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This paper is concerned with parabolic gradient systems of the form

ut = −∇V (u) + uxx ,

where the spatial domain is the whole real line, the state variable u is
multidimensional, and the potential V is coercive at infinity. For such systems,
under generic assumptions on the potential, the asymptotic behaviour of
every bistable solution — that is, every solution close at both ends of space to
spatially homogeneous stable equilibria — is described. Every such solution
approaches, far to the left in space a stacked family of bistable fronts travelling
to the left, far to the right in space a stacked family of bistable fronts travelling
to the right, and in between a pattern of profiles of stationary solutions
homoclinic or heteroclinic to homogeneous stable equilibria, going slowly away
from one another. This result pushes one step further the program initiated in
the late seventies by Fife and McLeod about the global asymptotic behaviour
of bistable solutions, by extending their results to the case of systems. In the
absence of maximum principle, the arguments are purely variational, and call
upon previous results obtained in companion papers.
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1 Introduction
This paper deals with the global dynamics of nonlinear parabolic systems of the form

(1.1) ut = −∇V (u) + uxx ,

where the time variable t and the space variable x are real, the spatial domain is the
whole real line, the function (x, t) 7→ u(x, t) takes its values in Rd with d a positive
integer, and the nonlinearity is the gradient of a potential function V : Rd → R, which is
assumed to be regular (of class C2) and coercive at infinity (see hypothesis (Hcoerc) in
subsection 2.1 on page 3).

The main feature of system (1.1) is that it can be recast, at least formally, as the
gradient flow of an energy functional. If (w,w′) is a pair of vectors of Rd, let w · w′ and
|w| =

√
w · w denote the usual Euclidean scalar product and the usual Euclidean norm,

respectively, and let us write simply w2 for |w|2. For every function v : x 7→ v(x) defined
on R with values in Rd, its energy (or Lagrangian or action) with respect to system (1.1)
is defined (at least formally) by

(1.2) E [v] =
∫
R

(1
2vx(x)2 + V

(
v(x)

))
dx .

Formally, the differential of this functional reads (skipping border terms in the integration
by parts)

dE [v] · δv =
∫
R

(
vx · (δv)x + ∇V (v) · δv

)
dx

=
∫
R

(
−vxx + ∇V (v)

)
· δv dx .

In other words, the (formal) gradient of this functional with respect to the L2(R,Rd)-scalar
product reads

∇E [v] = ∇V (v) − vxx ,

and system (1.1) can formally be rewritten under the form

ut = −∇E [u(·, t)] .

Accordingly, if (x, t) 7→ u(x, t) is a solution of this system, then (formally)

d

dt
E [u(·, t)] = dE [u(·, t)] · ut(·, t)

=
〈
∇E [u(·, t)], ut(·, t)

〉
L2(R,Rd)

= −
∫
R
ut(x, t)2 dx ≤ 0 .

If system (1.1) is considered on a bounded spatial domain with boundary conditions
that preserve this gradient structure, then the integrals above (on this spatial domain)
converge, thus the system really — and not only formally — is of gradient type. In this
case the dynamics is (at least from a qualitative point of view) fairly well understood, up
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to a fine description of the global attractor that is compact and made of the unstable
manifolds of stationary solutions [20, 46]. According to LaSalle’s principle, every solution
approaches the set of stationary solutions, and even a single stationary solution under
rather general additional hypotheses [45].

If space is the whole real line and the solutions under consideration are only assumed
to be bounded, then the gradient structure above is only formal and allows a much
richer phenomenology (the full attractor is by the way far from being fully understood in
this case, see the introduction of [17] and references therein). A salient feature is the
occurrence of travelling fronts, that is travelling waves connecting homogeneous equilibria
at both ends of space. These solutions are known to play a major role in the asymptotic
behaviour for “many” initial conditions.

This crucial role of travelling fronts can be viewed, abstractly, as a consequence of
another fundamental feature of system (1.1): the fact that a formal gradient structure
exists not only in the laboratory frame, but also in every frame travelling at a constant
speed. Indeed, for every real quantity c, if a function (x, t) 7→ u(x, t) is a solution of
system (1.1), then the function (ξ, t) 7→ v(ξ, t) defined as

v(ξ, t) = u(x, t) for x = ct+ ξ

is a solution of

(1.3) vt − cvξ = −∇V (v) + vξξ .

Now, for every function w : ξ 7→ w(ξ) defined on R with values in Rd, let us define (at
least formally) the energy of w with respect to system (1.3) by

(1.4) Ec[w] =
∫
R
ecξ
(1

2wξ(ξ)2 + V
(
w(ξ)

))
dξ .

Formally, the differential of Ec[]̇ reads (skipping border terms in the integration by parts)

dEc[w] · δw =
∫
R
ecξ(wξ · (δw)ξ + ∇V (w) · δw

)
dξ

=
∫
R
ecξ(−wξξ − cwξ + ∇V (w)

)
· δw dξ .

In other words, the (formal) gradient of this functional with respect to the L2-scalar
product with weight ecξ on functions: R → Rd reads

∇cEc[w] = −wξ − cwξ + ∇V (w) ,

and system (1.3) can formally be rewritten as

(1.5) vt = −∇cEc[v(·, t)] .

Accordingly, if (ξ, t) 7→ v(ξ, t) is a solution of system (1.3), then (formally)

(1.6) d

dt
Ec[v(·, t)] = −

∫
R
ecξvt(ξ, t)2 dξ .
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This gradient structure has been known for a long time [12], but it is only more recently
that it received a more detailed attention from several authors (among which S. Heinze,
C. B. Muratov, Th. Gallay, R. Joly, and the author [15, 16, 21, 27, 39]), and that is was
shown that this structure is sufficient (in itself, that is without the use of the maximum
principle) to prove results of global convergence towards travelling fronts. These ideas
have been applied since in different contexts, to prove either global convergence or just
existence results, see for instance [1, 2, 4–10, 24, 28–30, 32–34].

A reasonably wide class of solutions of system (1.1), large enough to capture the
convergence to travelling fronts while limiting the complexity of the dynamics encountered
is made of solutions that are close to homogeneous equilibria at both ends of space, at
least for large positive times. Among such solutions the simplest case is that of bistable
solutions, when these equilibria at both ends of space are stable. In the late seventies,
substantial breakthroughs have been achieved by P. C. Fife and J. B. McLeod about the
global behaviour of such bistable solutions in the scalar case (d equals 1). Their results
comprise global convergence towards a bistable travelling front [12], global convergence
towards a “stacked family of bistable travelling fronts” [13], and finally, in the case of a
bistable potential, a rather complete description of the global asymptotic behaviour of
all solutions that are close enough, at infinity in space,to the local (non global) minimum
point [14]. Many extensions and generalizations of these results have been achieved
since, but mostly for monotone systems or in the scalar case d equals 1 (using maximum
principles and order-preserving properties of the solutions), see [11, 38, 44] and references
therein.

The aim of this paper, completing the companion papers [39, 43], is to make a step
further in this program, by extending these results to the case of systems of the form (1.1),
and by providing for such systems a complete description of the asymptotic behaviour of
every bistable solution (Theorem 1 below).

2 Assumptions, notation, and statement of the results
This section presents strong similarities with [43, section 2], where more details and
comments can be found.

2.1 Semi-flow in uniformly local Sobolev space and coercivity hypothesis
Let us denote by X the uniformly local Sobolev space H1

ul
(
R,Rd

)
. System (1.1) defines

a local semi-flow in X (see for instance D. B. Henry’s book [22]).
As in [43], let us assume that the potential function V : Rd → R is of class C2 and

strictly coercive at infinity in the following sense:

lim
R→+∞

inf
|u|≥R

u · ∇V (u)
|u|2

> 0(Hcoerc)

(or in other words there exists a positive quantity ε such that the quantity u · ∇V (u) is
greater than or equal to ε |u|2 as soon as |u| is large enough).
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According to this hypothesis (Hcoerc), the semi-flow of system (1.1) is actually global
(see Proposition 3.1 on page 18). Let us denote by (St)t≥0 this semi-flow.

In the following, a solution of system (1.1) will refer to a function

R × [0,+∞) → Rd , (x, t) 7→ u(x, t) ,

such that the function u0 : x 7→ u(x, t = 0) (initial condition) is in X and u(·, t) equals
(Stu0)(·) for every nonnegative time t.

2.2 Minimum points and bistable solutions
2.2.1 Minimum points

Everywhere in this paper, the expression “minimum point” denotes a point where a
function — namely the potential V — reaches a local or global minimum value.
Notation. Let M denote the set of nondegenerate (local or global) minimum points of V :

M = {u ∈ Rd : ∇V (u) = 0 and D2V (u) is positive definite} .

2.2.2 Bistable solutions

Let us recall the following definition, already stated in [43].

Definition 2.1 (bistable solution). A solution (x, t) 7→ u(x, t) of system (1.1) is called
a bistable solution if there are two (possibly equal) points m− and m+ in M such that
both quantities:

lim sup
x→−∞

|u(x, t) −m−| and lim sup
x→+∞

|u(x, t) −m+|

go to 0 as time goes to +∞. More precisely, such a solution is called a bistable solution
connecting m− to m+ (see figure 2.1). A function u0 in X is called a bistable initial

Figure 2.1: A bistable solution connecting m− to m+.

condition (connecting m− to m+) if the solution of system (1.1) corresponding to this
initial condition is a bistable solution (connecting m− to m+).

Let m− and m+ denote two (possibly equal) points in M.
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Notation. Let
Xbist(m−,m+)

denote the subset of X made of bistable initial conditions connecting m− to m+.
By construction, this set is positively invariant under the semi-flow of system (1.1); it

is in addition nonempty and open in X (for the usual norm on this function space), and
contains all functions close enough to m− and m+ at the ends of space (for proofs see for
instance [39, 43]).

The aim of this paper is to study the asymptotic behaviour of solutions belonging to
the sets Xbist(m−,m+). The description of this asymptotic behaviour involves two kinds
of particular solutions: stationary solutions connecting (stable) equilibria and (bistable)
fronts travelling at a constant speed.

2.3 Stationary solutions, travelling fronts, terraces, asymptotic pattern
2.3.1 Stationary solutions and travelling fronts

Let c be a real quantity. A function

ϕ : R → Rd, ξ 7→ ϕ(ξ)

is the profile of a wave travelling at the speed c (or of a standing wave if c vanishes) for
system (1.1) if the function (x, t) 7→ ϕ(x− ct) is a solution of this system, that is if ϕ is a
solution of the differential system

(2.1) ϕ′′ = −cϕ′ + ∇V (ϕ) .

This system can be viewed as a damped oscillator (or a conservative oscillator if c
vanishes) in the potential −V , the speed c playing the role of the damping coefficient.
Its solutions may blow up in finite time, but only global solutions will be considered or
encountered along the paper.
Notation. If m− and m+ are two points of M and c is a real quantity, let Φc(m−,m+)
denote the set of nonconstant global solutions of system (2.1) connecting m− to m+.
With symbols,

Φc(m−,m+) =
{
ϕ : R → Rd : ϕ is a nonconstant global solution of system (2.1)
and ϕ(ξ) −−−−→

ξ→−∞
m− and ϕ(ξ) −−−−→

ξ→+∞
m+

}
.

And, if the quantity c is positive, let Φc(m+) denote the set of nonconstant global and
bounded solutions of system (2.1) converging to m+ at the right end of space (in other
words, the set of profiles of bounded waves travelling at the speed c and “invading” m+).
With symbols,

Φc(m+) =
{
ϕ : R → Rd : ϕ is a nonconstant global solution of system (2.1)
and sup

ξ∈R
|ϕ(ξ)| < +∞ and ϕ(ξ) −−−−→

ξ→+∞
m+

}
.
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Let us make some comments about these sets and this notation.

• The notation “ϕ” and “Φ” refers to the concept of “front”.

• If c is positive, then according to LaSalle’s principle every function ξ 7→ ϕ(ξ)
belonging to Φc(m+) must approach the set of critical points (but not necessarily a
single critical point) of V as ξ goes to −∞ (see assertion 6 of Lemma 7.1).

• If ϕ is an element of some set Φc(m−,m+), then it follows from system (2.1) that

(2.2) V (m+) − V (m−) = c

∫
R
ϕ′(ξ)2 dξ ,

so that if c is nonzero then m− and m+ differ, and in this case ϕ is indeed the
profile of a travelling front. Since its asymptotic values m− and m+ belong to M,
this front is qualified as bistable.

• If conversely ϕ is an element of some set Φ0(m−,m+) (for a null speed), then
V (m−) equals V (m+) and m− and m+ may be equal; in such a case, ϕ should
rather be called a “pulse” than a “front”, but for convenience and homogeneity
purposes, the notation Φ0(m−,m+) and ϕ will be maintained also in this case.

2.3.2 Propagating terrace of bistable travelling fronts

This sub-subsection and the two next ones are devoted to several definitions. Their
purpose is to enable a compact formulation of the main result of this paper (Theorem 1
below). Some comments on the terminology and related references are given at the end
of sub-subsection 2.3.3.

Figure 2.2: Propagating terrace of (bistable) fronts travelling to the right.

Definition 2.2 (propagating terrace of bistable travelling fronts, figure 2.2). Let m−
and m+ be two points of M (satisfying V (m−) ≤ V (m+)). A function

T : R × [0,+∞) → Rd, (x, t) 7→ T (x, t)

is called a propagating terrace of bistable fronts travelling to the right, connecting m− to
m+, if there exists a nonnegative integer q such that:
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1. if q equals 0, then m− = m+ and, for every real quantity x and every nonnegative
time t,

T (x, t) = m− = m+ ;

2. if q equals 1, then there exist:
• a positive quantity c1,
• and a function ϕ1 in Φc(m−,m+) (that is, the profile of a bistable front

travelling at the speed c1 and connecting m− to m+),
• and a C1-function t 7→ x1(t), defined on [0,+∞), and satisfying x′

1(t) → c1 as
time goes to +∞,

such that, for every real quantity x and every nonnegative time t,

T (x, t) = ϕ1
(
x− x1(t)

)
;

3. if q is not smaller than 2, then there exists q−1 points m1, . . . ,mq−1 in M, satisfying
(if m+ is denoted by m0 and m− by mq)

V (m0) > V (m1) > · · · > V (mq) ,

and there exist q positive quantities c1, . . . , cq satisfying

c1 ≥ · · · ≥ cq ,

and for each integer i in {1, . . . , q}, there exist:
• a function ϕi in Φci(mi,mi−1) (that is, the profile of a bistable front travelling

at the speed ci and connecting mi to mi−1),
• and a C1-function t 7→ xi(t), defined on [0,+∞), and satisfying x′

i(t) → ci as
time goes to +∞,

such that, for every integer i in {1, . . . , q − 1},

xi+1(t) − xi(t) → +∞ as t → +∞ ,

and such that, for every real quantity x and every nonnegative time t,

T (x, t) = m0 +
q∑

i=1

[
ϕi
(
x− xi(t)

)
−mi−1

]
.

Remark. Item 2 may have been omitted in this definition, since it boils down to item 3
with q equals 1.

A propagating terrace of bistable fronts travelling to the left may be defined similarly.
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Figure 2.3: Standing terrace (with four items, q = 4).

2.3.3 Standing terrace of bistable stationary solutions

The next three definitions deal with stationary solutions. They are identical to those of
[43].

Definition 2.3 (standing terrace of bistable stationary solutions, figure 2.3). Let v be a
real quantity and let m− and m+ be two points of M such that V (m−) = V (m+) = v.
A function

T : R × [0,+∞) → Rd, (x, t) 7→ T (x, t)

is called a standing terrace of bistable stationary solutions, connecting m− to m+, if there
exists a nonnegative integer q such that:

1. if q equals 0, then m− = m+ and, for every real quantity x and every nonnegative
time t,

T (x, t) = m− = m+ ;

2. if q = 1, then there exist:
• a bistable stationary solution ϕ1 connecting m− to m+,
• and a C1-function t 7→ x1(t) defined on [0,+∞) and satisfying x′

1(t) → 0 as
time goes to +∞,

such that, for every real quantity x and every nonnegative time t,

T (x, t) = ϕ1
(
x− x1(t)

)
;

3. if q is not smaller than 2, then there exist q − 1 (not necessarily distinct) points
m1, . . . ,mq−1 in M, all in the level set V −1({v}), and if m− is denoted by m0 and
m+ by mq, then for each integer i in {1, . . . , q}, there exist:

• a bistable stationary solution ϕi connecting mi−1 to mi,
• and a C1-function t 7→ xi(t) defined on [0,+∞) and satisfying x′

i(t) → 0 as
time goes to +∞,
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such that, for every integer i in {1, . . . , q − 1},

xi+1(t) − xi(t) → +∞ as t → +∞ ,

and such that, for every real quantity x and every nonnegative time t,

T (x, t) = m0 +
q∑

i=1

[
ϕi
(
x− xi(t)

)
−mi−1

]
.

Remark. Once again item 2 may have been omitted in this definition, since it boils down
to item 3 with q equals 1.

The terminology “propagating terrace” was introduced by A. Ducrot, T. Giletti, and
H. Matano in [11] (and subsequently used by several other authors [18, 19, 26, 35–38]) to
denote a stacked family of travelling fronts in a (scalar) reaction-diffusion equation. This
led the author to keep the same terminology in the present context, and to introduce the
term “standing terrace” for sake of homogeneity. Those terminologies are convenient to
denote objects that would otherwise require a long description. They are also used in the
companion papers [40, 41].

The author hopes that these advantages balance some drawbacks of this terminological
choice. Like the fact that the word “terrace” is probably more relevant in the scalar
case d equals 1 (see the pictures in [11, 38]) than in the more general case of systems
considered here. Or the fact that the definitions above and in [43] are different from the
original definition of [11] in that they involve not only the profiles of particular (standing
or travelling) solutions, but also their positions (denoted above by xi(t)).

To finish, observe that in the present context terraces are only made of bistable
solutions, by contrast with the propagating terraces introduced and used by the authors
cited above; that (still in the present context) terraces are approached by solutions but
are (in general) not solutions themselves; and that a (standing or propagating) terrace
may be nothing but a single stable homogeneous equilibrium (if q equals 0) or may involve
a single travelling front or a single inhomogeneous stationary solution (if q equals 1).

2.3.4 Energy of a bistable stationary solution and of a standing terrace

Definition 2.4 (energy of a bistable stationary solution). If x 7→ u(x) is a bistable
stationary solution connecting two points m− and m+ of M (in this case V (m−) must
equal V (m+)), let us call energy of u, and let us denote by E [u], the quantity:

E [u] =
∫
R

(1
2
∣∣u′(x)

∣∣2 + V
(
u(x)

)
− V (m±)

)
dx .

Observe that this integral converges, since u(x) approaches its limits m− and m+ at both
ends of space at an exponential rate.

Definition 2.5 (energy of a standing terrace). For every standing terrace T of bistable
stationary solutions, let us call energy of T , and let us denote by E [T ], the quantity
defined (with the notation of the two definitions above) as follows:
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1. if q equals 0, then E [T ] = 0,

2. if q equals 1, then E [T ] = E [ϕ1],

3. if q is not smaller than 2, then E [T ] = ∑q
i=1 E [ϕi].

2.3.5 Bistable asymptotic pattern

Figure 2.4: Bistable asymptotic pattern.

Definition 2.6 (bistable asymptotic pattern, figure 2.4). Let mleft and mright be two
points of M. A function

P : R × [0,+∞) → Rd, (x, t) 7→ P(x, t)

is called a bistable asymptotic pattern connecting mleft to mright if there exist:

• two points mcentre-left and mcentre-right in M, belonging to the same level set of V ,

• and a propagating terrace Tleft of bistable fronts travelling to the left, connecting
mleft to mcentre-left,

• and a standing terrace Tcentre of bistable stationary solutions, connecting mcentre-left
to mcentre-right,

• and a propagating terrace Tright of bistable fronts travelling to the right, connecting
mcentre-right to mright,

such that, for every real quantity x and for every nonnegative time t,

P(x, t) =
[
Tleft(x, t) −mcentre-left

]
+ Tcentre(x, t) +

[
Tright(x, t) −mcentre-right

]
.

The main result of this paper (Theorem 1 below) states that, under some generic
assumptions on the potential V , every bistable solution approaches such a bistable
asymptotic pattern. Results of the the same flavour have recently been obtained by H.
Matano and P. Poláčik in the scalar case d equals 1 (under weaker assumptions otherwise,
and by completely different methods specific to the scalar case), [26, 38] (compare [26,
Figure 1] and [38, Figure 1.1] with figure 2.4 above).
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2.4 Generic hypotheses on the potential
2.4.1 Escape distance of a minimum point

Notation. For every u in Rd, let σ
(
D2V (u)

)
denote the spectrum (the set of eigenvalues)

of the Hessian matrix of V at u, and let λmin(u) denote the minimum of this spectrum:

(2.3) λmin(u) = min
(
σ
(
D2V (u)

))
.

Definition 2.7 (Escape distance of a nondegenerate minimum point). For every m in
M, let us call Escape distance of m, and let us denote by δEsc(m), the supremum of the
set

(2.4)
{
δ ∈ [0, 1] : for all u in Rd satisfying |u−m| ≤ δ, λmin(u) ≥ 1

2λmin(m)
}
.

Since the quantity λmin(u) varies continuously with u, this Escape distance δEsc(m) is
positive (thus in (0, 1]). In addition, for all u in Rd such that |u−m| is not larger than
δEsc(m), the following inequality holds:

(2.5) λmin(u) ≥ 1
2λmin(m) .

This “Escape” distance will be used in two different ways.

1. To “track” the position in space where a solution “escapes” a neighbourhood of
m (this position is called “leading edge” by Muratov in a framework including
monostable invasion [27, 30, 31]). The reason for the capital letter “E” in “Esc” is
to make a difference with another escape distance “δesc(m)” that will be required
later (see definition (4.18) on page 27).

2. To normalize the bistable stationary solutions with respect to translation invariance
(in the next sub-subsection).

2.4.2 Breakup of space translation invariance for stationary solutions and travelling
fronts

For every real quantity c, for every ordered pair (m−,m+) of points of M, and for every
function ϕ in Φc(m−,m+),

sup
ξ∈R

|ϕ(ξ) −m−| > δEsc(m−) and sup
ξ∈R

|ϕ(ξ) −m+| > δEsc(m+)

(assertion 4 of Lemma 7.1 on page 96). See figure 2.5. This provides a way to pick
a representative among the family of all translates of ϕ, by demanding that, say, the
translate be exactly at distance δEsc(m+) of his right-end limit m+ at ξ = 0, and closer for
every positive ξ (see figure 2.6). Here is a more formal definition. For c in R and (m−,m+)

11



Figure 2.5: Every function in Φc(m−,m+) escapes at least at distance δEsc(m−) of m− and
at distance δEsc(m+) of m+; every function in Φ0(m+,m+) escapes at least at distance
δEsc(m+) of m+.

Figure 2.6: Normalized (standing or travelling) bistable front.
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in M2, let us introduce the set of normalized profiles of bistable fronts/stationary solutions
connecting m− to m+:

(2.6)
Φc,norm(m−,m+) =

{
ϕ ∈ Φc(m−,m+) : |ϕ(0) −m+| = δEsc(m+) and
|ϕ(ξ) −m+| < δEsc(m+) for all ξ in (0,+∞)

}
.

And if c is positive, let us introduce the set of normalized profiles of bounded waves
travelling at the speed c and “invading” m+:

Φc,norm(m+) =
{
ϕ ∈ Φc(m+) : |ϕ(0) −m+| = δEsc(m+) and
|ϕ(ξ) −m+| < δEsc(m+) for all ξ in (0,+∞)

}
.

2.4.3 Statement of the generic hypotheses

The main result stated in the next subsection 2.5 requires a number of generic hypotheses
on the potential V , that will now be stated. A formal proof of the genericity of these
hypotheses is provided in [23].

(Honly-bist) Every nonconstant bounded wave travelling at a nonzero speed and invading
a stable equilibrium (a point of M) is a bistable travelling front. With symbols,
for every m+ in M and every positive quantity c,

Φc(m+) =
⋃

m−∈M
Φc(m−,m+) ,

or equivalently Φc,norm(m+) =
⋃

m−∈M
Φc,norm(m−,m+) .

In the next two hypotheses, the subscript “disc” refers to the concept of “discontinuity”
or “discreteness”.

(Hdisc-c) For every m+ in M, the set:{
c in (0,+∞) : Φc(m+) ̸= ∅

}
has an empty interior.

(Hdisc-Φ) For every point m+ in M and every real quantity c, the set{(
ϕ(0), ϕ′(0)

)
: ϕ ∈ Φc,norm(m+)

}
is totally discontinuous — if not empty — in R2d. That is, its connected components
are singletons. Equivalently, the set Φc,norm(m+) is totally disconnected for the
topology of compact convergence (uniform convergence on compact subsets of R).

The next hypothesis will be required to ensure that the number of travelling fronts
involved in the asymptotic behaviour of a bistable solution is finite:
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(Hcrit-val) The set of critical values of V , that is the set{
V (u) : u ∈ Rd and ∇V (u) = 0

}
,

is finite.

The next hypothesis will be required in order to apply the relaxation results of [43] (for
the relaxation of the solution behind the travelling fronts).

(Honly-min) Every critical point of V that belongs to the same level set as a point of M
is itself in M.

In other words, for all points u1 and u2 in Rd,[
∇V (u1) = ∇V (u2) = 0 and V (u1) = V (u2) and D2V (u1) > 0

]
=⇒ D2V (u2) > 0 .

Finally, let us us call (G) the union of these five generic hypotheses:

(Honly-bist) and (Hdisc-c) and (Hdisc-Φ) and (Hcrit-val) and (Honly-min).(G)

2.5 Main result: global asymptotic behaviour
Theorem 1 (global asymptotic behaviour). Let V denote a function in C2(Rd,R) satis-
fying the coercivity hypothesis (Hcoerc) and the generic hypotheses (G). Then, for every
bistable solution (x, t) 7→ u(x, t) of system (1.1), there exists a bistable asymptotic pattern
P such that

sup
x∈R

|u(x, t) − P(x, t)| → 0 as t → +∞ .

2.6 Additional results
2.6.1 Residual asymptotic energy

Here is an additional conclusion to Theorem 1.

Proposition 2.8 (residual asymptotic energy). Assume that the assumptions of The-
orem 1 hold. With the notation of this theorem, if Tcentre denotes the standing terrace
involved in P and if vcentre denotes the value taken by V at each of the two points of M
connected by Tcentre, then, for every small enough positive quantity ε,∫ εt

−εt

(1
2ux(x, t)2 + V

(
u(x, t)

)
− vcentre

)
dx → E [Tcentre] as t → +∞ .

The quantity E [Tcentre] may be called the residual asymptotic energy of the solution.
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2.6.2 Regularity of the correspondence between a solution and its asymptotic
pattern

Notation. Let
Xbist(M) =

⊔
(m−,m+)∈M2

Xbist(m−,m+) .

For u0 in Xbist(M), if (x, t) 7→ u(x, t) denotes the corresponding solution, using the
notation of Theorem 1 and of Definition 2.6 (definition of a bistable asymptotic pattern),
let:

• qleft denote the number of items involved in the left-propagating terrace Tleft,

• qright denote the number of items involved in the right-propagating terrace Tright,

• c1,left denote the real quantity defined as
– if qleft equals 0 then c1,left = 0,
– if qleft is not smaller than 1 then c1,left is the speed of the “first” travelling

front involved in the left-propagating terrace Tleft (the one invading m−), with
the convention that c1,left is positive (the velocity of the front is −c1,left),

• c1,right denote the real quantity defined as
– if qright equals 0 then c1,right = 0,
– if qright is not smaller than 1 then c1,right is the (positive) speed of the “first”

travelling front involved in the right-propagating terrace Tright (the one invading
m+),

• vcentre denote the quantity V (mcentre-left) = V (mcentre-right),

• E denote the energy of the centre standing terrace Tcentre.

