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Abstract

This paper describes a 1871 article of the mathematician Alfred Clebsch present-
ing a geometrical interpretation of elements of the theory of the general algebraic
equation of degree 5. Clebsch’s approach, which has been completely forgotten by
the historiography, is here used to discuss the relations between geometry, intuition,
figures, and visualization. To be more precise, although the article of Clebsch does
not contain any figure, we try to clearly delineate what he perceived as geometric in
his approach. In particular, we show that Clebsch’s use of geometrical objects and
techniques does not point to visualization matters, but rather to a way of guidance in
algebraic calculations.

1 Introduction

In 1871, the mathematician Alfred Clebsch (1833-1872) published an article in which he
aimed at presenting a geometrical interpretation of elements of the theory of the general
algebraic equation of degree 5, (Clebsch 1871b). More specifically, Clebsch intended to
expose “a complete geometrical overall view on the connections existing between the equa-
tions of degree 5 and their resolvents, and especially on the connection with the Jerrard
form and the modular equation,”1 alluding to the researches that Charles Hermite and
Leopold Kronecker had carried out on this topic in the 1850s.

This effort to make geometry intervene in another domain of mathematics is far from
being an isolated case in the 19th century. Several examples of such geometrical interven-
tions, occurring whether in algebra, in analysis, or in number theory, have already been
observed and discussed by historians of mathematics. For instance, let us only mention
∗Université d’Artois, Laboratoire de mathématiques de Lens.
1“So erhält man als eine erste Anwendung der im Eingange der Abhandlung entwickelten allgemei-

nen Principien eine vollständige geometrische Uebersicht über die Zusammenhänge, welche zwischen den
Gleichungen 5ten Grades und ihren Resolventen bestehen, insbesondere über den Zusammenhang mit der
Jerrard’schen Form und der Modulargleichung.” (Clebsch 1871b, p. 285).

1



the problem of the geometrical representation of complex numbers, (Flament 2003), the
role of geometrical diagrams in the theory of differential equations, (Tournès 2012), or the
use of geometry in arithmetic as advocated in the geometry of numbers, (Gauthier 2009).
Beyond the peculiarities of the cases they described, these studies have in common to have
insisted on the fact that some past mathematicians grasped geometry because it is intuitive
and allows visualization, in particular through figures and drawings.2

It would be misleading, however, to think of geometry as a systematic and exclusive
affair of figures, diagrams, visualization, and spatial intuition. For example, when some of
the “friends and old students” of Clebsch wrote an obituary of him in 1873,3 they depicted
another conception of geometry to be found in some of his works:

Clebsch was mainly an algebraist, and the totality of his works is a complete mastery
of the algebraic machinery. Alongside this machinery, a clear geometrical perception,
by virtue of which each step composing the calculation is brought to an intuitive
understanding, sets up in his later research. But this is not a concrete way consisting
in seeing spatial circumstances as it can be for other geometers; rather, geometrical
intuition is for him symbols and means of orientation for the algebraic problems he
deals with.4 (Brill et al. 1873, pp. 3-4)

So this quotation describes, in the context of algebraic calculations, a geometric intuition as
a way of guidance in these calculations explicitly disconnected from visualization matters.5

My aim here is to confront this description with Clebsch’s mathematical practice in
order to ascertain how the “clear geometrical perception” supposed to enlightened “each
step of the calculation” expresses itself in the technique. Three main reasons suggest
Clebsch’s article on the geometrical interpretation of the quintic equation to be a fruitful
field for such a confrontation. First, the paper is dated June 1871 while Clebsch died in
November 1872, making it part of the later research referred to in the preceding quotation.

2The issue of visualization has been extensively studied by philosophers of mathematics: see (Giaquinto
2007) and the references given in this book. See also the works of Valeria Giardino about cognitive aspects
of the use of diagrams in specific parts of mathematics, for example in knot theory, (Giardino & De Toffoli
2013).

3The authors of the obituary are the mathematicians Alexander Brill, Paul Gordan, Felix Klein, Jacob
Lüroth, Adolf Mayer, Max Noether, and Karl von der Mühll. They present themselves as Clebsch’s “Fre-
unde und ehemaligen Schüler” at the beginning of the text, (Brill et al. 1873, p. 1). These mathematicians
closely worked with Clebsch indeed, so they surely knew how the latter used to do mathematics.

