
Analysing and revisiting a narrative: on
Archibald Henderson’s history of the

twenty-seven lines

François Lê∗

Preprint. May 2025

Abstract

The aim of this chapter is to show non-specialists in the history
of mathematics how a given historical account can be challenged and
revisited in order to thicken its descriptions. The example chosen for this
is the history of the twenty-seven lines of cubic surfaces published in 1911
by Archibald Henderson, which has since become the source of the usual
history of the subject. After describing the context in which this history
was written and highlighting its weaknesses, I return to the description of
the 1849 paper of Arthur Cayley where the existence of the twenty-seven
lines is proved to show what Henderson missed: the technical description
of this work, its place in diverse frameworks of the time and its circulation
in the 1850s and 1860s.

A theorem well known to modern algebraic geometers states that any non-
singular cubic surface contains exactly twenty-seven straight lines, provided
the surface is seen as an object of the complex projective space P3(C).

Let me first explain the mathematical terms involved in this statement.
A cubic surface, also called a surface of order 3 or a surface of the third
order or third degree, is a surface which can be defined by a polynomial
equation of degree 3, such as x3 − 2xy2 + z3 + 3y − 1 = 0, where x, y, z
are coordinates of space. The surface is said to be non-singular if a tangent
plane can be defined at any of its points, which roughly amounts to the fact
that it does not contain any point that looks like a peak or a pinch. That
a cubic surface is an object in P3(C) means that it is made of points with
complex coordinates, as well as points situated “at infinity”. From the point of
view of coordinates and equations, points at infinity are best handled by the
introduction of homogeneous coordinates x, y, z, w and homogeneous equations.
The homogeneous form of the above equation of degree 3 is x3 − 2xy2 + z3 +
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Figure 1: A model of a non-singular cubic surface with twenty-seven real
lines not entirely made of points at infinity. The model is dated between
1881 and 1899. Credits: Cu-Dro-002 / Collections de l’Institut Henri
Poincaré, Paris (CC BY-NC-SA).

3yw2 − w3 = 0, and the points at infinity of the corresponding surface are
those for which w = 0.

Such a complex projective framework allows to state intersection theorems
nicely. For instance, Bezout’s celebrated theorem states that a curve of order
n and a curve of order m in the complex projective plane P2(C) intersect in
exactly mn points.1 Similarly, in the projective complex space P3(C), the
intersection of a plane (which is a surface of order 1) and a surface of order n
is a curve of order n. And it is in this framework that the twenty-seven-lines
theorem makes best sense: for instance, a real cubic surface being given, some
of the twenty-seven lines it contains may be made up entirely of points at
infinity, while others may not be made entirely of real points (see figure 1).

To get a sense of how the history of this theorem has been presented by
1More precisely, this result is true if the curves have no common component and if the

counting of the intersection points is made by taking multiplicities into account. A curve of
order n is a curve which can be defined by an equation of degree n.
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mathematicians since the middle of the twentieth century, let me look at
the publications whose title or review in Mathematical Reviews contains the
expression “27 lines”. According to the MathSciNet on-line database, as of
April 2025, there are 172 such publications, dated between 1940 and 2023.
About a quarter of them include historical material about the twenty-seven
lines.

Although the scope and focus of this historical material varies greatly
from one publication to another, there is a consensus in attributing the first
statement and the first proof of the twenty-seven-lines theorem to the British
mathematicians Arthur Cayley and George Salmon, in two articles published
in 1849 [Cayley 1849a; Salmon 1849]. In two thirds of the cases, the historical
facts, be they on Cayley and Salmon or on other points, are stated without
reference to any source. However, the cases of the remaining third have in
common that they cite (sometimes indirectly) a specific reference from which
the historical content is taken unchanged, namely a 1911 book by Archibald
Henderson entitled The Twenty-Seven Lines upon the Cubic Surface [Henderson
1911].2 This book, or, more specifically, its preliminary “Historical Summary”,
hence appears as the source of the usual history of the twenty-seven-lines
theorem.

My aim in this chapter is to explain how Henderson’s narrative, although
not containing any obviously false statement, is a poor history which suffers
from many weaknesses, and to propose simultaneously avenues to enrich it.
To do this, I will begin, in the first section, by contextualising Henderson’s
writing of his book, examining his sources and bibliographic references, and
then presenting the historical summary, organised by Henderson in a sequence
of topical, apparently independent paragraphs. In the second section, I will
offer my own analysis of Cayley’s 1849 paper to highlight what Henderson
misses, which includes the technical description of this paper and its links with
Cayley’s other research of the time. The circulation of this paper from 1849 to
1870 will then be dealt with in the third section. Finally, in the conclusion,
after briefly revisiting another part of Henderson’s historical summary to show
the limits of its topical division, I will reflect on what a better history of the
twenty-seven lines might be, and on the history of mathematics as an evolving
research discipline.

2By indirect citation, I mean that a reference cites a text of which the historical material
is taken from Henderson’s book. For instance, [Shioda 2015] cites [Hunt 1994], of which the
historical material comes from Henderson.
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1. Henderson’s twenty-seven lines

1.1 A second Ph.D., under Dickson’s supervision

Archibald Henderson (1877–1963) was an American mathematician, literary
critic, biographer and historian.3 In 1894 he entered the University of North
Carolina as a student, and he received a Ph.D. in 1902 with a dissertation
entitled The Cone of the Normals and an Allied Cone for Surfaces of the
Second Degree. Although Henderson was then hired as an associate professor
of mathematics at the same university, he chose to continue his mathematical
training. Having already spent a semester at the University of Chicago in
1901, he chose to continue his studies there in 1902–1903. In particular, in
1902, he began a work on the twenty-seven lines of the cubic surfaces in view
of obtaining a Ph.D. of the University of Chicago, under the supervision of
Leonard Eugene Dickson.4

Between 1903 and 1905, Henderson published three mathematical papers
involving the twenty-seven lines of cubic surfaces [Henderson 1903, 1904, 1905].5
In 1910–1911 he travelled to Europe, where he met Henry Frederick Baker and
Bertrand Russell in Cambridge, Issai Schur and Hermann Schwarz in Berlin,
and Émile Picard and Édouard Goursat in Paris. A first version of the book
The Twenty-Seven Lines upon the Cubic Surface was published at the term of
the trip, as one of the Cambridge Tracts in Mathematics and Mathematical
Physics, the three aforementioned papers being included almost verbatim in
this book [Henderson 1911]. After World War I it was republished in Chicago,
as the Ph.D. dissertation as such, the only modification compared to the 1911
version being the addition of a short biographical notice [Henderson 1915].

The works of Henderson published after 1915, however, do not concern the
twenty-seven lines any more, which seems to indicate that this topic was closely
linked to Dickson’s personal agenda. This is corroborated by the fact that at
the beginning and the end of Henderson’s thesis, Dickson published several
papers and books that involve at least in part the twenty-seven lines [Dickson
1901a,b, 1902, 1915; Miller, Blichfeld, and Dickson 1916]. Dickson, of course,
is also very well known for his History of the Theory of Numbers, which he
began to design in 1911, and which he saw as a way to familiarise himself

3The biographic information of this paragraph come from [Putzel 1988] and the short vita
in [Henderson 1915].