This defines maps:
qright : Xbist(M) → N ,
qleft : Xbist(M) → N ,

vcentre : Xbist(M) → R ,
E : Xbist(M) → [0,+∞) ,

c1,left : Xbist(M) → (0,+∞) ,
c1,right : Xbist(M) → (0,+∞) .

Finally, let
Xbist, no-inv(M) = Xbist(M) ∩ q−1

left({0}) ∩ q−1
right({0}) .

In this notation the subscript "no-inv" refers to the fact that these solutions are those for
which none of the two stable equilibria at both ends of space is “invaded” by a travelling
front. Note that for every solution in Xbist, no-inv(M), the equilibria approached by the
solution at both ends of spatial domain must belong to the same level set of V (this
follows from Theorem 1).
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The following proposition states some regularity properties (upper or lower semi-
continuity) of the “correspondences” between a solution and its asymptotic pattern
defined above. The underlying phenomenon is in essence nothing else than the standard
upper semi-continuity with respect to initial condition of the asymptotic level set of a
(descendent) gradient flow (of say a Morse function on a finite-dimensional manifold).
All the assertions stand with respect to the topology induced by ∥·∥X (for the domain
spaces) and the topology induced by the usual distance on R (for the arrival spaces).

Proposition 2.9 (continuity properties of the asymptotic pattern with respect to initial
condition). The following assertions hold:

1. the maps c1,left and c1,right are lower semi-continuous;

2. the restriction of the function E to the set Xbist, no-inv(M) is upper semi-continuous.

Proof. The fist assertion is proved in [39]. The second assertion is proved in [43].

There are many other natural questions concerning the regularity of those correspon-
dences. For instance it seems likely that the asymptotic potential level (the function
vcentre[·]) is upper semi-continuous on Xbist(M). And it would be nice to equip the “space
of asymptotic patterns” with a topological structure ensuring similar semi-continuity
properties for other (all?) features of the asymptotic pattern (speeds of the travelling
fronts, values of the potential at minimum points connected by these travelling fronts,
energies of the components of the centre standing terrace). This question goes beyond
the scope of this paper; it is discussed in more details (in a more restricted case) in [43].

2.7 Additional questions and extensions
2.7.1 Additional questions

Besides the questions concerning the regularity of the correspondence between a solution
and its asymptotic pattern mentioned above, here are some other natural questions
(either that I have not been able to solve, or that are beyond the scope of this paper).

• Does Theorem 1 hold without hypothesis (Hdisc-c)? The question is legitimate since
this hypothesis is not required to prove convergence towards the “first travelling
fronts” (those called ϕ1,+ and ϕ1,− in the statement of Theorem 1); indeed no
hypothesis of this kind is made in [39]. However, I have not been able to get rid
of that hypothesis to prove convergence towards a travelling front “following” a
previous one. For additional comments and details see subsection 4.8.

• Does Theorem 1 hold without hypothesis (Honly-min)? This question is discussed in
[43].

• All the convergence results stated in this paper are purely qualitative (there is
no quantitative estimate about the rate of convergence of a solution towards its
asymptotic pattern). F. Béthuel, G. Orlandi and D. Smets [3] have obtained such
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quantitative estimates for the same gradient systems but in a different setting
(they do not consider convergence towards travelling fronts but only relaxation
towards stationary solutions connecting global minimum points of V ). It would
be interesting to see if the same approach can yield similar quantitative estimates
but for general bistable solutions (and asymptotic behaviour involving travelling
fronts).

• Concerning the existence of travelling fronts, the results obtained by Alikakos–
Katzourakis and the author ([2, 39]) have been recently extended (by a calculus of
variations approach) to the settings of degenerate stable states [32] and parabolic
systems in space dimension two [10, 33]. It would be interesting to know if global
convergence results as those of the present paper can also be obtained in these
settings.

2.7.2 Extensions

Results similar to Theorem 1 hold in the following two cases that are considered in the
companion papers [40, 41].

• Damped hyperbolic systems of the form

αutt + ut = −∇V (u) + uxx

obtained by adding an inertial term αutt (where α is a positive non necessarily small
quantity) to the parabolic system (1.1) considered here. Note that this extension
was already achieved by Gallay and Joly in the scalar case d equals 1 (for a bistable
potential) using the gradient structure in every travelling frame (1.6), see [15].

• Radially symmetric solutions in higher space dimension dsp, governed by systems
of the form

ut = −∇V (u) + dsp − 1
r

ur + urr

where the nonnegative quantity r denotes the radius (distance to the origin) in
Rdsp .

2.8 Organization of the paper
The next section 3 is devoted to some preliminaries (existence of solutions, preliminary
computations on spatially localized functionals, notation).

Proof of Theorem 1 is essentially based on two propositions: Propositions 4.1 and 5.1,
together with the results of the companion paper [43]. Sections 4 and 5 are devoted to
these two propositions.

Proposition 4.1 is the main step and is proved in section 4 on page 22. It is an extension
of the main result of global convergence towards travelling fronts proved in the previous
paper [39]. As in [39], the proof is based on estimates about the time derivatives of energy
functionals of the form (1.4), with the exponential weight replaced by an integrable one.
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By contrast with the situation investigated in [39], the hypotheses of Proposition 4.1
cope with the case where the solution is not necessarily close to a single point of M in
the whole domain ahead of the “next” travelling front, but may already behave in this
domain as a propagating terrace of bistable travelling fronts. With respect to [39], the
main difficulty is that an additional term appears in the time derivatives of the localized
energy functionals in this case. For this reason, the relaxation scheme requires more care.

Proposition 5.1 is easier and is proved in section 5 on page 78. It follows from
Proposition 5.8, which states that, if a solution is close to stable homogeneous equilibria
in large spatial domains on the left and on the right, and if these domains are not invaded
(at a nonzero mean speed) from the “centre” area in between, then the energy of the
solution (in a standing frame) between these two areas remains nonnegative. Again, the
proof is based on estimates for localized energy functionals in a travelling frame — this
time at zero or small nonzero speed.

The proof of Theorem 1 is completed in section 6 on page 95, by combining Proposi-
tion 4.1, Proposition 5.1, and the results of [43].

Finally, elementary properties of the profiles of travelling fronts are recalled in section 7
on page 96.

3 Preliminaries
As everywhere else, let us introduce a function V in C2(Rd,R) satisfying the coercivity
hypothesis (Hcoerc).

3.1 Global existence of solutions and attracting ball for the semi-flow
The following proposition follows from general existence results and the assumption
(Hcoerc). For the proof see for instance [39, 43]. Its two conclusions are somehow
redundant, since an upper bound for the H1

ul-norm immediately yields an upper bound
for the L∞-norm, and the converse is also true since the flow is regularizing. The reason
for this redundant statement is that both quantities Ratt,∞ and Ratt,X used to express
these bounds will be explicitly used at some places.

Proposition 3.1 (global existence of solutions and attracting ball). For every function
u0 in X, system (1.1) has a unique globally defined solution t 7→ Stu0 in C0([0,+∞), X)
with initial condition u0. In addition, there exist positive quantities Ratt,∞ and Ratt,X
(radius of attracting ball for the L∞-norm and the H1

ul-norm, respectively), depending
only on the potential V , such that, for every large enough positive time t,

∥x 7→ (Stu0)(x)∥
L∞
(
R,Rd

) ≤ Ratt,∞ and ∥x 7→ (Stu0)(x)∥X ≤ Ratt,X .

In addition, system (1.1) has smoothing properties (Henry [22]). Due to these properties,
since V is of class C2 and thus the nonlinearity ∇V is of class C1, for every quantity α in
the interval (0, 1), every solution t 7→ Stu0 in C0([0,+∞), X) actually belongs to

C0
(
(0,+∞), C2,α

b
(
R,Rd)) ∩ C1

(
(0,+∞), C0,α

b
(
R,Rd)) ,
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and, for every positive quantity ε, the quantities

(3.1) sup
t≥ε

∥Stu0∥
C2,α

b

(
R,Rd

) and sup
t≥ε

∥∥∥∥d(Stu0)
dt

(t)
∥∥∥∥

C0,α
b

(
R,Rd

)
are finite.

3.2 Asymptotic compactness of solutions
The following compactness property will be called upon several times (at the ends of the
proofs of Propositions 4.1 and 5.1).

Lemma 3.2 (asymptotic compactness). For every solution (x, t) 7→ u(x, t) of system
(1.1), and for every sequence (xn, tn)n∈N in R× [0,+∞) such that tn → +∞ as n → +∞,
there exists a entire solution u of system (1.1) in

C0
(
R, C2

b
(
R,Rd)) ∩ C1

(
R, C0

b
(
R,Rd)) ,

such that, up to replacing the sequence (xn, tn)n∈N by a subsequence,

(3.2) D2,1u(xn + ·, tn + ·) → D2,1u as n → +∞ ,

uniformly on every compact subset of R2, where the symbol D2,1v stands for (v, vx, vxx, vt)
(for v equal to u or u).

Proof. See [25, p. 1963] or [43, proof of Lemma 3.2].

3.3 Time derivative of (localized) energy and L2-norm of a solution in a
travelling frame

Let (x, t) 7→ u(x, t) be a solution of system (1.1), and let m be a point of M. Let c be a
real quantity, and let us consider the same solution viewed in a frame travelling at the
speed c, that is the function (ξ, t) 7→ v(ξ, t) defined as

v(ξ, t) = u(x, t) for x = ct+ ξ .

As mentioned in introduction, this function is a solution of the system

(3.3) vt − cvξ = −∇V (v) + vξξ ,

that can be formally rewritten as the (descendent) gradient of the following energy
(Lagrangian, action) functional:∫

R
ecξ
(1

2vξ(ξ, t)2 + V
(
v(ξ, t)

)
− V (m)

)
dξ .

The key ingredients of the proofs rely on appropriate combinations of this functional
with the other most natural functional to consider, namely the L2-norm of the distance
to m (with the same exponential weight):∫

R
ecξ 1

2
(
v(ξ, t) −m

)2
dξ .
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To simplify the presentation, let us assume (only in this subsection) that

m = 0Rd and V (m) = V (0Rd) = 0 .

In order to ensure the convergence of those last two integrals, it is necessary to localize
the integrands. Let (ξ, t) 7→ ψ(ξ, t) be a function defined on R × [0,+∞) and such that,
for all t in (0,+∞), the function ξ 7→ ψ(ξ, t) belongs to W 2,1(R,R) and its time derivative
ξ 7→ ψt(ξ, t) is defined and belongs to L1(R,R). Then, the time derivatives of the two
aforementioned functionals — localized by the “weight” function ψ(ξ, t) — read:

(3.4) d

dt

∫
R
ψ
(1

2v
2
ξ + V (v)

)
dξ =

∫
R

[
−ψ v2

t + ψt

(1
2v

2
ξ + V (v)

)
+ (cψ − ψξ) vξ · vt

]
dξ ,

and

(3.5) d

dt

∫
R
ψ

1
2v

2 dξ =
∫
R

[
ψ
(
−v · ∇V (v) − v2

ξ

)
+ 1

2(ψt + ψξξ − cψξ)v2
]
dξ .

Here are some basic observations about these expressions.

• The time derivative of the (localized) energy is the sum of a (nonpositive) “dissipa-
tion” term and two additional “flux” terms.

• The time derivative of the (localized) L2-norm is similarly made of two “main”
terms and an additional “flux” term. Among the two main terms, the second is
nonpositive, and so is the first if |v| is small.

• The flux terms involving ψt are small if ψ varies slowly with respect to time.

• The other flux term in the time derivative of energy is small if the quantity cψ−ψξ

is small, that is if ψ(ξ, t) behaves nearly as exp(cξ) (up to a positive multiplicative
constant). But this cannot hold for all ξ in R since ξ 7→ ψ(ξ, t) must be in L1(R,R).
As a consequence, it will not be possible to avoid that this second flux term be
weighted by a “non small” weight of the order of cψ, at least somewhere in space.

• Hopefully, the remaining flux term in the time derivative of the L2-norm is “nicer”,
in the sense that it is small under any of two conditions instead of a single one:

– either if ψ(ξ, t) is close to behave like exp(cξ) (up to a positive multiplicative
constant, like the previous flux term),

– or if ψ(ξ, t) varies slowly with ξ.

• Finally, the “tricky” flux term in the time derivative of energy can be balanced
by the other terms of those expressions by considering a linear combination (with
positive coefficients) of energy and L2-norm with a large enough coefficient of the
L2-norm with respect to the coefficient of energy.

These observations will be put in practice several times along the following pages.
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3.4 Miscellanea
3.4.1 Second order estimates for the potential around a minimum point

Lemma 3.3 (second order estimates for the potential around a minimum point). For
every m in M and every u in Rd satisfying |u−m| ≤ δEsc(m), the following estimates
hold:

V (u) − V (m) ≥ λmin(m)
4 (u−m)2 ,(3.6)

and (u−m) · ∇V (u) ≥ λmin(m)
2 (u−m)2 ,(3.7)

and (u−m) · ∇V (u) ≥ V (u) − V (m) .(3.8)

Proof. The three inequalities follow from inequality (2.5) on page 11 ensured by the
definition of δEsc(m) and from three variants of Taylor’s Theorem with Lagrange remainder
applied to the function f defined on [0, 1] by f(θ) = V

(
m+θ(u−m)

)
(see [43, Lemma 3.3]).

3.4.2 Lower quadratic hulls of the potential at minimum points

For the computations carried in subsection 4.4 below, it will be convenient to introduce
the quantity qlow-hull defined as the minimum of the convexities of the negative quadratic
hulls of V at the points of M (see figure 3.1). With symbols:

Figure 3.1: Lower quadratic hull of the potential at a minimum point (definition of the
quantity qlow-hull).

qlow-hull = min
m∈M

inf
u∈Rd\{m}

V (u) − V (m)
(u−m)2

(a similar quantity was defined in [43]). This definition ensures (as displayed by figure 3.1)
that, for every point m of M and for every u in Rd,

V (u) − V (m) ≥ qlow-hull(u−m)2 .

Let us introduce the following quantity (it will be used to define the coefficient of the
energy in the firewall functions defined in subsection 4.4 and sub-subsection 4.7.6 on
page 26 and on page 35):

wen,0 = 1
max(1,−4 qlow-hull)

.
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It follows from this definition that, for every m in M and for all u in Rd,

(3.9) wen,0
(
V (u) − V (m)

)
+ 1

4(u−m)2 ≥ 0 .

4 Invasion implies convergence
4.1 Definitions and hypotheses
As everywhere else, let us consider a function V in C2(Rd,R) satisfying the coercivity
hypothesis (Hcoerc). Let us consider a point m in M, a function (initial condition) u0 in
X, and the solution (x, t) 7→ u(x, t) of system (1.1) for this initial condition.

It will not be assumed that this solution is bistable, but instead, as stated by the next
hypothesis (Hhom-right), that there exists a growing interval, travelling at a positive speed,
where the solution is close to m (the subscript “hom” in the definitions below refers to
this “homogeneous” area), see figure 4.1.

Figure 4.1: Illustration of hypotheses (Hhom-right) and (Hinv).

(Hhom-right) There exists a positive quantity chom and a C1-function

xhom : [0,+∞) → R , satisfying x′
hom(t) → chom as t → +∞ ,

such that, for every positive quantity L,

sup
ξ∈[−L,L]

∣∣u(xhom(t) + ξ, t
)

−m
∣∣ → 0 as t → +∞ .

For every t in [0 + ∞), let us denote by xEsc(t) the supremum of the set:{
x ∈

(
−∞, xhom(t)

]
: |u(x, t) −m| = δEsc(m)

}
,

with the convention that xEsc(t) equals −∞ if this set is empty. In other words, xEsc(t) is
the first point at the left of xhom(t) where the solution “escapes” at the distance δEsc(m)
from the stable homogeneous equilibrium m. This point will be referred to as the “Escape
point” (with an upper-case “E”, by contrast with another “escape point” that will be
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introduced later, with a lower-case “e” and a slightly different definition). Let us consider
the upper limit of the mean speeds between 0 and t of this Escape point:

cEsc = lim sup
t→+∞

xEsc(t)
t

,

and let us make the following hypothesis, stating that the area around xhom(t) where the
solution is close to m is “invaded” from the left at a nonzero (mean) speed.

(Hinv) The quantity cEsc is positive.

4.2 Statement
The aim of section 4 is to prove the following proposition, which is the main step in the
proof of Theorem 1. The proposition is illustrated by figure 4.2.

Figure 4.2: Illustration of Proposition 4.1.

Proposition 4.1 (invasion implies convergence). Assume that V satisfies the coercivity
hypothesis (Hcoerc) and the generic hypotheses (Honly-bist) and (Hdisc-c) and (Hdisc-Φ),
and, keeping the definitions and notation above, let us assume that for the solution under
consideration hypotheses (Hhom-right) and (Hinv) hold. Then the following conclusions
hold.

1. The function t 7→ xEsc(t) is of class C1 as soon as t is large enough and

x′
Esc(t) → cEsc as t → +∞ .

2. There exist:
• a point mnext in M satisfying V (mnext) < V (m),
• a profile of travelling front ϕ in ΦcEsc,norm(mnext,m),
• a C1-function [0,+∞) → R, t 7→ xhom-next(t),

such that, as time goes to +∞, the following limits hold:

xEsc(t) − xhom-next(t) → +∞ and x′
hom-next(t) → cEsc
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and
sup

x∈[xhom-next(t) , xhom(t)]

∣∣u(x, t) − ϕ
(
x− xEsc(t)

)∣∣ → 0

and, for every positive quantity L,

sup
ξ∈[−L,L]

∣∣u(xhom-next(t) + ξ, t
)

−mnext
∣∣ → 0 .

In this statement, the very last conclusion is actually redundant with the previous one.
The reason why this last conclusion is stated this way is that it emphasizes the fact that
a property similar to (Hhom-right) is recovered “behind” the travelling front. As can be
expected this will be used to prove Theorem 1 by re-applying Proposition 4.1 as many
times as required (to the left and to the right), as long as “invasion of the equilibria
behind the last front” occurs.

4.3 Set-up for the proof, 1
Let us keep the notation and assumptions of subsection 4.1, and let us assume that the
hypotheses (Hcoerc) and (Honly-bist) and (Hdisc-c) and (Hdisc-Φ) and (Hhom-right) and (Hinv)
of Proposition 4.1 hold.

4.3.1 Assumptions holding up to changing the origin of time

Without loss of generality, up to changing the origin of time, it may be assumed that the
following properties hold.

• According to Proposition 3.1, it may be assumed that, for every nonnegative time t,

∥x 7→ u(x, t)∥
L∞
(
R,Rd

) ≤ Ratt,∞(4.1)

and ∥x 7→ u(x, t)∥X ≤ Ratt,X .(4.2)

• According to the bounds (3.1) on page 19, it may be assumed that

(4.3) sup
t≥0

∥x 7→ u(x, t)∥
C2

b

(
R,Rd

) < +∞ and sup
t≥0

∥x 7→ ut(x, t)∥C0
b

(
R,Rd

) < +∞ .

• According to (Hhom-right), it may be assumed that, for all t in [0,+∞),

(4.4) x′
hom(t) ≥ 0 .

• According to (Hinv), it may be assumed that, for all t in [0,+∞),

(4.5) −∞ < xEsc(t) .
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4.3.2 Normalized potential and corresponding solution

For notational convenience, let us introduce:

• a new “normalized” potential V † : Rd → R, v 7→ V †(v),

• and the corresponding solution u† : R × [0,+∞) → R, (x, t) 7→ u†(x, t),

defined as
V †(v) = V (m+ v) − V (m) and u†(x, t) = u(x, t) −m.

Thus the origin 0Rd of Rd is to V † what m is to V , it is a nondegenerate minimum point
for V † (with V †(0Rd) = 0), and u† is a solution of system (1.1) with potential V † instead
of V ; and, for all (x, t) in R × [0,+∞),

V †(u†(x, t)
)

= V
(
u(x, t)

)
− V (m) .

It follows from inequality (3.9) satisfied by wen,0 that, for all v in Rd,

(4.6) wen,0 V
†(v) + 1

4v
2 ≥ 0 ,

and it follows from inequalities (3.7) and (3.8) that, for all v in Rd satisfying |v| ≤ δEsc(m),

v · ∇V †(v) ≥ λmin(m)
2 v2 ,(4.7)

and v · ∇V †(v) ≥ V †(v) .(4.8)

This notation V † and u† will be used up to subsection 4.7. From subsection 4.8 on, the
notation V and u denoting the initial potential and solution will be used again, instead.

4.3.3 Looking for another definition of the escape point

Unfortunately, the Escape point xEsc(t) presents a significant drawback: there is no
reason why it should display any form of continuity (it may jump back and forth while
time increases). This lack of control is problematic with respect to the purpose of writing
down a dissipation argument precisely around the position in space where the solution
escapes from m.

The answer to this difficulty will be to define another “escape point” (this one will be
denoted by “xesc(t)” — with a lower-case “e” — instead of xEsc(t)). This second definition
is a bit more involved than that of xEsc(t), but the resulting escape point will have the
significant advantage of growing at a finite (and even bounded) rate (Lemma 4.5 below).
The material required to define this escape point is introduced in the next subsection.
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4.4 Firewall functions in the laboratory frame
4.4.1 Definition

The content of this subsection and of the next one is almost identical to that of [43,
section 4], where details, proofs, and comments can be found (the sole difference in [43] is
the existence of a positive definite “diffusion matrix” — whereas in the present paper this
diffusion matrix equals identity). Only the minimum required definitions and statements
are provided below.

The notation is the same as in [43, section 4] with an additional “0” subscript to
point out that all these objects are defined in the standing frame. Similar objects will
be defined in the next subsection 4.7 but this time in a travelling referential (this time
without the “0” subscript).

Let

(4.9) κ0 = min
( 1

√
wen,0

,

√
λmin(m)

4

)
and let us introduce the weight function ψ0 defined as

ψ0(x) = exp(−κ0 |x|) .

For x̄ in R, let Tx̄ψ0 denote the translate of ψ0 by x̄, that is the function defined as

Tx̄ψ0(x) = ψ0(x− x̄) ,

see figure 4.3. For all t in [0,+∞) and x̄ in R, let us introduce the “firewall” F0(x̄, t)

Figure 4.3: Graph of the weight function x 7→ Tx̄ψ(x) used to define the firewall function
F0(x̄, t). The slope is small, according to the definition of κ.

defined as

(4.10) F0(x̄, t) =
∫
R
Tx̄ψ0(x)

(
wen,0

(1
2u

†
x(x, t)2 + V †(u†(x, t)

))
+ 1

2u
†(x, t)2

)
dx ,

(the quantity wen,0 was defined in sub-subsection 3.4.2).

4.4.2 Coercivity

Lemma 4.2 (coercivity of firewall function in the laboratory frame). For all t in [0,+∞)
and x̄ in R,

(4.11) F0(x̄, t) ≥ min
(wen,0

2 ,
1
4
) ∫

R
Tx̄ψ0(x)

(
u†

x(x, t)2 + u†(x, t)2) dx .
Proof. Inequality (4.11) follows from inequality (4.6).
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4.4.3 Linear decrease up to pollution

Let

(4.12) ΣEsc,0(t) =
{
x ∈ R :

∣∣∣u†(x, t)
∣∣∣ > δEsc(m)

}
.

Lemma 4.3 (firewall linear decrease up to pollution). There exist positive quantities νF0

and KF0, both depending only on V and m, such that, for all x̄ in R and t in [0,+∞),

(4.13) ∂tF0(x̄, t) ≤ −νF0 F0(x̄, t) +KF0

∫
ΣEsc,0(t)

Tx̄ψ0(x) dx .

Proof. See [43, Lemma 4.2]. The quantities νF0 and KF0 may be chosen as follows:

(4.14) νF0 = min
( 1

4wen,0
,
λmin(m)

4
)
,

and, according to the uniform bound (4.1) on page 24 for the solution,

(4.15) KF0 = max
v∈Rd, |v|≤Ratt,∞

[
−(v−m) ·∇V (v)+ 1

2 |V (v) − V (m)|+ λmin(m)
4 (v−m)2

]
.

Remark. In order the proof of [43, Lemma 4.2] to apply, the quantities κ0 and νF0 should
fulfill the following inequalities:

wen,0 κ
2
0

4 ≤ 1
2 and κ2

0
2 ≤ λmin(m)

8(4.16)

and νF0wen,0 ≤ 1
2 and νF0

2 ≤ λmin(m)
8(4.17)

(compare with, respectively, the inequalities [43, (4.5) and (4.18)]), out of which the
“natural” values for, respectively, κ0 and νF0 would be:

min
(√ 2

wen,0
,

√
λmin(m)

2

)
and min

( 1
2wen,0

,
λmin(m)

4
)
.

The reason for the (slightly more stringent) expressions (4.9) and (4.14) is that they are
convenient to be used again in section 5.

4.5 Upper bound on the invasion speed
Let

(4.18) δesc(m) = δEsc(m)

√√√√2 min
(

wen,0
2 , 1

4

)
1 + κ0

.

As the quantity δEsc(m) defined in sub-subsection 2.4.2, this quantity δesc(m) will provide
a way to measure the vicinity of the solution u† to the minimum point 0Rd of V †, this
time in terms of the firewall function F0. The value chosen for δesc(m) ensures the validity
of the following lemma.
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Lemma 4.4 (escape/Escape). For all x in R and t in [0,+∞), the following assertion
holds:

(4.19) F0(x, t) ≤ δesc(m)2 =⇒
∣∣∣u†(x, t)

∣∣∣ ≤ δEsc(m) .

Proof. See [43, Corollary 4.5].

Let L be a positive quantity, large enough so that

2KF0
exp(−κ0L)

κ0
≤ νF0

δesc(m)2

8 , namely L = 1
κ0

log
( 16KF0

νF0 δesc(m)2 κ0

)
,

let ηno-esc : R → R ∪ {+∞} (“no-escape hull”) be the function defined as

(4.20) ηno-esc(ξ) =



+ ∞ for ξ < 0 ,
δesc(m)2

2
(
1 − ξ

2L
)

for 0 ≤ ξ ≤ L ,

δesc(m)2

4 for ξ ≥ L ,

see figure 4.4, and let cno-esc (“no-escape speed”) be a positive quantity, large enough so

Figure 4.4: Graph of the hull function ηno-esc.

that
cno-esc

δesc(m)2

4L ≥ 2KF0

κ0
, namely cno-esc = 8KF0 L

κ0 δesc(m)2 .

As for the quantities κ0 and νF0 and KF0 , the quantities L and cno-esc and the function
ηno-esc depend on V and m. The following lemma, illustrated by figure 4.5, is a variant
of [43, Lemma 4.6].

Lemma 4.5 (bound on invasion speed). For all real quantities xleft and xright and
nonnegative time t1, if

F0(x, t1) ≤ max
(
ηno-esc(x− xleft), ηno-esc(xright − x)

)
for all x in R ,

then, for every time t greater than or equal to t1 and every real quantity x,

F0(x, t) ≤ max
(
ηno-esc

(
xleft − cno-esc (t− t1)

)
, ηno-esc

(
xright + cno-esc (t− t1) − x

))
.

Proof. See [43, Lemma 4.6].
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Figure 4.5: Illustration of Lemma 4.5; if the firewall function is below the maximum of
two mirror hulls at a certain time t1 and if these two hulls travel at opposite speeds
±cno-esc, then the firewall will remain below the maximum of those travelling hulls in the
future (note that after they cross this maximum equals +∞ thus the assertion of being
“below” is empty).

