), the function usmooth
satisfies the system

(6.6) α∂2
t usmooth + ∂tusmooth = −∇V (u) + usmall + ∂2

xusmooth ,

and its time derivative w satisfies the system

(6.7) αwtt + wt = −D2V (u) · ut + ∂tusmall + wxx .

For every nonnegative time t, let

D(0)
small(t) =

∫
R
χ0(x, t) (∂tusmall(x, t))2 dx ,

and Ê(0)(t) =
∫
R
χ0(x, t)

(α
2wt(x, t)2 + 1

2wx(x, t)2
)
dx .

Lemma 6.4 (time derivative of localized w-energy). There exists a positive quantity
KÊ(0), D(0), depending only on V and α, such that, for every nonnegative time t,

(6.8)

d

dt
Ê(0)(t) ≤ −1

2D̂(0)(t) +KÊ(0), D(0)D(0)(t) + 4 D(0)
small(t)

+ κ0(1 + ccut,0)
2

∫
R\Imain(t)

χ0(x, t)wx(x, t)2 dx .

Proof of Lemma 6.4. It follows from the hyperbolic system (6.7) satisfied by w that, for
every nonnegative time t,

d

dt
Ê(0)(t) =

∫
R

[
∂tχ0

(α
2w

2
t + 1

2w
2
x

)
+ χ0(αwt · wtt + wx · wxt)

]
dx

=
∫
R

[
∂tχ0

(α
2w

2
t + 1

2w
2
x

)
+ χ0wt · (αwtt − wxx) − ∂xχ0wx · wt

]
dx

= −D̂(0)(t) +
∫
R

[
∂tχ0

(α
2w

2
t + 1

2w
2
x

)
+ χ0wt ·

(
−D2V (u) · ut + ∂tusmall

)
− ∂xχ0wx · wt

]
dx .

The following inequalities hold:

∂tχ0 ≤ κ0ccut,0χ0 ,

and
∣∣∣wt ·D2V (u) · ut

∣∣∣ ≤ 1
4w

2
t +

∣∣∣D2V (u) · ut

∣∣∣2 ,
and |wt · ∂tusmall| ≤ 1

16w
2
t + 4 |∂tusmall|2 ,

and |∂xχ0wx · wt| ≤ χ0
κ0
2 (w2

x + w2
t ) ,

and according to the definitions (4.9) and (5.6) of κ0 and ccut,0,

ακ0ccut,0
2 ≤ 1

32 and κ0
2 ≤ 1

8 .
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It follows that

(6.9)

d

dt
Ê(0)(t) ≤ −1

2D̂(0)(t) +
∫
R
χ0
∣∣∣D2V (u) · w

∣∣∣2 dx+ 4 D(0)
small(t)

+ κ0(1 + ccut,0)
2

∫
R\Imain(t)

χ0w
2
x dx .

Thus, introducing the quantities

λmax = max
{
eigenvalues of D2V (v) : v ∈ Rd, |v| ≤ Ratt,∞

}
,

and KÊ(0), D(0) = λ2
max ,

inequality (6.8) follows from inequality (6.9). Lemma 6.4 is proved.

For every real quantity x and nonnegative time t, let

F̂ (0)(x, t) = 2α
(α

2wt(x, t)2 + 1
2wx(x, t)2

)
+
(
αw(x, t) · wt(x, t) + 1

2w(x, t)2
)

= α2wt(x, t)2 + αwx(x, t)2 + αw(x, t) · wt(x, t) + 1
2w(x, t)2 ,

see the discussion in sub-subsection 3.3.1 and the definition (4.12) of F †
0 (x, t). It follows

from this definition that

(6.10) F̂ (0)(x, t) ≥ αwx(x, t)2 + 1
4w(x, t)2 .

For every nonnegative time t, let

F̂ (0)
± (t) =

∫
R
ψ0,±(x, t)F̂ (0)(x, t) dx .