4According to Della Dumbaugh, it was very unusual to prepare a second doctorate in
the United States of America at that time. With the aim of expanding his mathematical
knowledge, Henderson was certainly attracted by the then very active University of Chicago:
between 1862 and 1934, this University awarded 237 doctorates in mathematics while the
University of North Carolina awarded only 2, among which Henderson’s one [Richardson
1936, p. 203]. On the University of Chicago, see for instance [Parshall and Rowe 1994, ch. 9].

5In this paragraph and the following one, I rely on the list of Henderson’s publications
provided by the Jahrbuch über die Fortschritte der Mathematik and the Mathematical Reviews.
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with arithmetical topics.6 It is not clear to me whether the historical part
of Henderson’s dissertation was intended to have such a role in the practice
of mathematics but, as will be seen below, the way of writing the history of
mathematics was certainly the same.

The dissertation of Henderson is first and foremost of a mathematical
nature, the “Historical Summary” being only seven pages long out of the
hundred of the whole. Apart from a note of thanks, a table of content, a
general introduction, a bibliography, a table and some figures, the text is made
up of seven mathematical chapters which mainly appear as a survey of the
twenty-seven lines, in the sense that they present various results on the topic,
most of them being already known.7 That the aim was above all to take stock
of what was known about the twenty-seven lines is in fact indicated in the
introduction, where Henderson also warned the reader that the topic was so
large that he could not treat every aspect of it:

The problem of the twenty-seven lines upon the cubic surface is of such
scope and extent, and is allied to so many other problems of importance,
that to give a résumé of all that has been done upon the subject would
enlarge the present memoir into an extensive book. It has not proved
feasible to attempt to cover even the geometrical phases of the problem,
in their extension in particular to the cognate problem of the forty-five
triple tangent planes, although the two subjects go hand in hand. In
this memoir, however, is given a general survey of the problem of the
twenty-seven lines, from the geometric standpoint. [Henderson 1911, p. 8]

Since this warning was placed after the historical summary, it is very likely
that it applied mostly to the seven mathematical chapters rather than to this
summary. Nevertheless I will show that the latter also suffers from serious
shortcomings. To get a first idea of this, let me now analyse Henderson’s
bibliographic references and possible sources.

1.2 Sources and bibliographic references of Henderson

Henderson did not make explicit how he gathered the sources that served him
to write his book and, in particular, his historical summary. However, a clue
can be found in the first paragraph of this summary:8

The literature of the subject is very extensive. In a bibliography on curves
and surfaces compiled by J. E. Hill, of Columbia University, New York,

6See [Dumbaugh Fenster 1999a,b]. As described in these references, Dickson saw other
purposes in the history of mathematics. Moreover, Dickson stressed the importance of
travelling to Europe to broaden one’s knowledge on a subject, which echoes Henderson’s own
trajectory.

7Two chapters include short sections of a historical nature, which repeat and develop
certain points from the historical summary [Henderson 1911, pp. 14, 54].

8In this quote and the following ones by Henderson, what has been put into brackets
appears in footnotes in the original.
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the section on cubic surfaces contained two hundred and five titles [Bull.
Am. Math. Soc. Vol. iii (1897), pp. 136–146]. The Royal Society of London
Catalogue of Scientific Papers, 1800–1900, volume for Pure Mathematics
(1908), contains very many more. [Henderson 1911, p. 1]

The two references given here to evidence the profusion of the mathematical
works on cubic surfaces appear as many potential bibliographical sources. Let
me examine them both.

The paper cited by Henderson was authored by John Ethan Hill (1864–
1941), then a tutor at Columbia University who had earned his doctorate in
1895 at Clark University, with a dissertation called On Quintic Surface.9 In this
paper, Hill gave “a brief sketch of a bibliography of curves and twisted curves,
prepared by [him]” [Hill 1897, p. 133]. He did not explain how he formed
this bibliography, and contented himself with shortly presenting the diverse
sections he created there. In particular, Hill evoked that among the 3,715
references of the bibliography, 205 deal with cubic surfaces, which corresponds
to Henderson’s number given above. That said, Hill provided bibliographic data
only for three of these 205 references: a paper by Leopold Mossbrugger [1841],
presented as the first one to have ever dealt with cubic surfaces specifically,
and the two 1849 papers by Cayley and Salmon where the existence of the
twenty-seven lines is proved [Cayley 1849a; Salmon 1849].

Henderson included this information in his historical summary, where he
devoted a paragraph to Mossbrugger’s paper before turning to the works of
Cayley and Sylvester. In fact, not only was the historical content taken over
from Hill, but so was the wording of the very beginning of the historical
summary and of a part of the paragraph on Mossbrugger. Indeed, compare
the following lines:

It is remarkable that the first paper that I can find that deals specifically
with the cubic surface is one by L. Mossbrugger [...]. Although one may
say that the classification of cubic surfaces is practically complete, the
study of these surfaces appears, still to-day, to have the same fascination
as was exhibited when the discovery of the existence and the relations of
the 27 lines of the general cubic surface was first announced. [Hill 1897,
p. 137]

with:

While it is doubtless true that the classification of cubic surfaces is
complete, the number of papers dealing with these surfaces which continue
to appear from year to year furnish abundant proof of the fact that they
still possess much the same fascination as they did in the days of the
discovery of the twenty-seven lines upon the cubic surface. [...] The first
paper that deals specifically with the cubic surface was by L. Mossbrugger.
[Henderson 1911, p. 1]

9See the Obituary Record of Graduates of Yale University Deceased During the Year
1941–1942, on p. 170.
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This form of plagiarism, as well as the fact that Henderson seems to have taken
Hill’s narrative as it is, prompts us to read Henderson’s historical summary
with caution and to reflect on the seriousness with which he wrote it. For
instance, to accept Mossbrugger’s 1841 paper as the beginning of the history
of cubic surfaces is by no means self-evident: according to the Encyklopädie
der mathematischen Wissentschaften mit Einschluß ihrer Anwendungen, some
1829 research of Julius Plücker already involved a general cubic surface [Meyer
1928, p. 1439].

If there is no doubt that Henderson used Hill’s paper, nothing allows me
to know whether he had access to Hill’s bibliography. This bibliography is
recorded neither in the Jahrbuch nor in the Mathematical Reviews, and I could
not find any trace of it. Therefore it is impossible to me to compare the
205 papers on cubic surfaces that are supposed to be listed in it with the
bibliographic items of Henderson.

However, it is certain that Henderson used the Catalogue of Scientific
Papers to gather sources on the twenty-seven lines.10 Henderson cited one of
the three volumes of the subject index, which classifies the listed papers in
disciplinary parts. These parts are divided into several sections, themselves
made of diverse subsections. Bibliographical references are listed under these
subsections, and are, according to the cases, grouped by keywords. For instance,
in the part related to geometry, a section on “Algebraic curves and surfaces of
degree higher than the second” contains a subsection on “Algebraic surfaces of
degree higher than the second”. A header called “Configurations” exists in this
subsection, under which the twenty-seven lines finally appear as keywords (see
Table 1).

While the authors of the Catalogue did not explain how they created and
attributed the keywords, examining the entries show that these keywords
often (but not systematically) reflect words from the titles of the papers
that are associated with the them. For instance, a note by Camille Jordan
entitled “Sur une nouvelle combinaison des vingt-sept droites d’une surface
du troisième ordre” is associated with the keywords “27 straight lines, new
combination” [Jordan 1870a]. Cayley’s 1849 paper on the twenty-seven lines,
on its part, is called “On the Triple Tangent Planes of Surface of Third Order”
and has “Triple tangent planes” as keywords.