4.6 Set-up for the proof, 2: escape point and associated speeds
With the notation and results of the previous subsections 4.4 and 4.5 at hand, let us pursue
the set-up for the proof of Proposition 4.1 “invasion implies convergence”. According to
hypothesis (Hhom-right) and to the bounds (4.3) on the solution, it may be assumed, up
to changing the origin of time, that, for all t in [0,+∞) and for all x in R,

(4.21) F0(x, t) ≤ max
(
ηno-esc

(
x−

(
xhom(t) − 1

))
, ηno-esc

(
xhom(t) − x

))
.

As a consequence, for all t in [0,+∞), the set

Ihom(t) =
{
xℓ ≤ xhom(t) : for all x in R ,

F0(x, t) ≤ max
(
ηno-esc(x− xℓ), ηno-esc

(
xhom(t) − x

))}
is a nonempty interval (containing [xhom(t) − 1, xhom(t)]) that must be bounded from
below (see figure 4.6). Indeed, if at a certain time it was not bounded from below — in

Figure 4.6: Interval Ihom(t) and definition of xesc(t).

other words if it was equal to (−∞, xhom(t)] — then according to Lemma 4.5 this would
remain unchanged in the future, thus according to Lemma 4.4 the point xEsc(t) would
remain equal to −∞ in the future, a contradiction with hypothesis (Hinv).
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For every nonnegative time t, let

(4.22) xesc(t) = inf
(
Ihom(t)

)
(thus xesc(t) > −∞).

Somehow like xEsc(t), this point represents the first point at the left of xhom(t) where
the solution u(x, t) “escapes” (in a sense defined by the firewall function F0 and the
no-escape hull ηno-esc) at a certain distance from m. In the following, this point xesc(t)
will be called the “escape point” (by contrast with the “Escape point” xEsc(t) defined
before). According to assumption (4.5) and to the “hull inequality” (4.21) and Lemma 4.4
(“escape/Escape”), for every nonnegative time t,

(4.23) −∞ < xEsc(t) ≤ xesc(t) ≤ xhom(t) − 1 and ΣEsc,0(t) ∩ [xEsc(t), xhom(t)] = ∅ ,

and, according to hypothesis (Hhom-right) and to the bounds (4.3) on the solution,

(4.24) xhom(t) − xesc(t) → +∞ as t → +∞ .

The big advantage of xesc(·) with respect to xEsc(·) is that, according to Lemma 4.5, the
growth of xesc(·) is more under control. More precisely, according to this lemma, for all
nonnegative quantities t and s,

(4.25) xesc(t+ s) ≤ xesc(t) + cno-esc s .

For every s in [0,+∞), let us consider the “upper and lower bounds of the variations of
xesc(·) over all time intervals of length s”:

Figure 4.7: Illustration of the bounds (4.27).

(4.26) xesc(s) = sup
t∈[0,+∞)

xesc(t+s)−xesc(t) and xesc(s) = inf
t∈[0,+∞)

xesc(t+s)−xesc(t) ,

see figure 4.7. According to these definitions and to inequality (4.25) above, for all t and
s in [0,+∞),

(4.27) −∞ ≤ xesc(s) ≤ xesc(t+ s) − xesc(t) ≤ xesc(s) ≤ cno-esc s .
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Let us consider the four limit mean speeds:

cesc-inf = lim inf
t→+∞

xesc(t)
t

and cesc-sup = lim sup
t→+∞

xesc(t)
t

and
cesc-inf = lim inf

s→+∞

xesc(s)
s

and cesc-sup = lim sup
s→+∞

xesc(s)
s

.

The following inequalities follow from these definitions and from hypothesis (Hinv):

−∞ ≤ cesc-inf ≤ cesc-inf ≤ cesc-sup ≤ cesc-sup ≤ cno-esc and 0 < cEsc ≤ cesc-sup .

The four limit mean speeds defined above will turn out to be equal. The proof of this
equality is based of the “relaxation scheme” set up in the next subsection.
Remark. In the previous paper [39] where convergence towards a single travelling front
was proved, no object similar to the lower bound xesc(·) or the quantity cesc-inf was
defined. Here those objects will be specifically required to prove convergence towards the
travelling fronts “following” the “first” ones (in the statement of Theorem 1, the “first”
ones are ϕ1,+ and ϕ1,−, and the “following” ones are the ϕi,+ and ϕi,− with i larger than
1). Indeed, for those “following” travelling fronts, a tighter control over the escape point
will be required.

4.7 Relaxation scheme in a travelling frame
The aim of this subsection is to set up an appropriate relaxation scheme in a travelling
frame. This means defining an appropriate localized energy and controlling the “flux”
terms occurring in the time derivative of this localized energy. The considerations made
in subsection 3.3 will be put in practice.

4.7.1 Notation for the travelling frame

Let us keep the notation and hypotheses introduced above (since the beginning of
subsection 4.3), and let us introduce the following real quantities that will play the role
of “parameters” for the relaxation scheme below (see figure 4.8):

Figure 4.8: Space coordinate ξ and time coordinate s in the travelling frame, and
parameters tinit and xinit and c and ξcut-init.
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• the “initial time” tinit of the time interval of the relaxation;

• the position xinit of the origin of the travelling frame at initial time t = tinit (in
practice it will be chosen equal to xesc(tinit));

• the speed c of the travelling frame;

• a quantity ξcut-init that will be the the position of the maximum point of the weight
function ξ 7→ χ(ξ, tinit) localizing energy at initial time t = tinit (this weight function
is defined below); the subscript “cut” refers to the fact that this weight function
displays a kind of “cut-off” on the interval between this maximum point and +∞.
Thus the maximum point is in some sense the point “where the cut-off begins”.

Let us make on these parameters the following hypotheses:

(4.28) 0 ≤ tinit and 0 < c ≤ cno-esc and 0 ≤ ξcut-init .

The relaxation scheme will be applied several time in the next pages, for various choices
of these three parameters.

For all ξ in R and s in [0,+∞), let

v(ξ, s) = u†(x, t) where x = xinit + cs+ ξ and t = tinit + s .

This function (ξ, s) 7→ v(ξ, s) is thus defined from (x, t) 7→ u†(x, t) by considering this
solution in a frame travelling at the speed c, with tinit as the origin of times and xinit as
the origin of space. It satisfies the differential system already written in (1.3) on page 2
and (3.3) on page 19 (with V † instead of V ), that is:

(4.29) vs − cvξ = −∇V †(v) + vξξ .

4.7.2 Principle of the relaxation scheme

Two functions will now be defined, each with its own weight function:

• a localized energy s 7→ E(s);

• a localized “firewall” function s 7→ F(s), that will be a linear combination of the
energy and the L2-norm with appropriate coefficients.

Here are the constraints that have to be faced in the choice of these definitions. Some of
them have already been mentioned in subsection 3.3. Note that these constraints are
slightly more involved than in a standing frame (this latter case is easier and treated in
details in [43]).

1. Both weight functions should vary slowly with time.

2. The weight function for the energy should be equal — or at least close — to exp(cξ)
(up to a positive multiplicative constant) in a subset of the space real line “as large
as possible” since such a subset does not “contribute” to the flux terms in the time
derivative of localized energy.
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3. The weight function for the firewall functional should either be equal — or at least
close — to exp(cξ) (up to a positive multiplicative constant), or vary slowly with
respect to space and time, since each of these conditions ensures the smallness of
the flux term of the L2-norm.

4. The (positive) coefficients of the energy and of the L2-norm in the definition of
the firewall functional should face two independent constraints, both in favour of a
larger coefficient for the L2-norm:

• the firewall should be coercive;
• in the time derivative of the firewall, the “non small” flux terms of the derivative

of energy (where the weight function of energy is not close to exp(cξ)) should be
balanced by the “main” (nonpositive) terms in the derivative of the L2-norm.

5. Finally, in order the positive part of the total contribution of the flux terms of the
energy to be small (and not only bounded), as will be required to prove convergence
towards stationary solutions in a travelling referential, the initial weight function
for the energy will have to be chosen equal to exp(cξ) up to far to the right, and it
is the parameter ξcut-init that will enable this “tuning”.

4.7.3 Choice of the parameters κ and ccut and wen

Let κ (rate of decrease of the weight functions), ccut (speed of the cut-off point in the
travelling frame), and wen (coefficient of energy in the firewall function) be three positive
quantities, small enough so that

(4.30)
wen(c+ κ)

(ccut
2 + c+ κ

4
)

≤ 1
2 and wenccut(c+ κ) ≤ 1

4

and (ccut + κ)(c+ κ)
2 ≤ λmin(m)

8
(compare with conditions (4.16) on page 27) and

(4.31) wen ≤ wen,0

(the quantity wen,0 was defined in sub-subsection 3.4.2 on page 21). Conditions (4.30)
will be used to prove inequality (4.42) on page 38. Condition (4.31) will be used in the
proofs of Lemma 4.7 (energy decrease up to firewall) and Lemma 4.9 (nonnegativity of
firewall). These quantities may be chosen as follows (κ and ccut are chosen so that the
third inequality of (4.30) be fulfilled, and then wen is chosen according to the first two
inequalities of (4.30) and to (4.31)):

κ = min
(√λmin(m)

4 ,
λmin(m)
16cno-esc

)
and ccut = λmin(m)

8(cno-esc + κ) ,

and wen = min
( 2

(cno-esc + κ)(cno-esc + κ+ 2ccut)
,

1
4ccut(cno-esc + κ) , wen,0

)
.

These three quantities depend on V and m.
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4.7.4 Localized energy

For every real quantity s, let us introduce the two intervals

Imain(s) = (−∞, ξcut-init + ccuts] ,
and Iright(s) = [ξcut-init + ccuts,+∞) ,

and let us introduce the function χ(ξ, s) (weight function for the localized energy) defined
as

χ(ξ, s) =

 exp(cξ) if ξ ∈ Imain(s) ,

exp
[
c(ξcut-init + ccuts) − κ

(
ξ − (ξcut-init + ccuts)

)]
if ξ ∈ Iright(s) ,

see figure 4.9; and, for all s in [0,+∞), let us define the “energy” E(s) by

Figure 4.9: Graphs of the functions ξ 7→ χ(ξ, s) and ξ 7→ ψ(ξ, s).

E(s) =
∫
R
χ(ξ, s)

(1
2vξ(ξ, s)2 + V †(v(ξ, s)

))
dξ .

Note that the choice of the decrease rate of χ(·, s) on the interval [ξcut-init + ccuts,+∞)
is not crucial (it might have been chosen equal to 1, for instance). The sole advantage
of this choice is that the weight functions χ and ψ (the latter one defined below) are
identical on this interval, which is convenient for the estimates below.

4.7.5 Time derivative of localized energy

For all s in [0,+∞), let us define the “dissipation” function by

(4.32) D(s) =
∫
R
χ(ξ, s) vs(ξ, s)2 dξ .
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Lemma 4.6 (time derivative of localized energy). For all s in [0,+∞),

(4.33) E ′(s) ≤ −1
2D(s) + (c+ κ)

∫
Iright(s)

χ
(c+ ccut + κ

2 v2
ξ + ccutV

†(v)
)
dξ .

Proof. For all s in [0,+∞), it follows from expression (3.4) on page 20 for the derivative
of a localized energy that

E ′(s) = −D(s) +
∫
R

(
χs

(1
2v

2
ξ + V †(v)

)
+ (cχ− χξ)vξ · vs

)
dξ .

It follows from the definition of χ that:

χs(ξ, s) =
{

0 if ξ ∈ Imain(s) ,
ccut(c+ κ)χ(ξ, s) if ξ ∈ Iright(s) ,

and
(cχ− χξ)(ξ, s) =

{
0 if ξ ∈ Imain(s) ,
(c+ κ)χ(ξ, s) if ξ ∈ Iright(s) .

Thus it follows from these expressions that

E ′(s) = −D(s) + (c+ κ)
∫

Iright(s)
χ

(
ccut

(1
2v

2
ξ + V †(v)

)
+ vξ · vs

)
dξ .

Using the inequality

(c+ κ) vξ · vs ≤ 1
2v

2
s + (c+ κ)2

2 v2
ξ ,

inequality (4.33) follows. Lemma 4.6 is proved.

4.7.6 Firewall function

A second function (the “firewall”) will now be defined, to get some control over the
second term of the right-hand side of inequality (4.33). Let us introduce the function
ψ(ξ, s) defined as

ψ(ξ, s) =

 exp
[
κ
(
ξ − (ξcut-init + ccuts)

)]
χ(ξ, s) if ξ ∈ Imain(s) ,

χ(ξ, s) if ξ ∈ Iright(s) ,

see figure 4.9; and, for all s in [0,+∞), let us define the “firewall” F(s) by

(4.34) F(s) =
∫
R
ψ(ξ, s)

(
wen

(1
2vξ(ξ, s)2 + V †(v(ξ, s)

))
+ 1

2v(ξ, s)2
)
dξ .
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4.7.7 Energy decrease up to firewall

Lemma 4.7 (energy decrease up to firewall). There exists a positive quantiy KE,F ,
depending (only) on V and m, such that for every nonnegative quantity s,

(4.35) E ′(s) ≤ −1
2D(s) +KE,FF(s) .

Proof. Inequality (4.33) of Lemma 4.6 can be rewritten (without changing the value of
the right-hand side) as follows (note the substitution of χ by ψ, which is allowed since
these two functions are equal on Iright(s)):

E ′(s) ≤ −1
2D(s) + (c+ κ)

∫
Iright(s)

ψ

(
c+ ccut + κ

2 v2
ξ + ccutV

†(v)
)
dξ

≤ −1
2D(s) + (c+ κ)

∫
Iright(s)

ψ

(
c+ ccut + κ

2 v2
ξ + ccut

(
V †(v) + 1

2wen
v2
))

dξ .

Since according to inequality (4.31) on page 33 the quantity wen is not larger than wen,0,
it follows from inequality (4.6) on page 25 that the quantity

V †(v) + 1
2wen

v2 = 1
wen

(
wenV

†(v) + 1
2v

2
)

is nonnegative, and as a consequence the previous inequality still holds if the factor ccut
of this quantity is replaced by the larger factor ccut + c+ κ. After this replacement, the
inequality reads

(4.36) E ′(s) ≤ −1
2D(s)+ (c+ κ)(c+ ccut + κ)

wen

∫
Iright(s)

ψ

(
wen

(1
2v

2
ξ +V †(v)

)
+ 1

2v
2
)
dξ .

Again according to (4.6) and (4.31), this inequality (4.36) still holds if the domain of
integration is extended to the whole real line; after this extension, this inequality (4.36)
reads:

E ′(s) ≤ −1
2D(s) + (c+ κ)(c+ ccut + κ)

wen
F(s) .

Finally, introducing the (positive) quantity KE,F (depending only on V ) defined as

KE,F = (cno-esc + κ)(cno-esc + ccut + κ)
wen

,

inequality (4.35) follows from the last inequality above. Lemma 4.7 is proved.

4.7.8 Relaxation scheme inequality, 1

Let sfin be a nonnegative quantity (denoting the length of the time interval on which the
relaxation scheme will be applied). It follows from the previous inequality that

(4.37) 1
2

∫ sfin

0
D(s) ds ≤ E(0) − E(sfin) +KE,F

∫ sfin

0
F(s) ds .
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The approximate decrease of of the localized energy (up to a remaining term controlled
by the firewall function) above, and more specifically the integrated form (4.37) are the
core of the relaxation scheme that is set up. Indeed, if some control can be obtained over
the right-hand side (upper bound on the firewall function, upper bound on the initial
localized energy, lower bound on the final localized energy), then it will provide some
control on the integral of the dissipation, an information related to the vicinity of the
solution to travelling fronts. The next goal (in the next sub-subsection) is to gain some
control over the firewall function.

4.7.9 Firewall linear decrease up to pollution

For every s in [0,+∞), let us introduce the set — the domain of space where the solution
v (resp. u) “Escapes” at distance δEsc(m) from 0Rd (resp. from m):

ΣEsc(s) = {ξ ∈ R : |v(ξ, s)| > δEsc(m)} .

To make the connection with the definition (4.12) on page 27 of the related set ΣEsc,0(t),
observe that, for all s in [0,+∞) and ξ in R,

ξ ∈ ΣEsc(s) ⇐⇒ xinit + cs+ ξ ∈ ΣEsc,0(tinit + s) .

The next step is the following lemma (observe the strong similarity with Lemma 4.3 on
page 27).

Lemma 4.8 (firewall linear decrease up to pollution). There exist positive quantities νF
and KF , both depending (only) on V and m, such that, for all s in [0,+∞),

(4.38) F ′(s) ≤ −νFF(s) +KF

∫
ΣEsc(s)

ψ(ξ, s) dξ .

Proof. According to expressions (3.4) and (3.5) on page 20 for the time derivatives of a
localized energy and a localized L2 functional, for all s in [0,+∞),

F ′(s) =
∫
R

[
ψ
(
−wenv

2
s − v · ∇V †(v) − v2

ξ

)
+ wenψs

(1
2v

2
ξ + V †(v)

)

+ wen(cψ − ψξ)vξ · vs + ψs + ψξξ − cψξ

2 v2
]
dξ .

According to the definition of ψ,

ψs(ξ, s) =
{

− κccutψ(ξ, s) if ξ ∈ Imain(s) ,
(c+ κ)ccutψ(ξ, s) if ξ ∈ Iright(s) ,

and

(4.39) cψ(ξ, s) − ψξ(ξ, s) =
{

− κψ(ξ, s) if ξ ∈ Imain(s) ,
(c+ κ)ψ(ξ, s) if ξ ∈ Iright(s) ,
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and, for all ξ in R, if δξcut-init+ccuts(·) denotes the Dirac mass at ξ = ξcut-init + ccuts,
(4.40)
ψξξ(ξ, s) − cψξ(ξ, s) = κ(c+ κ)ψ(ξ, s) − (c+ 2κ) exp

[
c(ξcut-init + ccuts)

]
δξcut-init+ccuts(ξ) .

As a consequence, the following inequalities hold for all values of the arguments:

(4.41)
|ψs| ≤ ccut(c+ κ)ψ ,

and |cψ − ψξ| ≤ (c+ κ)ψ ,
and ψξξ − cψξ ≤ κ(c+ κ)ψ .

Thus, for all s in [0,+∞),

F ′(s) ≤
∫
R
ψ

[
− wenv

2
s − v · ∇V †(v) − v2

ξ + wen ccut(c+ κ)
(1

2v
2
ξ +

∣∣∣V †(v)
∣∣∣)

+ wen(c+ κ) |vξ · vs| + (ccut + κ)(c+ κ)
2 v2

]
dξ .

Using the inequality

wen(c+ κ) |vξ · vs| ≤ wenv
2
s + wen

(c+ κ)2

4 v2
ξ ,

it follows that

F ′(s) ≤
∫
R
ψ

[(
wen(c+ κ)

(ccut
2 + c+ κ

4
)

− 1
)
v2

ξ − v · ∇V †(v)

+ wen ccut(c+ κ)
∣∣∣V †(v)

∣∣∣+ (ccut + κ)(c+ κ)
2 v2

]
dξ ,

and according to the conditions (4.30) on page 33 satisfied by κ and ccut and wen, it
follows that

(4.42) F ′(s) ≤
∫
R
ψ
[
−1

2v
2
ξ − v · ∇V †(v) + 1

4
∣∣∣V †(v)

∣∣∣+ λmin(m)
8 v2

]
dξ

(compare with [43, inequality (4.17)] in a standing frame; the additional term
∣∣∣V †(v)

∣∣∣ /4
comes from the time dependence of the weight ψ).

Let νF be a positive quantity to be chosen below. It follows from the previous inequality
and from the definition (4.34) of F(s) that

(4.43)
F ′(s) + νFF(s) ≤

∫
R
ψ

[
− 1

2(1 − νF wen)v2
ξ − v · ∇V †(v)

+
(1

4 + νFwen
) ∣∣∣V †(v)

∣∣∣+ (λmin(m)
8 + νF

2
)
v2
]
dξ .
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In view of this expression and of inequalities (4.7) and (4.8) on page 25, let us assume
that νF is small enough so that

(4.44) νF wen ≤ 1 and νF wen ≤ 1
4 and νF

2 ≤ λmin(m)
8

(compare with conditions (4.17) on page 27 satisfied by the quantity νF0); this quantity
νF may be chosen as

νF = min
( 1

4wen
,
λmin(m)

4
)
.

Then, it follows from (4.43) and (4.44) that

(4.45) F ′(s) + νFF(s) ≤
∫
R
ψ
[
−v · ∇V †(v) + 1

2
∣∣∣V †(v)

∣∣∣+ λmin(m)
4 v2

]
dξ .

According to (4.7) and (4.8), the integrand of the integral at the right-hand side of this
inequality is nonpositive as long as ξ is not in ΣEsc(s). Therefore this inequality still
holds if the domain of integration of this integral is changed from R to ΣEsc(s). Besides,
observe that, in terms of the “initial” potential V and solution u(x, t), the factor of ψ
under the integral of the right-hand side of this last inequality reads

−(u−m) · ∇V (u) + 1
2 |V (u) − V (m)| + λmin(m)

4 (u−m)2 ,

where u denotes u(x, t) with t = tinit + s and x = xinit + cs+ ξ. Thus, according to the
L∞ bound (4.1) on page 24 for the solution, if KF denotes the quantity KF0 already
defined in (4.15) on page 27, then inequality (4.38) follows from (4.45) (with the domain
of integration of the integral on the right-hand side restricted to ΣEsc(s)). This finishes
the proof of Lemma 4.8.

Remark. Because of the term cψ in the expression (4.39) of cψ−ψξ when ξ is in Iright(s),
there is no hope to obtain an inequality like (4.42) without a condition involving cno-esc
on wen; similarly, because of the term κcψ in the expression (4.40) of ψξξ − cψξ, there is
no more hope to obtain this kind of inequality without a condition involving cno-esc on κ.
This is the reason why the quantities wen,0 and κ0 of subsection 5.3 could not be reused
in this subsection 4.7, and why the quantities wen and κ had to be introduced instead.

4.7.10 Nonnegativity of firewall

Lemma 4.9 (nonnegativity of firewall). For all s in [0,+∞),

(4.46) F(s) ≥ 0 .

Proof. Since according to inequality (4.31) on page 33 the quantity wen is not larger than
wen,0, it follows from inequality (4.6) on page 25 that the quantity

wenV
†(v(ξ, s)

)
+ 1

2v(ξ, s)2 ≥ 1
4v(ξ, s)2

is nonnegative, and this proves Lemma 4.9.
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Remark. As for the firewall F0(t) in the laboratory frame (Lemma 4.2), inequalities (4.6)
and (4.31) actually yield the stronger coercivity property:

F(s) ≥ min
(wen

2 ,
1
4
) ∫

R
ψ(ξ, s)

(
vξ(ξ, s)2 + v(ξ, s)2) dξ ;

however, by contrast with F0(t), only the fact that F(s) is nonnegative will be used in
the following (see the next sub-subsection).

4.7.11 Relaxation scheme inequality, 2

For all s in [0,+∞), let
G(s) =

∫
ΣEsc(s)

ψ(ξ, s) dξ .

According to Lemma 4.9 on the previous page, the quantity F(sfin) is nonnegative. As
a consequence, integrating inequality (4.38) between 0 and a nonnegative quantity sfin
yields: ∫ sfin

0
F(s) ds ≤ 1

νF

(
F(0) +KF

∫ sfin

0
G(s) ds

)
,

and the “relaxation scheme” inequality (4.37) becomes:

(4.47) 1
2

∫ sfin

0
D(s) ds ≤ E(0) − E(sfin) + KE,F

νF

(
F(0) +KF

∫ sfin

0
G(s) ds

)
.

The next step is to gain some control over the quantity G(s).

4.7.12 Control over the pollution in the time derivative of the firewall function

Let us assume that the parameter xinit is equal to xesc(tinit), and, for every nonnegative
quantity s, let

ξhom(s) = xhom(tinit + s) − xinit − cs ,

and ξesc(s) = xesc(tinit + s) − xinit − cs ,

see figures 4.10 and 4.11. According to properties (4.23) on page 30 for the set ΣEsc,0(t),

ΣEsc(s) ⊂
(
−∞, ξesc(s)

]
∪
[
ξhom(s),+∞

)
,

thus, introducing the quantities

Gback(s) =
∫ ξesc(s)

−∞
ψ(ξ, s) dξ and Gfront(s) =

∫ +∞

ξhom(s)
ψ(ξ, s) dξ ,

the following inequality holds:

G(s) ≤ Gback(s) + Gfront(s) .
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Figure 4.10: Definitions of the “escape” point ξesc(s) and the point ξhom(s) marking the
“homogeneous” area in the travelling frame.

Figure 4.11: Typical relative positions of the points ξesc(s), ξcut-init + ccuts, ξhom(0) − cs,
and ξhom(s) in the travelling referential, and graph of ξ 7→ ψ(ξ, s).

The aim of this sub-subsection is to prove the bounds on Gback(s) and Gfront(s) provided
by the next lemma. The following additional technical hypothesis will be required for
the bound on Gback(s):

(4.48) cesc-sup − κccut
4(cno-esc + κ) ≤ c .

This hypothesis is satisfied as soon as the speed is close enough to cesc-sup. It ensures
that the escape point ξesc(s) remains “more and more far away to the left” with respect
to the position ξcut-init + ccut s of the cut-off, as s increases.

Lemma 4.10 (upper bounds on pollution terms in the derivative of the firewall). There
exists a positive quantity K[u0], depending on V and m and the initial condition u0 under
consideration, such that for every nonnegative quantity s the following estimates hold:

Gback(s) ≤ K[u0] exp(−κ ξcut-init) exp
(

− κ ccut
2 s

)
,(4.49)

Gfront(s) ≤ 1
κ

exp
[
(cno-esc + κ) ξcut-init + (cno-esc + κ)(ccut + κ)s− κ ξhom(0)

]
.(4.50)

Proof. First here are some considerations about the way the various parameters will be
chosen for the relaxation scheme; according to these considerations, figure 4.11 displays
the expected positions of the various relevant points in the travelling frame.

• The position xinit of the origin of the travelling frame at time tinit will always be
chosen equal to the position xesc(tinit) of the escape point at this time.
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• The time tinit will be chosen large, so that ξhom(0) is large positive, and ξhom(s) ≥
ξhom(0) − cs remains large positive for the values of s under consideration.

• The initial position ξcut-init of the cut-off will be chosen either equal to 0, or large
positive (thus in both cases nonnegative).

• The speed c will be chosen close in the interval (0, cesc-sup) and very close to the
upper bound of this interval. As a consequence, the point ξesc(s) (the “escape
point” viewed in the travelling frame) is expected to remain, for most of values of
s, and for sure for s large positive, at the left of the “cut-off” point ξcut-init + ccuts,
since this cut-off point travels to the right at a definite nonzero speed ccut in the
travelling frame.

These considerations lead us to bound from above the integrand ψ(ξ, s) in the expression
of Gback(s) and Gfront(s) by the following quantity:

exp
(
(c+ κ) ξ − κ(ξcut-init + ccut s)

)
for Gback(s) ,

and exp
(
(c+ κ)(ξcut-init + ccut s) − κ ξ

)
for Gfront(s) .

First let us consider the quantity Gback(s). By explicit calculation,

Gback(s) ≤ 1
c+ κ

exp
(
(c+ κ)ξesc(s) − κξcut-init − κ ccuts

)
≤ 1
κ

exp
(
(c+ κ) ξesc(s) − κ ξcut-init − κ ccuts

)
.

According to the definition of ξesc(·) and xesc(·) and provided that xinit = xesc(tinit), for
all s in [0,+∞),

ξesc(s) ≤ xesc(s) − cs .

