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“One may well pose as the task of algebra in the most general way the
problem of searching for the properties of homogeneous functions that are
preserved by any univocal algebraic transformation”1 wrote Alfred Clebsch,
then professor of mathematics at the University of Göttingen, in a presentation
of his 1872 book Theorie der binären algebraischen Formen, [Clebsch 1872a,b].
Although this task was actually too broad to be handled in full generality,
Clebsch added, important research had been developed in the past decades in
the restricted case where the considered transformations are linear:

Only such [linear transformations] were to be imposed on the variables;
formations which remained unchanged in this process or were only changed
by a characteristic factor that could be easily specified became the object
of the new theory under the name of invariants and covariants.2

This theory, which was also referred to as “the so-called modern algebra, the
imperishable creation of Cayley and Sylvester”,3 is what was called in other
places the theory of invariants.

As is alluded to in the preceding lines, in the 19th century invariants and
covariants were specific objects that were associated with an algebraic form,
that is, a homogeneous polynomial. Given such a form f , an invariant is a

∗Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille
Jordan, 43 blvd. du 11 novembre 1918, F-69622 Villeurbanne Cedex, France.

1“Man darf wohl als die Aufgabe der Algebra in allgemeinster Weise das Problem hinstellen,
die Eigenschaften der homogenen Functionen zu suchen, welche bei beliebigen eindeutigen
algebraischen Umformungen derselben erhalten bleiben.” [Clebsch 1872a, p. 323].

2“Nur solche [lineare Transformationen] sollten den Veränderlichen auferlegt werden;
Bildungen, welche hierbei unverändert blieben oder doch nur um einen leicht anzugebenden
characteristischen Factor verändert wurden, werden unter dem Namen der Invarianten und
Covarianten der Gegenstand der neuen Theorie.” [Clebsch 1872a, pp. 323–324].

3“[D]ie sogenannte neuere Algebra, die unvergängliche Schöpfung Sylvester’s und Cayley’s
[...]” [Clebsch 1872a, p. 323]. I translated “neuere” by “modern” in reference to George
Salmon’s Lessons Introductory to Modern Higher Algebra, [Salmon 1866]. In particular, what
is called “neuere Algebra” by Clebsch and “modern algebra” by Salmon is not to be mistaken
with the modern algebra of the beginning of the 20th century, marked with the advent of
structures. On the latter, see [Corry 2004].
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homogeneous polynomial in the coefficients of f that remains essentially the
same when f undergoes linear transformations. A covariant has the same
property of immutability but is a polynomial in both the coefficients and the
variables of the form.4

Clebsch’s book, which was supposed to synthesize many pieces of the
knowledge on forms and invariants and to reach a wide audience [Clebsch
1872a, p. 321], testifies in itself to the commitment of its author to invariant
theory. Other clues of the time go in the same direction: the large part that
the authors of his scientific obituary devoted to invariant theory, recognised as
one of the six mathematical domains that Clebsch had researched [Brill et al.
1873], or his use of Carl Borchardt’s alleged despise for invariant theory as
one of the reasons for founding, together with Carl Neumann and against the
sacred Journal für die reine und angewandte Mathematik, the Mathematische
Annalen, a journal that would be welcoming to this topic.5

That Clebsch has been a notable contributor to invariant theory can also
be seen in the classical narratives on the theory, where his name occurs
recurrently [Fisher 1966; Crilly 1986; Parshall 1989]. In fact, Clebsch appears
in such sources mainly for one major achievement: the generalisation in 1861
of the symbolic representation of invariants, of which a first version had been
proposed by Siegfried Aronhold in 1858, and which has been used by Paul
Gordan later, in 1868, for proving the celebrated finiteness theorem.6

The provider of an intermediate, yet important result, Clebsch thus appears
as one chain in the sequence of events leading to the finiteness theorem.
Little is known, however, on the reasons why Clebsch developed the symbolic
representation, and, more generally, on his incentive to work on invariant theory.
In particular, if Clebsch’s crossed interests in this theory and in projective
geometry are mentioned here and there in the historical literature, the effective
articulation between the two domains is hardly understood yet.

The present chapter investigates Clebsch’s research connected to invariant
theory. After an overview of the related corpus and a presentation of some
mathematical material on forms and invariants, three selected works are scruti-
nized to appreciate the role of invariants and covariants in Clebsch’s technique.
Without entering in the mathematical details to the same extent, other papers
are then described because they reveal an intriguing facet of Clebsch’s practice
of invariants, consisting in linking invariant theory with the question of writing
down equations explicitly. All these works showcase different configurations
between invariant theory and other mathematical domains that are imple-

4More precise definitions will be provided below, together with examples.
5See a letter from Clebsch to Wilhelm Fiedler dated 17th October 1868, [Confalioneri,

Schmidt, and Volkert 2019, p. 74].
6This theorem states that the invariants and covariants associated with a form with two

variables can all be expressed algebraically from a finite number of them. David Hilbert
extended the theorem to forms with any number of variables two decades later. On Hilbert
and this theorem, see [Boniface 2004, ch. 2].
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mented around a wide range of applications of invariants. For this reason, and
since most of the usual accounts of invariant theory are structured around the
finiteness theorem, which concerns aspects that are internal to the theory, the
analysis proposed in this chapter constitutes an important complement for our
historical understanding of this theory.7

The final section expands on what can be seen as traces of a program
on forms and invariants that Clebsch began to draw up a few months before
his unforeseen death at the end of 1872. This program contains elements
moving towards an unification of parts of algebra and geometry by the means
of algebraic forms. This general scope and the year 1872 echoing spontaneously
Felix Klein’s Erlanger Programm, a comparison between the two programs is
eventually proposed.

1. Invariants and covariants in Clebsch’s papers

According to the publication list included in his scientific obituary and the
Jahrbuch über die Fortschritte der Mathematik, 99 distinct papers written by
Clebsch have ever been published.8 These papers, whose publication years
range from 1856 to 1873,9 include two book reviews and one obituary. The 96
remaining ones are research articles in the narrower sense of the term, six of
which have been published jointly with Gordan.

To delimit a sub-corpus on invariant theory can be achieved in several ways.
Let me present and confront two of them.

The disciplinary classifications of the time offer a first avenue. In Clebsch’s
case, it is convenient to use the Catalogue of scientific papers, which, at the
beginning of the 20th century, inventoried papers of the 19th century and
distributed them into disciplinary divisions.10 Invariant theory does not appear
in the names of these divisions but the part on “Algebra and theory of numbers”
contains a section on “Linear substitutions” which, in turn, encloses four
subsections devoted to forms. These subsections contain 19 papers of Clebsch,
of which three have been published in 1861, and the others from 1867 to 1873,
with a gap in 1868.

7Other recent papers have studied the use of forms and invariants in arithmetic, algebra
and geometry. See [Brechenmacher 2011; Goldstein 2023; Parshall 2023] as well as other
references given below.

8This number counts for one each of the three pairs of duplicates (up to orthographic and
typographic conventions) that appeared both in Mathematische Annalen and in Nachrichten
von der königlichen Gesellschaften und der Georg-August-Universität. The Jahrbuch, which
started in 1868, allows to spot two papers that are forgotten in the publication list [Brill et al.
1873, pp. 51–55].

9Four papers have been published in 1873, thus posthumously.
10The Catalogue thus covers the whole period of publication of Clebsch, unlike the Jahrbuch.

As for the Répertoire bibliographique des sciences mathématiques, it counts only 60 papers of
Clebsch (see http://sites.mathdoc.fr/RBSM/).
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Strikingly, this chronological break is partially overlaid to a feature related
to the content of these papers. The three ones of 1861, indeed, include
applications of invariant theory to geometry and elimination theory, whereas it
is the case for only the quarter of those published during the period 1867–1873.
Papers concerning solely questions related to invariants thus appear quite
late in Clebsch’s time-line. They count for instance the article [Clebsch and
Gordan 1867/1868], devoted to the so-called “typical representation” of forms,
or [Clebsch 1870], where Clebsch establishes, thanks to invariants, a condition
for two binary forms to be linearly transformable one into the other. Conversely,
the paper on the famous symbolic representation of forms and invariants is one
of those published in 1861. It contains applications to both elimination theory
and geometry, [Clebsch 1861e].

Such links between invariant theory and other mathematical domains
naturally suggests to search for invariants in other publications of Clebsch.
Starting again from his 96 papers, the systematic search for the words “invariant”
and “covariant” isolates 45 of them.11 This is remarkably more than the 19
preceding ones, which are included in these 45. The publication years range
again from 1861 to 1873, but no break is to be observed: even if 1861 is a peak
for the number of papers on invariants and 1867 marks an increasing of such
publications, articles involving invariants appear in between, as well as in 1868
(see figure 1).

Moreover, the year 1861 is significant from the viewpoint of Clebsch’s
general chronology: this is exactly the moment when he began to publish
massive numbers of papers on algebraic curves and surfaces, and to abandon
the topics related to mathematical physics and the calculus of variations in
which he had been mainly involved since his 1854 doctoral dissertation.12 In
other words, invariant theory is tied to curves and surfaces from the very
beginning of Clebsch’s systematic research on the latter.

This observation is reflected in the Catalogue indexation, since the half of
the papers published in 1861 fall under the scope of geometry. More generally,
the 45 papers involving invariants and covariants are classified as follows.13

First, among the 19 papers contained in a division concerning forms, four
possess a double classification: one is also present in the division related to
elimination (which belongs to the section on linear substitutions), one appears

11Only two papers (which are not counted among these 45) deal with invariants that do
not have the same technical meaning as the ones of invariant theory: [Clebsch 1871c, p. 491]
defines the invariants of a Cremona transformation and [Clebsch 1872c, p. 18] evokes the
“higher invariants” of algebraic surfaces.

12Only one paper published before 1861 deals with a problem coming from projective
geometry, [Clebsch 1857]. Let me add that 1861 does not correspond to an institutional change
in Clebsch’s career: he taught mathematics at the Polytechnische Schule of Karlsruhe between
1858 and 1863, then moved to the University of Giessen, where he worked in particular with
Gordan. In 1868, he was eventually appointed to the University of Göttingen. See [Brill et al.
1873].

13I could not find one of these papers in the Catalogue.
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Figure 1: Chronological distribution of Clebsch’s 96 published papers.
The 45 papers dealing with invariants and covariants are in dark green
and light green, the latter standing for those that are classified into the
theory of forms in the Catalogue. The color blue represents the other
papers.

in the part on geometry and two others are in the part on analysis. Among the
26 other articles, five belong to the part on algebra and number theory: two of
them fall under the sole scope of elimination, one is devoted to the topic of
determinants and two concern the theory of equations. Finally, three papers are
located only in the part on analysis, and 16 in that on geometry. A synthetic
view on these numbers and more details on the analytic and geometric parts
are provided in table 1.

In the image of what has been described above for the corpus made of 19
texts, such a disciplinary distribution covers different phenomena: for instance,
while the majority of the papers classified in geometry only make use of
known results on invariants and forms, some of them contain more or less long
developments pertaining on invariants and forms only, which are immediately
applied to prove theorems on curves and surfaces.