The existence of such keywords makes the twenty-seven lines an explicit,
well-identifiable topic in the Catalogue, and the example of Cayley’s paper
proves that comparing Henderson’s bibliographic references with the Catalogue
requires to consider the keywords “Triple tangent planes” as relevant as “27
straight lines”. It turns out that every item having these keywords in the
Catalogue are bibliographical references in Henderson. The converse is not

10Let me recall that the Catalogue is the outcome of a project of bibliographic review of
articles published in scientific journals in the nineteenth century [Wagner-Döbler and Berg
1996].
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Algebraic Curves and Surfaces of degree higher than the second

7600 General
7610 Metrical and projective properties of algebraic plane curves of degree

higher than the second
7630 Special plane algebraic curves
7640 Algebraic surfaces of degree higher than the second

— Contacts, and Tangent Lines and Planes
— Surfaces, 2nd and 3rd, 2nd, 3rd and 4th, degrees
— Surfaces, 3rd degree
— Configurations

– 27 real straight lines, forms of surfaces containing.
– — straight lines.
– — — —, delineation.
– — — —, determination and classification of surfaces with

respect to.
– — — —, equation.
– — — —, — determining, resolution.
– — — —, groups of substitutions connected with.
– — — —, new combination.
– — — —, and parabolic curve.
– — — —, representation on plane.
– — — — and 45 triple tangent planes.
– — — — — — — — — and 36 double-sixers, construction of

models showing lines.
– Triple tangent planes.
– — — —, Cayley’s theorem, proof.
– — — —, polyhedral configurations.
– — — —, property.

— Surfaces, 3rd and 4th, 4th, 4th and 5th, 5th, (m + n)th, nth
degrees

7650 Special algebraic surfaces
7660 Skew algebraic curves

Table 1: The twenty-seven lines in the Catalogue of Scientific Papers.
Note that apart from “27 straight lines” and “Triple tangent planes”,
which gather 7 and 3 papers, respectively, the other keywords are as-
sociated with only one paper. Moreover, the header “Configurations”
contains other keywords that those written in this table.
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true, as exemplifies the paper [Maschke 1888], which appears in the Catalogue
section devoted to discrete groups with the keywords “Quaternary group of
substitutions with ternary Hessian for sub-group”.11

At this point, I should make it clear that by “bibliographic references” I
mean the set of the references that appear somewhere in Henderson’s book.
This does not coincide with the bibliography per se, understood as the list of
75 references given at the end of the book, since there are 24 publications cited
in the historical summary all the while being absent from the bibliography.12

Conversely, some references of the bibliography are not cited anywhere in the
book. Now, most of these references have erroneous titles in the bibliography,
and these titles seem to have been forged from the corresponding Catalogue
keywords. For instance, the real title of [Affolter 1874] is “Zur Theorie der
Flächen dritter Ordung”, while it is presented as “The Twenty-Seven Lines on
the Cubic Surface” in Henderson, and has “27 straight lines” as keywords in
the Catalogue. In addition, the pages of these litigious references are never
given fully: in the exact same way as in the Catalogue, only their first page
is indicated in the bibliography. Hence Henderson obviously completed his
bibliography with the help of the Catalogue, but did not care to have the right
titles and the complete page numbers – in particular, it is most likely that he
did not even read these articles.

All this confusion, once again, prompts us to take a cautious view on
Henderson’s historical work. Further, to assess now the extent of Henderson’s
bibliographic references, and thus get a better idea of the (in)completeness
of his account, a possibility is to use the Jahrbuch über die Fortschritte der
Mathematik.

Contrary to the index of the Catalogue, the Jahrbuch does not possess any
header corresponding to the topic of cubic surfaces or to the twenty-seven lines.
The search for mathematical texts whose title contains the phrase “twenty-seven
lines” or its French, German or Italian equivalents and which were published
between 1868 and 1911 yields 34 results (the lower bound of this time interval
corresponds to the year when the Jahrbuch begins its reviews, while the upper
bound is the year of the first publication of Henderson’s monograph). Among
these results, only 6 are not bibliographic references in Henderson.13 This
search in the titles thus brings only a handful of new publications – this confirms
that the Catalogue keywords were often created from the titles of the papers
and that Henderson used the Catalogue.

11Other references that exist in Henderson cannot appear in the Catalogue because they
are books or Ph.D. dissertations, or because they were published after 1900. It is possible
that Henderson simply collected such references without using any reviewing tool.

12The other parts of the book do not contain references that do not appear in the bibliog-
raphy.

13For this comparison, I do not count some short notes, such as [Jordan 1869b], that
announce a larger publication, such as [Jordan 1870b]. Henderson, indeed, seemed to have
systematically cited the latter kind of texts only.
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Now, if one searches for publications whose title or review contain “twenty-
seven lines”, 101 results are obtained, among which 66 are not in Henderson’s
bibliographic references. A large part of these new references are continuations
of works that appear in Henderson: this is the case, for instance, of a series of
papers by Dickson and by William Burnside, which are connected to the study
of groups associated with the twenty-seven lines, a topic which does appear in
the historical summary.

Other references, on the contrary, reflect some research involving the twenty-
seven lines that is not evoked at all by Henderson, either in the historical
summary or the mathematical chapters. A part of them is connected with some
research by Alfred Clebsch who, in a 1866 paper, established the representation
of any cubic surface on a plane, which means, in modern terms, that he proved
the existence of a birational transformation between any cubic surface and the
projective plane [Clebsch 1866]. Because they are crucial to understand this
birational transformation, the twenty-seven lines are present in this article, an
article which is important in the development of the issue of surface represen-
tations at the end of the nineteenth century [Brigaglia, Ciliberto, and Pedrini
2004, pp. 303–304; Rowe 2021; Lê 2022, pp. 33–35].

These examples show that Henderson’s historical account is far from ex-
hausting the topic of the twenty-seven lines. Of course, this is not problematic
in itself since exhaustiveness is probably nothing else than a pipe dream in
the history of mathematics. But Henderson’s reader must bear in mind the
limitations that his account of the twenty-seven straight lines may present,
limitations that the author unfortunately did not make explicit.

Leaving aside the issue of oversights of this nature, let me now turn to the
content of the historical summary.

1.3 A topical historical summary

This summary is divided into several paragraphs. The first two relate to the
high number of publications dealing with cubic surfaces and to Mossbrugger’s
paper: I accounted for them earlier. With the exception of one of them, all
the other paragraphs begin with a sentence which clearly attributes to them
a given topic related to the twenty-seven lines – the exceptional paragraph
consists in the listing of bibliographical references on several of these topics. In
their order of appearance in Henderson’s narrative, the topics are the following:

• The existence of the twenty-seven lines with Arthur Cayley and George
Salmon.

• The basis for “a purely geometric theory” of cubic surfaces with Jacob
Steiner.

• The issue of the notation of the lines, and the concept of a double-six.
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• The works of Rudolf Sturm and Luigi Cremona on cubic surfaces “from
the synthetic standpoint”.

• The classifications of cubic surfaces in regards with the reality of the
lines they contain or their singularities.

• The models of cubic surfaces or their lines.

• The shapes and models of cubic surfaces.