4“Clebsch war in erster Linie Algebraiker, und allen seinen Arbeiten gemeinsam ist die vollendete
Beherrschung des algebraischen Apparates. Ihr zur Seite stellt sich in den späteren Untersuchungen die klare
geometrische Auffassung, vermöge deren jeder Schritt, den die Rechnung vollführt, zu einem anschaulichen
Verständnissse gebracht wird. Aber es ist nicht die concrete Art, die räumlichen Verhältnisse zu sehen, wie
wir sie bei manchen anderen Geometern finden; die geometrische Anschauung ist ihm mehr Symbol und
Orientirungsmittel für die algebraischen Probleme, mit denen er sich beschäftigt.”

5That being said, I would like to stress that it does not mean that Clebsch did not use or praise
visualization of geometrical objects in other contexts than the mentioned algebraic calculations. Moreover,
let us note that Jemma Lorenat recently analyzed relations between geometry, algebraic computations,
figures, and visualization in the first half of the 19th century, (Lorenat 2015). Her study notably brings to
light the role of equations as representatives of geometrical objects in Julius Plücker’s practice.
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Second, the absence of figures in the paper6 indicates its adequacy with the frame depicted
in this quotation, and will encourage us to closely seek geometry in the calculation. Third,
because its very topic consists in geometrically interpreting the theory of the quintic, the
paper seems fit to clearly delineate what was perceived as geometric in the mathematical
technique7 and so to evaluate how Clebsch coped with an algebraic problem thanks to
geometry.

Before entering into the technique, I would like to expose complementary information
about Clebsch and his article, which have both been largely forgotten by the historiography.
This will contribute to put them in context and understand the ins and outs of Clebsch’s
approach.

1.1 Biographical elements about Clebsch

Rudolf Friedrich Alfred Clebsch was born in 1833 in Königsberg.8 His academic path began
in 1850 in the university of this city where he attended lectures of Otto Hesse, Friedrich
Richelot, and Franz Neumann (who was the father of his childhood friend Carl Neumann).
In 1854, he completed his doctoral thesis which was about mathematical physics and which
he had prepared under the supervision of F. Neumann.

From 1854 to 1858, Clebsch taught mathematics in several high schools of Berlin and
simultaneously began to publish works on mathematical physics and calculus of variations.9

His research then stayed mainly focused on these topics between 1858 and 1863, a period
of time during which he was a professor in the Polytechnische Schule of Karlsruhe. At
that time, Clebsch also began to be interested in the geometry of algebraic curves and
surfaces, especially through the works of Arthur Cayley, George Salmon, and James Joseph
Sylvester.

In 1863, Clebsch joined the university of Giessen as professor of mathematics.10 There,
he met Paul Gordan who introduced him to the theory of Abelian functions and to the
works of Bernhard Riemann. Later, their consequent joint work led to the publication
of the book Theorie der Abelschen Functionen, (Clebsch & Gordan 1866). Surrounded
by Alexander Brill, Ferdinand von Lindemann, Jacob Lüroth, and Max Noether, Cleb-
sch marked his entrance into the domain of Abelian functions by introducing geometrical

6The paper was published in the fourth volume of the Mathematische Annalen, a journal which did
include figures at that time (see for instance the 1873 volumes 6 and 7).

7We will see that, in the absence of figures, Clebsch often explicitly qualified as “geometric” some of the
objects or points of view he introduced.

8The biographical elements of this paragraph come from two obituaries of Clebsch, (Neumann 1872;
Brill et al. 1873).

9The authors of the obituary (Brill et al. 1873) divide Clebsch’s research into six domains: mathematical
physics; calculus of variations and the theory of first-order partial differential equations; the theory of curves
and surfaces; the study of Abelian functions and their applications to geometry; representations of surfaces;
invariant theory. According to these authors, the order of this list approximately reflects the chronology
of Clebsch’s interests, (Brill et al. 1873, p. 2).