For reasons of space, I will not depict more precisely the variety of the
questions tackled in the corpus, be they related to geometry, analysis or
algebra. Instead, a number of selected papers representing different cases
of classification and disciplinary configurations within the technique will be
scrutinized. This will enlighten several facets of Clebsch’s work on invariants
that I find characteristic and that are specifically tied to applications. First I
will analyse the 1861 paper on the symbolic representation and its applications
to elimination and geometry, a paper classified in form theory only. I will then
study an article published in 1863, catalogued in geometry and dealing with
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ALGEBRA AND THEORY OF NUMBERS

• Linear substitutions

– Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
– Discriminants and resultants; Elimination. . . . . . . . . . . . . . . . .2 + 1
– General theory of quantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 + 1
– Binary forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 + 2
– Ternary forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 + 1
– Special developments associated with forms in more than three

variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

• Theory of equations

– General resolution of equations; theory of Galois; equations 5th
order; equations 6th order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 + 1

ANALYSIS

• Algebraic functions and their integrals . . . . . . . . . . . . . . . . . . . . . . . . . 2 + 1

• Differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 + 1

GEOMETRY

• Elementary geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 + 1

• Geometry of conics and quadrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

• Algebraic curves and surfaces of degree higher than the second . . . .8

• Transformations and general methods for algebraic configurations2 + 1

• Infinitesimal geometry; applications of differential and integral calculus
to geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

• Differential geometry; applications of differential equations to geometry
2

Table 1: Classification in the Catalogue of Clebsch’s papers dealing with
invariants and covariants. The sums +d indicate the double classifications.
“Quantics” is a 19th-century English equivalent of “forms”.
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the so-called problem of normals to a conic or a quadric. The theory of the
quintic equation, for which Clebsch used results on the typical representation
of forms, constitutes the next investigation; the related paper of 1871 belongs
both to equation theory and geometry.

As already evoked, two other sections will be devoted respectively to the
link between invariant theory and the explicit writing of given equations, and to
Clebsch’s last works on invariants. Aimed at accounting for different features,
these sections will not go into as much mathematical detail as the preceding
ones.

To help the reader understand the technicalities that are part and parcel of
Clebsch’s papers, I first propose some explanations of mathematical results on
invariants, most of which were considered as basic knowledge by Clebsch. These
explanations are given from a 19th-century point of view and are augmented
with some historical information.

2. Mathematical appetisers

An r-ary algebraic form of order n is a homogeneous polynomial in r variables
and of degree n in respect with the variables. Thus a binary form is given by
an expression such as:

f(x1, x2) = A0x
n
1 +nA1x

n−1
1 x2 +

(
n

2

)
A2x

n−2
1 x2

2 + · · · +nAn−1x1x
n−1
2 +Anx

n
2 .

Normalising the different coefficients with binomial numbers is a convention
that simplifies computations and that was used by many mathematicians of the
19th century, including Clebsch. Moreover, the latter never specified the nature
of the Ai. His different theorems and proofs make clear that these coefficients
were never seen as integers. On the other hand, he occasionally drew his
attention on the irrationalities that he had to introduce, which suggests that
he saw the coefficients as numbers somehow situated between the rational and
the complex numbers.

Invertible linear transformations of the variables act on forms: in the case
of two variables, such a transformation is defined by equations{

x1 = α11x
′
1 + α12x

′
2

x2 = α21x
′
1 + α22x

′
2,

where the determinant r = α11α22 − α12α21 of the transformation is non zero.
Replacing x1, x2 by these formulas in f(x1, x2) and reorganising the different
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terms yields

f(x1, x2) = f(α11x
′
1 + α12x

′
2, α21x

′
1 + α22x

′
2)

= A0(α11x
′
1 + α12x

′
2)n + nA1(α11x

′
1 + α12x

′
2)n−1(α21x

′
1 + α22x

′
2)+

+ · · · +An(α21x
′
1 + α22x

′
2)n

= A′
0x

′n
1 + nA′

1x
′n−1
1 x′

2 + · · · +A′
nx

′n
2 ,

the new coefficients A′
i being functions of the Ai and the αij .

Consider now a homogeneous polynomial I(A0, . . . , An) in the coefficients of
f . Such a polynomial is called an invariant of f if there exists an integer λ such
that I(A′

0, . . . , A
′
n) = rλI(A0, . . . , An) for any invertible linear transformation,

the coefficients A′
i being defined as above. Similarly, a covariant of f is a

homogeneous polynomial K(A0, . . . , An, x1, x2) for which there exists an integer
λ such that K(A′

0, . . . , A
′
n, x

′
1, x

′
2) = rλK(A0, . . . , An, x1, x2) for any invertible

linear transformation.
Let me exemplify these definitions, first in the case of a binary quadratic

form
f(x1, x2) = A0x

2
1 + 2A1x1x2 +A2x

2
2.

Its discriminant is defined as R = A2
1 − A0A2. It is an invariant of f since

R(A′
0, A

′
1, A

′
2) = r2R(A0, A1, A2), as an easy computation shows. Obviously, it

coincides with the usual discriminant of the second-degree equation

f(x1, 1) = A0x
2
1 + 2A1x1 +A2 = 0.

In particular, the condition R = 0 is a necessary and sufficient condition for
this equation to have a double root. This amounts to the fact that the binary
form f(x1, x2) is the square of a linear factor or, as was frequently formulated
by Clebsch, that the homogeneous equation f(x1, x2) = 0 has a double root
x1/x2.

Similarly, for a binary quartic form

f(x1, x2) = A0x
4
1 + 4A1x

3
1x2 + 6A2x

2
1x

2
2 + 4A3x1x

3
2 +A4x

4
2,

its discriminant R is an invariant having the property that R = 0 if and only if
the equation f(x1, x2) = 0 has a double root x1/x2. However, contrary to the
quadratic case, the quartic form f has other invariants. In particular, in their
very first investigations on invariant theory in the mid-1840s, Arthur Cayley
and George Boole had found14 the two invariants

i = A0A4 − 4A1A3 + 3A2
2

j = A0A2A4 + 2A1A2A3 −A3
2 −A0A

2
3 −A2

1A4.

14See [Parshall 1989, pp. 160–165] and [Wolfson 2008].
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Just like for the discriminant, the vanishing of i or j provides information
on the roots of the equation f(x1, x2) = 0. For instance, Cayley proved in
1858 that this equation has a triple root if i = j = 0, [Cayley 1858, p. 454].
Moreover, a remarkable result is that i and j are fundamental invariants of f ,
which means that every invariant can be expressed as a polynomial in i and j.
In particular, Boole had seen in 1845 that the discriminant of the quartic is
given by

R = i3 − 27j2.

Another difference between the quadratic and the quartic form is that the
latter has non-trivial covariants. Although it will not appear in the rest of this
chapter, let me illustrate the notion with

H = (A0A2 −A2
1)x4

1 + 2(A0A3 −A1A2)x3
1x2 + (A0A4 + 2A1A3 − 3A2

2)x2
1x

2
2

+2(A1A4 −A2A3)x1x
3
2 + (A2A4 −A2

3)x4
2.

It is a covariant of the fourth order in the variables x1, x2 and of the second
order in the coefficients Ai. There also exists a covariant of the second order
in x1, x2 that is associated with the quartic form. However, there does not
exist any linear covariant, that is, any covariant of the first order in x1, x2.
Such linear covariants exist for binary forms of odd order greater than 3, in
particular for quintic forms. This result will be important for the work on the
so-called typical representations of forms.

Increasing by one the number of variables leads to ternary forms, such as
the following quadratic one:

f(x1, x2, x3) = A11x
2
1 +A22x

2
2 +A33x

2
3 + 2A12x1x2 + 2A23x2x3 + 2A13x1x3.

As in the binary case, this form has a discriminant, which is simply the
determinant

R =

∣∣∣∣∣∣∣
A11 A12 A13
A12 A22 A23
A13 A23 A33

∣∣∣∣∣∣∣ .
The condition R = 0 expresses that the form f can be factorised into two
linear terms. Because there are now three variables, there is no direct link with
algebraic equations in one unknown. However, the same process of setting one
unknown, say x3, to 1 gives the usual equation of a conic section in the plane:

f(x1, x2, 1) = A11x
2
1 + +2A12x1x2 +A22x

2
22A13x1 + 2A23x2 +A33 = 0,

and the equality R = 0 means that this conic is degenerate. For such a geometric
interpretation, it is also to possible to place oneself in the framework of
projective geometry, and thus to keep the homogeneous equation f(x1, x2, x3) =
0 between the homogeneous coordinates (x1, x2, x3) of a point.
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Finally, ternary cubic forms

f(x1, x2, x3) =
∑
i,j,k

Aijkxixjxk

are used to express equations of plane cubic curves. The study of these curves
by Otto Hesse in the 1840s is one of the roots of invariant theory: the study of
their inflection points is in close relation with that of the Hessian covariant,
defined as the determinant made with the coefficients ∂2f

∂xi∂xj
, [Parshall 1989,

pp. 171–172]. When Aronhold tackled the subject in 1850, it was precisely in
the continuation of Hesse’s works. Among other results, Aronhold put into
light two invariants of the cubic, denoted by S and T , and proved that the
discriminant of the cubic form is given by R = S3 − T 2. The vanishing of R
was interpreted as the existence of a non trivial triple (x1, x2, x3) in which all
the first partial derivatives of f vanish, [Aronhold 1850, p. 153]; as will be
seen below, this would be interpreted by Clebsch as the condition for the cubic
curve f = 0 to have a double point.

Before going on, let me eventually remark that all the invariants (and
covariants) that have been considered in this section are related to one form.
However, there exists also a notion of simultaneous invariant. Several forms
being given, a simultaneous invariant is a polynomial in the coefficients of these
forms that remains unchanged under the action of any linear transformation.

3. Symbolic representation and tangential equations

The main paper on the symbolic representation of forms, invariants and co-
variants is dated September 1860 and has been inserted in one of the two 1861
volumes of Crelle’s Journal für die reine und angewandte Mathematik [Clebsch
1861e]. Its content has also been presented to the Berlin Academy of sciences
by Carl Borchardt in October 1860 [Clebsch 1861c].

The first lines of both these papers emphasise three points. First, that Aron-
hold had already developed a symbolic representation of forms and invariants in
the particular case of ternary cubic forms a few years before [Aronhold 1858].15

Second, that Clebsch had already briefly presented and used the (generalised)
symbolic representation in an anterior paper, dated March 1860 [Clebsch
1861d].16 And third, that the generalisation of Aronhold’s work had two main

15See [Parshall 1989, pp. 173–175] for a description of Aronhold’s version of the symbolic
representation. Moreover, Cayley had also developed a kind of symbolic notation, although
different in nature than Aronhold’s and Clebsch’s one, [Crilly 1988, pp. 334–336]. Finally,
as is well known, the latter has been re-worked much later to make it more rigorous from a
20th-century point of view, [Kung and Rota 1984].

16In my view, this paper does not contain anything that would be decisive for the issue
of the symbolic representation. However, I will expound a part of its content in section 6,
devoted to the relation between invariant theory and the explicit establishment of given
equations.
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interests: on one hand, it could be taken as the very definition of forms and
invariants in future research and, on the other hand, it presented “benefits [...]
for the theory of elimination”.17 As will be seen, the applications to elimination
served in turn to handle problems coming from projective geometry.

3.1 The symbolic representation

The core of Clebsch’s symbolic representation of an r-ary form f of order
n is to proceed as if this form were the nth power of a linear form, i.e.
f = (a1x1 + · · · + arxr)n. In such an expression, the symbolic coefficients ai do
not have any meaning in themselves; they are related to the actual coefficients
of f by equations deduced by identifications after expanding the nth power.
For instance, for a binary quartic

f = A0x
4
1 + 4A1x

3
1x2 + 6A2x

2
1x

2
2 + 4A3x1x

3
2 +A4x

4
2,

a symbolic representation is f = (a1x1+a2x2)4. Expanding the latter expression
and identifying with the actual expression of f yields the rules

a4
1 = A0 ; a3

1a2 = A1 ; a2
1a

2
2 = A2 ; a1a

3
2 = A3 ; a4

2 = A4.

Depending on the needs, other letters can be used for the symbolic representa-
tion: one has also f = (b1x1 + b2x2)4, with symbolic coefficients b satisfying
b4

1 = A0, b3
1b2 = A1, etc. This is the symbolic representation of forms.

That of the associated invariants stems from the consideration of determi-
nants such as ∣∣∣∣∣a1 a2

b1 b2

∣∣∣∣∣ = a1b2 − a2b1.