• The links between the twenty-seven lines and the twenty-eight double
tangents of plane quartic curves.14

• The links between the twenty-seven lines and the Pascal configuration.15

• References on the concept of double-six, and on the link between the
twenty-seven lines and the twenty-eight double tangents.

• The research of Corrado Segre on cubic varieties in a four-dimensional
space.

• The group-theoretic standpoint on the twenty-seven lines.

In each paragraph, Henderson briefly describes the topics and provides biblio-
graphical references of related mathematical works. His descriptions consist
mainly in successions of facts, which are sometimes augmented with anecdotes.
For instance, the paragraphs dealing with the existence of the twenty-seven
lines by Cayley and Salmon, on the one hand, and with Steiner’s research, on
the other hand, are the following:

The theory of straight lines upon a cubic surface was first studied in a
correspondence between the British mathematicians Salmon and Cayley;
and the results were published, Camb. and Dublin Math. Journal, Vol.
iv. (1849), pp. 118–132 (Cayley), pp. 252–260 (Salmon). The observation
that a definite number of straight lines must lie on the surface is initially
due to Cayley, whereas the determination of that number was first made
by Salmon. [Salmon, Geometry of Three Dimensions, 4th edition, §530,
note. Cf. also Cayley, Coll. Math. Papers, Vol. I. note, p. 589.]
The basis for a purely geometric theory of cubic surfaces was laid by
Steiner [“Ueber die Flächen dritten Grades,” read to the Berlin Academy,
31st January, 1856; Crelle’s Journ., Vol. liii.] in a short but extremely
fruitful and suggestive memoir. This paper contained many theorems,
given either wholly without proof, or with at most the barest indication
of the method of derivation—a habit of “ce célèbre sphinx,” as he has
been styled by Cremona.

14A quartic curve is a curve of order 4. A non-singular quartic curve being given in P2(C),
there are exactly 28 lines that are tangent to the curve in two distinct points.

15The Pascal configuration is the configuration obtained from the six lines that join opposite
vertices of a hexagon inscribed in a conic. Pascal’s theorem states that the mutual intersections
of these lines consist in three aligned points.
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Before interrogating the content of these paragraphs, let me first note that
here again Henderson is plagiarising, this time by repeating almost verbatim
one of the texts cited. Indeed, the story of the discovery of the twenty-seven
lines is told in Salmon’s Geometry of Three Dimensions as follows:

The theory of right lines on a cubical surface was first studied in the year
1849, in a correspondence between Prof. Cayley and me, the results of
which were published, Cambridge and Dublin Mathematical Journal, vol.
iv., pp. 118, 252. Prof. Cayley first observed that a definite number of
right lines must lie on the surface; the determination of that number as
above, and the discussions in Art. 533 were supplied by me. [Salmon
1882, p. 496]

There is no reason to doubt the veracity of the events reported by Salmon
(and thus by Henderson), especially as they were also reported by Cayley. But
it is fair to question the value of a narrative of which a non-negligible part
consists in an almost exact repetition of extracts written by mathematicians of
the past. In fact, this way of writing the history of mathematics, as well as
the division of the theme of the twenty-seven lines in several topics, somehow
echoes Dickson’s History of the Theory of Numbers, which was explicitly meant
to be a list of “facts” that were not supposed to be commented on by the
historian [Dumbaugh Fenster 1999a, pp. 163–164].

Moreover, the two quoted paragraphs showcase other kinds of problems
and questions that are to be found throughout the historical summary.

First, Henderson never provided any precise clue on the mathematical proofs
of the reported theorems or on the technical or heuristic sources used by past
mathematicians. For instance, he only alluded to Steiner’s geometric theory of
cubic surfaces, without explaining what this refers to, while nothing was said
at all on how Cayley and Salmon proved the existence of the twenty-seven lines.
What kind of objects and techniques did the proofs of these mathematicians
involve? Were these proofs self-contained? Were they inspired by past research?
Moreover, Henderson never commented on the status of the results about the
twenty-seven lines within the cited papers. Did the twenty-seven lines represent
the actual core of these papers, or were they only a side issue for Cayley,
Salmon and Steiner? More generally, what was the status of the twenty-seven
lines in their mathematical research of the time?

Alongside these questions about the content of each paragraph, others
exist about the relations between these paragraphs. In the case of the above
examples, Steiner’s research is presented as having launched the study of cubic
surfaces by purely geometric methods. Does it mean that Cayley and Salmon
never used such methods? Whether this is the case or not, did Steiner know
about the British contributions? Was his purely geometric theory at least in
part inspired by them? Did his “many theorems” include results, such as the
very existence of the twenty-seven lines, that were already known by Cayley
and Salmon? Similarly, Henderson’s did not explain if the mathematicians
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involved in the other paragraphs learned of the existence of the twenty-seven
lines from the publications of the British duo, nor if they made use of some of
their technical results.

Finally, the very division in topical paragraphs of the historical summary
is also questionable. How did Henderson choose and define the topics to be
accounted for? Why, as seen above, did he left out some themes, such as the
plane representations of cubic surfaces? How did he operate the distribution a
given contribution in a given topic? To what extent are these topics related to
each other, from the point of view of the mathematical content? Furthermore,
does the topical division correspond to an actual partition of the mathematical
papers cited, or could these papers be associated with several topics? Why
are some papers given in the bibliography not dealt with in the historical
summary? Is it because they do not fit to the chosen topics, or because they
were seen as insignificant?

This litany could be continued indefinitely and there is no question of
addressing all the listed interrogations, my point being just to suggest how
Henderson’s history of the twenty-seven lines could be enriched. That said, I
will now consider Cayley’s 1849 paper and describe it in detail, which will lead
me to answer to some of the previous questions.

2. A focus on Cayley’s 1849 paper

Henderson reported that Cayley and Salmon developed their results on the
twenty-seven lines in a correspondence between them, the former having found
that any cubic surface contains a certain number of lines while the latter
proved that this number is 27. This story was already accounted for in the
references cited by Henderson: in Cayley’s 1849 paper [Cayley 1849a, p. 132]
and, as noted above, in texts published afterwards, namely in Cayley’s Collected
Papers, which he edited himself [Cayley 1889, p. 589], and in Salmon’s famous
Treatise on the Analytic Geometry of Three Dimensions – while Henderson’s
only cited the fourth edition of the treatise of 1882, the information was actually
already included in the first edition, published twenty years before [Salmon
1862, p. 386].

Unfortunately the letters between Cayley and Salmon seem to be lost. As
explained by Tony Crilly, in 1923, the letters in Cayley’s Nachlass were returned
to their original author if he or she was still alive, which was not the case
for Salmon, while “[m]any letters written by others have not survived” [Crilly
2006, p. 559]. I will thus leave aside everything concerning the epistolary
circumstances of the proof of the twenty-seven-lines theorem, and focus on
Cayley’s original paper.
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2.1 The existence of the twenty-seven lines

This paper was published in the Cambridge and Dulin Mathematical Journal.
Of its fifteen pages, the first two are devoted to the existence of the twenty-seven
lines, of which two proofs are actually proposed by Cayley.