It follows that

Gback(s) ≤ 1
κ

exp(−κ ξcut-init) exp
(
(c+ κ)

(
xesc(s) − cs

)
− κ ccuts

)
≤ 1
κ

exp(−κ ξcut-init) exp
(
(c+ κ)

(
xesc(s) − cs

)
− κ ccut

2 s
)

exp
(

− κ ccut
2 s

)
.(4.51)

Let us us denote by β(s) the argument of the second exponential of the right-hand side
of this last inequality:

β(s) = (c+ κ)
(
xesc(s) − cs

)
− κ ccut

2 s

= (c+ κ)
(
xesc(s) − cesc-sup s

)
+
(
(c+ κ)(cesc-sup − c) − κ ccut

2
)
s .

According to hypothesis (4.48) above, the following inequality holds:

(c+ κ)(cesc-sup − c) ≤ κ ccut
4 ,
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thus, for all s in [0,+∞),

β(s) ≤ (c+ κ)
(
xesc(s) − cesc-sup s

)
− κ ccut

4 s ,

and thus, according to the definition of cesc-sup this quantity β(s) goes to −∞ as s goes to
+∞. It follows from the definition of xesc(·) that β(0) equals 0, and, for all s in (0,+∞),
it follows from the last inequality that

β(s) > 0 =⇒ xesc(s) − cesc-sup s > 0 .

Thus, the following (nonnegative) quantity:

β̄[u0] = sup
s≥0

(cno-esc + κ)
(
xesc(s) − cesc-sup s

)
− κ ccut

4 s ,

is an upper bound for all the values of β(s), for all s in [0,+∞). This quantity depends
on V and on the function x 7→ xesc(s), in other words on the initial condition u0, but not
on the parameters tinit and c and ξcut-init of the relaxation scheme. Let

K[u0] = 1
κ

exp
(
β̄[u0]

)
;

with this notation, the upper bound (4.49) on Gback(s) follows from inequality (4.51).
Now let us consider the second quantity Gfront(s). The control that will be required

on this quantity is simpler, since it only relies on the value of ξhom(0), which can be
assumed to be arbitrarily large positive if tinit is large enough positive. Since x′

hom(·) is
nonnegative (see (4.4) on page 24), for all s in [0,+∞),

ξ′
hom(s) ≥ −c thus ξhom(s) ≥ ξhom(0) − cs .

By explicit calculation, it follows from the upper bound on the integrand of Gfront(s) that

Gfront(s) ≤ 1
κ

exp
(
(c+ κ) ξcut-init

)
exp

((
(c+ κ) ccut + κ c

)
s
)

exp
(
−κ ξhom(0)

)
,

and inequality (4.50) on Gfront(s) follows. Lemma 4.10 is proved.

4.7.13 Relaxation scheme inequality, final

Let us introduce the quantity

KG,back[u0] = 2KE,F KF K[u0]
νF κccut

,

and, for every nonnegative quantity s, the quantity

KG,front(s) = KE,F KF
νF κ (cno-esc + κ)(ccut + κ) exp

(
(cno-esc + κ)(ccut + κ)s

)
.
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Then, according to inequalities (4.49) and (4.50) of Lemma 4.10, the “relaxation scheme”
inequality (4.47) on page 40 can be rewritten under the following (final) form:

(4.52)
1
2

∫ sfin

0
D(s) ds ≤ E(0) − E(sfin) + KE,F

νF
F(0) +KG,back[u0] exp(−κ ξcut-init)

+KG,front(sfin) exp
(
(cno-esc + κ) ξcut-init

)
exp

(
−κ ξhom(0)

)
.

In order to derive from this estimate useful information (a nice upper bound on the
dissipation integral, stating that this dissipation integral is bounded or even small), the
following conditions should be fulfilled:

• the “initial” value E(0) of the localized energy should be bounded from above;

• the “final” value E(sfin) of the localized energy should be bounded from below (or,
better, close to E(0));

• the “initial” value F(0) of the firewall function should be small (or at least
bounded);

• the “initial” position ξcut-init of the “cut-off point” should be large positive;

• the “initial” position ξhom(0) of the “homogeneous point” should be large positive,
the condition on its side depending on ξcut-init and sfin.

4.8 Convergence of the mean invasion speed
Remark. For the remaining of this section, the notation V † and u† introduced in sub-
subsection 4.3.2 does not provide any clear benefit with respect to the initial potential V
and initial solution u. As a consequence, only the objects V and u will be considered.

4.8.1 Statement and set-up of the proof

The aim of this subsection is to prove the following proposition.
Proposition 4.11 (mean invasion speed). The following equalities hold:

cesc-inf = cesc-sup = cesc-sup .

Set-up for the proof of Proposition 4.11. Let us proceed by contradiction and assume
that

cesc-inf < cesc-sup .

Then, let us take and fix a positive quantity c satisfying the following conditions:

(4.53) cesc-inf < c < cesc-sup ≤ c+ κccut
4(cno-esc + κ) and Φc(m) = ∅ .

The first condition is satisfied as soon as c is smaller than and close enough to cesc-sup, thus
existence of a quantity c satisfying the two conditions follows from hypothesis (Hdisc-c).

The contradiction will follow from the relaxation scheme set up in subsection 4.7. The
main ingredient is: since the set Φc(m) is empty, some dissipation must occur permanently
around the escape point in a referential travelling at the speed c. This is stated by the
following lemma.
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4.8.2 Nonzero dissipation around escape point

Lemma 4.12 (nonzero dissipation around escape point due to the absence of travelling
front). There exist positive quantities L and εdissip such that, for every large enough
positive time t,

(4.54)
∥∥ξ 7→ ut

(
xesc(t) + ξ, t

)
+ cux

(
xesc(t) + ξ, t

)∥∥
L2([−L,L],Rd) ≥ εdissip .

Remark. This statement is actually still true without the condition “t large enough
positive”, which is assumed only to fit with Lemma 3.2 (compactness).

Proof of Lemma 4.12. Let us proceed by contradiction and assume that the converse
is true. Then, there exists a sequence (tn)n∈N of positive quantities going to +∞ as
n → +∞ such that, for every positive integer n,

(4.55)
∥∥ξ 7→ ut

(
xesc(tn) + ξ, tn

)
+ cux

(
xesc(tn) + ξ, tn

)∥∥
L2([−n,n],Rd) ≤ 1

n
.

By compactness (Lemma 3.2), up to replacing the sequence (tn)n∈N by a subsequence,
there exists an entire solution u of system (1.1) such that, with the notation of (3.2),

D2,1u
(
xesc(tn) + ·, tn + ·

)
→ D2,1u as n → +∞ ,

uniformly on every compact subset of R2. According to hypothesis (4.55), the function
ξ 7→ ut(ξ, 0) + cux(ξ, 0) vanishes identically, so that the function ξ 7→ u(ξ, 0) is a solution
of system (2.1) on page 5 governing the profiles of waves travelling at the speed c for
system (1.1). According to the properties of the escape point (4.23) and (4.24) on page 30,

sup
ξ∈[0,+∞)

|u(ξ, 0) −m| ≤ δEsc(m) ,

thus it follows from assertion 1 of Lemma 7.1 on page 96 that u(ξ, 0) goes to m as ξ
goes to +∞. On the other hand, according to the bound (4.1) on the solution, |u(·, 0)| is
bounded (by Ratt,∞), and since Φc(m) is empty, it follows from hypothesis (Honly-bist) that
u(·, 0) must be identically equal to m, a contradiction with the definition of xesc(·).

4.8.3 Time interval and origin of space for the relaxation scheme

The next step is the choice of the time interval and the travelling frame (at the speed c)
where the relaxation scheme will be applied. Those should display the following features:

1. the escape point should not go far to the left (or else, due to the exponential weight,
no lower bound on the dissipation would hold);

2. at the end of the time interval the escape point should not be far to the right, so
that the final value of the localized energy be bounded from below;

3. the length of the time interval should be large enough so that a sufficient dissipation
to occur;

4. for a given length of that time interval, its lower bound should be chosen arbitrarily
large positive, in order to control the “front” flux term involving the quantity
KG,front in the relaxation scheme final inequality (4.52) on the preceding page.
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Large excursions to the right and returns for the escape point. The following lemma
is a first attempt to find such a time interval (see figure 4.12).

Figure 4.12: Illustration of Lemma 4.13.

Lemma 4.13 (large excursions to the right and returns for the escape point in travelling
frame). There exist sequences (tn)n∈N and (sn)n∈N and (s̄n)n∈N of real quantities such
that the following properties hold.

1. For every n in N, the following inequalities hold: 0 ≤ tn and 0 ≤ sn ≤ s̄n ;

2. sn → +∞ and xesc(tn + sn) − xesc(tn) − csn → +∞ as n goes to +∞ ;

3. For every n in N, the following inequality holds: xesc(tn + s̄n) −xesc(tn) − cs̄n ≤ 0 .

Proof of Lemma 4.13. According to the definition of cesc-sup, there exists a sequence
(sn)n∈N of positive real quantities, satisfying

sn → +∞ and xesc(sn)
sn

→ cesc-sup as n → +∞ .

Then, according to the definition (4.26) on page 30 of xesc(·), for every n in N there exists
a nonnegative quantity tn such that

xesc(tn + sn) − xesc(tn) ≥ xesc(sn) − 1 .

Then,

xesc(tn + sn) − xesc(tn) − csn

sn
≥ xesc(sn) − 1 − csn

sn
−−−−−→
n→+∞

cesc-sup − c > 0

thus
xesc(tn + sn) − xesc(tn) − csn → +∞ as n → +∞ ,

which proves property 2. On the other hand, for every n in N,

lim inf
s→+∞

xesc(tn + s) − xesc(tn) − cs

s
= cesc-inf − c < 0 ,

thus
lim inf
s→+∞

xesc(tn + s) − xesc(tn) − cs = −∞ ,
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and thus there exists s̄n greater than sn such that

xesc(tn + s̄n) − xesc(tn) − cs̄n ≤ 0 ,

which proves property 3. According to how tn and sn and s̄n where chosen, property 1
also holds. Lemma 4.13 is proved.

Time intervals of controlled length. Intervals [tn, tn + s̄n] defined by the previous
lemma are not convenient to apply the relaxation scheme because their length is arbitrary
large (thus the “front” flux term involving the quantity KG,front in the relaxation scheme
final inequality (4.52) on page 44 cannot be controlled on such time intervals). The
following lemma provides another sequence of intervals (derived from the sequences
defined in Lemma 4.13) without this drawback (see figure 4.13).

Figure 4.13: Illustration of Lemma 4.14.

Let τ denote a (large) positive quantity to be chosen below. This quantity will
determine the length of the time intervals where the relaxation scheme will be applied
(more precisely that length will be between τ and 2τ). The value of τ will be chosen large
enough so that a sufficient amount of dissipation occurs during the relaxation scheme.

Lemma 4.14 (escape point remains to the right and ends up to the left in travelling
frame, controlled duration). There exist sequences (t′n)n∈N and (s′

n)n∈N such that, for
every n in N the following properties hold:

1. 0 ≤ t′n and τ ≤ s′
n ≤ 2τ ,

2. for all s in [0, τ ], the following inequality holds: xesc(t′n + s) − xesc(t′n) − cs ≥ 0 ,

3. xesc(t′n + s′
n) − xesc(t′n) − cs′

n ≤ 1 ,

and such that
t′n → +∞ as n → +∞ .

Proof of Lemma 4.14. For every n in N let us introduce the set:{
∆ ∈ [0,+∞) : there exists t in [tn, tn + s̄n] such that, for all s in [0, τ ],

xesc(t+ s) − xesc(tn) − c(t+ s− tn) ≥ ∆
}
,
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and let us denote by ∆n(τ) the supremum of this set (with the convention that ∆n(τ)
equals −∞ if this set is empty).

First let us prove that ∆n(τ) goes to +∞ as n goes to +∞. For this purpose, observe
that, according to the control on the growth of xesc(·) (4.25) on page 30, for every
nonnegative integer n and for all s in [0, τ ],

xesc(tn + sn − τ + s) ≥ xesc(tn + sn) − cno-esc(τ − s) ,

and as a consequence,

xesc(tn + sn − τ + s) − xesc(tn) − c(sn − τ + s)
≥ xesc(tn + sn) − xesc(tn) − csn − (cno-esc − c)(τ − s)
≥ xesc(tn + sn) − xesc(tn) − csn − (cno-esc − c)τ ,

and according to Lemma 4.13 this last quantity goes to +∞ as n goes to +∞. This shows
that ∆n(τ) goes to +∞ as n goes to +∞. Up to replacing the sequence (tn, sn, s̄n)n∈N
by a subsequence, let us assume that, for every nonnegative integer n the quantity ∆n(τ)
is not smaller than 1.

Then, for every nonnegative integer n, according to the definition of ∆n(τ), the set{
t ∈ [tn, tn + s̄n] : for all s in [0, τ ], xesc(t+ s) − xesc(tn) − c(t+ s− tn) ≥ ∆n(τ) − 1

2
}

is nonempty. Let t′n denote the infimum of this set. Then t′n is greater than tn, and,
according to the control on the growth of xesc(·) (4.25) on page 30,

(4.56) xesc(t′n) − xesc(tn) − c(t′n − tn) = ∆n(τ) − 1
2 ,

and, for all s in [0, τ ],

(4.57) xesc(t′n + s) − xesc(tn) − c(t′n + s− tn) ≥ ∆n(τ) − 1
2 .

Since t′n is less than or equal to tn + s̄n and according to the last assertion of Lemma 4.13,
and since ∆n(τ) − 1/2 is positive, this shows that

t′n + τ ≤ tn + s̄n .

As a consequence, according to the definition of ∆n(τ), there exists s′
n in [τ, 2τ ] such that

(4.58) xesc(t′n + s′
n) − xesc(tn) − c(t′n + s′

n − tn) ≤ ∆n(τ) + 1
2 .

Finally, it follows from equality (4.56) and inequality (4.57) that, for all all s in [0, τ ],

xesc(t′n + s) − xesc(t′n) − cs ≥ 0 ,

which proves property 2, and it follows from inequalities (4.57) and (4.58) that

xesc(t′n + s′
n) − xesc(t′n) − cs′

n ≤ 1 ,
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which proves property 3. According to how t′n and s′
n where chosen, property 1 also holds.

In addition, according to equality (4.56) and to the control on the growth of xesc(·) (4.25)
on page 30, since ∆n(τ) goes to +∞ as n goes to +∞,

t′n − tn → +∞ as n → +∞ thus t′n → +∞ as n → +∞ .

Lemma 4.14 is proved.

Since t′n → +∞ as t → +∞, we may assume, up to dropping the first terms of the
sequence (t′n, s′

n)n∈N, that, for every n in N and for every time t greater than or equal to
t′n, inequality (4.54) of Lemma 4.12 holds.

4.8.4 Relaxation scheme

Lemma 4.14 provides intervals [t′n, t′n + s′
n] suitable to apply the relaxation scheme set

up in subsection 4.7. For every nonnegative integer n this relaxation scheme is going to
be applied for the following parameters:

tinit = t′n and xinit = xesc(tinit) and c as chosen above, and ξcut-init = 0

(the relaxation scheme thus depends on n). Observe that, according to hypothesis (4.53)
on page 44 for the speed c, both hypotheses (4.28) on page 32 and (4.48) on page 41
(required to apply this relaxation scheme) hold. Let us denote by

v(n)(·, ·) and E(n)(·) and D(n)(·) and F (n)(·) and ξesc
(n)(·) and ξhom

(n)(·)

the objects defined in subsection 4.7 (with the same notation except the “(n)” superscript
that is here to remind that all these objects depend on the integer n). By definition the
quantity ξesc

(n)(0) equals 0, and according to the conclusions of Lemma 4.14,

ξesc
(n)(s) ≥ 0 for all s in [0, τ ] and ξesc

(n)(s′
n) ≤ 1 .

The next two lemmas will be shown to be in contradiction with the relaxation scheme
final inequality (4.52) on page 44 (see inequality (4.60) below), and this will complete
the proof of Proposition 4.11.

Bounds on energy and firewall at the ends of the relaxation scheme.

Lemma 4.15 (bounds on energy and firewall at the ends of the relaxation scheme).
The quantities E(n)(0) and F (n)(0) are bounded from above and the quantity E(n)(s′

n) is
bounded from below, and these bounds are uniform with respect to τ and n.

Proof. The fact that E(n)(0) and F (n)(0) are bounded from above follows from the fact
that ξcut-init equals 0 and from the bounds (4.1) and (4.2) on page 24 for the solution.
The fact that E(n)(s′

n) is bounded from below follows from the fact that ξesc
(n)(s′

n) ≤ 1
and from the fact that, according to hypothesis (Hcoerc), V is bounded from below.
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Large dissipation integral.

Lemma 4.16 (large dissipation integral). The quantity∫ s′
n

0
D(n)(s) ds

goes to +∞ as τ goes to +∞, uniformly with respect to n.

Proof. By definition of D(n)(·), for all s in [0, s′
n],

D(n)(s) ≥
∫ ccuts

−∞
ecξ v(n)

s (ξ, s)2 dξ .

thus, for all s in [0, τ ], since ξesc
(n)(s) ≥ 0 (performing the change of variables ξ =

ξesc
(n)(s) + ξ̃),

D(n)(s) ≥
∫ ccuts−ξesc(n)(s)

−∞
ecξ̃ v(n)

s

(
ξesc

(n)(s) + ξ̃, s
)2
dξ̃ .

For all s in [0,+∞) and ξ̃ in R,

v(n)
s

(
ξesc

(n)(s) + ξ̃, s
)

= ut
(
xesc(t′n + s) + ξ̃, t′n + s

)
+ c ux

(
xesc(t′n + s) + ξ̃, t′n + s

)
,

thus, according to inequality (4.54) of Lemma 4.12 on page 45, there exist positive
quantities L and εdissip such that, uniformly with respect to n in N and s in [0,+∞),

(4.59)
∫ L

−L
v(n)

s

(
ξesc

(n)(s) + ξ̃, s
)2
dξ̃ ≥ εdissip .

Observe that the condition (4.53) on page 44 satisfied by c implies that cesc-sup − c is less
than or equal to ccut/4. Thus, since

ξesc
(n)(s) ≤ xesc(s) − cs for all s in [0,+∞) ,

there exists a positive quantity s0, depending only on L and on the function xesc(·) such
that, for every s in [s0,+∞),

ccuts− ξesc
(n)(s) ≥ L .

It follows from inequality (4.59) that, for all s in [s0, τ ],

D(n)(s) ≥ e−cLεdissip ,

and finally, ∫ s′
n

0
D(n)(s) ds ≥ (τ − s0)e−cLεdissip ,

and this finishes the proof of Lemma 4.16.
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4.8.5 Contradiction and end of the proof of Proposition 4.11

End of the proof of Proposition 4.11. For every nonnegative integer n, the relaxation
scheme final inequality (4.52) on page 44 yields (since ξcut-init equals 0):

(4.60)
1
2

∫ s′
n

0
D(n)(s) ds ≤ E(n)(0) − E(n)(s′

n) + KE,F
νF

F (n)(0) +KG,back[u0]

+KG,front(2τ) exp
(
−κ ξhom

(n)(0)
)
.

Since t′n goes to +∞ as n goes to +∞, the quantity ξhom
(n)(0) also goes to +∞ as n

goes to +∞. Thus, according to Lemma 4.15, the right-hand side of inequality (4.60) is
bounded, uniformly with respect to τ , provided that n (depending on τ) is large enough.
This is contradictory to Lemma 4.16, and completes the proof of Proposition 4.11 on
page 44.

4.8.6 Definition of escape speed cesc

According to Proposition 4.11, the three quantities cesc-inf and cesc-sup and cesc-sup are
equal; let

cesc

denote their common value.

4.9 Further control on the escape point
At this stage two cases can be distinguished.

1. Either cesc is less than chom, and in this case the end of the proof of Proposition 4.1
“invasion implies convergence” is very similar to the end of the proof of the main
result of [39]. The sole difference is the presence of the additional “front” flux term
coming from Gfront(·). But if cesc < chom this term can be easily handled provided
that the parameter c involved in the relaxation scheme and the quantity ccut are
chosen in such a way that

c+ ccut < chom

(this is possible since cesc is less than chom). Then the flux terms due to Gfront(·)
decrease at an exponential rate, and can be made arbitrarily small provided that
tinit is large enough. The details are skipped since this approach is anyway not
sufficient in the case where cesc equals chom.

2. The other case cesc equals chom is slightly more delicate, and taking this case into
account will require the more precise control on the invasion point provided by
Proposition 4.17 below.

The remaining of the proof of Proposition 4.1 covers both cases above, but is specifically
designed to take into account the (more difficult) second case (again, in the first case
cesc less than chom, adapting the proof of [39] as sketched above would lead to a simpler
proof).
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The aim of this subsection is to prove the following proposition that enforces the
control on the behaviour of the “escape” point xesc(·) (this will be used for the additional
relaxation arguments carried on in the next subsections).

Proposition 4.17 (mean invasion speed, further control). The following equality holds:

cesc-inf = cesc .

Proof. The proof is rather similar to that of Proposition 4.11. Recall that the quantity
cesc-inf is less than or equal to cesc. Let us proceed by contradiction and assume that

cesc-inf < cesc .

Then, let us take and fix a positive quantity c satisfying the following conditions:

cesc-inf < c < cesc < c+ ccut and c ≥ cesc − κccut
4(cno-esc + κ) and Φc(m) = ∅ .

The two first conditions are satisfied as soon as c is smaller than and close enough to
cesc, thus existence of a quantity c satisfying the three conditions follows from hypothesis
(Hdisc-c). The following lemma is identical to Lemma 4.13 on page 46 (but the proof will
be slightly different, see figure 4.14).

Figure 4.14: Illustration of the proof of Lemma 4.18.

Lemma 4.18 (large excursions to the right and returns for escape point in travelling
frame). There exist sequences (tn)n∈N and (sn)n∈N and (s̄n)n∈N of real quantities such
that the following properties hold.

1. For every nonnegative integer n the following inequalities hold: 0 ≤ tn and 0 ≤
sn ≤ s̄n ;

2. xesc(tn + sn) − xesc(tn) − csn → +∞ as n goes to +∞ ;

3. For every nonnegative integer n the following inequality holds: xesc(tn + s̄n) −
xesc(tn) − cs̄n ≤ 0 .
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Proof of Lemma 4.18. According to the definition of cesc-inf, there exists a sequence
(s′

n)n∈N of positive real quantities satisfying

s′
n → +∞ and xesc(s′

n)
s′

n

→ cesc-inf as n → +∞ .

In addition, up to replacing the sequence (s′
n)n∈N by a subsequence, it may be assumed

that
xesc(s′

n) > −∞ for all p in N .

Then, by definition of xesc(·), for every nonnegative integer n there exists a nonnegative
real quantity t′n such that

(4.61) xesc(t′n + s′
n) ≤ xesc(t′n) + xesc(s′

n) − 1 .

Observe that t′n must go to +∞ as n goes to +∞, or else this last inequality would yield

lim inf
n→+∞

xesc(t′n + s′
n)

t′n + s′
n

≤ cesc-inf < cesc

and this would be contradictory to the definition of cesc-inf and Proposition 4.11. For
every nonnegative integer n and every time t in [0,+∞), let

∆̃n(t) = xesc(t) −
(
xesc(t′n + s′

n) + c
(
t− (t′n + s′

n)
))
.

Then ∆̃n(t′n + s′
n) = 0 and it follows from (4.61) that

∆̃n(t′n)
s′

n

= xesc(t′n) − xesc(t′n + s′
n)

s′
n

+ c ≥ 1 − xesc(s′
n)

s′
n

+ c ,

thus
lim inf
n→+∞

∆̃n(t′n)
s′

n

≥ c− cesc-inf > 0 ,

and finally

(4.62) ∆̃n(t′n) → +∞ as n → +∞ .

On the other hand,
∆̃n(0)
t′n + s′

n

= xesc(0) − xesc(t′n + s′
n)

t′n + s′
n

+ c

and this quantity goes to the negative quantity c−cesc as n goes to +∞. As a consequence,

∆̃n(0) → −∞ as n → +∞ .

Thus, up to replacing the sequence (t′n, s′
n)n∈N by a subsequence, it may be assumed that,

for every nonnegative integer n, ∆̃n(0) is negative. Then, for every nonnegative integer
n, let

tn = sup
{
t ∈ [0, t′n] : ∆̃n(t) ≤ 0

}
and sn = t′n − tn and s̄n = t′n + s′

n − tn .
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Property 1 follows from these definitions, and, according to the control on the growth of
xesc(·) (4.25) on page 30, the quantity ∆̃n(tn) must be equal to 0; or in other words,

(4.63) xesc(tn + s̄n) = xesc(tn) + cs̄n .

Property 3 follows from equality (4.63). It also follows from equality (4.63) that

∆̃n(t′n) = xesc(tn + sn) − xesc(tn) − csn ,

so that property 2 follows from the limit (4.62). Lemma 4.18 is proved.

End of the proof of Proposition 4.17. Since the conclusions of Lemma 4.18 are identical
to those of Lemma 4.13 on page 46, the end of the proof of Proposition 4.17 (“mean
invasion speed, further control”) can be achieved exactly as for Proposition 4.11 (“mean
invasion speed”).

4.10 Dissipation approaches zero at regularly spaced times
The key argument behind Propositions 4.11 and 4.17 on page 44 and on page 52 (“mean
invasion speed” and “. . . further control”) is that a dissipation uniformly bounded
from below around the escape point cannot occur during large time intervals, since it is
forbidden by the relaxation scheme set up in subsection 4.7 (and in particular by the
relaxation scheme final inequality (4.52) on page 44). The aim of this subsection is to
state another result (Proposition 4.19 below) that just formalizes this argument, this time
considering the dissipation in a frame travelling precisely at the “sole relevant” speed
cesc given by Propositions 4.11 and 4.17.

For all t in [0,+∞), the following set:{
ε in (0,+∞) :

∫ 1/ε

−1/ε

(
ut
(
xesc(t) + ξ, t

)
+ cescux

(
xesc(t) + ξ, t

))2
dξ ≤ ε

}

is (according to the bounds (4.3) on page 24 for the solution) a nonempty (and unbounded
from above) interval. Let

(4.64) δdissip(t)

denote the infimum of this interval. This quantity measures to what extent the solution is,
at time t and around the escape point xesc(t), close to be stationary in a frame travelling
at the speed cesc. The aim of the next subsection will be to prove that

δdissip(t) → 0 as t → +∞ .

Proposition 4.19 below can be viewed as a first step towards this goal.

Proposition 4.19 (regular occurrence of small dissipation). For every positive quantity
ε, there exists a positive quantity T (ε) such that, for every t in [0,+∞),

inf
t′∈[t,t+T (ε)]

δdissip(t′) ≤ ε .
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Proof. Let us proceed by contradiction and assume that the converse holds. Then there
exist a positive quantity ε0 and a sequence (t′n)n∈N of nonnegative quantities such that,
for every t in [t′n, t′n + n],

(4.65)
∫ 1/ε0

−1/ε0

(
ut
(
xesc(t) + ξ, t

)
+ cescux

(
xesc(t) + ξ, t

))2
dξ ≥ ε0 .

Up to replacing t′n by t′2n + n, it may be assumed that t′n goes to +∞ as n goes to +∞.
As for the proof of Propositions 4.11 and 4.17, the strategy is to apply the relaxation

scheme in travelling frame where the escape point xesc(·):

• remains around the origin or to the right during a significant time interval (to
recover enough dissipation);

• finishes around the origin or to the left (so that the final energy be bounded from
below).