Although Clebsch denoted such a determinant by (ab) only in later publications,
I will use this convenient abbreviation in the following lines. In the geometric
applications that he developed thereafter, Clebsch proved that the symbolic
representation of the first fundamental invariant i of the quartic is i = 1

2(ab)4.
Indeed, expanding this fourth power and using the substitution rules yields

1
2(ab)4 = 1

2(a4
1b

4
2 + a4

2b
4
1 − 4a3

1a2b1b
3
2 − 4a1a

3
2b

3
1b2 + 6a2

1a
2
2b

2
1b

2
2)

= A0A4 − 4A1A3 + 3A2
2,

which is the expression defining i, as announced. Similarly, Clebsch proved
that the symbolic representation of the second fundamental invariant j is
j = 1

6(ab)2(bc)2(ca)2, where the letter c refers to yet another series of symbolic
17“[E]s ist der Zweck der gegenwärtigen Abhandlung, namentlich auf den Nutzen aufmerksam

zu machen, welchen man für die Theorie der Elimination aus dieser Darstellung ziehen
kann.” [Clebsch 1861e, p. 1].
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coefficients of f . In particular, the invariants i and j are products of constants
and powers of symbolic determinants.

More generally, the key theorem proved by Clebsch is that every invariant I
of an r-ary form f (of any order) is a linear combination of products of symbolic
determinants with r rows and r columns:

I =
∑

λ
∏

(ab . . . s).

An analogous result was provided for covariants, which are combinations
of products of symbolic determinants and symbolic linear factors such as
a1x1 + a2x2. The explanation of the symbolic representation and the proof of
the latter theorems took about 13 pages out of the 62 pages of Clebsch’s paper.
I shall skip these technicalities and focus on their applications.

The first one concerned the elimination of the unknown between two
algebraic equations, which amounts to finding a polynomial expression of the
coefficients of these equations whose vanishing expresses that the latter have
a common root. From the homogeneous point of view, the issue consists in
eliminating the two homogeneous variables between two binary forms equated to
zero. Clebsch remarked that the result of such an elimination is a simultaneous
invariant of the forms and managed to find its symbolical representation in the
case where the two forms are of the same order [Clebsch 1861e, pp. 18–24].

Another application of the symbolic notation consisted in expressing the
invariants of forms with r + 1 unknowns linked together by a linear relation.
To explain Clebsch’s procedure, let me consider the case r = 2. Clebsch took a
ternary form given by the symbolic representation f = (a1x1 +a2x2 +a3x3)n =
(b1x1 + b2x2 + b3x3)n, and an invertible linear transformation

x1 = c0X1 + c′
0X2 + c′′

0X3
x2 = c1X1 + c′

1X2 + c′′
1X3

x3 = c2X1 + c′
2X2 + c′′

2X3.

By acting on the symbolical level, this transformation changes f into f̃ =
(α1X1+α2X2+α3X3)n = (β1X1+β2X2+β3X3)n, where α1 = c0a1+c′

0a2+c′′
0a3,

etc. Further, if C denotes the determinant of the linear transformation, one
has

C ·X3 = u1x1 + u2x2 + u3x3,

where u1 = c1c
′
2 − c′

1c2, u2 = −c0c
′
1 + c′

0c2 and u3 = c0c
′
1 − c′

0c1 are cofactors of
C.18 As a result, if one supposes that u1x1 + u2x2 + u3x3 = 0, one has X3 = 0
and f becomes f̃ = (α1X1 + α2X2)n = (β1X1 + β2X2)n.

Now, according to the previous theorem, every invariant of f̃ is a combi-
nation

∑
λ
∏

(αβ), and Clebsch observed that the symbolic determinant (αβ)
18From a current point of view, this is just a consequence of the matrix formula X = Γ−1x,

where Γ is the matrix with coefficients c
(j)
i .
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can be expressed with the original coefficients ai of the form and those of the
linear relation u1x1 + u2x2 + u3x3 = 0. Specifically, one has

(αβ) =
∣∣∣∣∣α1 α2
β1 β2

∣∣∣∣∣ =

∣∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
u1 u2 u3

∣∣∣∣∣∣∣ = (abu).

From this, Clebsch deduced that every invariant of the form f = (a1x1 +a2x2 +
a3x3)n = (b1x1 + b2x2 + b3x3)n, of which the variables satisfy u1x1 + u2x2 +
u3x3 = 0, is given by a combination∑

λ
∏

(abu),

where
∑
λ
∏

(αβ) is an invariant of the binary form f̃ . This theorem and its
extension to the case where several linear relations exist between the variables
were the starting point of the geometric applications that followed.

3.2 Geometry enters the picture

As Clebsch expounded, indeed, the question of finding the invariants of a form
when the variables are linked by a linear relation “is of the utmost importance
for geometry, inasmuch as it concerns the intersection points of a line with
a curve, or the properties of a plane intersection of an algebraic surface.”19

This general geometric framework was made more specific through a number
of problems to be solved. The first one was the “very important problem, of
which the complete solution is contained in the previous considerations, [and
which presents itself] in the task of expressing any curve in line coordinates.”20

This task referred to the dual representation of curves in projective geome-
try.21 Usually, an algebraic curve in the projective plane can be defined by an
equation f(x1, x2, x3) = 0, where (x1, x2, x3) are homogeneous coordinates of
a point. Instead of the points, however, one can consider the straight lines to
be the basic elements of the plane. From this point of view, instead of being
defined a locus of points, a curve is defined as an envelope of lines, that is, as
the set of all the lines that are tangent to it. Furthermore, since a line can be
defined by an equation u1x1 + u2x2 + u3x3 = 0, the coefficients ui are called
its “line coordinates”. To describe a curve as an envelope, then, corresponds to

19“Diese Frage ist für die Geometrie von höchster Bedeutung, insofern es sich um die
Schnittpunkte einer Geraden mit einer Curve handelt, oder um die Eigenschaften eines
ebenen Schnitts einer algebraischen Fläche.” [Clebsch 1861e, p. 26].

20“Ein sehr wichtiges Problem, dessen vollständige Lösung in den vorhergehenden Betrach-
tungen enthalten ist, bietet sich dar in der Aufgabe, eine beliebige Curve in Liniencoordinaten
auszudrücken.” [Clebsch 1861e, p. 35].

21About duality in projective geometry, see [Lorenat 2015] and the references given on
p. 547.
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define it by an equation g(u1, u2, u3) = 0. This is the tangential equation of
the curve, and the task mentioned by Clebsch amounts to writing it down.22

Clebsch reformulated this problem as follows. Let f(x1, x2, x3) = 0 be the
equation of a curve of order n, and consider the binary form obtained from f
by supposing that u1x1 +u2x2 +u3x3 = 0. One must find the relation between
u1, u2, u3 such that this binary form has two equal linear factors, or two equal
roots, when considered as an equation: this corresponds to the case of tangency
of the line, the intersection of the latter with the curve being counted twice.

This is where invariants came into the picture, since the condition for
an equation to have two coinciding roots is provided by the vanishing of its
discriminant.

After some general results, Clebsch exemplified his method in the cases of
conics, cubics and quartics. Let me explain it for quartics. One starts from
an homogeneous equation f(x1, x2, x3) = 0, where f is a ternary quartic form,
and one considers the binary form given by

f̃ = (a1x1 + a2x2)4 = (b1x1 + b2x2)4 = (c1x1 + c2x2)4.

As seen above, f̃ has a double root if and only if i3 − 27j2 = 0. This was
attributed to Cayley by Clebsch, who nevertheless cited a memoir of Charles
Hermite on this point, [Hermite 1856].

Now, since the symbolic expressions of the two fundamental invariants
of f̃ are i = 1

2(ab)4 and j = 1
6(ab)2(bc)2(ca)2, Clebsch’s process consists in

considering the symbolic invariants P = 1
2(abu)4 and Q = 1

6(abu)2(bcu)2(cau)2.
Then, corresponding to i3 − 27j2 = 0, the condition under which the result of
the elimination of one variable between{

f(x1, x2, x3) = 0
u1x1 + u2x2 + u3x3 = 0

has a double root is P 3 − 27Q2 = 0. Said differently, this equation, seen as an
equation with unknowns u1, u2, u3, is the tangential equation of the quartic
curve, which is what was sought.

In this case, Clebsch took the condition i3 − 27j2 = 0 for granted, thanks
to works of Cayley (and Hermite). In other examples, he first devoted some
lines to establish himself analogous results. For instance, referring to formulas
from Hermite’s previously cited paper, he asserted that if i = j = 0, the
quartic binary form f̃ = 0 has three equal roots.23 After having proved this
result, Clebsch used the previous procedure to obtain a geometric result. A

22In other words, duality guarantees the existence of an equation in line coordinates, and
Clebsch’s aim is to calculate its coefficients. This is the kind of mathematical issues that will
be discussed in section 6.

23Clebsch seemed unaware of the fact that this result had been proved by Cayley in 1858,
as mentioned above. Moreover, Hermite’s paper does not contain explicitly the property on
the triple root, but the latter does ensue directly from some formulas of Hermite (who, in
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triple root of the binary form f̃ corresponding to an “inflectional” tangent
u1x1 + u2x2 + u3x3 = 0 to f = 0, i.e. a tangent with a contact of order 3,
the line coordinates of such a tangent satisfy P = Q = 0. Or, as Clebsch
eventually formulated this result, the inflectional tangents to f = 0 are the
common tangents to the curves P = 0 and Q = 0.

Many other results on curves were deduced from the same procedure.
Clebsch also rapidly tackled the issue of finding the tangential equation of
a surface, an issue that he treated in the exact same way as what had been
done for curves. In this case, he had to deduce a result on quaternary forms
(the variables of which are linked by a linear relation) from a result on ternary
forms. Here again, Clebsch relied on the works of some of his predecessors. He
recalled that Aronhold [1850] had proved that there are two invariants S, T of
the general ternary cubic form such that T 2 − S3 = 0 is the condition for the
associated curve to have a double point. Just like before, representing these
invariants symbolically and introducing a fourth series of variables u1, . . . , u4
in the symbolical determinants allowed to find the tangential equation of a
cubic surface under the form T2 − Σ3 = 0.

3.3 Disciplinary mixes I

The paper on the symbolic representation, which was put exclusively in the
theory of forms by the Catalogue, contained many applications to elimination
theory and, above all, to projective geometry. The question of the writing of the
dual equation of a quartic curve, that has been analysed above, is particularly
telling on how the different ingredients were successively combined.

Thanks to homogeneous coordinates, the initial geometric problem was
translated as a question of elimination between a quartic form and a linear
form, which had the effect of lowering the number of variables. The searched
properties of the binary form thus obtained was then expressed with the help of
invariants, be it by taking already known results of Cayley and Hermite or by
proving on the basis of his predecessors’ works what he needed. The invariants
in question were then expressed symbolically, which allowed Clebsch to apply
his procedure of increasing the number of variables. The new invariants (or
their adequate combinations) were then directly equated to zero and thus
interpreted geometrically as tangential equations of curves.

If the symbolic representation would later be used by Clebsch and others
to deal with questions pertaining to invariants only, it was initially entangled
in such a disciplinary configuration. Interestingly, this way of writing and
conceiving forms and invariants was not systematically adopted by Clebsch
himself after 1861, as the next case study shows.

turn, took on some results that he attributed to Cayley). Another paper from which the
interpretation of the simultaneous vanishing of i and j could be deduced is [Eisenstein 1844].
Clebsch did not cite this article in any of his published papers, but Aronhold did, [Aronhold
1850, p. 156].
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4. The problem of normals

Clebsch tackled what he called the problem of the normals of curves and
surfaces of the second order in a paper dated 31st January 1862 and published
in Crelle’s journal one year after, [Clebsch 1863]. Some of the results were also
exposed in a shorter article in Annali di matematica pura ed applicata, dated
2nd February 1862, [Clebsch 1861/1862].