The first one presupposes the existence of lines upon a given cubic surface:
“A surface of the third order contains in general a certain number of straight
lines”, asserted Cayley in opening his paper [Cayley 1849a, p. 118]. Cayley
then considered the planes that pass through such a line. Since the intersection
of a plane and a cubic surface is a cubic curve, in this case, the cubic curve
must be composed of the line and a conic. Further, since the two points where
this line and this conic intersect are double points of the cubic curve, they are
both counted with multiplicity 2 when considered as intersection points of the
plane and the surface.16 In other words, they are points where the plane is
tangent to the surface.

Cayley’s idea, then, was to look for the planes for which the residual conic
degenerates into two lines. If this happens, the intersection of such a plane with
the surface is made of three lines and, as just explained, their three mutual
intersection points are points of tangency: this is why the plane is called a
“triple tangent plane”. Cayley continued:

The number of lines and treble tangent planes is determined by means of
a theorem easily demonstrated, viz. that through each line there may be
drawn five (and only five) treble tangent planes. [Cayley 1849a, p. 118]

This theorem, which was not proved by Cayley,17 was used as follows. Consider
one of the five triple tangent planes given by the theorem. It contains three
lines and, according to the same theorem, there are four new triple tangent
planes associated with each of these three lines. This gives 12 triple tangent
planes and thus 24 new lines one the surface. Together with the three original
ones, the process eventually yields 27 lines on the surface.

Reciprocally, Cayley proved that these lines are the only ones that can
be found on the surface. To do this, he remarked that since the three lines
of a triple tangent plane form the exact intersection of this plane with the
surface, any line L included in the surface intersects the plane in a point that
belongs to one of the three lines, say L′. Now, the plane defined by L and L′

intersects the surface in a cubic curve which contains L and L′. This curve
thus necessarily consists in three lines, and the plane that contains them is one
of the triple tangent planes in which L is included. This proves that L does
correspond to a line found by the process presented above. Cayley concluded:

16If the considered point is (0, 0, 0), which can be assumed without any loss of generality,
this is easily seen when thinking of the multiplicity orders as the lowest degrees in the
equations of these objects.

17Ernest De Jonquières proved it in a paper where he exposed Cayley’s and Salmon’s 1849
works [Jonquières 1859, pp. 135–136].
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Hence the whole number of lines upon the surface is twenty-seven; and
it immediately follows that the number of treble tangent planes is forty-
five.18 [Cayley 1849a, p. 119]

Let me stop momentarily the description of Cayley’s paper and comment a bit
on what precedes.

First, as has been seen, Cayley started his paper in medias res, by asserting
that cubic surfaces contain lines. In particular, he did not explain at all what
was his incentive for investigating this topic. It should be noted, however, that
in previous research he had already dealt with cubic surfaces that contain
lines and possess triple tangent planes. Indeed, in a 1844 paper devoted to
cubic curves, Cayley considered a cubic surface defined by the condition that
it contains the six edges of a given tetrahedron – this is the surface that
would later be called “Cayley’s surface” [Cayley 1844]. He remarked that this
surface is touched along each edge by exactly one plane, and he proved that
the six tangent planes thus obtained intersect two by two in three lines that
are coplanar and included in the cubic surface. Although Cayley did not make
it explicit, this provides a (singular) cubic surface with nine lines and eleven
triple tangent planes. Other publications of the time show that Cayley also
worked with quadric surfaces and their infinitely many lines, as well as with
the “wave surface”, a special quartic surface of which he studied special plane
intersections [Cayley 1846a, 1848]. Therefore, if the specific reasons why Cayley
studied cubic surfaces, their lines and triple tangent planes remain unclear, this
was in line with his earlier investigations on algebraic surfaces of low order.19

Second, the proof of the existence of the twenty-seven lines (and the forty-
five triple tangent planes) was incomplete for two reasons. The first one is that
it presupposed the existence of at least one line upon the surface. This point
can be seen as unproblematic, since Cayley provided another proof where this
hypothesis is not needed: in a way, this merely makes the first proof dependent
on the second one. The second reason is that Cayley explicitly omitted the
demonstration of a theorem that he used crucially to enumerate the lines and
the triple tangent planes. Apart from these two points, the proof appears
as quite solid and clear. In particular, it necessitates only to know that a
cubic surface is intersected by a plane in a cubic curve, and that such a curve
may degenerate into one line and one conic, or into three lines. From this
point of view, it is possible that Cayley presented this incomplete proof – and,
indeed, as the first one in his paper – because he saw it as being the most
intuitive and accessible for his readers. Finally, it is noteworthy that this proof
did not involve any equations between coordinates, and could therefore be
qualified as purely geometric: this counters the idea that such a viewpoint was
characteristic of Steiner, as Henderson’s narrative might suggest.

18Each of the 27 lines belongs to 5 planes and, reciprocally, each plane contains 3 lines.
Thus the number of planes is 27×5

3 = 45.
19See [Crilly 2006, part 2] for a rich account of Cayley’s activities between 1844 and 1849.
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Let me now turn to the second proof, which Cayley presented as having
“the advantage of not assuming a priori the existence of a line upon the
surface” [Cayley 1849a, p. 119]. The key idea here was to consider a tangent
cone to the surface, that is, a cone made of the lines in space that pass through
an arbitrary vertex outside the surface and are tangent to this surface. Cayley
asserted that any double tangent plane of the cone is a double tangent plane
of the cubic surface, and thus intersects this surface in a line and a conic.20

Reciprocally, a line in the surface being given, the plane containing this line
and passing through the vertex of the cone is a double tangent plane of the
cone. As Cayley wrote, this proves that there are as many lines in the surface
as double tangent planes of the cone.

Cayley then invoked two texts to complete his proof. He first cited a recent
paper by Salmon [1847] to state that the tangent cone is a surface of order 6
which has no double line and 6 cuspidal lines – Salmon’s paper contained a
more general result, giving the order, number of double lines and number of
cuspidal lines of a cone tangent to a surface of any order m. Cayley finally
cited Julius Plücker’s famous book Theorie der algebraischen Curven [Plücker
1839] to conclude:

[B]y the formula in Plücker’s “Theorie der Algebraischen Curven,” p. 211,
stated so as to apply to cones instead of plane curves, (viz. n being the
order, x the number of double lines, y that of the cuspidal lines, u that
of the double tangents planes, then

u = 1
2n(n−2)(n2−9)−(2x+3y)(n2−n−6)+2x(x−1)+6xy+ 9

2y(y−1)).

The number of double tangent planes is twenty-seven, which is therefore
also the number of lines upon the surface. [Cayley 1849a, p. 119]

This formula, which is exactly the same as Plücker’s, yields indeed u = 27 for
the values n = 6, x = 0, y = 6.

The second proof of the existence of the twenty-seven lines suffered no
gap, but, contrary to the first one, it appears as less adapted to understand
the geometrical configuration obtained since it does not show how the twenty-
seven lines are arranged into forty-five triple tangent planes. At any rate, this
second proof was also explicitly rooted in the research of other mathematicians,
which is historically interesting since it displays more explicitly how Cayley’s
investigations was inscribed in collective frameworks of the time.