In order these two conditions to hold simultaneously, the relaxation scheme will not be
applied on the whole intervals [t′n, t′n + n], but rather on smaller convenient intervals that
will be introduced. Because of the second of these conditions, the speed of the travelling
frame will be chosen slightly greater than cesc, more precisely equal to

cesc + 1
τ
,

where τ is a positive quantity to be chosen later (this quantity will play the same kind of
role as in the proof of Proposition 4.11). According to Proposition 4.11, there exists a
positive quantity τ̄ larger than τ (thus depending on τ) such that

xesc(τ̄)
τ̄

≤ cesc + 1
τ

(this will ensure that the second of the conditions above is satisfied on every interval
of length τ̄). Besides, according to hypothesis (4.65) and to the bounds (4.3) on the
solution, it may be assumed that τ is large enough so that, for every t in [t′n, t′n + n],

∫ 1/ε0

−1/ε0

(
ut
(
xesc(t) + ξ, t

)
+
(
cesc + 1

τ

)
ux
(
xesc(t) + ξ, t

))2
dξ ≥ ε0

2 .

The following lemma provides the initial times of the time intervals where the relaxation
scheme will be applied, ensuring that the first of the two conditions above is fulfilled
despite the fact that the travelling speed is slightly above cesc.

Lemma 4.20 (escape point remains to the right in travelling frame). For every large
enough positive integer n, there exists a time tn in the interval [t′n, t′n + n− τ ] such that,
for every s in [0, τ ],

xesc(tn + s) − xesc(tn) − cescs ≥ −1 .
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Proof of Lemma 4.20. Let us proceed by contradiction and assume that the converse
holds. Then, there exists an arbitrarily large positive integer n such that, for every t in
the interval [t′n, t′n + n− τ ], there exists s in (0, τ ] such that

xesc(t+ s) − xesc(t) − cescs < −1 ,

ensuring that the mean speed of xesc(·) on the interval [t, t+ s] is less than cesc − 1/τ .
This shows that there exists t′ in the interval [t′n + n− τ, t′n + n] such that the interval
[t′n, t′] can be cut into a finite number of subintervals (defined one after another, starting
from t′n) so that, on each of these subintervals, the mean speed of xesc(·) is less than
cesc − 1/τ . As a consequence, the mean speed of xesc(·) on the whole interval [t′n, t′] is
less than cesc − 1/τ .

But on the other hand, according to Proposition 4.17, for every large enough positive
quantity s, the following inequality holds:

xesc(s) ≥
(
cesc − 1

τ

)
s ,

in other words the mean speed of xesc(·) cannot not be less than cesc − 1/τ on a large
enough time interval, a contradiction with the previous assertion if n is large enough.
Lemma 4.20 is proved.

End of the proof of Proposition 4.19. Thus, according to this lemma, for every nonnega-
tive integer n, large enough so that tn is defined, the following assertion holds: for every
s in [0, τ ],

xesc(tn + s) − xesc(tn) −
(
cesc + 1

τ

)
s ≥ −2 ,

and
xesc(tn + τ̄) − xesc(tn) −

(
cesc + 1

τ

)
s ≤ 0 .

These two last assertions are of the same nature as those of Lemma 4.13, and as a
consequence the end of the proof of Proposition 4.19 can be carried out along the same
lines as the proof of Proposition 4.11 (or Proposition 4.17).

4.11 Relaxation
The aim of this subsection is to prove the following proposition.

Proposition 4.21 (relaxation). The following assertion holds:

δdissip(t) → 0 as t → +∞ .

Proof. Let us proceed by contradiction and assume that the converse assertion holds.
Then there exists a positive quantity ε0 and a sequence (tn)n∈N of (positive) times such
that tn goes to +∞ as n goes to +∞ and such that, for every nonnegative integer n,

(4.66) δdissip(tn) ≥ ε0 .
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In other words, there is a “bump” of dissipation at each time tn. On the other hand,
according to Proposition 4.19 on page 54, on every large enough time interval, there
exist times where the dissipation around the escape point is low. Roughly speaking, the
strategy will be to apply the relaxation scheme set up in subsection 4.7 on a time interval
containing a dissipation bump (at a certain time tn) and bounded by two times where
the dissipation is low. At both ends of the intervals, it will follow from the smallness
of the dissipation that the solution is close to a front travelling at the speed cesc, and
therefore that its energy Ecesc (properly localized) is close to 0. Provided that the energy
fluxes can be sufficiently controlled along the relaxation scheme on this time interval,
this will be in contradiction with the dissipation bump occurring at time tn.

In order to reach this contradiction, a number of conditions need to be fulfilled. Here
are three of them.

• The relaxation scheme will actually be applied twice, on each side of the dissipation
bump occurring at time tn. Indeed, as illustrated on figure 4.16, applying the
relaxation scheme only once on the whole interval may lead to a dissipation bump
occurring “far to the left” in the appropriate travelling frame, ending up with a
negligible influence on the (localized) energy Ecesc of the solution.

Figure 4.15: Time of “dissipation bump” tn, framed by two times where dissipation is
almost zero.

• The lengths of the two time intervals where the relaxation scheme will be applied
need to be large, in order the mean speed of the escape point on each of these
interval to be close to its asymptotic value cesc (indeed, it is for this speed cesc that
the dissipation will be close to 0 at the ends and that a dissipation bump occurs at
time tn).

• Finally, depending on the length of the time intervals where the relaxation scheme
is applied, the integer n will have to be chosen large enough, in order the “front”
flux term (the last term in the right hand side of inequality (4.52) on page 44) to
be controlled.

The third of these conditions leads us to introduce a second integer parameter p that will
be related altogether to the length of these two time intervals and to the smallness of the
dissipation at both ends. Let us call upon the notation T (·) introduced in Proposition 4.19.
Up to replacing the sequence (tn)n∈N by a subsequence, it may be assumed that this
sequence is increasing. Then, since tn goes to +∞ as n goes to +∞, for every positive
integer p there exists a nonnegative integer nmin(p) such that, for every integer n,

n ≥ nmin(p) ⇐⇒ tn ≥ p+ T (1/p) .
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Note that nmin(p) goes to +∞ as p goes to +∞. According to Proposition 4.19, for every
positive integer p and every integer n greater than or equal to nmin(p), there exist (see
figure 4.15):

tbef
n,p in

[
tn − p− T (1/p), tn − p

]
and taft

n,p in
[
tn + p, tn + p+ T (1/p)

]
such that

(4.67) δdissip(tbef
n,p) ≤ 1/p and δdissip(taft

n,p) ≤ 1/p .

The mentions “bef” and “aft” are reminders of the fact that these times occur “before”
or “after” the “dissipation bump time” tn. In those definitions, the significant features
are that both quantities

δdissip(tbef
n,p) and δdissip(taft

n,p)
go to 0 as p goes to +∞ (uniformly with respect to n greater than nmin(p)), and both
quantities

tn − tbef
n,p and taft

n,p − tn

go to +∞ as p goes to +∞, while remaining bounded with respect to n for every fixed
positive integer p. According to inequality (4.25) (controlling the growth of the escape

Figure 4.16: Illustration of the reason why the relaxation scheme is applied separately on
two intervals: although the slopes on these two (sub)intervals are close to cesc, applying
the relaxation scheme on a single interval may lead to a dissipation bump occurring “far
to the left” of the origin in the moving frame.

point), both quantities

xesc(tn) − xesc(tbef
n,p)

tn − tbef
n,p

and
xesc(taft

n,p) − xesc(tn)
taft
n,p − tn

(that is the mean speeds of the escape point on the two intervals surrounding the dissipation
bump time tn) are bounded from above by cno-esc, and according to Propositions 4.11
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and 4.17, both quantities go to cesc as p goes to +∞, uniformly with respect to n greater
than or equal to nmin(p).

By compactness (Lemma 3.2), up to replacing the sequence (tn)n∈N by a subsequence,
there exists an entire solution u of system (1.1) such that, with the notation of (3.2),

(4.68) D2,1u
(
xesc(tn) + ·, tn + ·

)
→ D2,1u as n → +∞ ,

uniformly on every compact subset of R2. Let us denote by u∞ the function ξ 7→ u(ξ, 0).
In the two next sub-subsections, the relaxation scheme set up in subsection 4.7 will

be applied to the two intervals [tbef
n,p, tn] and [tn, taft

n,p]. The following notation will be
extensively used.
Notation. For every nonnegative time t and every real quantity ξ, let

E(ξ, t) =1
2ux

(
xesc(t) + ξ, t

)2 + V
(
u
(
xesc(t) + ξ, t

))
− V (m) ,

F (ξ, t) =wen

(1
2ux

(
xesc(t) + ξ, t

)2 + V
(
u
(
xesc(t) + ξ, t

))
− V (m)

)
+ 1

2
(
u
(
xesc(t) + ξ, t

)
−m

)2
,

and, for every function ϕ in C1(R,Rd), let

E[ϕ](ξ) = 1
2ϕ

′(ξ)2 + V
(
ϕ(ξ)

)
− V (m) ,

F[ϕ](ξ) = wen
(1

2ϕ
′(ξ)2 + V

(
ϕ(ξ)

)
− V (m)

)
+ 1

2
(
ϕ(ξ) −m

)2
,

4.11.1 Relaxation scheme to the left of the dissipation bump

The aim of this sub-subsection is to prove the following lemma, stating that the energy at
the right-end of the “left-hand” interval [tbef

n,p, tn] is negative. To this end, the relaxation
scheme set up in subsection 4.7 will be applied to this interval.

Lemma 4.22 (negative energy at right-end of left-hand interval). The following inequality
holds (and the integral on the left hand side converges):

(4.69)
∫ +∞

−∞
exp(cescξ)E[u∞](ξ) dξ < 0 .

Proof of Lemma 4.22. Let us still consider two integers n and p with p positive and n
greater than or equal to nmin(p), and let

sn,p = tn − tbef
n,p and cn,p =

xesc(tn) − xesc(tbef
n,p)

sn,p
.

Let us assume that p is large enough so that

0 < cn,p and cesc − κccut
4(cno-esc + κ) ≤ cn,p ,
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and let ℓ denote a nonnegative quantity to be chosen below. The relaxation scheme set
up in subsection 4.7 will be applied with the following parameters:

tinit = tbef
n,p and xinit = xesc(tinit) and c = cn,p and ξcut-init = ℓ .

Thus the relaxation scheme will depend on the three parameters (n, p, ℓ). Observe that
both hypotheses (4.28) on page 32 and (4.48) on page 41 (required to apply the relaxation
scheme) hold. Let us denote by

v(n,p)(·, ·) and χ(n,p,ℓ)(·, ·) and E(n,p,ℓ)(·) and D(n,p,ℓ)(·)
and ψ(n,p,ℓ)(·, ·) and F (n,p,ℓ)(·)

the objects defined in subsection 4.7 (with the same notation except the “(n, p)” or
“(n, p, ℓ)” superscripts to emphasize the dependency with respect to the parameters).

The proof is based on the relaxation scheme final inequality (4.52) on page 44 on the
s-time interval [0, sn,p], which will provide an upper bound on the quantity E(n,p,ℓ)(sn,p)
(the localized energy at the right end of this time interval). This will require a careful
choice of the three parameters n, p, and ℓ to control the various other quantities in this
inequality and the difference between E(n,p,ℓ)(sn,p) and the integral (4.69). Here are the
quantities that have to be controlled:

1. the dissipation term
∫ sn,p

0 D(n,p,ℓ)(s) ds ;

2. the initial value E(n,p,ℓ)(0) of the localized energy;

3. the initial value F (n,p,ℓ)(0) of the firewall function;

4. the “back flux” term (involving the factor KG,back[u0]);

5. the “front flux” term (involving the factor KG,front);

6. the difference between the final energy E(n,p,ℓ)(sn,p) and the integral (4.69).

Those controls will be stated by a series of lemmas (Lemmas 4.23 to 4.28). Figure 4.17
summarizes the requirements on the three parameters n, p, and ℓ, and the dependencies
between those parameters as well, in order all these controls to hold. As illustrated by
this figure, the final choice of those parameters, satisfying all these requirements, will be,
in short:

• a quantity ℓ large enough positive,

• an integer p large enough positive (depending on ℓ),

• an integer n large enough positive (depending on ℓ and p).

The proof of Lemma 4.22 will be presented as a sequence of lemmas. Here is the first one.
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Figure 4.17: Illustration of the constraints on parameters n, p and ℓ to ensure the estimates
required to use the relaxation scheme final inequality (4.52) on page 44.

Lemma 4.23 (lower bound on dissipation). There exists a positive quantity εdissip and a
positive integer pmin,dissip such that, for every integer p greater than or equal to pmin,dissip,
for every integer n greater than or equal to nmin(p), and for every nonnegative quantity
ℓ, the following inequality holds:

1
2

∫ sn,p

0
D(n,p,ℓ)(s) ds ≥ εdissip .

Proof of Lemma 4.23. Indeed, if the converse was true, there would exist a sequence
(pj)j∈N of integers, going to +∞ as j goes to +∞, and a sequence (nj)j∈N of integers
with nj greater than or equal to nmin(pj) for every nonnegative integer j (thus nj also
goes to +∞ as j goes to +∞), and a sequence (ℓj)j∈N of nonnegative quantities, such
that, if we consider the integral

Ij =
∫ snj ,pj

0
D(nj ,pj ,ℓj)(s) ds ,

then Ij → 0 as j → +∞.
Observe that

Ij ≥
∫ snj ,pj

snj ,pj −1
D(nj ,pj ,ℓj)(s) ds =

∫ 0

−1
D(nj ,pj ,ℓj)(snj ,pj + s) ds ,

so that, according to the definition (4.32) of D(·),

Ij ≥
∫ 0

−1

(∫
R
χ(nj ,pj ,ℓj)(ξ, snj ,pj + s)v(nj ,pj)(ξ, snj ,pj + s)2 dξ

)
ds

≥
∫ 0

−1

(∫ ℓj+ccutsnj ,pj

−∞
exp(cnj ,pjξ)v(nj ,pj)(ξ, snj ,pj + s)2 dξ

)
ds

≥
∫ 0

−1

(∫ ccutsnj ,pj

−∞
exp(cnj ,pjξ)v(nj ,pj)(ξ, snj ,pj + s)2 dξ

)
ds

≥
∫ 0

−1

(∫ ccutsnj ,pj

−∞
exp(cnj ,pjξ)(ut + cnj ,pjux)(xesc(tn) + cnj ,pjs+ ξ, tn + s)2 dξ

)
ds ,
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and since snj ,pj goes to +∞ as j goes to +∞, if j is large enough positive then Ij is
greater than or equal to the quantity∫ 0

−1

(∫ 2/ε0+cnj ,pj

−2/ε0
exp(cnj ,pjξ)

(
(ut + cnj ,pjux)

(
xesc(tn) + cnj ,pjs+ ξ, tn + s

))2
dξ

)
ds ,

so that

Ij exp
( 2
ϵ0
cnj ,pj

)
≥
∫ 0

−1

(∫ 2/ε0+cnj ,pj

−2/ε0

(
(ut + cnj ,pjux)

(
xesc(tn) + cnj ,pjs+ ξ, tn + s

))2
dξ

)
ds

≥
∫ 0

−1

(∫ 2/ε0+cnj ,pj (1+s)

−2/ε0+cnj ,pj s

(
(ut + cnj ,pjux)

(
xesc(tn) + ξ, tn + s

))2
dξ

)
ds

≥
∫ 0

−1

(∫ 2/ε0

−2/ε0

(
(ut + cnj ,pjux)

(
xesc(tn) + ξ, tn + s

))2
dξ

)
ds .

In view of the limit (4.68), is follows that

lim inf
j→+∞

Ij exp
( 2
ϵ0
cesc

)
≥
∫ 0

−1

(∫ 2/ε0

−2/ε0

(
ut(ξ, s) + cescux(ξ, s)

)2
dξ

)
ds ,

and since Ij → 0 as j → +∞, it follows that the function ξ 7→ ut(ξ, 0) + cescux(ξ, 0) must
vanish identically on the interval [−2/ε0, 2/ε0], a contradiction with inequality (4.66) and
the definition (4.64) of δdissip(·). Lemma 4.23 is proved.

The conclusions of Lemma 4.22 will follow from the next five (independent) lemmas.

Lemma 4.24 (upper bound on initial energy). For every nonnegative quantity ℓ, there
exists a positive integer pmin,init-en(ℓ) such that, for every integer p greater than or equal
to pmin,init-en(ℓ) and every integer n greater than or equal to nmin(p),

E(n,p,ℓ)(0) ≤ εdissip
8 .

Lemma 4.25 (lower bound on final energy). For every nonnegative quantity L, there
exists a positive integer pmin,fin-en(L) such that, for every integer p greater than or equal
to pmin,fin-en(L), and for every nonnegative quantity ℓ, there exists a nonnegative integer
nmin,fin-en(L, ℓ, p) such that, for every integer n greater than or equal to nmin,fin-en(L, ℓ, p)
and to nmin(p),

E(n,p,ℓ)(sn,p) ≥
∫ L

−∞
exp(cescξ)E[u∞](ξ) dξ − εdissip

8 .

Lemma 4.26 (upper bound on initial firewall). There exists a positive quantity ℓmin,init-fire
such that, for every quantity ℓ greater than or equal to ℓmin,init-fire, there exists a positive
integer pmin,init-fire(ℓ) such that, for every integer p greater than or equal to pmin,init-fire(ℓ),
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and for every integer n greater than or equal to nmin(p), the following inequality holds
(the constants KE,F and νF being those of inequality (4.52) on page 44):

KE,F
νF

F (n,p,ℓ)(0) ≤ εdissip
8

Lemma 4.27 (upper bound on back flux for the firewall). There exists a nonnegative
quantity ℓmin,back-fire such that, for every positive integer p and every integer n greater
than or equal to nmin(p), the “back-flux” term in inequality (4.52) on page 44 is less than
or equal to εdissip/8.

Lemma 4.28 (upper bound on front flux for the firewall). For every nonnegative quantity
ℓ and for every positive integer p, there exists a nonnegative integer nmin,front-fire(ℓ, p)
such that, for every integer n greater than or equal to nmin,front-fire(ℓ, p) and greater than
or equal to nmin(p), the “front flux” term in inequality (4.52) on page 44 is less than or
equal to εdissip/8.

Postponing the proofs of these five lemmas, let us first conclude with the proof of
Lemma 4.22. For every nonnegative quantity L, let:

ℓ = max(ℓmin,init-fire, ℓmin,back-fire) ,
p = max

(
pmin,dissip, pmin,init-en(ℓ), pmin,fin-en(L), pmin,init-fire(ℓ)

)
,

n = max
(
nmin(p), nmin,fin-en(L, ℓ, p), nmin,front-fire(ℓ, p)

)
.

Then, according to Lemmas 4.23 to 4.28, it follows from inequality (4.52) on page 44 that∫ L

−∞
exp(cescξ)E[u∞](ξ) dξ ≤ −3

8εdissip ,

and since the nonnegative quantity L is any, this finishes the proof of Lemma 4.22
(provided that Lemmas 4.24 to 4.28 hold).

Proof of Lemma 4.24 (upper bound on initial energy). Let us proceed by contradiction
and assume that the converse holds. Then there exists a nonnegative quantity ℓ0, a
sequence (pj)j∈N of positive integers going to +∞ as j goes to +∞, and a sequence
(nj)j∈N of integers such that nj is greater than or equal to nmin(pj) for all j in N (thus
nj goes to +∞ as j goes to +∞) and such that, for every j in N,

(4.70) E(nj ,pj ,ℓ0)(0) ≥ εdissip
8 .

By compactness (Lemma 3.2), up to replacing the sequence
(
(nj , pj)

)
j∈N by a subse-

quence, there exists an entire solution ũ of system (1.1) such that, with the notation of
(3.2),

(4.71) D2,1u
(
xesc(tbef

nj ,pj
) + ·, tbef

nj ,pj
+ ·
)

→ D2,1ũ as j → +∞ ,
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uniformly on every compact subset of R2. According to the definition (4.67) on page 58
of tbef

n,p, for every nonnegative integer j,

δdissip(tbef
nj ,pj

) ≤ 1
pj
,

therefore the function
ξ 7→ ũt(ξ, 0) + cescũx(ξ, 0)

must be identically zero on R. Let us denote by ϕ the function ξ 7→ ũt(ξ, 0). It follows
that ϕ is a solution of system (2.1) on page 5 for the speed cesc, or in other words is the
profile of a wave travelling at the speed cesc for system (1.1). Since (as stated in (4.24) on
page 30) the difference xhom(t) − xesc(t) goes to +∞ as time goes to +∞, the following
estimate holds:

(4.72) |ϕ(ξ) −m| ≤ δEsc(m) for all ξ in [0,+∞) ,

thus according to assertion 1 of Lemma 7.1 on page 96,

ϕ(ξ) → m as ξ → +∞ .

On the other hand, according to the bound (4.1) on page 24, the function |ϕ(·)| is bounded
on R, and according to the definition (4.22) on page 30 of xesc(·) the function |ϕ(·) −m|
cannot vanish identically. In short, the function ϕ must belong to the set Φcesc(m) of
bounded profiles of waves travelling at the speed cesc and “invading” the equilibrium m.
As a consequence, according to Lemma 7.2 on page 99,

(4.73)
∫
R

exp(cescξ)E[ϕ](ξ) dξ = 0 .

Recall that

χ(nj ,pj ,ℓ0)(ξ, 0) =
{

exp(cnj ,pjξ) if ξ ≤ ℓ0 ,

exp
(
cnj ,pjℓ0 − κ(ξ − ℓ0)

)
if ξ ≥ ℓ0 ,

and let

(4.74) χ(∞,∞,ℓ0)(ξ) =
{

exp(cescξ) if ξ ≤ ℓ0 ,

exp
(
cescℓ0 − κ(ξ − ℓ0)

)
if ξ ≥ ℓ0 .

Since the convergence
χ(nj ,pj ,ℓ0)(ξ, 0) → 0 as ξ → ±∞

is uniform with respect to j provided that j is large enough, it follows that

χ(nj ,pj ,ℓ0)(·, 0) → χ(∞,∞,ℓ0)(·) in L1(R) as j → +∞

and (according to the definition (4.71) of ϕ and the bounds (4.3) on page 24 for the
solution) that

ξ 7→ χ(nj ,pj ,ℓ0)(ξ, 0)E(ξ, tbef
nj ,pj

) approaches ξ 7→ χ(∞,∞,ℓ0)(ξ)E[ϕ](ξ) in L1(R,R)
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as j goes to +∞. As a consequence,

(4.75) E(nj ,pj ,ℓ0)(0) →
∫
R
χ(∞,∞,ℓ0)(ξ)E[ϕ](ξ) dξ as j → +∞ .

According to inequality (4.72) the quantity V
(
ϕ(ξ)

))
− V (m) is nonnegative (actually

positive) for all ξ in [0,+∞), therefore according to the identity (4.73),

(4.76)
∫
R
χ(∞,∞,ℓ0)(ξ)E[ϕ](ξ) dξ ≤ 0 .

The contradiction with hypothesis (4.70) follows from (4.75) and (4.76). Lemma 4.24 is
proved.

Proof of Lemma 4.25 (lower bound on final energy). Recall that

E(n,p,ℓ)(sn,p) =
∫
R
χ(n,p,ℓ)(ξ, sn,p)E(ξ, tn) dξ

and that

χ(n,p,ℓ)(ξ, sn,p) =

 exp(cn,pξ) if ξ ≤ ℓ+ ccutsn,p ,

exp
(
cn,p(ℓ+ ccutsn,p) − κ

(
ξ − (ℓ+ ccutsn,p)

))
if ξ ≥ ℓ+ ccutsn,p .

It follows from the definition of xesc(·) that

V
(
u
(
xesc(tn) + ξ, tn

)
−m

)
− V (m) ≥ 0 for all ξ in [0, xhom(tn) − xesc(tn)] .

Let L be a positive quantity, and let us assume that n is large enough so that

L ≤ xhom(tn) − xesc(tn)

(this is possible according to assertion (4.24) on page 30). Then,

(4.77)
E(n,p,ℓ)(sn,p) ≥

∫ L

−∞
χ(n,p,ℓ)(ξ, sn,p)E(ξ, tn) dξ

+
∫ +∞

xhom(tn)−xesc(tn)
χ(n,p,ℓ)(ξ, sn,p)E(ξ, tn) dξ .

Recall that the choice of tbef
n,p ensures that sn,p is greater than or equal to p, therefore as

soon as p is large enough (namely greater than or equal to L/ccut), the first integral at
the right-hand of this last inequality (4.77) equals

(4.78)
∫ L

−∞
exp(cn,pξ)E(ξ, tn) dξ .

Since the convergence
exp(cn,pξ) → 0 as ξ → −∞
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is uniform with respect to n and p provided that p is large enough, and according to the
bounds (4.3) on page 24,

ξ 7→ exp(cn,pξ)E(ξ, tn) approaches ξ 7→ exp(cescξ)E[u∞](ξ)

in L1((−∞, L],R
)
, as both n and p go to +∞.

On the other hand, for ℓ and p fixed and n large enough (depending on the values of ℓ
and p), the second integral of the right-hand of inequality (4.77) equals

(4.79) exp
(
(cn,p + κ)(ℓ+ ccutsn,p)

) ∫ +∞

xhom(tn)−xesc(tn)
e−κξ E(ξ, tn) dξ .

According to the bounds (4.3) and since according to the choice of tbef
n,p the quantity sn,p

is less than or equal to p+T (1/p) (it is thus bounded from above, uniformly with respect
to n), this last quantity (4.79) goes to 0 as n goes to +∞ and ℓ and p are fixed.

The desired lower bound of Lemma 4.25 thus follows from inequality (4.77). This
finishes the proof of Lemma 4.25.

The next step is to prove Lemma 4.26. Let us first introduce some notation and state
an intermediate lemma, before actually proceeding to the proof. Let

(4.80) ψ(∞,∞,ℓ)(ξ) =
{

exp
(
(cesc + κ)ξ − κℓ

)
if ξ ≤ ℓ

exp
(
(cesc + κ)ℓ− κξ

)
if ξ ≥ ℓ .

Observe that, for every ξ in R,

ψ(n,p,ℓ)(ξ, 0) → ψ(∞,∞,ℓ)(ξ) as p → +∞ ,

uniformly with respect to n greater than or equal to nmin(p). Let

εdissip,fire = νF εdissip
8KE,F

.

The aim of Lemma 4.26 is to prove, under suitable conditions on the integers n and
p and the quantity ℓ, that F (n,p,ℓ)(0) is less than or equal to εdissip,fire. The following
intermediate lemma provides a step towards this purpose.

Lemma 4.29 (smallness of firewall with a weight bulk far to the right for a travelling
front). There exists a positive quantity ℓ1 such that, for every quantity ℓ greater than
or equal to ℓ1, and for every function ϕ in the set Φcesc(m) of bounded profiles of waves
travelling at the speed cesc and invading m, such that |ϕ(ξ) −m| is not larger than δEsc(m)
for every nonnegative quantity ξ, the following inequality holds:

(4.81)
∫
R
ψ(∞,∞,ℓ)(ξ)F[ϕ](ξ) dξ ≤ εdissip,fire

2 .
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Proof of Lemma 4.29. Observe that, for every real quantity ξ in (−∞, ℓ],

ψ(∞,∞,ℓ)(ξ) = exp
(
−κℓ

2
)

exp
(

(cesc + κ)
(
ξ − κℓ

2(cesc + κ)
))

.

Thus, according to the bounds (4.3), there exists a (large) positive quantity ℓ2 such that,
for every ℓ greater than or equal to ℓ2,

∫ κℓ/
(

2(cesc+κ)
)

−∞
ψ(∞,∞,ℓ)(ξ)F[ϕ](ξ) dξ ≤ εdissip,fire

4 .