As Clebsch recalled, the problem of drawing the normals to a conic passing
through a given point had been generalised by Cayley [1859] and by Wilhelm
Fiedler in his translation of Salmon’s book on conic sections [Salmon and Fiedler
1860]. Clebsch’s aim was to “attach an analytic treatment to a discussion of
the problem which [...] leads to some new results.”24

4.1 The problem and its equation

The generalised problem of normals involves the notion of polar of a point with
respect to a conic, which designates the line joining the points of contact of
the two tangents to the conic drawn from the given point. A point x and two
conics of equations u = 0 and v = 0 being given, the question is to determine
the points X belonging to u = 0, such that the tangent to u = 0 at X, the
polar of X with respect to v = 0 and the polar of x with respect to v = 0
are concurrent (see figure 2).25 Clebsch also provided a dual version of the
problem, as well as its extension to the case of quadric surfaces: a point x and
two quadrics of equations u = 0 and v = 0 being given, the problem is to find
the points X such that the polar of x with respect to the tangent cone of X to
v = 0 coincides with the tangent plane of X at u = 0.

Without any justification, Clebsch asserted that these problems were “con-
tained” in the the system of equations

v1 = λU1 + µV1
v2 = λU2 + µV2
. . . . . . . . . . . . . . . .
vn = λUn + µVn

and U = 0, (1)

“where the λ, µ are indeterminate factors” and where the values n = 3 and n = 4
correspond to the cases of conics and quadrics, respectively.26 The number
n, indeed, represents the number of variables of the quadratic forms u and v,

24“Es sei mir erlaubt an eine analytische Behandlung eine Discussion des Problems zu
knüpfen, welche auch für das Normalenproblem einige neue Resultate mit sich führt.” [Clebsch
1863, p. 64].

25If the two conics are confocal, these points X are such that the line xX is a normal to
u = 0. This explains the name of the problem.

26“[...] so sind die beiden angeführten Probleme in dem folgenden System von Gleichungen
enthalten, wenn darin n = 3 oder n = 4 gesetzt wird: [...], wobei die λ, µ unbestimmte
Factoren sind.” [Clebsch 1863, p. 65]
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Figure 2: The problem of the normals, in the case of conics. The line
TuX is the tangent to u = 0 at the point X. The lines PvX and Pvx are
the polars of X and x with respect to v = 0. In this figure, the point X
is such that these three lines are concurrent.

so that u = 0 and v = 0 are the homogeneous equations of conics or quadrics
according to the value of n. Moreover the lower-case, resp. upper-case, letters
correspond to functions evaluated at x = (x1, . . . , xn), resp. X = (X1, . . . , Xn),
and a subscript i symbolises half of the derivative with respect to the ith variable.
For instance, if v = v11x

2
1 +2v12x1x2 + . . .+vnnx

2
n, then v1 and V1 are the linear

expressions v1 = v11x1+v12x2+· · ·+v1nxn and V1 = v11X1+v12X2+· · ·+v1nXn.
The link between the equations (1) and the problem of normals comes

directly from the equations of the different objects involved in the problem.
In the case n = 3, for instance, the equation of the tangent to u = 0 at X is
U1z1 +U2z2 +U3z3 = 0, where z1, z2, z3 are the current coordinates of the plane.
The equation of the polar of X in respect with v = 0 is V1z1 + V2z2 + V3z3 = 0,
and that of the polar of x with respect with v = 0 is v1z1 + v2z2 + v3z3 = 0.27

That the latter line passes through the intersection of the two former is reflected
by the fact that its equation is a linear combination of the two others, whence
the existence of λ, µ such that vi = λUi + µVi for each i, as in (1).

Clebsch was first and foremost interested in the equation obtained by
eliminating X1, . . . , Xn from the equations (1). To find it, he denoted by ∆

27By definition, an equation of PvX is ∂v
∂z1

(z)X1 + ∂v
∂z2

(z)X2 + ∂v
∂z2

(z)X2 = 0. Computing
the derivatives and reorganising the terms yields V1z1 + V2z2 + V3z3 = 0. For a nice modern
exposition on tangents and polars, see [Fischer 2001].
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the determinant made of the elements λuik + µvik, where the uik and vik are
the coefficients of the quadratic forms u and v. The sub-determinant of ∆
obtained by erasing the row i and the column k being noted ∆ik, the system
in (1) is equivalent to

∆X1 = v1∆11 + v2∆12 + · · · + vn∆1n

∆X2 = v2∆21 + v2∆22 + · · · + vn∆2n

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
∆Xn = vn∆n1 + v2∆n2 + · · · + vn∆nn.

The sought elimination equation is then obtained by using these expressions in
U = 0, which yields28 ∑

i,k,p,q

uikvp∆pivq∆qk = 0.

Some basic operations involving transformations of determinants eventually
allowed Clebsch to re-write this equation as:

Ω∂∆
∂λ

− ∆∂Ω
∂λ

= 0, (2)

with Ω =
∑
vpvq∆pq. A mere inspection of the coefficients of Ω and ∆ shows

that the equation (2) is homogeneous and of degree 2(n − 1) in λ, µ, and of
degree 2 in x.

Clebsch indicated that this elimination equation had already been studied
by Ferdinand Joachimstahl [1857] in the case of two confocal conics, and that
he wanted to investigate it in his generalised frame, especially when n = 4.
As will be seen, Clebsch aimed at studying the cases where this equation has
particular properties, such that of having two or three coinciding roots, and
at interpreting these cases geometrically. In the image of what we saw in the
preceding section, the properties of the equation (2) would be expressed with
the help of invariants.

4.2 The case of two coinciding roots

Investigating first the case of two coinciding roots λ/µ, Clebsch formed the
discriminant R of the equation (2). He proved that, because of the special
form of this equation, R is of the form

R = bFG,

28From a current point of view, let ξ = (X1, . . . , Xn)T , η = (v1, . . . , vn)T and D = λA+µB,
where A, B are the matrices of u, v in the canonical basis of kn, where k is the ground
field. The first equations in (1) can be written η = Dξ, which amounts to ξ = D−1η. This
yields the formulas for the ∆Xi thanks to the expression of D−1 with the cofactor matrix.
Moreover, the existence of ξ such that η = Dξ and u(ξ) = 0 is equivalent to the sole equation
u(D−1η) = 0, which is exactly that given by Clebsch.

18



where b is a constant, G is a factor of degree 6(n−2) in x and F is the resultant
of Ω and ∆:

F =
∏

Ω(λi/µi),

where the λi/µi are the roots of ∆ = 0.
For the geometric interpretation of the equation F = 0, Clebsch endeavoured

to show that F is the product of square factors up to a multiplicative constant.
To do so, he remarked that the condition ∆ = 0 implies the existence of
numbers αi such that ∆pq = αpαq for each pair of indices p, q.29 Thus the
function Ω becomes the square of a function that is linear in x:

Ω =
∑
p,q

∆pqvpvq =
∑
p,q

αpαqvpvq =
(∑

p

αpvp

)2

.

Because of the expression of F given above, this immediately implies that F is
the product of squares of linear factors.

On the other hand, Clebsch introduced linear functions ξ1, ξ2, . . . , ξn of the
xi such that

u = p1ξ
2
1 + p2ξ

2
2 + · · · + pnξ

2
n

v = q1ξ
2
1 + q2ξ

2
2 + · · · + qnξ

2
n,

with constant coefficients pi and qi.30 The determinant ∆ then becomes

∆ = (λp1 + µq1)(λp2 + µq2) . . . (λpn + µqn),

which shows that its roots λi/µi are the −qi/pi. From this, it can be inferred
via a short computation that Ω(λi/µi) is proportional to ξ2

i , which implies that

F = c · ξ2
1ξ

2
2 . . . ξ

2
n

for a certain constant c.
Clebsch then wrote:

Since, according to invariant theory, the expression thus obtained can differ
from the initial expression only by a constant factor, the ξ manifestly differ
from the expressions found above only by constant factors.31 [Clebsch
1863, p. 70]

29This is to be linked to the fact that the rank of the cofactor matrix associated with
λU + µV is equal to 1 if ∆ = 0.

30This result, which is not justified by Clebsch, can be seen anachronistically as the
simultaneous orthogonalisation of u and v. Here it is implicitly supposed that either u or v is
nondegenerate.

31“Da nun nach der Theorie der Invarianten der so erhaltene Ausdruck von dem ur-
sprünglichen sich nur durch einen constanten Factor unterscheiden kann, so sind offenbar die
ξ von den oben gefundenen linearen Ausdrücken nur um constante Factoren verschieden.”
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No further explanations were given. The invocation of invariant theory probably
alludes to the fact that F is a simultaneous covariant of u and v, since ∆ is
a simultaneous invariant and Ω a simultaneous covariant of them.32 Then,
having expressed the quadratic forms with the ξi can be seen as the effect of a
linear transformation, so that the expression of F in terms of the new variables
ξi must be the same as the original one, up to a constant. In other words,
the linear factors (in the original variables xi) whose squares compose F are
nothing else than the ξi.

This result allowed Clebsch to conclude that, for n = 3, the points x “for
which two solutions of the problem coincide constitute the doubly counted
polar triangle common to the conics u = 0 and v = 0, and a curve of the sixth
order G = 0 besides.”33

These curves, indeed, correspond to the interpretation of R = bFG = 0
as the equation of the locus of the mentioned points x. In particular, since F
is essentially the product ξ2

1ξ
2
2ξ

2
3 , the equation F = 0 represents the triangle

made of the three lines ξi = 0, each of them being counted twice. That this
triangle is the common polar triangle of the two conics follows directly from
the expressions u = p1ξ

2
1 + p2ξ

2
2 + p3ξ

2
3 and v = q1ξ

2
1 + q2ξ

2
2 + q3ξ

2
3 . Indeed,

as is proved by a plain computation, each side ξi = 0 of the triangle is the
polar of the opposite vertex with respect both to u = 0 and v = 0. This is the
definition of the common polar triangle.

The theory of invariants and covariants thus intervened to help Clebsch
recognise the geometrical locus defined by F = 0. Because this locus is more
easily understood in the case where the quadratic forms are sums of squares,
the approach consisted in operating a linear change of variables to reduce the
given forms to such sums. The crucial fact that F is a simultaneous covariant
of u and v then permitted to identify its factors as representing the sides of
the common polar triangle.

Invariant theory appeared again in the rest of the paper, but in different
disguises. Instead of its link with the linear transformations of the variables x,
it is their role as conveying information on algebraic equations that was used.

To take a first example, in the case n = 3, the equation (2) is of degree 4.
Clebsch noted i, j its two fundamental invariants. After having introduced
explicit writings of ∆ and Ω as polynomials, he computed the value of i and
remarked that it is equal to a complete square, up to a multiplicative constant:
i = 3h2. This implies that the discriminant R = i3 − 27j2 = 27(h3 − j)(h3 + j)
can be factorised into two factors. After having compared this expression of

32A simultaneous linear transformation of variables being represented by an invertible
matrix P , the new matrices A′ and B′ of u and v are given by A′ = P T AP and B′ = P T BP .
Thus one has plainly ∆′ = (det P )2∆, which proves that ∆ is a simultaneous invariant. A
similar argument can be developed for Ω.

33“Diejenigen Punkte, für die zwei Lösungen des Problems zusammenfallen, bilden das
doppelt gerechnete gemeinsame Polardreieck der Kegelschnittte u = 0, v = 0, und ausserdem
eine Curve sechster Ordnung G = 0.” [Clebsch 1863, p. 70].
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R with the previous one R = bFG, Clebsch concluded that G = 8h3 − b3H2,
where H is defined by F = b2H2. This expression of G yielded new properties
of the curve defined by G = 0. For instance, it proved that the six points
of intersection of the conic h = 0 and the polar triangle H = 0 are cusps of
this curve, and that the sides of the polar triangle are the associated cuspidal
tangents.

4.3 Other special cases

In other cases, Clebsch first replaced the initial equation (2) by something else.
Specifically he remarked that this equation ∆∂Ω

∂λ − Ω∂∆
∂λ = 0 is the necessary

and sufficient condition for the existence of a number m such that34{
∆ +m · µΩ = 0
∂∆
∂λ +m · ∂µΩ

∂λ = 0.

Since the second of these equations is the derivative of the first one with respect
to λ, it follows that ∆∂Ω

∂λ − Ω∂∆
∂λ = 0 if and only if there exists m such that

the equation ∆ + m · µΩ = 0 has a double root λ/µ. In a similar, yet more
sophisticated way, Clebsch proved that G = 0 if and only if the same equation
has a triple root.