According to inequality (6.10), both quantities F (0)
− (t) and F (0)

+ (t) are nonnegative, and,
since

χ0(x, t) = ψ0,−(x, t) for x in Ileft(t), and χ0(x, t) = ψ0,+(x, t) for x in Iright(t),

it follows that

F̂ (0)
− (t) + F̂ (0)

+ (t) ≥ α

∫
R\Imain(t)

χ0(x, t)wx(x, t)2 dx ,

and thus, in view of (6.8), that

(6.11)

d

dt
Ê(0)(t) ≤ −1

2D̂(0)(t) +KÊ(0), D(0)D(0)(t) + 4 D(0)
small(t)

+ κ0(1 + ccut,0)
2α

(
F̂ (0)

− (t) + F̂ (0)
+ (t)

)
.
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Lemma 6.5 (linear decrease up to pollution for F̂ (0)
± (t)). There exist positive quantities

νF̂0,±
and KF̂0,±

such that, for every nonnegative time t,

(6.12) d

dt
F̂ (0)

± (t) ≤ −νF̂0,±
F̂ (0)

± (t) +KF̂0,±
D(0)(t) +

(
4α+ 1

2

)
D(0)

small(t) .

The quantity νF̂0,±
depends only on α, and the quantity KF̂0,±

depends only on α and V .

Proof of Lemma 6.5. It follows from the hyperbolic system (6.7) satisfied by w that, for
every nonnegative time t,

d

dt
F̂ (0)

± (t) =
∫
R

[
∂tψ0,±F̂

(0) + ψ0,±
(
−αw2

t − w2
x

+(2αwt + w) ·
(
−D2V (u) · ut + ∂tusmall

))
− 2α∂xψ0,±wx · wt + 1

2∂xxψ0,±w
2
]
dx .

Since

|∂tψ0| ≤ κ0ccut,0ψ0,± and |∂xψ0,±| = κ0ψ0,± and ∂xxψ0,± ≤ κ2
0ψ0,± ,

and since∣∣∣2αwt ·D2V (u) · ut

∣∣∣ ≤ α

4w
2
t + 4α

∣∣∣D2V (u) · ut

∣∣∣2 ,
and |2wx · wt| ≤ w2

x + w2
t ,

and |2αwt · ∂tusmall| ≤ α

4w
2
t + 4α |∂tusmall|2 ,

and
∣∣∣w ·D2V (u) · ut

∣∣∣ =
∣∣∣(ut − ∂tusmall

)
·D2V (u) · ut

∣∣∣
≤
∣∣∣ut ·D2V (u) · ut

∣∣∣+ 1
2
∣∣∣D2V (u) · ut

∣∣∣2 + 1
2 |∂tusmall|2 ,

and |w · ∂tusmall| ≤ 1
2w

2 + 1
2 |∂tusmall|2 ,

it follows that

d

dt
F̂ (0)

± (t) ≤ κ0ccut,0F̂ (0)
± (t) +

∫
R
ψ0,±

[
α
(
−1 + κ0 + 1

4 + 1
4
)
w2

t + (−1 + ακ0)w2
x

+
(

4α+ 1
2

) ∣∣∣D2V (u) · ut

∣∣∣2 +
∣∣∣ut ·D2V (u) · ut

∣∣∣+ 1 + κ0
2 w2 + (4α+ 1) |∂tusmall|2

]
dx .

Let νF̂0,±
be a (small) positive quantity to be chosen below. Since

F̂ (0)(x, t) ≤ 3
2α

2wt(x, t)2 + αwx(x, t)2 + w(x, t)2 ,
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it follows that

(6.13)

d

dt
F̂ (0)

± (t) + νF̂0,±
F̂ (0)

± (t) ≤
∫
R
ψ0,±

[
α
(
−1

2 + κ0 + 3α
2
(
κ0ccut,0 + νF̂0,±

))
w2

t

+
(
−1 + ακ0 + α

(
κ0ccut,0 + νF̂0,±

))
w2

x + 4α
∣∣∣D2V (u) · ut

∣∣∣2
+
∣∣∣ut ·D2V (u) · ut

∣∣∣ +
(1 + κ0

2 + κ0ccut,0 + νF̂0,±

)
w2

+
(

4α+ 1
2

)
|∂tusmall|2

]
dx .

Let us choose
νF̂0,±

= 1
16α .

According to the definitions (4.9) and (5.6) of κ0 and ccut,0,

κ0 ≤ 1
4 and ακ0 ≤ 1

4 and ακ0ccut,0 ≤ 1
16 ,

so that, according to the choice of νF̂0,±
above,

−1
2 +κ0 + 3α

2 (κ0ccut,0 +νF̂0,±
) ≤ − 5

16 ≤ 0 and −1+ακ0 +α(κ0ccut,0 +νF̂0,±
)− 5

8 ≤ 0 .

Thus, introducing the quantity

KF̂0,±
= 4αλ2

max + λmax + 1 + κ0
2 + κ0ccut,0 + νF̂0,±

,

inequality (6.12) follows from inequality (6.13) (using the fact that ψ0,± is less than or
equal to χ0). Lemma 6.5 is proved.