It follows that∫
R
ψ(∞,∞,ℓ)(ξ)F[ϕ](ξ) dξ ≤ εdissip,fire

4 +
∫ +∞

κℓ/
(

2(cesc+κ)
) exp(cescξ)F[ϕ](ξ) dξ .

According to assertion 5 of Lemma 7.1 on page 96, the second term (the integral) in
the right-hand side of this inequality goes to 0 as ℓ goes to +∞. In addition, according
to the Local Stable Manifold Theorem, this convergence is uniform with respect to the
profile ϕ belonging to Φcesc(m) and satisfying |ϕ(ξ) −m| ≤ δEsc(m) for every nonnegative
quantity ξ. This proves Lemma 4.29.

Proof of Lemma 4.26 (upper bound on initial firewall). Let us proceed by contradiction
and assume that the converse holds. Then, there exists a quantity ℓ3 greater than or
equal to the quantity ℓ1 introduced in Lemma 4.29, a sequence (pj)j∈N of positive integers
going to +∞, and a sequence (nj)j∈N of integers with nj greater than or equal to nmin(pj)
for all j (thus nj also goes to +∞ as j goes to +∞), such that, for every nonnegative
integer j,

F (nj ,pj ,ℓ3)(0) ≥ εdissip,fire .

Up to replacing the sequence
(
(nj , pj)

)
j∈N by a subsequence, and proceeding as in the

proof of Lemma 4.24, it may be assumed that there exists a function ϕ in the set Φcesc(m)
of bounded profiles of waves travelling at the speed cesc and “invading” the equilibrium
m, such that, for every positive quantity L,∥∥∥ξ 7→ m+ v(nj ,pj)(ξ, 0) − ϕ(ξ)

∥∥∥
C1
(

[−L,L],Rd
) → 0 as j → +∞ .

Moreover, according to the definition of xesc(·) and to Lemma 4.4 on page 28 (escape /
Escape), the quantity |ϕ(ξ) −m| is not larger than δEsc(m) for every nonnegative quantity
ξ. According to the bounds (4.3) on page 24, the function

(4.82) ξ 7→ ψ(nj ,pj ,ℓ3)(ξ, 0)F (ξ, tbef
nj ,pj

)

goes to 0 as ξ goes to ±∞, and this convergence is uniform with respect to j (provided
that j is large enough). As a consequence, the function (4.82) above approaches

ξ 7→ ψ(∞,∞,ℓ3)(ξ)F[ϕ](ξ)
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in L1(R), as j goes to +∞. It follows that F (nj ,pj ,ℓ3)(0) goes to the quantity∫
R
ψ(∞,∞,ℓ3)(ξ)F[ϕ](ξ) dξ

as j goes to +∞, a contradiction with Lemma 4.29. Lemma 4.26 is proved.

Proof of Lemma 4.27 (upper bound on back flux for the firewall). The statement follows
from the expression of the back flux term in the relaxation scheme final inequality (4.52)
on page 44.

Proof of Lemma 4.28 (upper bound on front flux for the firewall). The statement
follows from the expression of the front flux term in the relaxation scheme final inequality
(4.52) on page 44.

The proof of Lemma 4.22 is complete.

4.11.2 Relaxation scheme to the right of the dissipation bump

The purpose of this sub-subsection is to apply once again the relaxation scheme set up
in subsection 4.7 to the “second” sub-interval (between tn and taft

n,p, see figure 4.16 on
page 58), in order to complete the proof of Proposition 4.21. The arguments are very
similar to those of the proof of Lemma 4.22 in the previous sub-subsection.

Let us introduce the positive quantity εenergy defined as

εenergy = −
∫
R

exp(cescξ)E[u∞](ξ) dξ .

The same notation as in the previous sub-subsection will be used again to denote objects
that are defined similarly but with respect to the “second” subinterval [tn, taft

n,p] (by
contrast with the “first” one [tbef

n,p, tn]). In other words, for notational simplicity, the
superscripts “aft” (versus “bef”) will be omitted for those objects. This begins with the
following notation.

For every positive integer p and every integer n greater than or equal to nmin(p), let

sn,p = taft
n,p − tn and cn,p =

xesc(taft
n,p) − xesc(tn)
sn,p

.

Let us assume that p is large enough so that

0 < cn,p and cn,p ≥ cesc − κccut
4(cno-esc + κ) ,

and let ℓ denote a nonnegative quantity to be chosen below. The relaxation scheme set
up in subsection 4.7 will be applied with the following parameters:

tinit = tp and xinit = xesc(tinit) and c = cn,p and ξcut-init = ℓ .
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As in the previous sub-subsection, the relaxation scheme thus depends on the three
parameters n, p, and ℓ. Observe that both hypotheses (4.28) on page 32 and (4.48) on
page 41 (required to apply the relaxation scheme) hold. Let us denote by

v(n,p)(·, ·) and χ(n,p,ℓ)(·, ·) and E(n,p,ℓ)(·) and D(n,p,ℓ)(·)
and ψ(n,p,ℓ)(·, ·) and F (n,p,ℓ)(·)

the objects defined in subsection 4.7 (with the same notation except the “(n, p)” or
“(n, p, ℓ)” superscripts to emphasize the dependency with respect to the parameters).
The contradiction completing the proof of Proposition 4.21 will follow from the next five
lemmas.

Lemma 4.30 (upper bound on initial energy). For every nonnegative quantity ℓ, there
exists a positive integer pmin,init-en(ℓ) such that, for every integer p greater than or equal
to pmin,init-en(ℓ) and every integer n greater than or equal to nmin(p),

E(n,p,ℓ)(0) ≤ −7
8εenergy .

Lemma 4.31 (lower bound on final energy). There exists a positive integer pmin,fin-en
such that, for every integer p greater than or equal to pmin,fin-en and for every nonnegative
quantity ℓ, there exists an nonnegative integer nmin,fin-en(ℓ, p) such that, for every integer
n greater than or equal to nmin,fin-en(ℓ, p) and to nmin(p),

E(n,p,ℓ)(sn,p) ≥ −εenergy
8 .

Lemma 4.32 (upper bound on initial firewall). There exists a positive quantity ℓmin,init-fire
such that, for every quantity ℓ greater than or equal to ℓmin,init-fire, there exists a positive
integer pmin,init-fire(ℓ) such that, for every integer p greater than or equal to pmin,init-fire(ℓ),
and for every integer n greater than or equal to nmin(p), the following inequality holds
(the constants KE,F and νF being those of inequality (4.52) on page 44):

KE,F
νF

F (n,p,ℓ)(0) ≤ εenergy
8

Lemma 4.33 (upper bound on back flux for the firewall). There exists a nonnegative
quantity ℓmin,back-fire such that, for every positive integer p and every integer n greater
than or equal to nmin(p), the “back-flux” term in inequality (4.52) on page 44 is less than
or equal to εenergy/8.

Lemma 4.34 (upper bound on front flux for the firewall). For every nonnegative quantity
ℓ and for every positive integer p, there exists an integer nmin,front-fire(ℓ, p) such that, for
every integer n greater than or equal to nmin,front-fire(ℓ, p) and to nmin(p), the “front flux”
term in inequality (4.52) on page 44 is less than or equal to εenergy/8.
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Postponing the proofs of these five lemmas, let us first conclude with the proof of
Proposition 4.21. Let

ℓ = max(ℓmin,init-fire, ℓmin,back-fire) ,
p = max

(
pmin,init-en(ℓ), pmin,fin-en, pmin,init-fire(ℓ)

)
,

n = max
(
nmin(p), nmin,fin-en(ℓ, p), nmin,front-fire(ℓ, p)

)
.

Then, according to Lemmas 4.30 to 4.34, inequality (4.52) on page 44 leads to an
immediate contradiction. This finishes the proof of Proposition 4.21 (provided that
Lemmas 4.30 to 4.34 hold).

Proof of Lemma 4.30 (upper bound on initial energy). Let ℓ denote a nonnegative quan-
tity, and let (as in the definition (4.74) on page 64)

χ(∞,∞,ℓ)(ξ) =
{

exp(cescξ) if ξ ≤ ℓ ,

exp
(
cescℓ− κ(ξ − ℓ)

)
if ξ ≥ ℓ .

For every large enough positive integer p, and every integer n greater than or equal to
nmin(p), the mean speed is close to cesc, thus (say) greater than cesc/2. As a consequence,
the convergence

χ(n,p,ℓ)(ξ, 0) → χ(∞,∞,ℓ)(ξ) as ξ → ±∞

is uniform with respect to n and p (provided that p is large enough and that n is greater
than or equal to nmin(p) and that ℓ is fixed). It follows from the convergence above that

ξ 7→ χ(n,p,ℓ)(ξ, 0)E(ξ, tn) approaches ξ 7→ χ(∞,∞,ℓ)(ξ)E[u∞](ξ)

in L1(R,R) as p goes to +∞ (uniformly with respect to n greater than or equal to
nmin(p)). Thus

E(n,p,ℓ)(0) →
∫
R
χ(∞,∞,ℓ)(ξ)E[u∞](ξ) dξ as p → +∞ ,

uniformly with respect to n greater than or equal to nmin(p). Since the quantity
V
(
u∞(ξ)

)
−V (m) is nonnegative for every nonnegative quantity ξ, the following inequality

holds: ∫
R
χ(∞,∞,ℓ)(ξ)E[u∞](ξ) dξ ≤

∫
R

exp(cescξ)E[u∞](ξ) dξ = −εenergy ,

and Lemma 4.30 follows.

Proof of Lemma 4.31 (lower bound on final energy). According to
Lemma 7.2 on page 99, there exists a positive quantity L such that, for every function ϕ
in the set Φcesc(m) of bounded profiles of waves travelling at the speed cesc and “invading”
the equilibrium m, satisfying |ϕ(ξ) −m| ≤ δEsc(m) for every nonnegative quantity ξ, the
following estimate holds: ∫ L

−∞
exp(cescξ)E[ϕ](ξ) dξ ≥ −εenergy

24 .
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As in the proof of Lemma 4.24, let us assume that n is a positive integer, large enough
so that

L ≤ xhom(taft
n,p) − xesc(taft

n,p)

(this is possible according to assertion (4.24) on page 30). Then,

(4.83)
E(n,p,ℓ)(sn,p) ≥

∫ L

−∞
χ(n,p,ℓ)(ξ, sn,p)E(ξ, taft

n,p) dξ

+
∫ +∞

xhom(taft
n,p)−xesc(taft

n,p)
χ(n,p,ℓ)(ξ, sn,p)E(ξ, taft

n,p) dξ .

Recall that the choice of taft
n,p ensures that sn,p is greater than or equal to p, therefore

as soon as p is large enough (namely greater than or equal to L/ccut), the quantity
ℓ+ ccutsn,p is greater than or equal to L, and therefore the first integral at the right-hand
of this last inequality (4.83) equals

(4.84)
∫ L

−∞
exp(cn,pξ)E(ξ, taft

n,p) dξ .

The following lemma deals with this integral.

Lemma 4.35 (lower bound on final energy, integral between −∞ and L). There exists a
positive integer pmin,fin-en such that, for every integer p greater than or equal to pmin,fin-en,
for every integer n greater than or equal to nmin(p), and for every nonnegative quantity ℓ,∫ L

−∞
exp(cn,pξ)E(ξ, taft

n,p) dξ ≥ −εenergy
12 .

Proof of Lemma 4.35. Let us proceed by contradiction and assume that the converse
holds. Then there exist a sequence (pj)j∈N of positive integers going to +∞ as j goes
to +∞, a sequence (nj)j∈N of nonnegative integers such that nj is greater than or equal
to than nmin(pj) for every nonnegative integer j, and a sequence (ℓj)j∈N of nonnegative
quantities such that, for every nonnegative integer j,

(4.85)
∫ L

−∞
exp(cnj ,pjξ)E(ξ, taft

nj ,pj
) dξ ≤ −εenergy

12 .

Up to replacing the sequence
(
(nj , pj , ℓj)

)
j∈N by a subsequence, it may be assumed

(proceeding as in the proof of Lemma 4.24) that there exists a function ϕ in the set
Φcesc(m) of bounded profiles of waves travelling at the speed cesc and “invading” the
equilibrium m, such that, for every positive quantity L′,∥∥∥ξ 7→ u

(
xesc(taft

nj ,pj
) + ξ, taft

nj ,pj

)
− ϕ(ξ)

∥∥∥
C2([−L′,L′],Rd)

→ 0 as j → +∞ ,

and such that |ϕ(ξ) −m| ≤ δEsc(m) for all ξ in [0,+∞). Since the convergence

exp(cnj ,pjξ) → 0 as ξ → −∞
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is uniform with respect to j (provided that j is large enough positive), it follows that

ξ 7→ exp(cnj ,pjξ)E(ξ, taft
nj ,pj

) approaches ξ 7→ exp(cescξ)E[ϕ](ξ) in L1((−∞, L],R
)

as j goes to +∞. According to Lemma 7.2 on page 99,∫
R

exp(cescξ)E[ϕ](ξ) dξ = 0 thus
∫ L

−∞
exp(cescξ)E[ϕ](ξ) dξ ≤ 0 ,

a contradiction with hypothesis (4.85). Lemma 4.35 is proved.

Let us pursue with the end of the proof of Lemma 4.31. Let us assume that p is greater
than pmin,fin-en. For such fixed integer p and for every nonnegative fixed quantity ℓ, since
sn,p is bounded from above uniformly with respect to n, the following inequality holds
for every large enough positive integer n:

ℓ+ ccutsn,p ≥ xhom(taft
n,p) − xesc(taft

n,p) .

Thus, the second integral of the right-hand side of inequality(4.83) reads

exp
(
(cn,p + κ)(ℓ+ ccutsn,p)

) ∫ +∞

xhom(taft
n,p)−xesc(taft

n,p)
exp(−κξ)E(ξ, taft

n,p) dξ .

According to the bounds (4.3), this last quantity goes to 0 as n goes to +∞ and ℓ and p
are fixed. This finishes the proof of Lemma 4.31.

The next step is to prove Lemma 4.32. Let us first state an intermediate result. For
every nonnegative quantity ℓ, every nonnegative integer p, every integer n greater than
or equal to nmin(p), let us define the function ξ 7→ ψ(∞,∞,0)(ξ) as in (4.80). Let

ε̃energy = νF
8KE,F

εenergy .

Lemma 4.36 (small upper bound on the firewall with a weight bulk far to the right for
u∞). There exists a positive quantity ℓ4 such that, for every quantity ℓ greater than or
equal to ℓ4, the following inequality holds:

(4.86)
∫
R
ψ(∞,∞,ℓ)(ξ)F[u∞](ξ) dξ ≤ ε̃energy

2 .

Proof of Lemma 4.36. Let us proceed like in the proof of Lemma 4.29. According to the
bounds (4.3), there exists a (large) positive quantity ℓ5 such that, for every ℓ greater
than or equal to ℓ5,∫ κℓ/

(
2(cesc+κ)

)
−∞

ψ(∞,∞,ℓ)(ξ)F[u∞](ξ) dξ ≤ ε̃energy
4 .

It follows that

(4.87)
∫
R
ψ(∞,∞,ℓ)(ξ)F[u∞](ξ) dξ ≤ ε̃energy

4 +
∫ +∞

κℓ/
(

2(cesc+κ)
) exp(cescξ)F[u∞](ξ) dξ .
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Besides, according to inequality (3.6) on page 21, for every nonnegative ξ,

(
u∞(ξ) −m

)2 ≤ 4
λmin(m)

(
V
(
u∞(ξ)

)
− V (m)

)
,

thus it follows from Lemma 4.22 on page 59 that the function ξ 7→ exp(cescξ)F[u∞](ξ) is
in L1(R,R). As a consequence the second term (the integral) on the right-hand side of
inequality (4.87) goes to 0 as ℓ goes to +∞. This proves Lemma 4.36.

Proof of Lemma 4.32 (upper bound on initial firewall). Let us assume that ℓ is greater
than or equal to the quantity ℓ4 introduced in Lemma 4.36 above. According to the
bounds (4.3), the function

(4.88) ξ 7→ ψ(n,p,ℓ)(ξ, 0)F (ξ, tn)

goes to 0 as ξ goes to ±∞, and this convergence is uniform with respect to n and p
(provided that p is large enough and that n is greater than or equal to nmin(p)). As a
consequence, the function (4.88) above approaches the function

ξ 7→ ψ(∞,∞,ℓ)(ξ)F[u∞](ξ)

in L1(R,R) as p goes to +∞, uniformly with respect to n greater than or equal to nmin(p).
This proves Lemma 4.32.

Proof of Lemma 4.33 (upper bound on back flux for the firewall). As for Lemma 4.27 on
page 63, the statement follows from the expression of the back flux term in the relaxation
inequality (4.52) on page 44.

Proof of Lemma 4.34 (upper bound on front flux for the firewall). As for Lemma 4.28 on
page 63, the statement follows from the expression of the back flux term in the relaxation
inequality (4.52) on page 44.

The proof of Proposition 4.21 on page 56 (“relaxation”) is complete. Note that, at this
stage, hypothesis (Hdisc-Φ) has not been used yet.

4.12 Convergence
The end of the proof of Proposition 4.1 on page 23 (“invasion implies convergence”) is a
straightforward consequence of Proposition 4.21, and is very similar to the end of the
proof of the main result of [39] or of [43], thus this subsection is rather similar to the
corresponding sections of those papers.

Let us call upon the notation xEsc(t) and xesc(t) and xhom(t) introduced in subsec-
tions 4.1 and 4.6. Recall that, according to inequalities (4.5) and (4.23) and to the
hypotheses of Proposition 4.1, for every nonnegative time t,

−∞ < xEsc(t) ≤ xesc(t) ≤ xhom(t) < +∞ .

73



Lemma 4.37 (existence of Escape point and transversality). The following inequalities
hold:

lim sup
t→+∞

xesc(t) − xEsc(t) < +∞ ,(4.89)

and lim sup
t→+∞

(
u
(
xEsc(t), t

)
−m

)
· ux

(
xEsc(t), t

)
< 0 .(4.90)

Proof. To prove inequality (4.89), let us proceed by contradiction and assume that the
converse holds. Then there exists a sequence (tn)n∈N of nonnegative quantities going
to +∞ such that xesc(tn) − xEsc(tn) goes to +∞ as n goes to +∞. Proceeding as in
the proof of Lemma 4.24 on page 62, it may be assumed, up to replacing the sequence
(tn)n∈N by a subsequence, that there exists a function ϕ1 in the set Φcesc(m) of bounded
profiles of waves travelling at the speed cesc and “invading” the local minimum m such
that, for every positive quantity L,∥∥ξ 7→ u

(
xesc(tn) + ξ, tn

)
− ϕ1(ξ)

∥∥
C2([−L,L],Rd) → 0 as n → +∞ .

In addition, it follows from the definition of xEsc(·) that

|ϕ1(ξ) −m| ≤ δEsc(m) for all ξ in R ,

a contradiction with assertion 4 of Lemma 7.1 on page 96. Inequality (4.89) is proved.
The proof of inequality (4.90) is similar. Let us proceed by contradiction and assume

that the converse holds. Then there exists a sequence (t′n)n∈N of nonnegative quantities
going to +∞ such that, for every positive integer n,

(4.91)
(
u
(
xEsc(t′n), t′n

)
−m

)
· ux

(
xEsc(t′n), t′n

)
≥ − 1

n
, .

Proceeding as in the proof of Lemma 4.24 on page 62, may assume, up to replacing the
sequence (t′n)n∈N by a subsequence, that there exists a function ϕ2 in the set Φcesc,norm(m)
of (normalized) bounded profiles of waves travelling at the speed cesc and “invading” the
local minimum m such that, for every positive quantity L,∥∥ξ 7→ u

(
xEsc(tn) + ξ, tn

)
− ϕ2(ξ)

∥∥
C2([−L,L],Rd) → 0 as n → +∞ .

It follows from inequality (4.91) that

(ϕ2(0) −m) · ϕ′
2(0) ≥ 0, ,

a contradiction with assertion 2 of Lemma 7.1 on page 96. Inequality (4.90) and
Lemma 4.37 are proved.

Lemma 4.38 (regularity of Escape point). The function t 7→ xEsc(t) is of class C1 on a
neighbourhood of +∞ and

x′
Esc(t) → cesc as t → +∞ .
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Proof. Let us introduce the function

f : R × [0,+∞) → R, (x, t) 7→ 1
2
(
|(u(x, t) −m|2 − δEsc(m)2

)
.

According to the regularity of the solution (see subsection 3.1), this function f is of class
C1, and, for every nonnegative time t, the quantity f

(
xEsc(t), t

)
is equal to 0 and

∂xf
(
xEsc(t), t

)
=
(
u
(
xEsc(t), t

)
−m

)
· ux

(
xEsc(t), t

)
.

Thus, according to inequality (4.90) of Lemma 4.37, for every large enough positive time
t,

∂xf
(
xEsc(t), t

)
< 0 .

Thus it follows from the Implicit Function Theorem that the function x 7→ xEsc(t) is of
class C1 on a neighbourhood of +∞, and that, for every large enough positive time t,

(4.92) x′
Esc(t) = −

∂tf
(
xEsc(t), t

)
∂xf

(
xEsc(t), t

) = −

(
u
(
xEsc(t), t

)
−m

)
· ut
(
xEsc(t), t

)
(
u
(
xEsc(t), t

)
−m

)
· ux

(
xEsc(t), t

) .
According to inequality (4.90) of Lemma 4.37, the denominator of this expression remains
bounded away from 0 as time goes to plus infinity. On the other hand, according to
inequality (4.89) of the same lemma and to Proposition 4.21 on page 56 and to the
bounds (3.1) on page 19 for the solution,

ut
(
xEsc(t) + ξ, t

)
+ cescux

(
xEsc(t) + ξ, t

)
→ 0 as t → +∞ .

Thus it follows from (4.92) that x′
Esc(t) goes to cEsc as time goes to +∞. Lemma 4.38 is

proved.

The next lemma is the only place throughout the proof of Proposition 4.1 where
hypothesis (Hdisc-Φ) is required.

Lemma 4.39 (convergence around Escape point). There exists a function ϕ in the set
Φcesc,norm(m) of (normalized) bounded profiles of waves travelling at the speed cesc and
invading the equilibrium m such that, for every positive quantity L,

sup
x∈
[
xEsc(t)−L,xEsc(t)+L

] ∣∣u(x, t) − ϕ
(
x− xEsc(t)

)∣∣ → 0 as t → +∞ .

In particular, the set Φcesc,norm(m) is nonempty.

Proof. Take a sequence (tn)n∈N of positive times going to +∞ as n goes to +∞. Proceed-
ing as in the proof of Lemma 4.24 on page 62, it may be assumed, up to replacing the
sequence (tn)n∈N by a subsequence, that there exists a function ϕ in the set Φcesc(m) of
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bounded profiles of waves travelling at the speed cesc and “invading” the local minimum
m such that, for every positive quantity L,∥∥ξ 7→ u

(
xEsc(tn) + ξ, tn

)
− ϕ(ξ)

∥∥
C2([−L,L],Rd) → 0 as n → +∞ .

According to the definition of xEsc(·),

|ϕ(0) −m| = δEsc(m) and |ϕ(ξ) −m| ≤ δEsc(m) for all ξ in [0,+∞) ,

thus according to assertion 3 of Lemma 7.1 on page 96, it follows that ϕ actually belongs
to the set Φcesc,norm(m) of “normalized” profiles.

Let L denote the set of all possible limits (in the sense of uniform convergence on
compact subsets of R) of sequences of maps

ξ 7→ u
(
xEsc(t′n) + ξ, t′n

)
for all possible sequences (t′n)n∈N such that t′n goes to +∞ as n goes to +∞. This set L is
included in the set Φcesc,norm(m), and, because the semi-flow of system (1.1) is continuous
on X, this set L is a continuum (a compact connected subset) of X.

Since on the other hand — according to hypothesis (Hdisc-Φ) — the set Φcesc,norm(m)
is totally disconnected in X, this set L must actually be reduced to the singleton {ϕ}.
Lemma 4.39 is proved.

Lemma 4.40 (convergence up to xhom(t)). For every positive quantity L,

sup
x∈[xEsc(t)−L,xhom(t)]

∣∣u(x, t) − ϕ
(
x− xEsc(t)

)∣∣ → 0 as t → +∞ .

Proof. Let us proceed by contradiction and assume that the converse holds. Then,
according to Lemma 4.39 above, there exists a positive quantity ε, and sequences (tn)n∈N
and (ξn)n∈N of real quantities both going to +∞ as n goes to +∞, such that, for every
positive integer n, ∣∣u(xEsc(tn) + ξn, tn

)
− ϕ(ξn)

∣∣ ≥ ε ,

and thus, if n is large enough,∣∣u(xEsc(tn) + ξn, tn
)

−m
∣∣ ≥ ε .

Using the notation F0(·, ·) of subsection 4.4, this yields the existence of a positive quantity
ε′ such that, if n is large enough,

(4.93) F0
(
xEsc(tn) + ξn, tn

)
≥ ε′ .

According to hypothesis (Hhom-right) and to the bounds (4.3) on the solution,

xhom(tn) −
(
xEsc(tn) + ξn

)
→ +∞ as n → +∞ .
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According to inequality (4.13) on page 27 about the time derivative of F0 and to the
fact that both derivatives x′

Esc(t) and x′
hom(t) have finite limits as time goes to +∞, this

shows that the function:

[0, tn] → R, s 7→ F0
(
xEsc(tn) + ξn, tn − s

)
is increasing at an exponential rate on an arbitrarily large interval starting from 0,
provided that n is large enough. In view of (4.93) this contradicts the bounds (4.3) on
the solution.

4.13 Homogeneous point behind the travelling front
According to hypothesis (Honly-bist), the function ϕ is actually the profile of a bistable
travelling front; in other words, there exists mnext in M such that

(4.94) ϕ(ξ) → mnext as ξ → −∞ .

The following lemma completes the proof of Proposition 4.1 (“invasion implies conver-
gence”).
Lemma 4.41 (“next” homogeneous point behind the front). There exists a R-valued
function xhom-next, defined and of class C1 on a neighbourhood of +∞, such that the
following limits hold as time goes to +∞:

xEsc(t) − xhom-next(t) → +∞ and x′
hom-next(t) → cesc

and sup
x∈[xhom-next(t), xhom(t)]

∣∣u(x, t) − ϕ
(
x− xEsc(t)

)∣∣ → 0 ,

and, for every positive quantity L,

sup
ξ∈[−L,L]

∣∣u(xhom-next(t) + ξ, t
)

−mnext
∣∣ → 0 .

Proof. Let us introduce the sequence of times (tn)n∈N defined as follows: t0 is positive
and large enough so that the function t 7→ xEsc(t) is defined and of class C1 on [t0,+∞),
and, for every positive integer n,

tn = max
(
tn−1 + n, sup

{
t in [0,+∞) : sup

ξ∈[−2n,0]

∣∣u(xesc(t) + ξ, t
)

− ϕ(ξ)
∣∣ ≥ 1

n

})
(the key point being that, according to Lemma 4.39 above, this quantity tn is finite). Let
χ denote a smooth function R → R satisfying

χ ≡ 0 on (−∞, 0] and χ ≡ 1 on [1,+∞) and 0 ≤ χ ≤ 1 and χ′ ≥ 0 on [0, 1] ,

see figure 4.18; and let us define the function xhom-next : [t0,+∞) → R by

xhom-next(t) = xEsc(t) − n− χ

(
t− tn−1
tn − tn−1

)
for n in N∗ and t in [tn−1, tn].