20Let O be the vertex of the cone. By definition, this cone is made of the lines OM , where
M belongs to the surface and OM is tangent to it. A double tangent plane of the cone is a
plane that contains two edges of the cone, say OM and OM ′. If T is such a double tangent
plane, it is tangent to the surface in M and M ′. Hence the cubic curve that is its intersection
with the surface has M and M ′ as double points: it is necessarily a degenerate cubic, made
of the line MM ′ and a conic.
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2.2 Equations and notations

Although the two proofs of the existence of the twenty-seven lines were done,
Cayley’s paper was far from finished. The next move was to make explicit the
equations of the forty-five triple tangent planes. For this, Cayley first proved
that for an appropriate choice of space coordinates x, y, z, w, the equation of
a cubic surface can be written as wP + kxyz = 0, where k is a numerical
parameter and P is a quadratic polynomial.

In the case where P cannot be factorised into linear polynomials, Cayley
showed that the previous equation of the cubic surface is of the form

w

{
x2 + y2 + z2 + yz
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)
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)
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)
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)
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n

)}
+ kxyz = 0,

where ℓ, m, n are parameters. From this equation, Cayley deduced the list
of the forty-five equations of the triple tangent planes, each of which was
associated with a symbol used to denote the plane: for example, the plane
w = 0 was denoted by (w), the plane x + 1

k

(
m − 1

m

) (
n − 1

n

)
w = 0 was

denoted by (ξ), etc. (see figure 2).
Cayley then wrote down sixteen (out of 120) equations of the cubic surface,

such as wff + kξyz = 0, where ξ, f and f designate the left-hand sides of the
equations of the planes (ξ), (f) and (f). He also listed the systems of five planes
having a line in common – a line which is necessarily one of the twenty-seven
–, on the basis of which he introduced a notation for these lines, consisting in
the symbols a1, . . . , a9, b1, . . . , b9, c1, . . . , c9. This notation did not contain in
itself the trace of the incidence relations: the line a1 was defined as the line
common to the planes (w), (x), (ξ), (x), (x), the line b1 was defined as the
line common to the planes (w), (y), (η), (y), (y), and so on: it is Cayley’s
exhaustive listing that allowed understanding the association between lines
and planes. Conversely, Cayley indicated which lines are contained in each
plane (see figure 2).

In fact, Cayley was led to another notation of the twenty-seven lines,
obtained this time by supposing that in the equation of the cubic surface
wP + kxyz = 0, the quadratic polynomial P breaks up into two linear factors.
In this case, this equation can be written as ace − bdf = 0, where a, . . . , f
are linear functions of the coordinates. Cayley added that a counting of the
constants actually proved directly that the equation of any cubic surface can be
written in this way. Without entering into the details here, let me just remark
that the other notation of the twenty-seven lines used the letters a, . . . , f and
was established in close relation with the incidence properties of the lines.

After having shown the correspondence between this notation and the
previous one, Cayley contented that:

17



Figure 2: The beginning of the list of the equations of the forty-five triple
tangents planes [Cayley 1849a, p. 121]. The letters p, α, β designate
explicit functions of the parameters k, ℓ, m, n.
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There is great difficulty in conceiving the complete figure formed by the
twenty-seven lines, indeed this can hardly I think be accomplished until a
more perfect notation is discovered. In the mean time it is easy to find
theorems which partially exhibit the properties of the system. [Cayley
1849a, p. 127]

Moreover, at the end of the paper, Cayley explained that “the whole subject
of this memoir was developed in a correspondence with Mr. Salmon, and in
particular, that [he was] indebted to him for the determination of the number
of the lines upon the surface and for the investigations connected with the
representation of the twenty-seven lines by means of the letters a, c, e, b, d, f ,
as developed above.” [Cayley 1849a, p. 132].

Cayley’s own dissatisfaction of his notations was not mentioned by Hen-
derson in the paragraph of the historical summary devoted to the issue of the
notation:

The notation first given by Cayley was obtained from some arrangement
that was not unique, but one of a system of several like arrangements;
but it was so complicated as scarcely to be considered as at all putting in
evidence the relations of the lines and triple tangent planes. [Henderson
1911, p. 2]

As can be seen, Henderson overlooked that Cayley provided two notations,
one due to Salmon. Nor did he explain what the mentioned notation is, or
even that it was exposed in the 1849 paper, which certainly has the effect of
breaking the coherence of this paper.

After having evoked a system of notation due to Andrew Hart, and published
in [Salmon 1849], Henderson turned to the notation which was proposed by
Ludwig Schläfli and which “has remained unimproved upon up to the present
time” [Henderson 1911, p. 2]. Nevertheless Henderson did not explain that
Schläfli’s and Cayley’s approaches share common technical features, and the
reader could not guess this since Henderson did not enter into the mathematical
details. In fact, to develop his system of notation, Schläfli began by proving that
the equation of any cubic surface can be brought to the form uvw + xyz = 0,
where x, y, z, w are appropriate coordinates of space and u, v are linear functions
of them [Schläfli 1858, p. 112]. Up to the + sign (which is here mathematically
unimportant), this is the same form of the equation ace − bdf = 0 from which
Cayley started for his second system of notation, and, just like Cayley, Schläfli
made use of this special form of the equation to derive a new notation of the
twenty-seven lines, a notation defined via the concept of a double-six (which
refers to a set of twelve lines having special incidence relations). Schläfli did
not cite Cayley’s paper, and, as will be seen below, it is likely that he did
not know its content. Still it is a pity that yet another form of coherence was
missed in Henderson’s account.
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2.3 Incidence properties and configurations

As indicated in Cayley’s previous quote, in spite of having an imperfect notation,
Cayley used the one consisting in the symbols a1, . . . , c9 to investigate some
properties of the geometrical configuration formed by the twenty-seven lines.

For instance, he showed that any two non-intersecting lines, say a1, b1, are
intersected by five lines a2, b1, a5, a7, a9 having the following properties: they
do not intersect each other, any four of them do not cut any line other than
a1, b1, and any three of them are cut by exactly one other line.21 Another
result is that given three non-intersecting lines there exist six lines that do not
intersect them: these six lines, then, form an hexagon,22 of which each pair
of opposite sides are cut by yet another pair of lines. Cayley stated several
other such results and concluded: “The number of such theorems might be
multiplied indefinitely, and the number of different combinations of lines or
planes to which each theorem applies is also very considerable” [Cayley 1849a,
p. 128].

The rest of Cayley’s paper was devoted to other properties linked to the
configuration of the twenty-seven lines and the forty-five triple tangent planes.
While one of them is related to the anharmonic ratio of specific families of triple
tangent planes, others concerned plane cubic curves, which Cayley realised as
planar intersections of cubic surfaces: such a curve has twenty-seven points
that are the intersections of the twenty-seven lines by the plane containing
the curve, and Cayley investigated the incidence relations of these points.
For instance, he showed that there exist systems of fifteen points (among the
twenty-seven) that are aligned three by three on fifteen lines, in such a way
that, reciprocally, nine of these points are the mutual intersections of 2 × 3
lines, while the six remaining ones form an hexagon whose diagonals and sides
intersect in a special way.

This type of results, which deal with the different incidence configurations
of points, lines and planes, recalls strongly the activities which prefigure what
would be called “tactics” by Cayley in 1864. As Caroline Ehrhardt [2015]
explains, tactics was “a field of investigation at the crossroads of algebra, com-
binatorics and recreational mathematics” which, apart from Cayley, involved
mathematicians such as Thomas Kirkman and James Joseph Sylvester. In
particular, it was marked by investigations of the arrangement of things, and
Cayley was engaged in such investigations already around 1850, typically with
the famous fifteen-schoolgirls problems [Tahta 2006].