10Clebsch was notably in competition with Richard Dedekind. The circumstances of his recruitment are
described in (Dugac 1976, p. 132). About Clebsch’s staying in Giessen, see (Lorey 1937, pp. 71-77).
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points of view and by conversely explaining how to apply these transcendental functions
to geometry—the corresponding research gave rise to a great memoir entitled Ueber die
Anwendung der Abelschen Functionen in der Geometrie, (Clebsch 1864).11 From this re-
search, Clebsch notably brought out the notion of the genus of an algebraic curve and his
work on this notion led him to study birational transformations of curves and surfaces. As
a result, he engaged into a research domain which would then interest him until the end
of his life: the theory of representations of surfaces.12 Nearly at the same time, Clebsch
launched into invariant theory, a domain which became absolutely major for him.

Succeeding to Riemann in Göttingen, Clebsch obtained a professorship there in 1868,
and some of his Giessen students consequently followed him.13 The next year, the first
volume of the Mathematische Annalen appeared, a journal that he and C. Neumann co-
founded. Clebsch’s research was then almost entirely dedicated to the theory of representa-
tions of surfaces and the theory of invariants. His paper on the geometrical interpretation
of the quintic equation was elaborated during this period of his life, and we will see that
Clebsch did largely use elements coming from both these theories in this paper.

On November 7 1872, Clebsch suddenly died from a case of diphtheria. At the age of 39,
Clebsch left over 100 publications14 as well as a great mathematical fame: considered “as
one of the leading German mathematicians” of the time, having “the gifts, the multiple
talents, and the working power,”15 he was a correspondent to the Academies of Berlin,
Munich, Milan, Bologna, and Cambridge, a member of the London Mathematical Society,
and was in close relation with mathematicians like Cayley, Luigi Cremona, and Camille
Jordan among others.

1.2 A forgotten paper on the quintic equation

The paper of Clebsch on the quintic equation seems to have been completely forgotten by
the historiography of the subject.16 Indeed, this historiography usually presents the story

11This research is partially sketched in (Gray 1989, pp. 367-369) and (Houzel 2002, pp. 184-186). The
book has been qualified by Igor Shafarevich as the “Zeugnis der Geburt der algebraischen Geometrie” and
the “erster Schrei des Neugeborenen.” (Shafarevich 1983, p. 136). Further, see also (Rowe 1989, p. 188),
where David E. Rowe talks about the “fledging school at Giessen that specialized in algebraic geometry
and invariant theory.”

12In modern terms, to represent an algebraic surface on the plane means to find a birational map between
this surface and the projective plane.

13Clebsch was again in competition with Dedekind, (Dugac 1976, pp. 133-134).
14A list of Clebsch’s publications can be found in (Brill et al. 1873, pp. 51-55). It counts 107 items,

among which four books he is (one of) the author(s) and two books he edited on the basis of works of
Plücker and of Carl Gustav Jacob Jacobi. The other publications essentially divide into papers in the
Journal für die reine und angewandte Mathematik (from 1856 to 1869) and in the Mathematische Annalen
(from 1869 on).

15Quotations of Hesse dated 1862 and reported in (Dugac 1976, p. 133). Other similar comments from
other mathematicians can be found in this reference and the ones that were quoted above. Other statements
also emphasize Clebsch’s pedagogical qualities.

16For reasons that will be explained below, the paper does appear in a few historical works related on
the geometry of cubic surfaces.
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of the quintic in the 19th century with the following sequence of names and contributions.17

In 1826, Niels Abel proved the impossibility to solve the general quintic equation with
the help of radicals, thus answering to a question that had remained unsolved for a long
time. Then, in 1858, Charles Hermite presented a solution of the quintic using elliptic func-
tions, based on the Bring-Jerrard form x5 +x+a = 0 and on the possibility of lowering the
modular equation of level 5 that had been stated by Évariste Galois in 1832 and proved by
Enrico Betti in 1853. Approximately at the same time as Hermite, Francesco Brioschi and
Leopold Kronecker also solved the quintic with the help of the theory of elliptic functions,
yet in a different manner from Hermite. From the middle of the 1870s on, Felix Klein
eventually did his research on the icosahedron, a research meant to present a geometrical
synthesis of the works on the quintic (including those of Hermite, Kronecker, and Brioschi).
This led to the publication in 1884 of the famous Vorlesungen über das Ikosaeder und die
Auflösung der Gleichungen vom fünften Grade, (Klein 1884), a publication which closes
the standard history of the quintic equation.18