If n = 4, this equation ∆ +m · µΩ = 0 is of degree 4 in λ/µ and Clebsch
used again the fundamental invariants i and j. By introducing the explicit
expansions {

∆ = bλ4 + 4b′λ3µ+ 6b′′λ2µ2 + 4b′′′λµ3 + b(4)µ4

Ω = aλ3 + 3a′λ2µ+ 3a′′λµ2 + a′′′µ3,

he computed i and j, and wrote the results in the form{
i = A+ 2mA1 +m2A2,
j = B + 3mB1 + 3m2B2 +m3B3,

where the coefficients Ai and Bi are functions of the a(i) and the b(i). At this
point it is worth recalling that ∆ and Ω depend on x, and thus that the Ai

and Bi depend on x as well. More precisely, observing the preceding equations
shows that Ai and Bi are both of degree 2i in x.

Now, as Clebsch recalled, the equation ∆ + m · µΩ = 0 has three equal
roots if and only if its fundamental invariants vanish simultaneously. Thus the
existence of m such that ∆ +m · µΩ = 0 has three equal roots is equivalent to
the vanishing of the result of the elimination of m between the equations i = 0

34This comes from the fact that ∆ ∂Ω
∂λ

− Ω ∂∆
∂λ

is the determinant of this system (with
unknown m).
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and j = 0. In other words, G is given by the resultant of i and j with respect
to m:

G =

∣∣∣∣∣∣∣∣∣∣∣

A 2A1 A2 0 0
0 A 2A1 A2 0
0 0 A 2A1 A2
B 3B1 3B2 B3 0
0 B 3B1 3B2 B3

∣∣∣∣∣∣∣∣∣∣∣
.

From the knowledge of the degrees in x of the different coefficients, Clebsch
found that G = 0 represents a surface of degree 12, as expected from the first
considerations – indeed, it had been showed that for any n, the polynomial G
is of degree 6(n− 2) in x.

As for the initial equation, we saw that it expresses the existence of m such
that ∆ +m · µΩ = 0 has a double root. In terms of invariants, this amounts
to the existence of m such that i3 − 27j2 = 0. In Clebsch’s terms, “to the
primitive equation of the sixth degree ∆∂Ω

∂λ − Ω∂∆
∂λ = 0, one can substitute

another one, of particular form, in which m is the unknown”:35

(A+ 2mA1 +m2A2)3 − 27(B + 3mB1 + 3m2B2 +m3B3)2 = 0.

This equation was of special interest to Clebsch because it would “lead to some
cases for which the problem is algebraically solvable.”36

For instance, Clebsch remarked that if AA2 −A2
1 = 0, the previous equation

can be transformed into

(A+A1m)3 = ±
√

27A · (B + 3mB1 + 3m2B2 +m3B3),

which represents “two equations of the third degree instead of one equation
of the sixth degree”,37 the number two corresponding to the two possibilities
of the sign. Although Clebsch did not make it explicit, this is the reason why
the problem is algebraically solvable: this solvability is to be understood as
that of the associated algebraic equation in m, which was factorised into two
equations of the third degree in m in this case.

Moreover, still under the assumption that AA2 − A2
1 = 0, Clebsch trans-

formed the equation of G = 0 into

(BA3
1 − 3B1AA

2
1 + 3B2A

2A1 −B3A
3)2 = 0.

Re-introducing a geometric vocabulary, he concluded that the problem is
algebraically solvable for each point x of the surface of the fourth order

35“[Man kann] an Stelle der ursprünglichen Gleichung sechsten Grades ∆ ∂Ω
∂λ

− Ω ∂∆
∂λ

= 0
eine andere setzen [...] von eigenthümlicher Form, in welcher m die Unbekannte ist.” [Clebsch
1863, p. 73].

36“Diese Form ist unter Anderem dadurch merkwürdig, dass sie auf einige Fälle führt, in
denen das Problem algebraisch lösbar ist.” [Clebsch 1863, p. 73].

37“zwei Gleichungen dritten Grades an Stelle einer Gleichung vom sechsten.” [Clebsch 1863,
p. 73].
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AA2 −A2
1 = 0, which touches the surface G = 0 along a curve contained in the

sixth-order surface BA3
1 − 3B1AA

2
1 + 3B2A

2A1 −B3A
3 = 0.

In the other sections of the paper, Clebsch pursued his investigation of the
initial equation Ω∂∆

∂λ − ∆∂Ω
∂λ = 0. For instance, he researched the situations

where this equation has three equal roots, or two pairs of double roots, or two
pairs of triple roots, etc. Many of these conditions were expressed with the
help of invariants, and the final results were of the same vein as those that
have been presented above. In particular, the properties of the locus defined
by G = 0 were investigated thoroughly.

4.4 Disciplinary mixes II

Some pieces of Clebsch’s approach of the problem of normals recall what we
saw in the case of the search for tangential equations, although they were
arranged and handled a bit differently.

The initial translation of a geometric question into equations, the elimination
process, the use of invariants to express particular conditions on the roots
of equations (especially of degree lesser than 4) are indeed common to both
works. However, the relations between invariants and geometry were not
quite the same. In the case of the tangential equations, invariants of binary
forms were turned into invariants of ternary forms which, equated to zero,
represented equations of curves directly. On the contrary, in the problem of
normals, invariants of binary forms remained closer to the core of the technical
machinery, since they only served to transform the equations that would be
eventually interpreted geometrically.

The only invariant that was interpreted as defining a geometrical locus
was the discriminant R of the equation under scrutiny. As we saw, results
on invariants and covariants of quite a different nature as those pertaining to
binary forms were mobilised by Clebsch. In particular, the linear change of
variables that allowed to understand the geometric significance of the factor
F was not interpreted as a geometric transformation per se. Indeed, while
Clebsch did not even use the terms “transformation” or “change of coordinates”
at all in this context, neither did he describe the action that it could have had
on points or lines, in the cases n = 3 and n = 4.

Contrary to the case of invariants expressing conditions on the roots of
equations, I have found very few occurrences of such geometrical uses of linear
transformations in Clebsch’s corpus. In the next section, linear transformations
are much more visible and play a critical role within invariant theory and
equation theory. Other, “higher” transformations intervene as well, and are
put in relation with geometry in an original way.
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5. Typical representations and the quintic equation

Clebsch published a paper (dated June 1871) on the geometric interpretation
of the theory of the quintic equation in 1871, [Clebsch 1871a]. It was of course
well known, at that time, that Niels Abel had proved at the end of the 1820s
that the general quintic cannot be solved by radicals. Still, other research had
been done on the topic later, and Hermite and Kronecker had both shown
in the 1850s how to solve the quintic with the help of the theory of elliptic
functions.38

Hermite’s approach crucially used the result according to which the quintic
can be transformed into the so-called Jerrard form x5 − x− a = 0 thanks to a
polynomial transformation of the variable. It is this form of the quintic that
would allow its identification with an equation associated with elliptic functions
and thus the expression of its roots by those of the latter.39 Accordingly,
Clebsch considered the quintic as solved as soon as it has been put into the
Jerrard form. One of the aims of his 1871 paper was to interpret geometrically
the possibility of finding such a transformation.

This was split into two main steps, both of them making invariants intervene.
The first one did not involve any geometric object. It consisted in proving
that if a certain invariant C of the quintic vanishes, the latter can be linearly
transformed into a Jerrard equation. The second step dealt with the question
of the possibility of making the invariant C equal to zero, a question that
Clebsch formulated in his geometrical framework.

In what follows I present the outlines of this research by focussing on the first
step, which makes a certain use of what was called the typical representation
of forms.40 Although it is not compulsory to understand Clebsch’s work on
the quintic, I begin with some lines on this topic, which is essentially absent
from the recent historiography.

5.1 Typical representations

According to several testimonies of the 19th century,41 the notion of typi-
cal representation has been introduced by Hermite in a paper published in
1854, [Hermite 1854]. In the case of a binary form of odd degree greater than
3, Hermite proved that if two independent linear covariants are taken as new
variables, the coefficients of the transformed form are invariants. This new ex-
pression of the form, where the unknowns are covariants and the coefficients are

38See [Goldstein 2011; Petri and Schappacher 2004]. Francesco Brioschi had also worked
on the topic, [Houzel 2002, pp. 77–79].

39As Catherine Goldstein pointed out to me, Hermite all the more praised the Jerrard form
because he saw it as the way to access the true nature of the roots of the quintic. See [Hermite
1858a, p. 508].

40The geometrical interpretation and, more generally, how geometry intervenes in Clebsch’s
paper, are studied in [Lê 2017].

41See for instance [Clebsch 1872a, p. 331] and [Meyer 1892, p. 156].
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invariants, is a typical representation of the form (or a forme-type, in Hermite’s
French words). Hermite then computed explicitly a typical representation of a
binary quintic form. Assuming that this form has real coefficients, he used this
result to determine conditions on the invariants of the form that correspond to
different cases of reality of the roots of the associated quintic equation.

The topic of the quintic equation thus appears to be closely linked to
typical representations, but Hermite’s results on the reality of the roots were
not taken over by Clebsch. In the latter’s publications, the topic of typical
representations first occurred in a paper entirely devoted to it, and written
together with Gordan, [Clebsch and Gordan 1867/1868]. The two authors
began by briefly recalling the existence of typical representations of binary forms
of any degree. Their intention, however, was to determine such representations
for forms of degree 5 and 6. Contrary to the sextic case, Clebsch and Gordan
asserted, their contribution for what was related to the quintic consisted mainly
in a “systematic exposition”, since almost everything had been proved in the
past by Hermite, Cayley, Sylvester and Salmon [Clebsch and Gordan 1867/1868,
p. 24]. If the final formulas were already known, a notable difference of Clebsch
and Gordan’s research with that of the cited mathematicians was the massive
use of the symbolic notation of forms, invariants and covariants.

The computations being quite involved, I will content myself to show
one formula that would be important for Clebsch’s 1871 work on the quintic
equation. As already said, the aim of Clebsch and Gordan was to find a typical
representation of a binary quintic form f . To do so, they were led to find that
of some of the covariants of f . However, to provide a complete picture of the
situation and show the efficiency of their method, the two mathematicians also
tackled the case a cubic covariant j, the typical representation of which was
not useful to establish that of f . Specifically, assuming that the discriminant
R of f is non zero, they exhibited two linear covariants α, δ such that42

R2j = −δ3 − 3
2Nδα

2 + 1
2(CM −BN)α3,

where the capital letters designate invariants of f . In particular, the invariant
C is the one which has been evoked earlier and whose vanishing would be
studied by Clebsch later. An important property that would be used is that C
can be defined as the discriminant of the cubic covariant j.

As for the typical representation of f , it looked like that of j, although being
more complex. The use of both the representations in 1871 to tackle the quintic
equation was somewhat incidental, and linked to the mathematical question of
transforming a binary quintic form into a sum of three fifth powers.43

42Clebsch and Gordan use other numerical conventions. Here I adopt the normalisations
and notations that fit with Clebsch’s later paper on the quintic equation.

43For the sake of brevity, I will not expand on the applications that Clebsch made of typical
representations in his other papers. The most spectacular, perhaps, was the determination of
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5.2 Towards the Jerrard form of the quintic

In the 1871 paper, Clebsch supposed that the discriminant R of the quintic f
does not vanish. He recalled that the problem of representing f as a sum of
three fifth powers could be done by using the two linear covariants α, δ as new
variables: the problem amounted to determining six numbers κ, κ′, κ′′, m, m′,
m′′ such that

f = κ(δ +mα)5 + κ′(δ +m′α)5 + κ′′(δ +m′′α)5.