The series of papers that Clebsch devoted to theorems related to géométrie
de position, published between 1846 and 1851 but written between 1845 and
1849, are of the same vein [Cayley 1846b, 1847, 1849b, 1851]. In particular,

21All the lines considered in this paragraph are some among the twenty-seven.
22Contrary to the planar case, six lines in space do not always form an hexagon. This is

the case if adequate incidence relation between the lines exist.
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Cayley investigated the combinatorics associated with configurations of points
and lines in a plane. For instance, he studied the plane configuration made of
fifteen points situated three by three on twenty lines, and proved that there
exist ten systems of nine of these points which form, in two different ways,
three triangles having special properties [Cayley 1846b, p. 216]. Cayley also
researched thoroughly the Pascal configuration and listed many theorems of
the same nature. To take but one example, Cayley recalled that Kirkman
had proved that the 60 lines arising from Pascal’s theorem23 intersect each
other three by three in 20 points that Steiner already found, and in 60 other
points, labelled by the letter h. Other incidence properties of these points were
recalled, after which Cayley added:

I myself have since found that the sixty points h lie three by three on
twenty lines X. All these theorems can be demonstrated quite easily when
one knows how the points and lines are to be combined by constructing
the points and lines h, J , &c. This is done in a very simple way, using a
notation that I will explain.24 [Cayley 1851, p. 550]

This geometric setting, the insistence on the combinatorics associated with
configurations of points and lines, and the use of an adequate notation to
investigate this echo directly what was done in the paper on the twenty-seven
lines. It is not the place here to discuss further Cayley’s other works, my point
being just to put into light the insertion of his research on the twenty-seven
lines in a more general framework, both at the level of his own activities and
at the level of collective investigations. Needless to say that all this is absent
from Henderson’s narrative.

3. Circulation of Cayley’s paper

Another question that was not raised at all by Henderson is how Cayley’s
(and Salmon’s) results circulated at their time. Looking at articles and books
published after them already provides answers.

The item of Henderson’s bibliography that just follows chronologically
Cayley’s article is a 1855 paper by Francesco Brioschi, who investigated di-
verse properties of the configuration of the twenty-seven lines [Brioschi 1855].
Although he did not provide explicit bibliographic references, Brioschi referred
to Cayley’s and Salmon’s works from the very outset of his paper:

23Let me recall that Pascal’s theorem states that if an hexagon is inscribed in a conic, its
diagonals intersect two by two in three points that lie on a line. Given six points in a plane,
one can form 60 hexagons, which thus yields 60 lines. On Kirkman’s research on the Pascal
configuration, see [Tahta 2006, pp. 61–68].

24“Moi, j’ai depuis trouvé que les soixantes points h sont situés trois à trois sur vingt
droites X. Tous ces théorèmes peuvent être démontrés assez facilement quand on connaît la
manière suivant laquelle les points et les droites doivent être combinés en construisant les
points et les droites h, J , &c. Cela se fait alors d’une manière très simple, au moyen d’une
notation que je vais expliquer.”
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In a surface of the third order there are, in general, twenty-seven lines.
Mr. Cayley proved that any three of these lines are situated in a plane
(called triple tangent by that author), and that five triple tangent planes
pass through any one of the straight lines.25 [Brioschi 1855, p. 374]

Brioschi also knew of the content of Salmon’s 1849 paper, since he recalled (and
then used) Hart’s notation of the twenty-seven lines, which was presented there.
Such a knowledge of the papers of Cayley and Salmon is also obvious in a 1859
article of Ernest de Jonquières, which, as mentioned above, was devoted to
present and complete the proofs of the two British mathematicians [Jonquières
1859] Interestingly, De Jonquières’ paper was published in Nouvelles annales
de mathématiques, a journal aimed at students and teachers, which proves
that the twenty-seven-lines theorem (and the associated names of Cayley and
Salmon) circulated beyond the strict academic milieu already at the end of the
1850s.

On the other hand, Steiner published in 1856 a memoir which, as has been
seen, was described by Henderson as the basis for a “purely geometric theory of
cubic surfaces” [Steiner 1856]. Among others, Steiner presented several ways of
generating cubic surfaces, avoiding any recourse to equations and coordinates.
To take one example, the first way of generating a cubic surface lies in the
theorem according to which through any pair of trihedrons and any point in
space, there exists exactly one cubic surface passing through this point and
the nine lines that are the intersections of the planes of the trihedrons – from
this follows almost immediately the fact that every cubic surface contains
twenty-seven lines. Steiner’s paper contained many other results, among which
the existence of forty-five triangles that can be formed from the twenty-seven
lines – Steiner thus rather talked about triangles while Cayley and Salmon
dealt with triple tangent planes.

Although such results are clearly the same as Cayley’s, it is noteworthy
that Steiner did not cite him. In fact, Steiner did not cite any published work
by himself or other mathematicians: only the name of Jean-Victor Poncelet
appeared, associated with a result on pencils of quadric surfaces [Steiner 1856,
p. 134].

Yet Steiner had been aware of Cayley’s research on cubic surfaces at least
since 1853 on, as is proved by one of his personal notes:

Paris. July 1853. Notes.
1. From Sylvester. An Englishman (Cayley) is said to have found that a
cubic surface, in general, contains 27 lines.26

25“In una superficie del terzo ordine esistono, in generale, ventisette rette. Il sig. Cayley
ha dimostrato che tre qualsivogliano di esse rette sono situate in un piano, (da quell’autore
chiamato triplo-tangente), e che per una qualunque delle rette stesse passano cinque piani
tripli-tangenti.”

26“Paris. Juli 1853. Notizen. 1. Von Silvester [sic]. Ein Engländer (Cayley) soll gefunden
haben: dass f3, im Allgemeinen, 27 G. enthält.” [Graf 1896, p. 91]
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This quote shows that Steiner did not know who Cayley was at this time, which
is quite surprising because in 1853, Cayley (who was 32 year old) had already
published more than a hundred papers, more than twenty of them (of which
about 8 dealt with geometry) in Crelle’s Journal für die reine und angewandte
Mathematik.27

In any case, the previous quote proves that the statement and proof of the
existence of the twenty-seven lines by Cayley (and Salmon) did not circulate
widely and uniformly just after 1849. Another testimony of this is the following
extract of a letter from Schläfli to Cayley, dated 1856:

I was prompted to do so by your discovery of the 27 straight lines on the
surface of the 3rd degree, which Mr. Steiner communicated to me orally.
However, I have not yet been able to get hold of your relevant treatise in
the Cambridge and Dublin Mathematical Journal, and so I venture to
present some of the results of my investigation without knowing to what
extent they have been rendered superfluous by what has already been
published.28 [Graf 1905, p. 9]

One sees here that one issue for Continental mathematicians was to be able
to find concretely the volumes of the Cambridge and Dublin Mathematical
Journal at the time.29

Let me take a final example, dated a bit later. In his 1870 Traité des
substitutions et des équations algébriques and in the papers that preceded the
publication of this book, Camille Jordan studied a certain algebraic equation
associated with the twenty-seven lines [Jordan 1869a,c, 1870b]. In these
publications, he attributed the result of the existence of the lines to Steiner:
“Steiner has made known (Journal de M. Borchardt, t. LIII) the following
[theorem]: Any surface of the third degree contains twenty-seven lines.”30 The
Traité, however, also contains a note inserted at the end of the book, where
Jordan pointed out that “Messrs. Cayley and Salmon had discovered and
studied these lines before Steiner.”31 This correction seems to be the result of
a remark that Luigi Cremona expressed to Jordan. Indeed, in a letter dated
19 December 1869 where he thanked Jordan for having sent him a first version
of the corresponding part of the Traité, and where he manifested his interest

27See Cayley’s Collected Papers, volumes 1 and 2. On Cayley’s will to be known on
Continental Europe, including by the means of publishing in Continental research journals,
see [Despeaux 2014, pp. 93–94].