As stated above, the paper of Clebsch on the quintic was essentially about presenting
a geometric interpretation of the approaches of Hermite and Kronecker, which singularly
resembles to the program that Klein later carried out in his Vorlesungen über das Ikosaeder.
Yet it is Klein’s research that has been retained in the historiography to the detriment of
others, as illustrates well the only (vague) hint to the paper of Clebsch that I found: “In the
1870s, this subject [of the quintic equation] was extremely trendy and we will not review
all the works that have been devoted to it, due to A. Clebsch, P. Gordan, L. Kiepert for
instance, before F. Klein took an interest in it.”19 This presentation of Klein’s approach
as a major landmark outshining some of the preceding research will be discussed in my
concluding remarks at the light of the analysis of Clebsch’s mathematics in which we are
about to enter now.

1.3 Structure of Clebsch’s paper

Clebsch’s article on the geometrical interpretation of the quintic divides in one introduction
and 19 sections which can be grouped as follows. Sections 1 to 4 present the principles of
the geometric interpretation and its application on one first example, that of the quartic
equation. In the sections 5 to 9, Clebsch investigates geometrical properties of a certain
quintilateral and associated curves. Next, he explains the interest of the study of a special
curve C = 0 (section 10), and this study is carried out in sections 11 to 14. Section 15
contains the geometrical interpretation of the Tschirnhaus transformation. In sections 16

17See for instance (Bottazzini 1994; Houzel 2002, ch. vii; Kiernan 1971).
18About the research on the icosahedron, see (Gray 2000). Moreover, some historians have analyzed in

detail the works of Hermite and Kronecker on the quintic: see (Goldstein 2011) and (Petri & Schappacher
2004) respectively. I will come back at length on these historical researches in the rest of the paper.

19“Dans les années 1870, ce sujet était extrêmement à la mode et nous ne passons pas en revue tous les
travaux qui y ont été consacrés, par A. Clebsch, P. Gordan, L. Kiepert par exemple, avant que F. Klein
ne s’y intéresse.” (Houzel 2002, p. 80).
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to 18 Clebsch analyzes a special cubic surface he calls the “diagonal surface.” In section
19, he eventually sums up the interpretation of Hermite’s method and explains how to
interpret Kronecker’s one.

Like many papers of Clebsch, this one is a very rich text which can sometimes be hard
to follow in reason of the sibylline writing, the technicality of some mathematical points,
or the proliferation of results that do not serve the general argument but that Clebsch does
not signal as such—parenthetically, the presence of such subsidiary results was announced
as from the introduction of the paper: “With this [the geometrical overall view on the
quintic], we get at the same time a number of purely geometrical results which seem fit to
show the fecundity of the developed ideas and methods.”20 In what follows, I have tried
to bring out the main lines of Clebsch’s article with enough explanations for the reader
to understand what it is about without being overwhelmed by a multitude of details. In
particular, almost each of the subsidiary results will be passed over. Finally, to clarify the
presentation I will here and there change the order of exposition defined by Clebsch.

2 General principles of Clebsch’s geometrical interpretation

2.1 Quadratic substitutions

Clebsch started by considering an algebraic equation f(λ) = 0 of degree n,21 and introduced
what he called a “substitution” or a “transformation” of the unknown λ: it is a rational
function

ξ =
ϕ(λ)

ψ(λ)
,

meant to act on the equation f(λ) = 0, so that ξ designates the new unknown.22 If
we note λ1, . . . , λn the roots of the starting equation, then the roots of the transformed
equation are ξ1 = ϕ(λ1)/ψ(λ1), . . . , ξn = ϕ(λn)/ψ(λn). In other words, if the factors of the
first equation are noted (λ− λi), then those of the transformed one are (ϕ(λi)− ξψ(λi)).
Clebsch qualified the transformation ξ = ϕ/ψ as “linear” when the polynomials ϕ and ψ
are of degree 1, and as “superior” otherwise.