This function is of class C1 on [t0,+∞) and the other conclusions of Lemma 4.41 follow
from the limit (4.94) and the definition of xhom-next(·).

The proof of Proposition 4.1 is complete.
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Figure 4.18: Illustration of the definition of the function xhom-next(·).

5 No invasion implies relaxation
As everywhere else, let us consider a function V in C2(Rd,R) satisfying the coercivity
hypothesis (Hcoerc).

5.1 Definitions and hypotheses
Let us consider two points m− and m+ in M and a solution (x, t) 7→ u(x, t) of system
(1.1) defined on R × [0,+∞). Without assuming that this solution is bistable, let us
make the following hypothesis (Hhom), which is similar to hypothesis (Hhom-right) made
in section 4 (“invasion implies convergence”), but this time both to the right and to the
left in space (see figure 5.1).

Figure 5.1: Illustration of hypothesis (Hhom) and of Proposition 5.1.

(Hhom) There exist a positive quantity chom,+ and a negative quantity chom,− and
C1-functions

xhom,− : [0,+∞) → R satisfying x′
hom,−(t) → chom,− as t → +∞

and xhom,+ : [0,+∞) → R satisfying x′
hom,+(t) → chom,+ as t → +∞

such that, for every positive quantity L,

sup
ξ∈[−L,L]

∣∣u(xhom,−(t) + ξ, t
)

−m−
∣∣ → 0 as t → +∞

and sup
ξ∈[−L,L]

∣∣u(xhom,+(t) + ξ, t
)

−m+
∣∣ → 0 as t → +∞ .

For every t in [0,+∞), let us denote by xEsc,−(t) the infimum of the set{
x ∈ R : xhom,−(t) ≤ x ≤ xhom,+(t) and |u(x, t) −m−| = δEsc(m−)

}

78



(with the convention that xEsc,−(t) equals +∞ if this set is empty), and let us denote by
xEsc,+(t) the supremum of the set{

x ∈ R : xhom,−(t) ≤ x ≤ xhom,+(t) and |u(x, t) −m+| = δEsc(m+)
}

(with the convention that xEsc,+(t) equals −∞ if this set is empty). Let

cEsc,− = lim inf
t→+∞

xEsc,−(t)
t

and cEsc,+ = lim sup
t→+∞

xEsc,+(t)
t

,

see figure 5.1. It follows from the definitions of xEsc,−(t) and xEsc,+(t) that, for all t in
[0,+∞),

xhom,−(t) ≤ xEsc,−(t) and xEsc,+(t) ≤ xhom,+(t)
thus

chom,− ≤ cEsc,− and cEsc,+ ≤ chom,+ .

If the quantity cEsc,+ was positive or if the quantity cEsc,− was negative, this would mean
that the corresponding equilibrium is “invaded” at a nonzero mean speed, a situation
already studied in section 4. Let us introduce the following (converse) “no invasion”
hypothesis:

(Hno-inv) The following inequalities hold:

0 ≤ cEsc,− and cEsc,+ ≤ 0 .

5.2 Statement
The aim of section 5 is to prove the following proposition.

Proposition 5.1 (no invasion implies relaxation). Assume that V satisfies hypothesis
(Hcoerc) and that the solution (x, t) 7→ u(x, t) under consideration satisfies hypotheses
(Hhom) and (Hno-inv). Then the following conclusions hold.

1. The quantities V (m−) and V (m+) are equal.

2. There exists a nonnegative quantity Eres-asympt[u] (“residual asymptotic energy”)
such that, for all quantities c− in (chom,−, 0) and c+ in (0, chom,+),

(5.1)
∫ c+t

c−t

(1
2ux(x, t)2 + V

(
u(x, t) − V (m±)

)
→ Eres-asympt[u] as t → +∞ .

3. The following limits hold as time goes to +∞:

(5.2) sup
x∈[xhom,−(t),xhom,+(t)]

|ut(x, t)| → 0 ,

and, for every quantity ε which is positive and smaller than min (|chom,−| , chom,+),

(5.3) sup
x∈[xhom,−(t),−εt]

|u(x, t) −m−| → 0 and sup
x∈[εt,xhom,+(t)]

|u(x, t) −m+| → 0 .
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5.3 Relaxation scheme in a standing or almost standing frame
5.3.1 Principle

The aim of this subsection is to set up an appropriate relaxation scheme in a standing
or almost standing frame. This means defining an appropriate localized energy and
controlling the “flux” terms occurring in the time derivative of that localized energy.
The argument will be quite similar to that of subsection 4.7 (the relaxation scheme in
the travelling frame), the main difference being that c is now either equal or close to 0,
and as a consequence the weight function for the localized energy will be defined with a
cut-off on the right and another on the left, instead of a single one; accordingly firewall
functions will be introduced to control the fluxes along each of these cutoffs.

Let us keep the notation and assumptions of subsection 5.1, and let us assume that
hypotheses (Hcoerc) and (Hhom) and (Hno-inv) of Proposition 5.1 hold. According to
Proposition 3.1 on page 18, it may be assumed (without loss of generality, up to changing
the origin of time) that, for all t in [0,+∞),

∥x 7→ u(x, t)∥
L∞
(
R,Rd

) ≤ Ratt,∞(5.4)

and ∥x 7→ u(x, t)∥X ≤ Ratt,X .(5.5)

5.3.2 Notation for the travelling frame

Let c denote a real quantity. By contrast with subsection 4.7, the other parameters —
namely the initial time tinit, the initial position of origin of travelling frame xinit, and the
initial position of the cut-off ξcut-init — are not required here; or in other words they are
chosen equal to 0). The relaxation scheme will be applied in the next subsection 5.4 for c
very close or equal to 0.

Let us introduce the function (ξ, t) 7→ v(ξ, t) defined on R × [0,+∞) by
v(ξ, t) = u(x, t) for x = ct+ ξ .

This function is a solution of the differential system
vt − cvξ = −∇V (v) + vξξ .

5.3.3 Choice of the parameters and conditions on the speed c

A localized energy and two firewall functions associated with this solution will now be
introduced. Let us call upon the quantity wen,0 involved in (5.10), let us denote by
κ0(m−) and by κ0(m+) the quantities defined in (4.9) on page 26 for the two minimum
points m− and m+, and let

κ0 = min
(
κ0(m−), κ0(m+)

)
and λmin = min

(
λmin(m−), λmin(m+)

)
.

Let ccut,0 (speed of the cut-off point in the travelling frame) be a positive quantity, small
enough so that the following inequalities hold:
(5.6)
wen,0κ0

(ccut,0
2 + κ0

4
)

≤ 1
2 and wen,0 ccut,0 κ0 ≤ 1

4 and κ0(ccut,0 + κ0)
2 ≤ λmin

16
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(compare with conditions (4.16) on page 27 on κ0 and (4.30) on page 33 on κ). For
instance, the quantity ccut,0 may be chosen as

ccut,0 = min
( 1

4√
wen,0

,

√
λmin
4 ,

chom,+
2 ,

|chom,−|
2

)
.

Let us make on the parameter c the following hypotheses (see comments below):

(5.7) |c| ≤ κ0
10 and |c| ≤

√
λmin
4 and |c| ≤ ccut,0

6 .

According to hypotheses (Hhom) and (Hno-inv) and to the value of the quantity ccut,0
chosen above, there exists a nonnegative time T such that, for every time t greater than
or equal to T ,

(5.8)
xhom,−(t) ≤ −11

6 ccut,0t and −1
6ccut,0t ≤ xEsc,−(t)

and xEsc,+(t) ≤ 1
6ccut,0t and 11

6 ccut,0t ≤ xhom,+(t) .

Let us briefly comment hypotheses (5.7) and (5.8).

• The relaxation scheme below will be applied either for c equals 0, or for c very close
to 0.

• The choice of the value 1/10 as upper bound of the quotient |c| /κ0 in (5.7) will turn
out to be convenient to prove Lemma 5.5 on page 87 (that is, more precisely, to
control the pollution terms involved in the time derivative of the firewall functions
that will be defined below). The same is true concerning the choice of the factors
±1/6 and ±11/6 in (5.8).

5.3.4 Notation “±”

Let us adopt, for the remaining of this section 5, the following convention: the symbol
“±” denotes one the the signs “+” and “−”, this sign remaining the same along a whole
expression, or an equality/inequality between two expressions, or a definition.

5.3.5 Normalized potential

Let us introduce the “normalized” potential V ‡ : Rd → R, v 7→ V ‡(v) defined as

(5.9) V ‡(v) = V (v) − max
(
V (m−), V (m+)

)
.

As a consequence max
(
V ‡(m−), V ‡(m+)

)
= 0, and ∇V and ∇V ‡ are equal. With the

convention above, it follows from inequality (3.9) satisfied by wen,0 that, for all v in Rd,

(5.10) wen,0
(
V ‡(v) − V ‡(m±)

)
+ 1

4(v −m±)2 ≥ 0 ,
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and it follows from inequalities (3.7) and (3.8) that, for all v in Rd satisfying |v −m±| ≤
δEsc(m±),

(v −m±) · ∇V ‡(v) ≥ λmin
2 (v −m±)2 ,(5.11)

and (v −m±) · ∇V ‡(v) ≥ V ‡(v) − V ‡(m±) .(5.12)

5.3.6 Localized energy

For every time t, let us introduce the three intervals

Ileft(t) = (−∞,−ccut,0t] ,
and Imain(t) = [−ccut,0t, ccut,0t] ,
and Iright(t) = [ccut,0t,+∞) ,

and let us introduce the functions χ0(ξ, t) and χ(ξ, t) (weight function for the localized
energy) defined on R × [0,+∞) by

χ0(ξ, t) =
{

1 if ξ ∈ Imain(t) ,
exp

(
−κ0(|ξ| − ccut,0t)

)
if ξ ̸∈ Imain(t) ,

and χ(ξ, t) = ecξχ0(ξ, t) ,

see figures 5.2 and 5.3. For all t in [0,+∞), let us define the “energy” E(t) by

Figure 5.2: Graphs of functions ξ 7→ χ0(ξ, t) and ξ 7→ ψ0,+(ξ, t) and ξ 7→ ψ0,−(ξ, t).

Figure 5.3: Graphs of the weight functions ξ 7→ χ(ξ, t) and ξ 7→ ψ+(ξ, t) and ξ 7→ ψ−(ξ, t)
(case of a positive speed c).
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E(t) =
∫
R
χ(ξ, t)

(1
2vξ(ξ, t)2 + V ‡(v(ξ, t)

))
dξ .

The notation χ and E is the same as in sub-subsection 4.7.4 but the definitions above are
slightly different from those introduced in sub-subsection 4.7.4.
Remark. There is more than one possible choice (with equivalent outcomes) for the
expressions of χ(ξ, t) and of the other weight functions ψ±(ξ, t) that will be defined in
(5.17) below. The chosen expressions are closer to those of sub-subsection 4.4.1 on page 26
(laboratory frame) than to those of subsection 4.7 on page 31 (travelling frame). In the
context of this paper this is really a matter of taste. However, it seems that this choice
extends more naturally to higher space dimension, [42].

5.3.7 Time derivative of localized energy

For all t in [0,+∞), let us define the “dissipation” function by

(5.13) D(t) =
∫
R
χ(ξ, t) vt(ξ, t)2 dξ .

Lemma 5.2 (time derivative of the localized energy). For all t in [0,+∞),

(5.14) E ′(t) ≤ −1
2D(t) + κ0

∫
R\Imain(t)

χ
(ccut,0 + κ0

2 v2
ξ + ccut,0V

‡(v)
)
dξ .

Proof. For all t in [0,+∞), it follows from expression (3.4) on page 20 (time derivative
of a localized energy) that

(5.15) E ′(t) = −D(t) +
∫
R

(
χt

(1
2v

2
ξ + V ‡(v)

)
+ (cχ− χξ)vξ · vt

)
dξ .

It follows from the definition of χ that:

χt(ξ, t) = ecξ∂tχ0(ξ, t) =
{

0 if ξ ∈ Imain(t) ,
κ0 ccut,0 χ(ξ, t) if ξ ̸∈ Imain(t) ,

and

(cχ− χξ)(ξ, t) = −ecξ∂ξχ0(ξ, t) =
{

0 if ξ ∈ Imain(t) ,
sgn(ξ)κ0 χ(ξ, t) if ξ ̸∈ Imain(t) ,

where sgn(ξ) = ξ/ |ξ| denotes the sign of ξ. Thus, it follows from (5.15) that

(5.16) E ′(t) = −D(t) + κ0

∫
R\Imain(t)

χ

(
ccut,0

(1
2v

2
ξ + V ‡(v)

)
+ sgn(ξ) vξ · vt

)
dξ .

Using the inequality

sgn(ξ)κ0 vξ · vt ≤ 1
2v

2
t + κ2

0
2 v

2
ξ ,

inequality (5.14) follows from equality (5.16). Lemma 5.2 is proved.
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5.3.8 Firewall functions

The next task is to define two firewall functions to control the two last terms of the
right-hand side of inequality (5.14) above. Let us introduce the functions ψ0,−(ξ, t) and
ψ0,+(ξ, t) and ψ−(ξ, t) and ψ+(ξ, t) (weight functions for those firewall functions) defined
as (see figures 5.2 and 5.3 and the notation of (4.10) on page 26):

ψ0,−(ξ, t) = T−ccut,0tψ0(x, t) = exp
(
−κ0 |ξ + ccut,0t|

)
,

and ψ0,+(ξ, t) = Tccut,0tψ0(x, t) = exp
(
−κ0 |ξ − ccut,0t|

)
,

and

(5.17) ψ−(ξ, t) = ecξψ0,−(ξ, t) and ψ+(ξ, t) = ecξψ0,+(ξ, t) ;

observe that

χ(ξ, t) = ψ−(ξ, t) for ξ ∈ Ileft(t) and χ(ξ, t) = ψ+(ξ, t) for ξ ∈ Iright(t) .

For every t in [0,+∞), let us define the “firewalls” F−(t) and F+(t) as
(5.18)

F±(t) =
∫
R
ψ±(ξ, t)

(
wen,0

(1
2vξ(ξ, t)2 + V ‡(v(ξ, t) − V ‡(m±)

))
+ 1

2
(
v(ξ, t) −m±

)2)
dξ .

5.3.9 Energy decrease up to firewalls

Lemma 5.3 (energy decrease up to firewalls). There exists a quantity KE,F ,0, depending
only on V and m− and m+, such that, for every nonnegative time t,

(5.19) E ′(t) ≤ −1
2D(t) +KE,F ,0

(
F−(t) + F+(t)

)
.

Proof. It follows from inequality (5.14) that (observe the substitution of χ by ψ− on
Ileft(t) and by ψ+ on Iright(t) and the added nonnegative terms −V ‡(m−) and −V ‡(m+))

E ′(t) ≤ −1
2D(t) + κ0

∫
Ileft(t)

ψ−
(ccut,0 + κ0

2 v2
ξ + ccut,0

(
V ‡(v) − V ‡(m−)

))
dξ

+ κ0

∫
Iright(t)

ψ+
(ccut,0 + κ0

2 v2
ξ + ccut,0

(
V ‡(v) − V ‡(m+)

))
dξ .

Thus,

E ′(t) ≤ −1
2D(t)

+ κ0

∫
Ileft(t)

ψ−

[
ccut,0 + κ0

2 v2
ξ + ccut,0

(
V ‡(v) − V ‡(m−) + 1

2wen,0
(v −m−)2

)]
dξ

+ κ0

∫
Iright(t)

ψ+

[
ccut,0 + κ0

2 v2
ξ + ccut,0

(
V ‡(v) − V ‡(m+) + 1

2wen,0
(v −m+)2

)]
dξ .
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According to inequalities (5.10) on page 81, the quantities

V ‡(v) − V ‡(m±) + 1
2wen,0

(v −m±)2 = 1
wen,0

(
wen,0

(
V ‡(v) − V ‡(m±)

)
+ 1

2(v −m±)2
)

are nonnegative. As a consequence the previous inequality still holds if the factor ccut,0 in
front of these quantities is replaced by the greater factor ccut,0 + κ0 and if the integration
domains of the two integrals are extended to the whole real line. After these changes the
inequality reads

E ′(t) ≤ −1
2D(t) + κ0(ccut,0 + κ0)

wen,0

(
F−(t) + F+(t)

)
.

Thus if KE,F ,0 denotes the quantity κ0(ccut,0 + κ0)/wen,0, then inequality (5.19) and
Lemma 5.3 are proved.

5.3.10 Firewalls linear decrease up to pollution

For all t in [0,+∞), let

ΣEsc,−(t) = {ξ ∈ R : |v(ξ, t) −m−| > δEsc(m−)}
and ΣEsc,+(t) = {ξ ∈ R : |v(ξ, t) −m+| > δEsc(m+)} ,

and let us denote by νF0(m−) and KF0(m−) (by νF0(m+) and KF0(m+)) the quantities
denoted by νF0 and KF0 in the proof of Lemma 4.3 on page 27, when the minimum point
m of Lemma 4.3 is replaced with m− (with m+).

Lemma 5.4 (firewalls linear decrease up to pollution). For all t in [0,+∞),

(5.20) F ′
±(t) ≤ −νF0(m±)F±(t) +KF0(m±)

∫
ΣEsc,±(t)

ψ±(ξ, t) dξ .

Proof. The proof is very similar to that of Lemma 4.8 on page 37 or to that of Lemma 4.3
(see [43, Lemma 4.2]); however, since the definitions of the various parameters and
functions are slightly different, the details of the calculations will be provided.

According to expressions (3.4) and (3.5) on page 20 for the time derivatives of a
localized energy and a localized L2 functional, for all nonnegative time t,

F ′
±(t) =

∫
R

[
ψ±
(
−wen,0v

2
t − (v −m±) · ∇V ‡(v) − v2

ξ

)
+ wen,0∂tψ±

(1
2v

2
ξ + V ‡(v) − V ‡(m±)

)
+ wen,0(cψ± − ∂ξψ±)vξ · vt

+
∂tψ± + ∂2

ξψ± − c∂ξψ±

2 (v −m±)2
]
dξ .
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According to the definitions of ψ+ and ψ−, for all (ξ, t) in R × [0,+∞) (omitting the
arguments (ξ, t) of ψ± and of their derivatives),

∂tψ± = ecξ∂tψ0,± thus |∂tψ±| = κ0ccut,0ψ± ,

cψ± − ∂ξψ± = −ecξ∂ξψ0,± thus |cψ± − ∂ξψ±| = κ0ψ± ,

∂2
ξψ± − c∂ξψ± = ∂ξ(ecξ∂ξψ0,±)

= ecξ(c∂ξψ0,± + ∂2
ξψ0,±) thus ∂2

ξψ± − c∂ξψ± ≤ κ0(κ0 + |c|)ψ±

(compare with the bounds (4.41) on page 38). It follows that, for all nonnegative time t,

F ′
±(t) ≤

∫
R
ψ±

[
− wen,0v

2
t − (v −m±) · ∇V ‡(v) − v2

ξ

+ wen,0 κ0 ccut,0
(1

2v
2
ξ +

∣∣∣V ‡(v) − V ‡(m±)
∣∣∣)+ wen,0 κ0 |vξ · vt|

+ κ0(ccut,0 + κ0 + |c|)
2 (v −m±)2

]
dξ ,

thus, using the inequality

wen,0 κ0 |vξ · vt| ≤ wen,0 v
2
t + wen,0 κ

2
0

4 v2
ξ ,

it follows that

F ′
±(t) ≤

∫
R
ψ±

[(
wen,0 κ0

(ccut,0
2 + κ0

4
)

− 1
)
v2

ξ − (v −m±) · ∇V ‡(v)

+ wen,0 κ0 ccut,0
∣∣∣V ‡(v) − V ‡(m±)

∣∣∣+ κ0(ccut,0 + κ0 + |c|)
2 (v −m±)2

]
dξ .

According to the conditions (5.6) and (5.7) on page 80 and on page 81 satisfied by wen,0
and κ0 and ccut,0 and c, it follows that

F ′
±(t) ≤

∫
R
ψ±
[
−1

2v
2
ξ − (v −m±) · ∇V ‡(v) + 1

4
∣∣∣V ‡(v) − V ‡(m±)

∣∣∣+ λmin
8 (v −m±)2

]
dξ ,

and as a consequence,

F ′
±(t) + νF0(m±)F±(t) ≤

∫
R
ψ±

[
−1

2(1 − νF0(m±)wen,0)v2
ξ − (v −m±) · ∇V ‡(v)

+
(1

4 + νF0(m±)wen,0
) ∣∣∣V ‡(v) − V ‡(m±)

∣∣∣+ (λmin
8 + νF0(m±)

2
)
(v −m±)2

]
dξ .

Since the quantity νF0(m±) defined in (4.14) on page 27 is such that

νF0(m±)wen,0 ≤ 1 and νF0(m±)wen,0 ≤ 1
4 and νF0(m±)

2 ≤ λmin(m±)
8
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(compare with conditions (4.44) on page 39 on νF ), it follows from the previous inequality
that

(5.21)
F ′

±(t) + νF0(m±)F±(t) ≤∫
R
ψ±
[
−(v −m±) · ∇V ‡(v) + 1

2
∣∣∣V ‡(v) − V ‡(m±)

∣∣∣+ λmin
4 (v −m±)2

]
dξ .

According to (5.11) and (5.12), the integrand of the integral at the right-hand side of this
inequality is nonpositive as long as x is not in ΣEsc,±(t). Therefore this inequality still
holds if the domain of integration of this integral is changed from R to ΣEsc,±(t). Finally,
according to the definition (4.15) on page 27 of the quantity KF0 and to the uniform
bound (5.4) on page 80 on the solution, inequality (5.20) follows from (5.21). Lemma 5.4
is proved.

5.3.11 Control over the pollution in the time derivative of the firewalls

The following lemma calls upon the notation T introduced for inequalities (5.8).

Lemma 5.5 (firewalls linear decrease up to pollution, continuation). There exists a
positive quantity K ′

F , depending only on V and m− and m+, such that, for every time t
greater than or equal to T ,

(5.22) F ′
±(t) ≤ −νF0(m±)F±(t) +K ′

F exp
(
−κ0ccut,0

2 t
)
.

Proof. For all t in [0,+∞), let

(5.23) G−(t) =
∫

ΣEsc,−(t)
ψ−(ξ, t) dξ and G+(t) =

∫
ΣEsc,+(t)

ψ+(ξ, t) dξ ,

and
ξhom,−(t) = xhom,−(t) − ct and ξEsc,−(t) = xEsc,−(t) − ct

and ξEsc,+(t) = xEsc,+(t) − ct and ξhom,+(t) = xhom,+(t) − ct .

Assume that the time t is greater than or equal to T . Then it follows from hypotheses
(5.8) and from the last hypothesis of (5.7) that

(5.24)
ξhom,−(t) ≤ −5

3ccut,0t and −1
3ccut,0t ≤ ξEsc,−(t) ,

and ξEsc,+(t) ≤ 1
3ccut,0t and 5

3ccut,0t ≤ ξhom,+(t) ,

see figure 5.4. Besides, according to the definition of xEsc,+(t) and xEsc,−(t),

ΣEsc,−(t) ⊂ (−∞, ξhom,−(t)] ∪ [ξEsc,−(t),+∞)
and ΣEsc,+(t) ⊂ (−∞, ξEsc,+(t)] ∪ [ξhom,+(t),+∞) .
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Figure 5.4: Illustration of the notation and assumptions for the proof of Proposition 5.1.

Let us introduce the quantities

Gfront,−(t) =
∫ ξhom,−(t)

−∞
ψ−(ξ, t) dξ and Gback,−(t) =

∫ +∞

ξEsc,−(t)
ψ−(ξ, t) dξ ,

and Gback,+(t) =
∫ ξEsc,+(t)

−∞
ψ+(ξ, t) dξ and Gfront,+(t) =

∫ +∞

ξhom,+(t)
ψ+(ξ, t) dξ .

Then, it follows from the definition (5.23) of G±(t) that

G+(t) ≤ Gfront,+(t) + Gback,+(t) and G−(t) ≤ Gfront,−(t) + Gback,−(t) .

According to the definition of ψ+ and ψ− and according to hypotheses (5.7) and inequal-
ities (5.24) on the preceding page it follows from explicit calculations that:

Gfront,−(t) ≤ 1
κ0 + c

exp
(
ccut,0κ0t+ (κ0 + c)ξhom,−(t)

)
≤ 1
κ0 + c

exp
(
−κ0ccut,0

2 t
)
,

Gback,−(t) ≤ 1
κ0 − c

exp
(
−ccut,0κ0t− (κ0 − c)ξEsc,−(t)

)
≤ 1
κ0 − c

exp
(
−κ0ccut,0

2 t
)
,

Gback,+(t) ≤ 1
κ0 + c

exp
(
−ccut,0κ0t+ (κ0 + c)ξEsc,+(t)

)
≤ 1
κ0 − c

exp
(
−κ0ccut,0

2 t
)
,

Gfront,+(t) ≤ 1
κ0 − c

exp
(
ccut,0κ0t− (κ0 − c)ξhom,+(t)

)
≤ 1
κ0 + c

exp
(
−κ0ccut,0

2 t
)
.

It follows that
G±(t) ≤ 2κ0

κ2
0 − c2 exp

(
−κ0ccut,0

2 t
)
,

and since according to the conditions (5.7) the quantity |c| is not larger than κ0/10, it
follows that

G±(t) ≤ 5
2κ0

exp
(
−κ0ccut,0

2 t
)
,

As a consequence, introducing the positive quantity K ′
F defined as

K ′
F = 5

2κ0
max

(
KF0(m−),KF0(m+)

)
,

inequality (5.22) follows from inequality (5.20). Lemma 5.5 is proved.
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5.3.12 Nonnegativity of firewalls

Lemma 5.6 (nonnegativity of firewalls). For every nonnegative time t,

(5.25) F±(t) ≥ 0 .

Proof. Inequality (5.25) follows from inequality (3.9) on page 22 and the definition (5.18)
on page 84 of F±(t).

5.3.13 Energy decrease up to pollution

Lemma 5.7 (energy decrease up to pollution). There exist positive quantities KE and
νE , depending only on V and m− and m+, such that, for every time t greater than or
equal to T ,

(5.26) E ′(t) ≤ −1
2D(t) +KE exp

(
−νE(t− T )

)
.

Proof. Let
νE = min

(
νF0(m−), νF0(m+), κ0ccut,0

4
)
.

According to Grönwall’s inequality, it follows from inequalities (5.22) of Lemma 5.5 that,
for every time t greater than or equal to T ,

F±(t) ≤ exp
(
−νF0(m±)(t− T )

)
F±(T )

+K ′
F

∫ t

T
exp

(
−νF0(m±)(t− s)

)
exp

(
−κ0ccut,0

2 s
)
ds

≤ exp
(
−νE(t− T )

(
F±(T ) +K ′

F exp
(
−κ0ccut,0

2 T
)
×

∫ t

T
exp

(
−
(
νF0(m±) − νE

)
(t− s)

)
exp

(
−
(κ0ccut,0

2 − νE
)
(s− T )

)
ds

)

≤ exp
(
−νE(t− T )

) (
F±(T ) +K ′

F

∫ t

T
exp

(
−κ0ccut,0

4 (s− T )
)
ds

)
≤
(

F±(T ) + 4K ′
F

κ0ccut,0

)
exp

(
−νE(t− T )

)
.(5.27)

According to the H1
ul-bound (5.5) on page 80 for the solution, there exists a positive

quantity Fmax, depending only on V and m+ and m−, such that the following estimates
hold:

F+(T ) ≤ Fmax and F−(T ) ≤ Fmax .