Citing Salmon’s Lessons Introductory to Modern Higher Algebra [Salmon 1866],
he stated that the three factors δ +mα, δ +m′α, δ +m′′α are necessarily the
factors of the cubic covariant j, that is:

j = k(δ +mα)(δ +m′α)(δ +m′′α),

the number k being just a multiplicative constant. This is where the typical
representation of j,

R2j = −δ3 − 3
2Nδα

2 + 1
2(CM −BN)α3,

was used. Indeed, setting δ = −mα in this expression proved that m, m′ and
m′′ are the three roots of

m3 + 3
2Nm+ 1

2(CM −BN) = 0.

The determination of the numbers κ was based, on its part, on the typical
representation of f , of which Clebsch made explicit its first terms:

R4f =
(

2A2

3 −B

)
δ5 + 5

(
N

2 − AM

3

)
δ4α+ 10M

2

6 δ3α2 + · · ·

Identifying between these coefficients and those given by the expression of f as a
sum of fifth powers then yielded a system of three linear equations for κ, κ′, κ′′:
for instance, considering the coefficient of δ5 gives κ+ κ′ + κ′′ = 1

R4

(
2A2

3 −B
)
.

However, the computation of the numbers κ, that is, the inversion of
this linear system, could be carried out only for C ̸= 0. For this reason,
Clebsch supposed that C converged to 0. Using what we can see as first-order
approximations of the different functions, he obtained formulas for all the
coefficients κ, . . . ,m′′, so that the expression of f as a sum of fifth powers then
became

R4f = 2A2

3 (δ −Bα)5 −B

(
δ + B

2 α
)5

+ 5B2

4 α

(
δ + B

2 α
)4
.

a necessary and sufficient condition for two binary forms of the same order to be linearly
transformable one into the other, [Clebsch 1870].
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Finally, he introduced the two linear covariants ξ = δ −Bα and η = δ + B
2 α,

thanks to which the previous equation is transformed into

R4f = 2A2

3 ξ5 − 5B
6 ξη4 − B

6 η
5.

Setting x = ξ/η, this proves that the quintic equation f = 0 is equivalent to

x5 − B

4A2 (5x+ 1) = 0,

which, since it contains no term in x4, x3 and x2, is a Jerrard form.44 Because
the new homogeneous variables ξ, η are independent linear covariants of f ,
and thus linear expressions of the initial variables, this proved that a quintic
equation for which C = 0 can be linearly transformed into a Jerrard equation.

5.3 The art of making invariants vary

The question, then, was to search a way to pass from the general quintic
equation f(x) = 0 to one for which the invariant C vanishes. Since invariants
remain the same under the action of linear transformations, this can only be
done by using what Clebsch called a higher transformation

x′ = φ(x)
ψ(x) ,

where φ and ψ are polynomials. Using such transformations to investigate
algebraic equations was not new: Clebsch referred to the works of Hermite and
Gordan, who had both used this technique to tackle the quartic equation, [Her-
mite 1858b; Gordan 1870]. In particular, Hermite had proved that it is possible
to find a polynomial transformation making the fundamental invariant i of the
quartic vanish; just like what has been seen above with C in the case of the
quintic, the condition i = 0 implied that the quartic can be transformed into a
special form related to the theory of elliptic functions, [Goldstein 2011, p. 249].

In his 1871 paper, Clebsch focussed on quadratic transformations, which
correspond to the case where the above polynomials φ and ψ are of degree 2.
Each of them is thus determined by three coefficients, defined up to a non zero
multiplicative constant. Clebsch interpreted these coefficients as homogeneous
coordinates of points P , Q in the plane: a quadratic substitution being defined
by two such points, it corresponds to a straight line PQ.

The key point in this interpretation is that a quadratic substitution having
the effect of making an invariant J vanish is associated with a line PQ that is
tangent to a certain curve defined by J . More precisely, Clebsch relied on the

44Clebsch did not took the time to transform this equation into x5 − x − a = 0, which is
the Jerrard form in the strict sense of the term. This can be done easily by replacing x by
ax, where a = 4

√
− 5B

4A2 .
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process he had proposed in the 1861 paper on the symbolic representation of
invariants: if J =

∑
K
∏

(ab), the curve in question is defined by the tangential
equation ∑

K
∏

(abu) = 0,

an equation obtained by adding line coordinates in the symbolic determinants.
The curve associated with the invariant C was studied very thoroughly by
Clebsch, with techniques combining projective geometry and invariant theory.
This allowed him to prove the existence of tangents to the curve having good
properties. The aim being to solve the quintic, indeed, the coefficients of the
equation of the tangent must not contain any inadequate irrationality, such as
fifth roots of numbers.45

5.4 Disciplinary mixes III

Contrary to the two previous cases, Clebsch treated here a problem centred
around an algebraic equation. Instead of resting on already-known properties,
Clebsch had to prove himself that a quintic equation can be transformed into a
Jerrard equation if its invariant C vanishes. His demonstration displays a wide
range of techniques of the theory of forms and invariants, such as the typical
representations and the issue of expressing a quintic form as a sum of three
fifth powers. Works on invariant theory that Clebsch had previously developed
hence found an interesting application to equation theory.

That said, Clebsch’s principal objective was to present a “geometrical image”
of the elements dealing with the solution of the quintic.46 Geometry occurred
first to interpret the parameters of a quadratic substitution as the coordinates
of two points in the plane – the transformation itself was not interpreted
geometrically. Finding a transformation making C = 0 was then tantamount
to determining a tangent to the curve defined from C by method developed in
the 1861 memoir.

The three case-studies that I have depicted thus display different disci-
plinary configurations within the mathematical technique. They exemplify
that the interactions of invariant theory with geometry and equation theory
took different shapes according to the initial situations and the results that
needed to be developed. I hope to have thus helped to enlighten the kind of
practice that could be made of invariants, especially form the point of view of
their applications.

45See [Lê 2017] for more details on this and other features of Clebsch’s paper that have not
been dealt with here.

46“So finden sich denn wirklich alle Elemente der Auflösung der Gleichungen 5ten Grades
hier in einem geometrischen Bilde zusammengefasst und verbunden.” [Clebsch 1871a, p. 354].
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6. Making equations explicit

There is yet another facet of invariant theory that can be seen in Clebsch’s
papers. More vague and more discrete, it has to do with the issue of “really”
establishing given equations. Such allusions are scattered throughout the
publications of Clebsch. Let me make a quick tour on a selection of them.

The first one appears in the very first paper of Clebsch where invariants
intervene, where Clebsch proposed a quick, not detailed version of the symbolic
representation of invariants, [Clebsch 1861d]. Clebsch tackled the problem of
transforming a quaternary cubic form into the sum of five cubes, a problem
linked with the theory of cubic surfaces. Given a cubic form u =

∑
aikhxixhxk

with variables x1, x2, x3, x4, the problem was to determine linear functions
Ai = α1ix1 + α2ix2 + α3ix3 + α4ix4 such that

u = A3
1 +A3

2 +A3
3 +A3

4 +A3
5.

Clebsch simply asserted that such a determination was possible because the
constants α were in an adequate number, and he explained that the Ai are
linked together by a linear relation

k1A1 + k2A2 + k3A3 + k4A4 + k5A5 = 0,

the ki being constants.
Invariants were first mentioned a few pages later, when Clebsch asserted

that “with the help of invariant theory, it is now possible to really set the
equation of the fifth degree on which depends the [above] transformation”.47

As the following lines of the paper make clear, this equation is the one of which
the numbers k6

i are the roots. Such an equation obviously exists, and Clebsch
denoted it by

k30 − C1k
24 + C2k

18 − C3k
12 + C4k

6 − C5 = 0.

Clebsch then computed the coefficients Ci explicitly by providing their expres-
sion as polynomials in five invariants J1, . . . , J5 of the cubic form u. The proof
made use of the symbolic notation and a the property according to which every
invariant of u is a polynomial in the Ji.48

Invariant theory thus appeared to compute explicitly an object of which
the existence was known a priori, and Clebsch emphasised this specific role.
Other situations of the same vein can be observed in his papers, although the

47“Mit Hülfe der Invariantentheorie ist es nun möglich, die Gleichung fünften Grades
wirklich aufzustellen, von welcher die Transformation (5.) abhängt.”

48As Clebsch realised shortly after, [Clebsch 1861a], a paper of Salmon mentioned an
invariant that could not be deduced from the Ji, which evidenced that his proof was erroneous.
Clebsch also admitted that his argument for the existence of the transformation, based on a
constant counting, was dubious. His correction did not involve invariant theory any more.
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vocabulary was not exactly the same and the link with forms and invariants
was not always introduced explicitly.

For instance, let me briefly return to the main paper devoted to the
symbolical representation [Clebsch 1861e]. As accounted for above, one of the
applications of this representation and the related techniques was to provide the
“complete solution” of the problem of “expressing any curve in line coordinates”.
The existence of a tangential equation of a curve of a given order, indeed,
ensues directly from general consideration pertaining to projective duality, and
Clebsch’s “complete solution” consisted in writing down this equation, which
was achieved by the addition of a series of line coordinates u in the symbolic
expression of the discriminant of a binary form.

Still in 1861, another example is contained in a paper devoted to the
inflectional tangents to a curve of the third order, that is, the tangents at each
of the nine inflection points of the curve, [Clebsch 1861b]. Clebsch’s main
theorem was that if u = 0 is the equation of a cubic curve, the inflectional
tangents of the latter are also tangents to the curve ∆(u) = 0, where ∆(u)
designates the Hessian determinant of u. This theorem, Clebsch explained,
could be deduced from “the establishment of the expression of the ninth order
which [...] represents the product of the equations of the nine inflectional
tangents”. He immediately added:

That such an expression, with rational coefficients, exists is clear from
the outset; the representation of it can be undertaken in the following
way.49 [Clebsch 1861b, p. 323]

Here again, the role of invariants in the process of searching for the establishment
of the ninth-degree equation was not made explicit in Clebsch’s comments but
it appears clearly when one looks at the rest of the paper. Many results on
binary and ternary forms were developed, in particular with the help of the
symbolic notation, and Clebsch ended up with the equation

∆(v)3 + 72Sv2∆(v) − v · 1
6
∑∑

Vik∆i∆k = 0,

where v is a quartic form associated with the cubic one, S is one of its invariants
and the ∆i and Vik are other quantities linked to v.

Because this equation represents the geometrical locus made of the nine
inflectional tangents, it is different in nature than the equations that would be
called “geometrical equations” from the end of the 1860s on. A geometrical
equation was an algebraic equation in one unknown, each root of which corre-
sponds to an object of a given geometric configuration. A famous example was

49“Dieser Satz [...] folgt [...] aus der Aufstellung des Ausdruckes neunter Ordnung, welcher
[...] das Product der Gleichungen der neun Wendepunktstangenten darstellt. Dass ein solcher
Ausdruck, mit rationalen Coefficienten, existirt, ist von vorn herein klar; die Darstellung
desselben kann etwa in folgender Weise unternommen werden.”
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the nine-points equation, an equation of degree 9 associated with the nine in-
flection points of a cubic curve. Especially around 1870, geometrical equations
gave rise to a series of activities by mathematicians, including Clebsch, who
used them to better understand Galois’ ideas on equations. The search for
resolvents of a geometrical equation, for instance, was replaced by the search of
specific objects that could be made from those of the geometric configuration.50

In particular, in this system of activities centred around questions of
resolution, the issue of the explicit writing of the equations and their resolvents
was never posed: their existence stemmed directly from that of the associated
geometric configurations. However, commenting on such works in his obituary
of Julius Plücker, Clebsch wrote:

It was reserved for the advances of the modern algebra created by Sylvester,
Cayley and Salmon, and in particular for the beautiful discoveries of
Aronhold, to really form all the equations [associated with the nine-points
equation] to be solved, and thus to settle the problem.51

The question of “really” forming geometrical equations and resolvents thus
belonged to invariant theory, and was solved by techniques pertaining to it.52

A few other examples of this association between the invariant theory and
the issue of making explicit objects whose existence is known a priori can be
found in Clebsch’s papers, in relation with similar mathematical situations or
not [Clebsch 1868, 1869].