Clebsch referred to two prior papers on such transformations, respectively due to Gor-
dan and to himself, (Gordan 1870; Clebsch 1871d). These papers related to invariant
theory; in their introduction, both Gordan and Clebsch recalled that the effect of linear
transformations on algebraic forms was well-known, unlike the effect of superior transfor-

20“Dabei ergiebt sich zugleich eine Reihe bemerkenswerther rein geometrischer Resultate, welche geeig-
net scheinen, die Fruchtbarbeit [sic] der entwickelten Anschauungen und Methoden darzuthun.” (Clebsch
1871b, p. 285).

21Throughout the whole paper, Clebsch did not comment on the nature of the coefficients (which could
be rational, real, or complex for instance).

22Therefore, Clebsch’s “transformations” are not transformations of the plane or the space like rotations
or translations. Moreover, the significance of what he called “substitutions” differs from that of “substitu-
tions” like in the phrase “the theory of substitutions,” which refers to what is now called “permutations.”
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mations. Nevertheless, they also mentioned works of Hermite in which the French math-
ematician had introduced such transformations in his approach of the general equation of
degree 4, (Hermite 1858b).

In the article we are studying, a special kind of superior transformations was at the core
of Clebsch’s considerations, namely the “quadratic” substitution ξ = ϕ/ψ with ϕ and ψ of
degree 2. For such a substitution, Clebsch introduced scalar numbers x1, . . . , y3 such that

ϕ(λ) = y1 + λy2 + λ2y3 and ψ(λ) = x1 + λx2 + λ2x3.

With this notation the factors of the transformed equation are given by

(y1 − ξx1) + λi(y2 − ξx2) + λ2i (y3 − ξx3).

Clebsch’s “geometrical interpretation”23 then consists in considering x1, x2, x3 and y1, y2, y3
as homogeneous coordinates of two points x and y of the plane; these points were then
called by Clebsch the “base points” of the substitution. Thus, to a quadratic substitution is
associated a line (xy), and the roots ξi of the transformed equation correspond to the points
of intersection of (xy) with the n lines defined by the equations z1 + λiz2 + λ2i z3 = 0.24

According to Clebsch, this geometrical interpretation allowed “a clearer view on the essence
of the quadratic substitution.”25

Clebsch then remarked that the n lines z1 + λiz2 + λ2i z3 = 0 are tangent to the conic
of equation z22 − 4z1z3 = 0,26 and he summed up the whole:

The set of all the equations into which a given equation is transformed by a quadratic
substitution corresponds to the systems of points of intersection of the lines of a plane
with the sides of a given multilateral, of which the sides touch a conic.27 (Clebsch
1871b, p. 286)

In other words, the given equation f(λ) = (λ− λ1) . . . (λ− λn) = 0 defines a multilateral
23“Aber an diese Darstellung knüpft sich eine geometrische Interpretation”. (Clebsch 1871b, p. 285).
24Here, z1, z2, z3 designate the homogeneous coordinates of the plane. The line (xy) has the parametric

equations 
z1 = y1 − ξx1
z2 = y2 − ξx2
z3 = y3 − ξx3.

Its intersection with the line defined by z1 + λiz2 + λiz
3 = 0 is obtained for the parameter ξ satisfying the

equality (y1− ξx1) +λi(y2− ξx2) +λ2
i (y3− ξx3) = 0. According to the above, this parameter is the root ξi

of the transformed equation.
25“Wir erhalten hierdurch eine deutlichere Einsicht in das Wesen der quadratischen Substitution”. (Cleb-

sch 1871b, p. 286).
26To check this point, one can substitute z1 = −λiz2 − λ2

i z3 in the equation of the conic and see that
one gets a (homogeneous) second degree equation having a discriminant equal to 0. This means that the
line z1 = −λiz2 − λ2

i z3 has a contact of order 2 with the conic, hence the tangency.
27“Die Gesammtheit aller Gleichungen, in welche eine gegebene durch eine quadratische Substitution

übergeht, entspricht den Schnittpunktsystemen der Geraden einer Ebene mit den Seiten eines gewissen
Vielseits, dessen Seiten einen Kegelschnitt berühren.”

7



made of the n lines z1 + λiz2 + λ2i z3 = 0, all tangent to one conic; to a quadratic sub-
stitution ξ = ϕ(λ)/ψ(λ) corresponds a line (xy); to the roots of the transformed equation
correspond the points of intersection of (xy) with the polylateral.