Proof of Lemma 6.3. It follows from inequalities (6.11) and (6.12) that, for every non-
negative time t,

D̂(0)(t) ≤ −2 d

dt
Ê(0)(t) + 2

(
KÊ(0), D(0) +

κ0(1 + ccut,0)KF̂0,±

ανF̂0,±

)
D(0)(t)

+
(

8 + κ0(1 + ccut,0)
ανF̂0,±

(
(4α+ 1

2

))
D(0)

small(t) − κ0(1 + ccut,0)
ανF̂0,±

d

dt

(
F̂ (0)

− (t) + F̂ (0)
− (t)

)
.

As a consequence, for every nonnegative time T , since the quantities Ê(0)(T ) and F̂ (0)
− (T )

and F̂ (0)
+ (T ) are nonnegative, it follows that∫ T

0
D̂(0)(t) dt ≤ 2Ê(0)(0) + 2

(
KÊ(0), D(0) +

κ0(1 + ccut,0)KF̂0,±

ανF̂0,±

)∫ +∞

0
D(0)(t) dt

+
(

8 + κ0(1 + ccut,0)
ανF̂0,±

(
(4α+ 1

2

))∫ +∞

0
D(0)

small(t) dt

+ κ0(1 + ccut,0)
ανF̂0,±

(
F̂ (0)

− (0) + F̂ (0)
− (0)

)
.
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According to Lemma 5.15, and since according to Lemma 4.35 the quantity ∥Usmall(t)∥X

goes to 0 at an exponential rate as t goes to +∞, the quantity to the right of this
inequality is finite; since this quantity does not depend on T , Lemma 6.3 is proved.

6.3.2 Proof of Lemma 6.2

Proof of Lemma 6.2. Let us proceed by contradiction and assume that the converse is
true. Then there exists a positive quantity δ such that, for every large enough positive
time t,

(6.14) sup
x∈Imain(t)

∣∣∣H‡(usmooth(x, t), ∂xusmooth(x, t)
)∣∣∣ ≥ δ .

For every (x, t) in R × [0,+∞), let

N (x, t) = ∇V ‡(u(x, t)
)

− ∇V ‡(usmooth(x, t)
)

− usmall(x, t) − ∂tusmall(x, t) ;

it follows from system (6.6) satisfied by usmooth that

∂x

(
H‡(usmooth, ∂xusmooth

))
= ∂xusmooth ·

(
α∂2

t usmooth + ut + N
)

where the arguments of usmooth and its partial derivatives and of N are (x, t) everywhere.
As a consequence, it follows from (6.14) that

lim inf
t→+∞

∫
Imain(t)

∣∣∣∂xusmooth(x, t) ·
(
α∂2

t usmooth(x, t) + ut(x, t) + N (x, t)
)∣∣∣ dx ≥ 2δ .

Since according to Lemma 4.35 the quantity ∥Usmall(t)∥X goes to 0 at an exponential
rate as t goes to +∞, it follows that the previous limit still holds if the term N (x, t) is
dropped, that is,

lim inf
t→+∞

∫
Imain(t)

∣∣∣∂xusmooth(x, t) ·
(
α∂2

t usmooth(x, t) + ut(x, t)
)∣∣∣ dx ≥ 2δ .

Thus it follows from Cauchy–Schwarz inequality and from the bound (5.5) on the L2
ul-norm

of ux that the limit

lim inf
t→+∞

t

∫
Imain(t)

(
α∂2

t usmooth(x, t) + ut(x, t)
)2
dx

is positive. Since∫
Imain(t)

(
α∂2

t usmooth(x, t) + ut(x, t)
)2
dx ≤

∫
R
χ0(x, t)

(
α∂2

t usmooth(x, t) + ut(x, t)
)2
dx

≤ 2
∫
R
χ0(x, t)

(
α2∂2

t usmooth(x, t)2 + ut(x, t)2) dx
= 2α2D̂(0)(t) + 2D(0)(t) ,

it follows that the limit
lim inf
t→+∞

t
(
D(0)(t) + D̂(0)(t)

)
is positive, a contradiction with Lemmas 5.15 and 6.3. Lemma 6.2 is proved.
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6.4 Approach to normalized Hamiltonian level set zero for all times
Lemma 6.6 (approach to normalized Hamiltonian level set zero for all times). Assume
that, in addition to hypotheses (Hcoerc) and (Hhom) and (Hno-inv), hypothesis (Honly-min(v))
holds. Then the following limit holds:

sup
x∈Imain(t)

∣∣∣H‡ (usmooth(x, t), ∂xusmooth(x, t))
∣∣∣ → 0 as t → +∞ .