On the whole, such occurrences do not proliferate in these papers, nor are
they commented on more than through the quotes given above. In particular,
Clebsch did not elaborate on the mathematical reasons explaining why invariant
theory would be especially suited to make equations explicit. Moreover, the
issue of the explicit was never thematised as such in the few passages where
Clebsch presented invariant theory as a mathematical discipline, with its
privileged objects, theorems and problems.53 Nevertheless the traces that

50The activities linked with geometrical equations are analysed in [Lê 2015a, 2016]. The
link with invariants theory is mentioned in [Lê 2015b, p. 234].

51“Den Fortschritten der von Sylvester, Cayley und Salmon geschaffenen neuern Algebra,
und zwar insbesondere den schönen Entdeckungen Aronholds, war es vorbehalten, alle zu
lösenden Gleichungen wirklich zu bilden, und damit das Problem zu erledigen.” [Clebsch
1872e, p. 22].

52Clebsch’s formulation is too vague to understand if he saw one of the mentioned equations
in Aronhold’s work or if he only meant that the results developed by the latter could be
used to establish them. For instance, one resolvent of the nine-points equation is an equation
associated with four special triangles. Although it is not presented as such, it coincides with
the equation (27) in [Aronhold 1850, p. 154], which is used for instance in [Clebsch 1861b,
p. 231]. The same equation is more explicitly associated with the four triangles in [Clebsch
and Lindemann 1876, p. 563]. In all these references, the equation is written down thanks to
invariant theory.

53See [Clebsch 1872a], as well as the introductions of [Clebsch 1871b, 1872d]. Clebsch did
not use the word “discipline”. Following [Goldstein and Schappacher 2007, p. 54], I employ
this term to refer to an “object-oriented system of scholarly activities”.
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have been presented in this section seem strong enough to indicate a sort of
coherence which is important to account for to get a better view on Clebsch’s
work on invariants.

7. Aborted projects

During the last months of his life, Clebsch produced a number of works whose
nature and content seem to set up fragments of a certain program on forms
and invariants: in addition to syntheses on these subjects, several articles on
new notions were published, in which research questions were posed and placed
in broad descriptions where geometry had a major role.

Indeed, inspired by past works of Julius Plücker and Hermann Grassmann,
Clebsch defined forms with several series of non independent variables,54 and he
launched their study and that of their invariants, formulating the “fundamental
task of invariant theory” of establishing a finiteness theorem in this extended
framework [Clebsch 1872d]. While he did not reach this ultimate goal in
this publication, he still immediately applied some of the obtained results to
geometric issues that he had never tackled before [Clebsch 1873b]. Further, in
the special case of two series of variables, he was led to turn his attention to
“intermediate forms” (Zwischenformen), which had already been considered by
some of his predecessors but which he took as the basis to define “connexes”, a
new kind of geometric objects whose investigation was supposed to “include in
itself the whole analytic geometry of the plane”, [Clebsch 1873a, p. 203]. As
Clebsch explained,

For the analytic geometry of the plane (algebra of ternary forms), the
necessity arose to investigate a structure [i.e. connexes] which includes
the algebraic curve as a very special case, and which is at the same time
the most comprehensive one whose study can be demanded by the theory
of invariants for ternary forms.55 [Clebsch 1873a, p. 203]

Connexes and intermediate forms were thus objects at the core of a renewed
connection between plane geometry and the theory of ternary forms, which
Clebsch’s words almost assimilated as one and the same domain.

Applications to geometry were also one of the main motivations behind
the vast summary on cubic ternary forms that Clebsch and Gordan wrote
at about the same time, [Clebsch and Gordan 1873]. Another publication
meant to gather knowledge on forms was Clebsch’s book Theorie der binären

54From a current point of view, these variables appear as Grassmannian coordinates.
55“Für die analytische Geometrie der Ebene (Algebra der ternären Formen) ergab sich

hiebei die Nothwendigkeit, ein Gebilde zu untersuchen, welches die algebraische Curve als
sehr besondern Fall einschliesst und welches zugleich das umfassendste ist, dessen Studium
durch die Invariantentheorie bei ternären Formen gefordet werden kann. Dieses Gebilde,
dessen Untersuchung so zu sagen die ganze analytische Geometrie der Ebene in sich schliesst
[...].”
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algebraischen Formen, which, as we saw in our introduction, was accompanied
by a separate presentation aimed at explaining to a large circle of readers the
ins and outs of invariant theory [Clebsch 1872a,b].

In this presentation, Clebsch explained that algebra was historically rooted
in both equation theory and analytic geometry. Although the two domains
seemed completely disconnected at first sight, the mathematicians who had
been engaged in them had recognized that “[i]t was the study of what remains
fixed by the change of manifold reorganisations that soon appeared as being
the most important and the most useful.”56 Such hints referred to resolvents
of equations on one hand, and to the properties of curves and surfaces that
remain unchanged by projections on the other hand. The “common viewpoint”
on these phenomena, Clebsch continued, had been yielded by the notion of
algebraic form:

All these investigations could be summarised in an elegant form under
a common point of view by introducing the concept of homogeneous
function. It turned out that the theory of homogeneous functions led to
equations, curves or surfaces, depending on the number of homogeneous
variables being 2, 3 or 4.57 [Clebsch 1872a, p. 323]

The understanding of forms, which went through the study of their invariants,
was thus crucial for anyone who wanted to research geometry.

Together with the year 1872, all these traces which evoke a unifying view
on (parts of) geometry and algebra are irresistibly reminiscent of Felix Klein’s
Erlanger Programm [Klein 1872], whose author was in close scientific relation
with Clebsch at that time.58 Even if Klein’s unifying perspective is not exactly
the same as Clebsch’s, the Programm contains many ideas that we have seen
in the latter’s publications: the insistence on invariants, the assimilation of
form theory with some pieces of geometry, the parallel made between geometry
and equation theory, and even the mention of connexes. However, the crucial
objects for Klein were groups of transformations (of space), and when he stated
what he considered as a generalisation of geometry, he associated invariants
with groups, not with forms:

Given a manifold and a group of transformations of the same; to develop
the theory of invariants relating to that group.59

56“Es war das Studium des Festen im Wechsel mannigfacher Umgestaltung, was [...] bald
als das Wichtigste und Förderlichste erschien.” [Clebsch 1872a, p. 323].

57“Alle diese Untersuchungen liessen sich durch Einführung des Begriffes homogener Func-
tion unter gemeinsamen Gesichtpunct und in eleganter Form zusammenfassen. Es zeigte
sich, dass die Theorie der homogenen Functionen auf die Gleichungen, auf Curven oder
Oberflächen führte, jenachdem die Anzahl der homogenen Veränderlichen 2, 3 oder 4 war.”

58On this program, see [Rowe 1983; Hawkins 1984; Gray 2005; Lê 2015a]. On Klein and
his links with Clebsch, see [Tobies 2019, pp. 37–51].

59“Es ist eine Mannigfaltigkeit und in derselben eine Transformationsgruppe gegeben.
Man entwickele die auf die Gruppe bezügliche Invariantentheorie.” [Klein 1872, p. 7]. The
translation comes from [Klein 1893, p. 219].
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In this global framework, forms, which were the overarching objects for Clebsch,
were thus relegated to a place of a lesser rank, to the profit of groups.60 The
disciplinary coherence constructed in the Erlanger Programm thus came in
part from the dislocation and recomposition of elements which formed an other
kind of coherence in Clebsch’s research.61

We know the formidable influence that the Erlanger Programm eventually
had on mathematicians. But only eventually: as Thomas Hawkins [1984]
evidenced, Klein’s viewpoints did not become widely known before the very
end of the 19th century, after other works on groups and geometry had been
published by other mathematicians. And Clebsch’s proposal reminds us that
in the early 1870s, objects other than groups could be put forward to make
algebra and geometry coalesce.

As seen in this chapter, such a proposal was fuelled by a practice of algebraic
forms that Clebsch had shaped over more than a decade by knitting together
invariants, geometry and algebraic equations, in particular for studying curves
and surfaces. These numerous and variegated applications constitute an impor-
tant part of Clebsch’s contribution to invariant theory, a part complemented
by two others, which somewhat correspond to other levels in the development
of invariant theory. On one hand, the investigations on forms and invariants
without immediate applications participated to the setting-up of a certain body
of research on invariants with its key issues, such as the systematic listing of
invariants and covariants associated with a given situation.62 On the other
hand, the elaboration of a program of unification of geometry and algebra by
the means of algebraic forms and their invariants constitutes yet another kind
of commitment in the theory.

Clebsch’s role in the history of invariant theory cannot therefore be reduced
to the systematisation of the symbolic notation. Moreover, his case – and,
potentially, that of the numerous other contributors63 – shows that this history
is far from being limited to a linear sequence of events associated with the
finiteness theorem and involving only a handful of mathematicians. Contrary

60This does not mean that forms were not important in other papers of Klein. His research
on the icosahedron and the quintic equation, for instance, involved groups dramatically
all the while making considerable use of binary forms together with their invariants and
covariants, [Gray 2000, pp. 81–87, 126–135].

61On this point, see also [Lê 2015a]. The same kind of mechanism can be seen in the case of
the icosahedron, see [Goldstein 2011, pp. 259–260; Lê 2017, pp. 67–68]. The latter reference
recalls that groups (be they of transformations or substitutions) are absent from Clebsch’s
entire work.

62This facet of Clebsch’s research is a bit less visible in the present chapter, precisely
because I chose not to focus on them. Nevertheless it has been encountered in his work on
typical forms, as well as in his summaries on binary forms and on ternary cubic forms.

63For instance, the sections of the Catalogue of scientific papers devoted to forms count 246
different authors. In Mathematische Annalen, where invariant theory has been recognized as
a specific topic, 39 mathematicians published papers on it between 1868 and 1898. See [Lê
2022, pp. 17–18].
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to what this theorem states for invariants, there can be no question of writing
a history of invariant theory by expressing all the works relating to it on the
mere basis of a too small number of them.

Acknowledgements

This paper has benefited from wise comments of Catherine Goldstein, whom I
thank warmly.

References

Aronhold Siegfried (1850), “Zur Theorie der homogenen Functionen dritten Gra-
des von drei Variabeln”, Journal für die reine und angewandte Mathematik
39, 140–159 (↑ 10, 15, 31).

— (1858), “Theorie der homogenen Functionen dritten Grades von drei Verän-
derlichen.”, Journal für die reine und angewandte Mathematik 55, 97–191
(↑ 10).

Boniface Jacqueline (2004), Hilbert et la notion d’existence en mathématiques,
Paris: Vrin (↑ 2).

Brechenmacher Frédéric (2011), “Autour de pratiques algébriques de Poincaré”.
Preprint, https://hal.science/hal-00630959v3 (↑ 3).

Brill Alexander, Gordan Paul, Klein Felix, Lüroth Jacob, Mayer Adolph,
Noether Max, and Mühll Karl von der (1873), “Rudolf Friedrich Alfred
Clebsch – Versuch einer Darlegung und Würdigung seiner wissenschaftlichen
Leistungen”, Mathematische Annalen 7, 1–55 (↑ 2–4).

Cayley Arthur (1858), “A Fifth Memoir upon Quantics”, Philosophical Trans-
actions of the Royal Society of London 148, 429–460 (↑ 9).

— (1859), “Note sur les normales d’une conique”, Journal für die reine und
angewandte Mathematik 56, 182–185 (↑ 16).

Clebsch Alfred (1857), “Anwendung der elliptischen Funktionen auf ein Pro-
blem der Geometrie des Raumes”, Journal für die reine und angewandte
Mathematik 53, 292–308 (↑ 4).

— (1861a), “Ueber die Knotenpunkte der Hesseschen Fläche, insbesondere
bei Oberflächen dritter Ordnung”, Journal für die reine und angewandte
Mathematik 59, 193–228 (↑ 29).

— (1861b), “Ueber die Wendetangente der Curven dritter Ordnung”, Journal
für die reine und angewandte Mathematik 58, 229–239 (↑ 30, 31).