Thus, introducing the positive quantity

KE = 2KE,F ,0
(
Fmax + 4K ′

F
κ0ccut,0

)
,

inequality (5.26) follows from inequalities (5.19) and (5.27) on page 84 and on the current
page. Lemma 5.7 is proved.
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Inequality (5.26) is the key ingredient that will be applied in the next subsection 5.4.

5.4 Nonnegative asymptotic energy
5.4.1 Notation

Let us keep the notation and hypotheses of the previous subsection. For every quantity c
close enough to 0 so that conditions (5.7) on page 81 be satisfied, let us denote by

v(c)(·, ·) and χ(c)(·, ·) and E(c)(·) and Σ(c)
Esc,+(·)

and ξ
(c)
Esc,+(·) and ξ

(c)
hom,+(·) and D(c)(·)

the objects that were defined in subsection 5.3 (with the same notation except the “(c)”
superscript that is here to remind that these objects depend on the quantity c). For
every such c, let us introduce the quantity E(c)(+∞) in {−∞} ∪ R defined as

E(c)(+∞) = lim inf
t→+∞

E(c)(t) ,

and let us call “asymptotic energy at the speed c” this quantity. According to estimate
(5.26) above, for every such c,

(5.28) E(c)(t) → E(c)(+∞) as t → +∞ .

5.4.2 Statement

The aim of this subsection is to prove the following proposition.

Proposition 5.8 (nonnegative asymptotic energy at zero speed). The quantity E(0)(+∞)
(the asymptotic energy at speed zero) is nonnegative.

The proof proceeds through the following lemmas and corollaries, that are rather
direct consequences of the relaxation scheme set up in the previous subsection 5.3, and
in particular of the inequality (5.26) for the time derivative of the energy.

Since according to the definition (5.9) on page 81 of V ‡ the maximum of V ‡(m+) and
V ‡(m−) is assumed to be equal to 0, it may be assumed (without loss of generality) that

(5.29) V ‡(m+) = 0 .

5.4.3 Nonnegative asymptotic energy at small nonzero speeds

Lemma 5.9 (nonnegative asymptotic energy at small nonzero speeds). For every quantity
c close enough to 0 so that conditions (5.7) on page 81 be satisfied, if in addition c is
positive, then

E(c)(+∞) ≥ 0 .
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Proof. Let c be a positive quantity, close enough to 0 so that conditions (5.7) be satisfied.
With the notation of subsection 5.3 (for the relaxation scheme in a frame travelling at
the speed c), for all t in [0,+∞),

E(c)(t) =
∫
R
χ(c)(ξ, t)

(1
2v

(c)
ξ (ξ, t)2 + V ‡(v(c)(ξ, t)

))
dξ

≥
∫
R
χ(c)(ξ, t)V ‡(v(c)(ξ, t)

)
dξ

≥
∫

Σ(c)
Esc,+(t)

χ(c)(ξ, t)V ‡(v(c)(ξ, t)
)
dξ .

Thus, considering the global minimum value of V ‡:

V ‡
min = min

u∈Rd
V ‡(u) ≤ 0 ,

it follows that, for all t in [0,+∞),

E(c)(t) ≥ V ‡
min

∫
Σ(c)

Esc,+(t)
χ(c)(ξ, t) dξ

≥ V ‡
min

[∫ ξ
(c)
Esc,+(t)

−∞
χ(c)(ξ, t) dξ +

∫ +∞

ξ
(c)
hom,+(t)

χ(c)(ξ, t) dξ
]
.

According to the definition of χ(c)(ξ, t) (see sub-subsection 5.3.6 on page 82), this yields:

E(c)(t) ≥ V ‡
min

[∫ ξ
(c)
Esc,+(t)

−∞
exp(cξ) dξ +

∫ +∞

ξ
(c)
hom,+(t)

exp
(
cξ − κ0(ξ − ccut,0t)

)
dξ
]

= V ‡
min

[1
c

exp
(
cξ

(c)
Esc,+(t)

)
+ 1
κ0 − c

exp
(
κ0ccut,0t− (κ0 − c)ξ(c)

hom,+(t)
)]
.

Let us consider the arguments of the two exponential functions in this last expression.

• Since c is assumed to be positive and according to hypothesis (Hno-inv), the quantity
ξ

(c)
Esc,+(t) = xEsc,+(t) − ct goes to −∞ as time goes to +∞.

• If t is greater than or equal to T , then, according to inequality (5.24) on page 87
on ξhom,+(t),

κ0ccut,0t− (κ0 − c)ξ(c)
hom,+(t) ≤ ccut,0t

(
κ0 − 5

3(κ0 − c)
)
,

and according to inequality (5.7) bounding from above the ratio c/κ0, it follows
that the right-hand side of this inequality goes to −∞ as time goes to +∞.

Thus E(c)(t) is bounded from below by a quantity which goes to 0 as time goes to +∞.
Lemma 5.9 is proved.
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5.4.4 Almost nonnegative energy at small nonzero speeds

Corollary 5.10 (almost nonnegative energy at small nonzero speeds). For every quantity
c close enough to 0 so that conditions (5.7) on page 81 be satisfied, if in addition c is
positive, then, for every time t greater than or equal to T ,

E(c)(t) ≥ −KE
νE

exp
(
−νE(t− T )

)
.

Proof. The proof follows from previous Lemma 5.9 and inequality (5.26) of Lemma 5.7.

5.4.5 Continuity of energy with respect to the speed at c = 0

Lemma 5.11 (continuity of energy with respect to the speed at c = 0). For every t in
(0,+∞),

E(c)(t) → E(0)(t) as c → 0 .

Proof. For all t in (0,+∞),

E(0)(t) =
∫
R
χ(0)(x, t)

(1
2ux(x, t)2 + V ‡(u(x, t)

))
dx ,

and, for every quantity c close enough to 0 so that hypotheses (5.7) on page 81 be satisfied
(substituting the notation ξ used in subsection 5.3 with x),

E(c)(t) =
∫
R
χ(c)(ct+ x, t)

(1
2ux(ct+ x, t)2 + V ‡(u(ct+ x, t)

))
dx ,

and the result follows from the continuity of χ(c)(·, ·) with respect to c, the exponential
decrease to 0 of χ(c)(x, t) when x → ±∞, and the H1

ul-bounds (5.5) on page 80 for the
solution.

5.4.6 Almost nonnegative energy in a standing frame

Corollary 5.12 (almost nonnegative energy in a standing frame). For every time t
greater than or equal to T ,

E(0)(t) ≥ −KE
νE

exp
(
−νE(t− T )

)
.

Proof. This lower bound follows from Corollary 5.10 and Lemma 5.11.

Proposition 5.8 (“nonnegative asymptotic energy”) follows from Corollary 5.12.
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5.5 End of the proof of Proposition 5.1
Lemma 5.13 (integrability of dissipation in the standing frame). The map

t 7→ D(0)(t)

is integrable on [0,+∞).

Proof. The statement follows from Proposition 5.8 (“nonnegative asymptotic energy”)
and from the upper bound (5.26) on the time derivative of energy.

Lemma 5.14 (relaxation). The following limits hold:

(5.30) sup
x∈[xhom,−(t),xhom,+(t)]

|ut(x, t)| → 0

and, for every quantity ε which is positive and smaller than |chom,−| and than chom,+,

(5.31) sup
x∈[xhom,−(t),−εt]

|u(x, t) −m−| → 0 and sup
x∈[εt,xhom,+(t)]

|u(x, t) −m+| → 0

as time goes to +∞.

Proof. For every quantity ε which is positive and smaller than |chom,−| and than chom,+,
according to hypothesis (Hno-inv) and proceeding as in the proof of Lemma 4.40 on
page 76, the limits (5.31) follow. In addition, according to the bounds (3.1) on the
solution, it follows from these limits that

(5.32) sup
x∈[xhom,−(t),−εt]∪[εt,xhom,+(t)]

|ut(x, t)| → 0 as t → +∞ .

It remains to prove that

sup
x∈[−ccut,0t,ccut,0t]

|ut(x, t)| → 0 as t → +∞ .

Let us proceed by contradiction and assume that this limit doesn’t hold. Then, there
exist a positive quantity ε and a sequence (xn, tn)n∈N satisfying tn → +∞ as n → +∞,
such that, for every nonnegative integer n,

(5.33) |ut(xn, tn)| ≥ ε .

According (5.32), it may be assumed (up to dropping the first terms of the sequence
(xn, tn)n∈N) that, for every n in N, xn belongs to the interval [−ccut,0tn, ccut,0tn]. By
compactness (Lemma 3.2), there exists an entire solution u of system (1.1) such that, up
to replacing (xn, tn)n∈N by a subsequence, with the notation of (3.2),

(5.34) D2,1u
(
xn + ·, tn + ·

)
→ D2,1ũ as n → +∞ ,
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uniformly on every compact subset of R2. It follows from (5.33) and (5.34) that the
quantity |ut(0, 0)| is positive, so that the quantity∫ 1

0

(∫
R
e−κ0|ξ| |ut(ξ, s)|2 dξ

)
ds

is also positive. This quantity is greater than or equal to the quantity

lim inf
n→+∞

∫ 1

0
D(0)(tn + s) ds

which is therefore also positive, a contradiction with the integrability of t 7→ D(0)(t)
(Lemma 5.13). Lemma 5.14 is proved.

Lemma 5.15 (V (m−) equals V (m+)). The following equalities hold:

V ‡(m−) = V ‡(m+) = 0 , or in other words: V (m−) = V (m+) .
Proof. It follows from the definition (5.9) of V ‡ and from the assumption (5.29) that
V ‡(m+) equals 0 and that V ‡(m−) is nonpositive. If V ‡(m−) was negative, then,
according to the assertions (5.30) and (5.31) above (and according to the bounds (3.1)
on page 19 for the solution), the following estimate would hold:

E(0)(t) ∼ V ‡(m−) ccut,0 t as t → +∞ ,

a contradiction with Proposition 5.8. Lemma 5.15 is proved.

Lemma 5.16 (convergence towards asymptotic energy). For all quantities c− in
(chom,−, 0) and c+ in (0, chom,+),

(5.35)
∫ c+t

c−t

(1
2ux(x, t)2 + V

(
u(x, t)

)
− V (m±)

)
→ E(0)(+∞)

as time goes to +∞.
Proof. It follows from the limit (5.28) that the quantity

E(0)(t) =
∫
R
χ(0)(x, t)

(1
2ux(x, t)2 + V ‡(u(x, t)

))
dx

goes to E(0)(+∞) as time goes to +∞, and according to Lemma 5.15 V ‡(·) equals
V (·) − V (m±). The fact that the same asymptotic behaviour holds for the integral in
(5.35) (whatever the values of c− and c+) can thus (once again) be derived from inequality
(4.13) of Lemma 4.3 on page 27 (as in the proof of Lemma 4.40 on page 76). Lemma 5.16
is proved.

Proof of Proposition 5.1. All statements of Proposition 5.1 have been proved:
1. equality between V (m−) and V (m+) is stated in Lemma 5.15;

2. limits (5.2) and (5.3) are stated in Lemma 5.14;

3. according to Proposition 5.8 the quantity E(0)(+∞) is nonnegative, and, denoting
by Eres-asympt[u] this quantity, the limit (5.1) is stated in Lemma 5.16.

Proposition 5.1 is proved.
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6 Proof of Theorem 1 and Proposition 2.8
The aim of this section is to combine Propositions 4.1 and 5.1 (“invasion implies con-
vergence” and “no invasion implies relaxation”) to complete the proof of Theorem 1
and Proposition 2.8. Not much remains to be said.

As everywhere else, let us consider a function V in C2(Rd,R) satisfying the coercivity
hypothesis (Hcoerc). Let us assume in addition that the generic hypotheses (G) hold for
the potential V , and let us consider two points m− and m+ in M and a bistable solution
(x, t) 7→ u(x, t) of system (1.1) connecting m− to m+.

Let us introduce the following notation:

chom,− = −(cno-esc + 1) and xhom,−(t) = chom,−t

and chom,+ = cno-esc + 1 and xhom,+(t) = chom,+t .

According to the results of subsections 4.4 and 4.5 (namely Lemma 4.5 on page 28 and
inequality (4.13) on page 27), for every positive quantity L,

sup
ξ∈[−L,L]

∣∣u(xhom,−(t) + ξ
)

−m−
∣∣ → 0 as t → +∞

and sup
ξ∈[−L,L]

∣∣u(xhom,+(t) + ξ
)

−m+
∣∣ → 0 as t → +∞ ,

in other words hypotheses (Hhom) of Proposition 5.1 and (Hhom-right) of Proposition 4.1
(and the symmetric hypothesis on the left) hold for these definitions. Thus, the two
points xEsc,+(t) and xEsc,−(t) (for all t in [0,+∞)) and the corresponding asymptotic
mean-sup speeds cEsc,+ and cEsc,− may be defined exactly as in subsection 5.1.

At this stage, two cases must be distinguished:

1. “invasion”: max
(
|cEsc,−| , cEsc,+

)
is positive;

2. “no invasion”: cEsc,− is nonnegative and cEsc,+ is nonpositive.

If the first case “invasion” occurs, then Proposition 4.1 can be applied (either to the
right, or to the left, or on both sides). According to the statements of this proposition,
behind the front(s) (to the right, or to the left, or on both sides) approached by the
solution, “new” points xhom,−,next(t) and xhom,+,next(t) and new speeds chom,−,next and
chom,+,next can be defined, for which hypothesis (Hhom) is again satisfied. Thus the same
process (definition of new “Escape points” and definition of their asymptotic mean-sup
speeds and discussion at above about the signs of these speeds) can be repeated. And it
can be repeated again, as long as case 1 (invasion) occurs.

At each “invasion”, the new bistable front approached by the solution replaces a
stable homogeneous equilibrium by another one where (according to (2.2) on page 6) the
potential takes a lower value. Since according to hypothesis (Hcrit-val) the set of critical
values of V is finite, case 2 (no invasion) must eventually occur.

When case 2 (no invasion) occurs, Proposition 5.1 applies: the time derivative ut(x, t)
of the solution goes to 0 uniformly in the “centre” area between the two propagating
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terraces of travelling fronts, as time goes to +∞, and there exists a nonnegative quantity
Eres-asympt[u] (“residual asymptotic energy”) such that, for all quantities c− in (chom,−, 0)
and c+ in (0, chom,+), the limit (5.1) holds. In this case, all the arguments of [43, sections 8
and 9] apply, up to the following minor changes: in [43, section 8] the quantity c should
be chosen smaller than min (|chom,−| , chom,+), and in [43, sections 8 and 9] the statements
should be restricted to the behaviour of the solution, at time t, in the space interval
[−ct, ct]. Those arguments show that the solution approaches, in this “centre area”,
a standing terrace Tcentre of bistable stationary solutions (this completes the proof of
Theorem 1), and that the residual asymptotic energy Eres-asympt[u] of the solution is equal
to the energy E [Tcentre] of this standing terrace (this proves Proposition 2.8). The proof
of Theorem 1 and Proposition 2.8 is complete.

7 Some properties of the profiles of stationary solutions and
travelling waves

As everywhere else, let us consider a function V in C2(Rd,R) satisfying the coercivity
hypothesis (Hcoerc).

7.1 Asymptotics at the two ends of space
Let c denote a nonnegative quantity, and let us consider the differential system governing
the profiles of waves travelling at the speed c (or “standing” if c equals 0):

(7.1) ϕ′′ = −cϕ′ + ∇V (ϕ) .

If ξ 7→ ϕ(ξ) is a global solution of system (7.1), recall that the α-limit set of ϕ is the set
lim

α
ϕ defined as

lim
α
ϕ =

⋂
ζ∈R

{ϕ(ξ) : ξ < ζ} ,

and that this α-limit set is a closed and connected subset of Rd. The following lemma is
called upon in this paper only for a positive quantity c, but the proof given below only
requires that c be nonnegative (this allows to call upon this lemma in the case where c
equals zero in [43]).

Lemma 7.1 (spatial asymptotics of the profiles of travelling waves). Let m be a point of
M, and let ξ 7→ ϕ(ξ) be a global solution of the differential system (7.1) satisfying

(7.2) |ϕ(ξ) −m| ≤ δEsc(m) for every ξ in [0,+∞) and ϕ(·) ̸≡ m.

Then the following assertions hold.

1. Both quantities |ϕ(ξ) −m| and |ϕ′(ξ)| go to 0 as ξ goes to +∞.

2. For all ξ in [0,+∞), the scalar product
(
ϕ(ξ) −m

)
· ϕ′(ξ) is negative.
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3. For all ξ in (0,+∞), the quantity |ϕ(ξ) −m| is smaller than δEsc(m).

4. The supremum supξ∈R |ϕ(ξ) −m| is larger than δEsc(m).

5. In addition to assertion 1 above, the quantities

ecξ |ϕ(ξ) −m| and ecξ
∣∣ϕ′(ξ)

∣∣
go to 0 at an exponential rate when ξ goes to +∞.

6. If in addition ϕ(·) is bounded on R and c is positive, then there exists a real quantity
V−∞ such that

ϕ′(ξ) −−−−→
ξ→−∞

0 and lim
α
ϕ ⊂

{
u ∈ Rd : V (u) = V−∞ and ∇V (u) = 0

}
,

and such that

(7.3) V (m) − V−∞ = c

∫
R
ϕ′(ξ)2 dξ .

Proof. Let m be a point of M, and let ξ 7→ ϕ(ξ) be a global solution of the differential
system (7.1) satisfying (7.2). For all ξ in R, let us introduce the quantities

(7.4) qloc(ξ) = 1
2
(
ϕ(ξ) −m

)2 and H(ξ) = 1
2ϕ

′(ξ)2 − V
(
ϕ(ξ)

)
.

Then, it follows from system (7.1) that, for all ξ in R,

q′
loc(ξ) =

(
ϕ(ξ) −m

)
· ϕ′(ξ) and q′′

loc(ξ) + cq′
loc(ξ) = ϕ′(ξ)2 +

(
ϕ(ξ) −m

)
· ∇V

(
ϕ(ξ)

)
,

and thus it follows from inequality (3.7) on page 21 that, for all ξ in [0,+∞),

(7.5) q′′
loc(ξ) + cq′

loc(ξ) ≥ ϕ′(ξ)2 + λmin(m)qloc(ξ) .

On the other hand, it again follows from system (7.1) that, for all ξ in R,

(7.6) H ′(ξ) = −cϕ′(ξ)2 ,

thus the function H(·) is non-increasing and thus bounded from above on [0,+∞).
Besides, it follows from the first assumption of (7.2) that V

(
ϕ(·)

)
is also bounded from

above on [0,+∞). Thus, it follows from the expression (7.4) of H(ξ) that |ϕ′(·)| is
bounded on [0,+∞), and as a consequence the same is true for q′

loc(·) and thus for
q′

loc(·) + cqloc(·). Since the quantity q′
loc(ξ) + cqloc(ξ) is, according to inequality (7.5),

non decreasing with respect to ξ on [0,+∞), it follows that this quantity must converge
towards a finite limit as ξ goes to +∞; and thus it follows from inequality (7.5) that
both functions |ϕ′(·)|2 and qloc(·) are integrable on [0,+∞). Since the derivative of the
function qloc(·) is bounded on this interval, this function qloc(·) must converge towards 0
as ξ goes to +∞. Thus ϕ(ξ) goes to m as ξ goes to +∞, and as a consequence V

(
ϕ(ξ)

)
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goes to V (m) as ξ goes to +∞. Thus, since the function H(·) must converge to a finite
limit at +∞, it follows that ϕ′(ξ)2 must also go to a finite limit when ξ goes to +∞.
Since ϕ′(·)2 is integrable on [0,+∞), its limit at +∞ must be 0. Assertion 1 is proved.

It follows from assertion 1 that the function q′
loc(·) + cqloc(·) converges towards 0 at

+∞, and according to inequality (7.5) (and since according to assumption (7.2) ϕ(·) is not
identically equal to m) the derivative of this function is positive on [0,+∞). It follows
that this function is negative on [0,+∞), thus so is q′

loc(·), which proves assertion 2. As
a consequence, qloc(·) is strictly decreasing on [0,+∞), which proves assertion 3.

To prove assertion 4, let us proceed by contradiction and assume that |ϕ(ξ) −m|
remains not larger that δEsc(m) for all ξ in R. It follows that the function qloc(·) is
bounded on R. It also follows that inequality (7.5) holds for all ξ in R, thus the function
q′

loc(·) + cqloc(·) is non-decreasing (and even, since ϕ(·) is not identically equal to m,
strictly increasing) on R. This function q′

loc(·) + cqloc(·) cannot go to −∞ as ξ goes to
−∞, or else (since c is nonnegative) the same would be true for q′

loc(·), a contradiction
with the fact that qloc(·) is bounded. Thus q′

loc(ξ) + cqloc(ξ) converges to a finite limit
as ξ goes to −∞. Again, according to inequality (7.5), this shows that the functions
qloc(·) and |ϕ′(·)|2 are integrable, this time on R. It follows from the expression (7.6) of
H ′(ξ) that the function H(·) must converge towards a finite limit at −∞. Thus H(·)
is bounded on R, so that the same is true for ϕ′(·). It follows that q′

loc(·) is bounded
on R, so that qloc(ξ) must go to 0 as ξ goes to −∞. Thus V

(
ϕ(ξ)

)
goes to V (m) as ξ

goes to −∞. As a consequence, since the function H(·) must converge towards a finite
limit at −∞, it follows that ϕ′(ξ)2 must also go to a finite limit when ξ goes to −∞.
Since ϕ′(·)2 is integrable on R, it must converge towards 0 at −∞. Finally the function
q′

loc(·) + cqloc(·) converges towards the same limit (that is zero) at −∞ and at +∞, a
contradiction with the fact that this function is strictly increasing on R.

To prove assertion 5, let us denote by D the Hessian matrix D2V (m). Then the
linearization at (m, 0) of system (7.1) reads

(7.7) ϕ′′ = −cϕ′ +Dϕ ⇐⇒
(
ϕ
ψ

)′

=
(

0 1
D −c

)(
ϕ
ψ

)
,

and the set of eigenvalues of this linear system is{
−c±

√
c2 + 4µ

2 : µ is an eigenvalue of D
}
.

Since every eigenvalue of D is positive, it follows that every nonpositive eigenvalue of
system (7.7) is less than −c, and assertion 5 follows.

It remains to prove assertion 6. Let us assume that ϕ(·) is bounded on R and that
c is positive. Since H(·) is non-increasing and since H(ξ) goes to −V (m) as ξ goes to
+∞, there is a quantity H−∞ in [−V (m),+∞) ∪ {+∞} such that H(ξ) goes to H−∞ as
ξ goes to −∞. For all ξ in R, let us introduce the quantity

qglob(ξ) = 1
2ϕ(ξ)2 .
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It follows from system (7.1) that, for all ξ in R,

q′
glob(ξ) = ϕ(ξ) · ϕ′(ξ) and q′′

glob(ξ) + cq′
glob(ξ) = ϕ′(ξ)2 + ϕ(ξ) · ∇V

(
ϕ(ξ)

)
.

It follows from hypothesis (Hcoerc) that there exist positive quantities εcoerc and Kcoerc
such that, for every u in Rd,

u · ∇V (u) ≥ εcoercu
2 −Kcoerc ,

so that, for all ξ in R,

q′′
glob(ξ) + cq′

glob(ξ) ≥ ϕ′(ξ)2 + εcoercϕ(ξ)2 −Kcoerc .

For every negative quantity ξ, integrating this inequality between ξ and 0 yields:

(7.8) q′
glob(0) − q′

glob(ξ) + c
(
qglob(0) − qglob(ξ)

)
≥
∫ 0

ξ

(
ϕ′(ζ)2 + εcoercϕ(ζ)2 −Kcoerc

)
dζ .

If the quantity H−∞ was equal to +∞, then it would follow from the expression (7.4)
of H(·) that |ϕ′(ξ)| goes to +∞ as ξ goes to −∞, and it would follow from inequality
(7.8) that q′

glob(ξ) goes to −∞ as ξ goes to −∞, a contradiction with the boundedness of
ϕ(·) and thus of qglob(·) on R. Thus H−∞ is finite. Then it follows from the expression
(7.6) of H ′(·) and from the assumption that c is positive that ϕ′(·) is square integrable,
and it follows from the expression (7.4) of H(·) that ϕ′(·) is bounded, and it follows from
system (7.1) that ϕ′′(·) is bounded (those two assertions hold in a neighbourhood of −∞,
thus also on R). Thus ϕ′(ξ) goes to 0 as ξ goes to −∞, and if the quantity −H−∞ is
denoted by V−∞, it follows that V

(
ϕ(ξ)

)
goes to V−∞ as ξ goes to −∞. It follows that

the set lim
α
ϕ must belong to the set of critical points of V in the level set V −1({V−∞}

)
,

and equality (7.3) follows from multiplying system (7.1) by ϕ′(ξ) and integrating over R.
Lemma 7.1 is proved.

7.2 Vanishing energy of travelling waves invading a stable homogeneous
equilibrium

The following observation was, to the knowledge of the author, first made by Muratov
([27, Proposition 3.3]). For sake of completeness, a proof is given below.

Lemma 7.2 (the energy of a bounded travelling wave invading a stable equilibrium
vanishes). For every point m of M, every positive quantity c, and every function ϕ in
the set Φc(m) of bounded profiles of waves travelling at the speed c and “invading” the
stable equilibrium m, the weighted energy∫

R
ecξ
(1

2ϕ
′(ξ)2 + V

(
ϕ(ξ)

)
− V (m)

)
dξ ,

is a convergent integral and its value is 0.
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Proof. Let us take a point m in M, a positive quantity c, and a function ϕ in the set
Φc(m) of bounded profiles of waves travelling at the speed c and “invading” the stable
equilibrium m, and let us consider the function

ξ̄ 7→ Ec,ϕ(ξ̄) =
∫
R
ec(ξ−ξ̄)

(1
2ϕ

′(ξ)2 + V
(
ϕ(ξ)

)
− V (m)

)
dξ = e−cξ̄Ec,ϕ(0) .

According to assertions 5 and 6 of Lemma 7.1 above this integral converges thus this
function is defined for all ξ̄ in R. Let us consider the derivative E ′

c,ϕ(ξ̄) of this function at
some quantity ξ̄. On the one hand,

(7.9) E ′
c,ϕ(ξ̄) = −cEc,ϕ(ξ̄) ,

and on the other hand, since

Ec,ϕ(ξ̄) =
∫
R
ecξ
(1

2ϕ
′(ξ̄ + ξ)2 + V

(
ϕ(ξ̄ + ξ)

)
− V (m)

)
dξ ,

it follows, differentiating under the integral, that

E ′
c,ϕ(ξ̄) =

∫
R
ecξϕ′(ξ̄ + ξ) ·

(
ϕ′′(ξ̄ + ξ) + ∇V

(
ϕ(ξ̄ + ξ)

))
dξ

thus according to the differential system (7.1),

E ′
c,ϕ(ξ̄) =

∫
R
ecξϕ′(ξ̄ + ξ) ·

(
2ϕ′′(ξ̄ + ξ) + cϕ′(ξ̄ + ξ)

)
dξ

= e−cξ̄
∫
R
ecξϕ′(ξ) ·

(
2ϕ′′(ξ) + cϕ′(ξ)

)
dξ

= e−cξ̄
∫
R

d

dξ

(
ecξϕ′(ξ)2) dξ .

Since c is positive and according to assertion 6 of Lemma 7.1, the quantity ecξϕ′(ξ)2 goes
to 0 as ξ goes to −∞, and according to assertion 5 of Lemma 7.1 the same quantity
also goes to 0 as ξ goes to +∞. It follows that E ′

c,ϕ(ξ̄) vanishes. Since c is nonzero, the
conclusion follows from (7.9). Lemma 7.2 is proved.
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