Note that Clebsch used the term Vielseit that I translated by multilateral and not by
polygon which I reserved for the translation of Vieleck—in the following pages, I will talk
about quadrilaterals, quintilaterals, or n-laterals according to the number of sides. Indeed,
Clebsch made a difference between these two objects that are dual one another: a polygon
is a set of points (that are joined by lines) whereas a multilateral is a set of lines (that
intersect in points).

Next, Clebsch investigated the effect of a change of the base points in his geometrical
interpretation of quadratic substitutions. The result is that if a first substitution is given
by two base points x, y, choosing two other points x′, y′ on the line (xy) as new base points
corresponds to a supplementary linear substitution. More precisely, if the coordinates of x′

and y′ are given by

x′i = αxi + βyi and y′i = γxi + δyi,

then the linear substitution in hand is the homography28

ξ′ =
γ + δξ

α+ βξ
.

This means that if a first quadratic substitution associated to a line of the plane has been
operated on an equation, then choosing other base points on this line is equivalent to the
operation of a linear substitution on the new equation. For Clebsch,

It is very important [...] that the characteristic elements that are implied in the
superior transformation appear separately from the potential influence of a subsequent
linear transformation; and this property gives to the transformation in hand and to
its geometrical meaning all their value.29 (Clebsch 1871b, p. 287)

In the rest of the article, Clebsch endeavored to find quadratic substitutions that can
transform a given equation into an equation of which some invariants vanish. To follow
him, I first suggest a paragraph meant to recall some mathematical facts on algebraic
forms and invariants. This paragraph is based on two books, (Clebsch 1872; Clebsch
1876). The former is Clebsch’s book on the theory of binary forms, Theorie der binären
algebraischen Formen; the latter, entitled Vorlesungen über Geometrie, was posthumously

28In Clebsch’s paper, one reads ξ′ =
α+ βξ

γ + δξ
, which seems erroneous.

29“Es ist von grosser Wichtigkeit, dass hierdurch die in der höhern Transformation liegenden eigen-
thümlichen Elemente gesondert erscheinen von dem Einfluss, welchen eine nachträgliche lineare noch aus-
üben kann; und diese Eigenschaft giebt der vorliegenden Transformation und ihrer geometrischen Deutung
vorzugsweise ihren Werth.”
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edited by Ferdinand Lindemann on the basis of Clebsch’s lectures on geometry, which
included developments on invariant theory.

2.2 Forms and invariants

Let f(x1, x2) be a binary form of degree n, i.e. a homogeneous polynomial of degree n.
Such a form can always be written as follows:

f(x1, x2) = a0x
n
1 + na1x

n−1
1 x2 +

n(n− 1)

2
a2x

n−2
1 x22 + · · ·+ anx

n
2 .

If a linear transformation is meant to act on f by changing x1, x2 into ξ1, ξ2, then one
can write f(x1, x2) = f ′(ξ1, ξ2), where the coefficients a′i of f

′ are functions of the coeffi-
cients ai and of the coefficients of the linear transformation. Then an invariant of f is a
homogeneous polynomial expression I(a1, . . . , an) such that for all linear transformation,
one has

I(a′1, . . . , a
′
n) = rkI(a1, . . . , an),

where r is the determinant of the linear transformation and k is an integer depending
only on this transformation. The degree of the invariant I is its degree when seen as a
polynomial.

Take for instance the quadratic form f(x1, x2) = a0x
2
1 + 2a1x1x2 + a2x

2
2. By a mere

computation, one sees that the action of the linear transformation x1 = α11ξ1 + α12ξ2

x2 = α21ξ1 + α22ξ2

on f induces the equality f(x1, x2) = a′0ξ
2
1 + 2a′1ξ1ξ2 + a′2ξ

2
2 in which the new coefficients

are a′0 = a0α
2
11 + 2a1α12α21 + a2α

2
22, etc. Now, one can easily check that

a′0a
′
2 − a′1

2
= r2(a0a2 − a21),

which plainly means that the discriminant ∆ = a0a2 − a21 is an invariant (of degree 2) of
the quadratic form f .