— (1861c), “Ueber eine symbolische Darstellungsweise algebraischer Formen,
und über die davon zu machende Anwendung auf Probleme der Elimination”,
Monatsberichte der Königlichen Preußischen Akademie der Wissenschaften
zu Berlin 1860, 536–540 (↑ 10).

35

https://hal.science/hal-00630959v3


Clebsch Alfred (1861d), “Ueber eine Transformation der homogenen Functio-
nen dritter Ordnung mit vier Veränderlichen”, Journal für die reine und
angewandte Mathematik 58, 109–126 (↑ 10, 29).

— (1861e), “Ueber symbolische Darstellung algebraischer Formen”, Journal
für die reine und angewandte Mathematik 59, 1–62 (↑ 4, 10–13, 30).

— (1863), “Ueber das Problem der Normalen bei Curven und Oberflächen der
zweiten Ordnung”, Journal für die reine und angewandte Mathematik 62,
64–109 (↑ 16, 19, 20, 22).

— (1868), “Ueber die Flächen vierter Ordnung, welche eine Doppelcurve
zweiten Grades besitzen”, Journal für die reine und angewandte Mathematik
69, 142–184 (↑ 31).

— (1869), “Note zu dem Aufsatze ‘über eine Eigenschaft von Functionaldeter-
minanten’”, Journal für die reine und angewandte Mathematik 70, 175–181
(↑ 31).

— (1870), “Ueber die Möglichkeit, zwei gegebene binäre Formen linear in
einander zu transformiren”, Mathematische Annalen 2, 373–381 (↑ 4, 26).

— (1871a), “Ueber die Anwendung der quadratischen Substitution auf die Glei-
chungen 5ten Grades und die geometrische Theorie des ebenen Fünfseits”,
Mathematische Annalen 4, 284–345 (↑ 24, 28).

— (1871b), “Zur Theorie der binären algebraischen Formen”, Mathematische
Annalen 3, 265–267 (↑ 31).

— (1871c), “Zur Theorie der Cremona’schen Transformationen”, Mathemati-
sche Annalen 4 (490-496) (↑ 4).

— (1872a), “Clebsch, Theorie der binären algebraischen Formen”, Göttingische
gelehrte Anzeigen 1872 (1), 321–334 (↑ 1, 2, 24, 31, 33).

— (1872b), Theorie der binären algebraischen Formen, Leipzig: Teubner (↑ 1,
33).

— (1872c), “Ueber die geradlinigen Flächen vom Geschlechte p = 0”, Mathe-
matische Annalen 5, 1–26 (↑ 4).

— (1872d), “Ueber eine Fundamentalaufgabe der Invariantentheorie”, Abhand-
lungen der Königlichen Gesellschaft der Wissenschaften in Göttingen 17,
3–62 (↑ 31, 32).

— (1872e), “Zum Gedächtniss an Julius Plücker”, Abhandlungen der Königli-
chen Gesellschaft der Wissenschaften in Göttingen 16, 1–40 (↑ 31).

— (1873a), “Ueber ein neues Grundgebilde der analytischen Geometrie der
Ebene”, Mathematische Annalen 6, 203–215 (↑ 32).

— (1873b), “Zur Theorie der Charakteristiken”, Mathematische Annalen 6,
1–15 (↑ 32).

— (1861/1862), “Sur un problème concernant la théorie des surfaces du 2e

ordre”, Annali di Matematica Pura ed Applicata, 1st ser. 4, 195–198 (↑ 16).
Clebsch Alfred and Gordan Paul (1873), “Ueber cubische ternäre Formen”,

Mathematische Annalen 6, 436–512 (↑ 32).

36



Clebsch Alfred and Gordan Paul (1867/1868), “Sulla rappresentazione tipica
delle forme binarie”, Annali di Matematica Pura ed Applicata, 2nd ser. 1,
23–79 (↑ 4, 25).

Clebsch Alfred and Lindemann Ferdinand (1876), Vorlesungen über Geometrie,
vol. 1, Leipzig: Teubner (↑ 31).

Confalioneri Sara, Schmidt Peter-Maximilian, and Volkert Klaus (eds.) (2019),
Der Briefwechsel von Wilhelm Fiedler mit Alfred Clebsch, Felix Klein und
italienischen Mathematikern, Siegen: Universitätsverlag Siegen (↑ 2).

Corry Leo (2004), Modern Algebra and the Rise of Mathematical Structures,
2nd ed., Basel, Boston, Berlin: Birkhäuser (↑ 1).

Crilly Tony (1986), “The Rise of Cayley’s Invariant Theory (1841–1862)”,
Historia Mathematica 13, 241–254 (↑ 2).

— (1988), “The Decline of Cayley’s Invariant Theory (1863-1895)”, Historia
Mathematica 15 (4), 332–347 (↑ 10).

Eisenstein Gotthold (1844), “Allgemeine Auflösung der Gleichungen von den
ersten vier Graden”, Journal für die reine und angewandte Mathematik 27,
81–83 (↑ 15).

Fischer Gerd (2001), Plane Algebraic Curves, Providence: American Mathe-
matical Society. English translation by Leslie Kay (↑ 17).

Fisher Charles S. (1966), “The Death of a Mathematical Theory: A Study in
the Sociology of Knowledge”, Archive for History of Exact Sciences 3 (2),
137–159 (↑ 2).

Goldstein Catherine (2011), “Charles Hermite’s Stroll through the Galois
Field”, Revue d’histoire des mathématiques 17, 211–270 (↑ 24, 27, 34).

— (2023), “Poincaré and Arithmetic Revisited”. To appear (↑ 3).
Goldstein Catherine and Schappacher Norbert (2007), “A Book in Search of

a Discipline”, in Catherine Goldstein, Norbert Schappacher, and Joachim
Schwermer (eds.), The Shaping of Arithmetic after C. F. Gauss’s Disquisi-
tiones Arithmeticae, Berlin: Springer, 3–65 (↑ 31).

Gordan Paul (1870), “Ueber die Invarianten binären Formen bei höheren
Transformationen”, Journal für die reine und angewandte Mathematik 71,
164–194 (↑ 27).

Gray Jeremy (2000), Linear Differential Equations and Group Theory from
Riemann to Poincaré, 2nd ed., Boston: Birkhäuser (↑ 34).

— (2005), “Felix Klein’s Erlangen Program, ‘Comparative Considerations of
Recent Geometrical Researches’ (1872)”, in Ivor Grattan-Guinness (ed.),
Landmark Writings in Western Mathematics, 1640-1940, Amsterdam: Else-
vier Press, 544–552 (↑ 33).

Hawkins Thomas (1984), “The Erlanger Programm of Felix Klein: Reflexions
on Its Place in the History of Mathematics”, Historia Mathematica 11,
442–470 (↑ 33, 34).

37



Hermite Charles (1854), “Sur la théorie des fonctions homogènes à deux
indéterminées”, The Cambridge and Dublin Mathematical Journal 9, 172–
271 (↑ 24).

— (1856), “Sur la théorie des fonctions homogènes à deux indéterminées.
Premier mémoire”, Journal für die reine und angewandte Mathematik 52,
1–17. Œuvres I, 350–371 (↑ 14).

— (1858a), “Sur la résolution de l’équation du cinquième degré”, Comptes
rendus hebdomadaires des séances de l’Académie des sciences 46, 508–515
(↑ 24).

— (1858b), “Sur quelques théorèmes d’algèbre et la résolution de l’équation du
quatrième degré”, Comptes rendus des séances de l’Académie des sciences
46, 961–967 (↑ 27).

Houzel Christian (2002), La géométrie algébrique : recherches historiques, Paris:
Albert Blanchard (↑ 24).

Joachimstahl Ferdinand (1857), “De aequationibus quarti et sexti gradus quae
in theoria linearum et superficierum secundi gradus occurunt”, Journal für
die reine und angewandte Mathematik 53, 149–172 (↑ 18).

Klein Felix (1872), Vergleichende Betrachtungen über neuere geometrische
Forschungen, Erlangen: Andreas Deichert (↑ 33).

— (1893), “A Comparative Review of Recent Researches in Geometry”, trans.
by M. W. Haskell, Bulletin of the New York Mathematical Society 2, 215–
249 (↑ 33).

Kung Joseph P. S. and Rota Gian-Carlo (1984), “The Invariant Theory of
Binary Forms”, Bulletin of the American Mathematical Society 10 (1),
27–85 (↑ 10).

Lê François (2016), “Reflections on the Notion of Culture in the History of
Mathematics: The Example of ‘Geometrical Equations’”, Science in Context
29 (3), 273–304 (↑ 31).

— (2017), “Alfred Clebsch’s ‘Geometrical Clothing’ of the Theory of the
Quintic Equation”, Archive for History of Exact Sciences 71 (1), 39–71
(↑ 24, 28, 34).

— (2022), “La théorie des surfaces algébriques dans les Mathematische An-
nalen à l’épreuve de la textométrie (1869-1898)”, Revue d’histoire des
mathématiques 28 (1), 1–45 (↑ 34).

— (2015a), “‘Geometrical Equations’: Forgotten Premises of Felix Klein’s
Erlanger Programm”, Historia Mathematica 42 (3), 315–342 (↑ 31, 33, 34).

— (2015b), “Vingt-sept droites sur une surface cubique : rencontres entre
groupes, équations et géométrie dans la deuxième moitié du xixe siècle”,
PhD thesis, Université Pierre et Marie Curie (↑ 31).

Lorenat Jemma (2015), “Polemics in Public: Poncelet, Gergonne, Plücker, and
the Duality Controversy”, Science in Context 28 (4), 545–585 (↑ 13).

38



Meyer Wilhelm Franz (1892), “Bericht über den gegenwärtigen Stand der
Invariantentheorie”, Jahresbericht der Deutschen Mathematiker-Vereinigung
1, 79–292 (↑ 24).

Parshall Karen (1989), “Toward a History of Nineteenth-Century Invariant
Theory”, in John McCleary and David E. Rowe (eds.), The History of
Modern Mathematics, vol. 1. Ideas and their Reception, Boston, San Diego,
New York: Academic Press, 157–206 (↑ 2, 8, 10).

— (2023), “A Convergence of Paths: Arthur Cayley, Charles Hermite, James
Joseph Sylvester, and the Early Development of a Theory of Invariants”,
Revue d’histoire des mathématiques. To appear (↑ 3).

Petri Birgit and Schappacher Norbert (2004), “From Abel to Kronecker.
Episodes from 19th Century Algebra”, in Olav Arnfinn Laudal and Ragni
Piene (eds.), The Legacy of Niels Henrick Abel, Berlin, Heidelberg, New
York: Springer, 227–266 (↑ 24).

Rowe David E. (1983), “A Forgotten Chapter in the History of Felix Klein’s
Erlanger Programm”, Historia Mathematica 10, 448–457 (↑ 33).

Salmon George (1866), Lessons Introductory to the Modern Higher Algebra,
2nd ed., Dublin: Hodges, Smith, and Co. (↑ 1, 26).

Salmon George and Fiedler Wilhelm (1860), Analytische Geometrie der Kegel-
schnitte, mit besonderer Berücksichtigung der neueren Methoden, Leipzig:
Teubner. Translated and revised by Wilhelm Fiedler (↑ 16).

Tobies Renate (2019), Felix Klein: Visionen für Mathematik, Anwendungen
und Unterricht, Berlin, Heidelberg: Springer (↑ 33).

Wolfson Paul R. (2008), “George Boole and the Origins of Invariant Theory”,
Historia Mathematica 35, 37–46 (↑ 8).

39


	Invariants and covariants in Clebsch's papers
	Mathematical appetisers
	Symbolic representation and tangential equations
	The symbolic representation
	Geometry enters the picture
	Disciplinary mixes I

	The problem of normals
	The problem and its equation
	The case of two coinciding roots
	Other special cases
	Disciplinary mixes II

	Typical representations and the quintic equation
	Typical representations
	Towards the Jerrard form of the quintic
	The art of making invariants vary
	Disciplinary mixes III

	Making equations explicit
	Aborted projects