Proof. See the proof of [36, Lemma 8.3].

6.5 Approach to the set of bistable stationary solutions in the normalized
Hamiltonian level set zero

The following lemma completes the proof of conclusion 1 of Proposition 6.1.

Lemma 6.7 (approach to bistable stationary solutions in the normalized Hamiltonian
level set zero). Assume that, in addition to hypotheses (Hcoerc) and (Hhom) and (Hno-inv),
hypothesis (Honly-min(v)) holds. Then the following limit holds:

sup
x∈Imain(t)

dist
((
usmooth(x, t), ∂xusmooth(x, t)

)
, I
(
Φ0(v)

))
→ 0 as t → +∞ .

Proof. See the proof of [36, Lemma 8.4].

In view of Lemma 6.7, conclusion 1 of Proposition 6.1 is proved.

6.6 Approach to a standing pattern of bistable stationary solutions
The proof of conclusion 2 of Proposition 6.1 is identical to the proof of the same result in
the parabolic case, see [36, sections 8 and 9]. To keep track of the Escape points, the same
method as the one used for travelling fronts in subsection 4.13 (again the “smooth plus
small” decomposition) can be called upon. Once the standing terrace T (x, t) is defined
and the convergence towards 0 of the quantity (6.4) is proved, the equality between
the residual asymptotic energy Eres-asympt[u] of the solution and the energy E [T ] of the
standing terrace can be proved by the same arguments as those of of [36, subsection 9.2].

7 Proof of Theorem 1 and Proposition 2.8
As everywhere else, let us consider a function V in C2(Rd,R) satisfying the coercivity
hypothesis (Hcoerc). Let us assume in addition that the generic hypotheses (G) hold for
V , and let us consider a bistable solution (x, t) 7→ u(x, t) of system (1.1). The conclusions
of Theorem 1 and Proposition 2.8 on page 11 can be split into two parts.

1. The approach to the propagating terrace of bistable fronts travelling to the right,
and to the one travelling to the left.
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2. On the remaining “centre” spatial domain, the fact that the time derivative of
the solution goes to zero, and the fact that the “residual asymptotic energy” is
nonnegative.

Concerning the first part, it is a rather direct consequence of Proposition 4.1 on page 19
(“invasion implies convergence”), and the derivation of this first part from this proposition
is unchanged with respect to the parabolic case; it is explained in details in [34, section 6].

As far as the second part is concerned, it may be assumed that between the “last”
fronts travelling to the right and to the left, the hypotheses (and thus the conclusions) of
Proposition 5.1 on page 63 (“no invasion implies relaxation”) hold. Then the conclusions of
Theorem 1 and Proposition 2.8 concerning the behaviour of the solution in this centre area
follow from the conclusions of Propositions 5.1 and 6.1. Theorem 1 and Proposition 2.8
are proved.

8 Spatial asymptotics of the profiles of travelling waves
Let us assume that V satisfies hypothesis (Hcoerc), let c denote a nonnegative quantity,
and let us consider the differential system governing the profiles of waves travelling at
the speed c (or “standing” if c equals 0):

(8.1) ϕ′′ = −cϕ′ + ∇V (ϕ) .

A proof of the following lemma can be found, for instance, in [34].

Lemma 8.1 (spatial asymptotics of the profiles of travelling waves). Let m be in M,
and let ξ 7→ ϕ(ξ) be a global solution of the differential system (8.1) satisfying

|ϕ(ξ) −m| ≤ δEsc(m) for every ξ in [0,+∞) and ϕ(·) ̸≡ m.

Then the following conclusions hold.

1. Both quantities |ϕ(ξ) −m| and ϕ′(ξ) go to 0 as ξ goes to +∞.

2. For all ξ in [0,+∞), the scalar product
(
ϕ(ξ) −m

)
· ϕ′(ξ) is negative.

3. For all ξ in (0,+∞), the quantity |ϕ(ξ) −m| is smaller than δEsc(m).

4. The supremum supξ∈R |ϕ(ξ) −m| is larger than δEsc(m).

5. In addition to assertion 1 above, the quantities

ecξ |ϕ(ξ) −m| and ecξ
∣∣ϕ′(ξ)

∣∣
go to 0 at an exponential rate when ξ goes to +∞.
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