Let us now turn to the symbolic notation of forms and invariants that had been in-
troduced by Aronhold from 1849 onwards and that Clebsch had adopted and used since
the end of the 1850s.30 For a binary form f(x1, x2) = a0x

n
1 + na1x

n−1
1 x2 + · · ·+ anx

n
2 , the

symbolic notation consists in writing f = (b1x1 + b2x2)
n, or even shorter f = bnx, and in

stipulating that in the development of the binomial (b1x1 + b2x2)
n, one has to formally

30For some points of a history of the theory of invariants (including this symbolic notation), see (Fisher
1966; Parshall 1989). Besides, (Kung & Rota 1984) contains a modern presentation, along with a modern
justification, of the symbolic notation and the subsequent computations.
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substitute each of the terms bn1 , b
n−1
1 b2, . . . , b

n
2 by a0, a1, . . . , an respectively. The use of the

letter b being purely formal, it is possible to use any other letter instead or even at the same
time. For instance, one can write f = bnx = cnx, the substitution rules being also true for
the c coefficients, i.e. cn1 = a0, c

n−1
1 c2 = a2, etc. The interest of the symbolic notation of a

binary form lies in the possibility to use it to define invariants of the form. The elementary
constituents of these invariants are symbolic determinants noted (bc) = b1c2− b2c1; raising
this expression to the power n gives

(bc)n = bn1 · cn2 − n · bn−11 b2 · c1cn−12 + · · ·+ (−1)n · bn2 · cn1 .

and one has to replace all the formal symbols bn−k1 bk2 and cn−k1 ck2 by ak.
To illustrate this, take again the quadratic form f(x1, x2) = a0x

2
0 + 2a1x1x2 + a2x

2
2,

symbolically noted f = b2x = c2x. Since (b1x1 + b2x2)
2 = b21x

2
1 + 2b1b2x1x2 + b22x

2
2, the rules

of symbolic substitutions are
b21 = a0

b1b2 = a1

b22 = a2

and similarly


c21 = a0

c1c2 = a1

c22 = a2.

We now consider the symbolic expression (bc)2 of which the expanded expression is

(bc)2 = b21c
2
2 − 2b1b2c1c2 + b22c

2
1.

Applying the symbolic substitution rules,31 one gets (bc)2 = a0a2 − 2a1a1 + a2a0 = 2∆.
Since ∆ = (bc)2/2, this proves that the discriminant of the quadratic form f is a rational
function of symbolic expressions (bc).

In fact, in a paper published in 1861, Clebsch had proven that every invariant of a
binary form (of any degree) can be symbolically represented as a linear combination of
products of symbolic determinants (bc), (Clebsch 1861). In other words, Clebsch had
shown that every invariant I of a binary form f = bnx = cnx can be written

I =
∑

C
∏

(bc),

where the coefficients C are constants numbers.
At that time, Clebsch used a geometrical interpretation of binary forms which can

be explained as follows. Such a form f(x1, x2) defines n (possibly infinite) ratios x1/x2
thanks to the equation f(x1, x2) = 0. Each of these ratios can then be seen as a point on a

31It is important to emphasize that one can only replace what is replaceable: for instance, b1 does not
appear alone in the substitution rules, and hence cannot be substituted—the only coefficients implying b1
that can be replaced are b21 and b1b2.
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projective line with coordinates (x1 : x2)—Clebsch would talk about “series of points” on
a line. Reciprocally, n points on a projective line define a binary form of degree n, so that
one can talk about the invariants of a series of points on a line.

To end this section, it should be added that Clebsch also knew a symbolic calculus
for ternary forms, i.e. forms depending on three variables. These forms are symbolically
denoted by f = (b1z1 + b2z2 + b3z3)

n or f = bnz = cnz and again, there are symbolic deter-
minants (bcu) defined by

(bcu) =

∣∣∣∣∣∣∣∣∣∣
b1 c1 u1

b2 c2 u2

b3 c3 u3

∣∣∣∣∣∣∣∣∣∣
.

The rules of symbolic substitution (for instance in order to compute (bcu)n) are exactly
the same as those for binary forms: one has to expand as much as possible and then to
replace everything that can be replaced.