28“Die Veranlassung dazu gab mir Ihre von Herrn Steiner mir mündlich mitgetheilte
Entdeckung der 27 Geraden auf der Fläche 3ten Grades. Ihre betreffende Abhandlung im
Cambridge und Dublin Mathematical Journal konnte ich freilich bis jetzt nicht zur Hand
bringen, und so wage ich es einiges von den Resultaten meiner Untersuchung vorzulegen,
ohne zu wissen, in wie weit dieselben durch bereits Erschienenes überflüssig gemacht sind.”

29On this journal, see [Crilly 2004; Despeaux 2014].
30“Steiner a fait connaître (Journal de M. Borchardt, t. LIII) les théorèmes suivants :

Toute surface du troisième degré contient vingt-sept droites. [...]” [Jordan 1869a, p. 147].
31“MM. Cayley et Salmon avaient découvert et étudié ces droites avant Steiner.” [Jordan

1870b, p. 665].
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for a question involving the twenty-seven lines and the so-called “hyperelliptic
functions”, he underlined in passing Cayley’s and Salmon’s priority over Steiner:

Among other things, there is a question that arouses my curiosity to the
highest degree: that of the connection between the search for the 27 lines
of a cubic surface (which were discovered by Messrs. Cayley and Salmon,
before Steiner) and the trisection of hyperelliptic functions.32

It is not clear to me why Jordan was not aware of the contributions of Cayley
and Salmon. But I want to take this example and the previous ones as
testimonies of the fact that the actual circulation of the results of the two
British mathematicians is to be thought of with nuances: these results were
neither totally ignored, nor broadly received on the Continent.33

As for Cayley himself, when commenting retrospectively in his Collected
Papers, he made clear that: “As mentionned at the conclusion of the [1849]
Memoir the whole subject was developped in a correspondance with Dr. Salmon.
Steiner’s researches upon Cubic Surfaces are of later date” [Cayley 1889, p. 589].
This remark, formulated about 40 years after the initial publication of the
twenty-seven-lines theorem, evidences that Cayley had probably been annoyed,
during this time interval, that too many people attributed the first proof of
the theorem to Steiner instead of him and Salmon.34

4. Conclusion

My analysis of Cayley’s article could obviously be deepened and widened in
several ways, by seeking to understand its past and its future on a broader scale,
by scrutinizing technical aspects that I have gone over quickly, by trying to
interpret it in relation with Cayley’s naturalist practice in mathematics [Crilly
2006, pp. 193–195] or with his mathematical and writing style [Lorenat 2023].
And the same kind of questionnaire could be applied to each of Henderson’s
bibliographic references to get a richer history of the twenty-seven-lines theorem.

To take an example that I have dealt with elsewhere, the paragraph of the
historical summary devoted to group theory simply mentions that “Jordan

32“Entre autres, il y a une question qui excite au plus haut degré ma curiosité : celle du
rapprochement de la recherche des 27 droites d’une surface cubique (qui ont été découvertes
par MM. Cayley et Salmon, avant Steiner) avec la trisection des fonctions hyperelliptiques.”
Extract of a letter from Cremona to Jordan, dated 19 December 1869 and kept at the Archive
of the École polytechnique (ref. VI2A2(1855) 9).

33Other examples illustrate this: Sylvester [1861] only referred to Cayley and Salmon, while
Friedrich August [1862] only referred to Steiner, and Heinrich Schröter [1863] cited the three
mathematicians.

34Contrary to what is written in [Lê 2015b, p. 50], Steiner did not designate the twenty-seven
lines as “Cayley’s lines” (“Cayley’sche Geraden”). Schläfli did so, in letters to Steiner [Graf
1896, p. 125 sqq.]. Although I want to be prudent on this point, the fact that Schläfli used
this expression in his letters to his good friend Steiner may suggest that the latter was not
offended by the attribution to Cayley of the discovery of the twenty-seven lines.
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first proved [in 1869] that the group of the problem of the trisection of the
hyperelliptic functions of the first order is isomorphic with the group of the
equation of the twenty-seventh degree, on which the twenty-seven lines of the
general surface of the third degree depend” before moving on to Felix Klein’s
1887 work on the same question [Henderson 1911, p. 6]. As the reader should
now suspect, Henderson’s sentence conceals a much more complex situation:
this research by Jordan was actually part of a collective activity (around
1870) involving mathematicians such as Clebsch, Klein and Max Noether, and
aimed at using the geometry of finite configurations – such as the twenty-seven
lines, but also the twenty-eight double tangents to quartic curves, the nine
inflection points of cubic curves, the sixteen lines of some quartic surfaces, etc.
– to assimilate the (Galois) theory of substitution groups, which they found
difficult and abstract [Lê 2013, 2015a, 2016]. And in this case too, the division
into thematic paragraphs proposed by Henderson does not stand up to closer
examination of the texts associated with the point of view of group theory:
links exist with the works of Steiner, with the research on the twenty-eight
double tangents and even with the research on the models and shapes of cubic
surfaces.

I have not spared Henderson in this chapter, my criticisms being essentially
of two kinds. On the one hand, the instances of almost verbatim copying
of sources and the problems associated with the addition of bibliographical
references that have obviously not been opened by Henderson can only make
us suspicious of the seriousness of his work. On the other hand, the absence
of any explanation of the extent of the corpus relating to the twenty-seven
lines and the choices made in writing the historical narrative, whether they
concern the selection of the contributions described or the structuring into
factual, topical paragraphs, encourage us to question the scope of this account.

To be fair, Henderson’s history of the twenty-seven lines was explicitly
presented as a historical summary preceding a mathematical work, and not
as an extended historical account on its own right – which did not prevent it
from becoming the source of the usual history of the subject, probably in the
absence of an alternative produced since.

Moreover this historical summary was written at a time when the history of
mathematics was not the research discipline of today.35 Thanks to the efforts
of our predecessors and contemporaries, historians of mathematics now have
more studies at their disposal to enrich the description of a given episode. They
are also aware of the need for rigour, whether in the formation and clarification
of a corpus or in the degree of precision of descriptions, in order to construct
a narrative and evaluate its historical scope and significance. And they have

35Of course, not all histories of mathematics written in the nineteenth or early twentieth
centuries are of the kind Henderson wrote. For an overview on the evolutions of the
historiography of mathematics, see [Dauben and Scriba 2002; Remmert, Schneider, and
Kragh Sørensen 2016].
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shown that more often than not, the history of a theorem or a concept cannot
be reduced to a linear story, neatly arranged chronologically or thematically.

This chapter is therefore an invitation to non-historians not to be satisfied
with overly obvious accounts, and at the same time to reflect on the past of
mathematical objects and theorems, and on the possibilities of accounting for
this past in all its complexity.
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