2.3 Making invariants vanish

Let us get back to Clebsch’s article on the geometrical interpretation of the quintic. An
equation f(λ) = 0 of degree n being given, Clebsch explained that it is possible to associate
a binary form f(x1, x2) by homogenizing the equation, i.e. by replacing the unknown λ

by x1/x2 and then by multiplying the whole by xn2 . In this way, one can talk about the in-
variants of the equation f(λ) = 0, which are the invariants of the binary form f(x1, x2). An
important point is that the invariant character of them always refers to linear transforma-
tions. So if a quadratic substitution is operated on an equation, its invariants can change.
As stated above, this was essential to Clebsch who wanted the transformed equations to
have certain invariants equated to zero.32

Clebsch erected as a theorem the following geometrical interpretation:

All the lines that cut a given n-lateral [coming from an algebraic equation,] in such a
way that the system of points of intersection has a vanishing invariant [J ] of degree
χ, envelop a curve (J = 0) of class χn/2. [...] The curve J = 0 has the sides of the
n-lateral as χ-times tangents.33 (Clebsch 1871b, p. 291)

I do not want to transcribe Clebsch’s demonstration of this theorem but I will explain its
content, which will be useful to understand the rest.

32This idea of looking for superior transformations making invariants vanish had already been brought
to light by Hermite a few years earlier, in the cases of the equations of degree 4 and 5, (Goldstein 2011,
pp. 248-249). For the fifth degree in particular, after some research Kronecker and Brioschi had made,
Hermite had elaborated an extensive memoir in which he had sought to unify the diverse approaches of
the quintic through invariant theory, (Hermite 1865-66).

33“Alle Geraden, welche ein gegebenes n-Seit so schneiden, dass für das Schnittpunktsystem eine gewisse
Invariante χten Grades verschwindet, umhüllen eine Curve (J = 0) der Classe χn/2. [...] Die Curve J = 0
hat die Seiten des n-Seits zu χfachen Tangenten.”
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Firstly, remember that one can talk about the (homogeneous) coordinates of a line
in the plane: they are the coefficients u1, u2, u3, defined up to a common multiplier, that
appear in an equation u1z1+u2z2+u3z3 = 0 of the line. The diverse curves of the plane can
then be described by these so-called tangential coordinates instead of the usual punctual
coordinates z1, z2, z3. For instance, to define a curve by the equation u21 +u2u3 = 0 means
to define it as the envelop of all the lines whose coordinates satisfy this equation—in other
words, a line of the plane is tangent to the curve if and only if its coordinates satisfy the
equation. This equation is then called a tangential equation, and its degree is the class of
the curve.

As for Clebsch’s theorem, let f = anx = bnx be the symbolic notation of the binary form
associated to the given algebraic equation of roots λ1, . . . , λn. As we saw, this equation
corresponds to a n-lateral of which the sides are respectively defined by z1+λiz2+λ2i z3 = 0.
The product of the left-hand side of these equations gives a ternary form in z1, z2, z3, of
degree n, symbolically noted f = anz = bnz .34

Take now a line of coordinates u1, u2, u3 and consider the system of its n points of
intersection with the n-lateral—in the geometrical interpretation, the line represents a
quadratic substitution and the system of points represents the transformed equation. Then
Clebsch’s result is that the quadratic substitutions making an invariant J =

∑
C
∏

(ab)

of the starting equation vanish correspond to the lines of which the coordinates satisfy35

J =
∑

C
∏

(abu) = 0,

being understood that this symbolic notation derives from that of the ternary form f .
This expression can be seen as a polynomial expression in u1, u2, u3, so that the equa-
tion J = 0 can be interpreted as the tangential equation of a curve. Therefore, a quadratic
substitution makes an invariant J vanish if and only if its representative line is tangent
to the curve J = 0. Further, Clebsch’s theorem specifies that if J is of degree χ, then the
curve J = 0 is of class χn/2 and has the sides of the n-lateral as χ-times tangents.

3 The example of the quartic equation

Following Clebsch, let us look at the example of the quartic equation to clarify all this. To
bring things into perspective, his order of exposition is here inverted: I begin by recalling
some results on the quartic equation that had been obtained by Hermite in the 1850s before
turning to the geometrical interpretation.36

34Clebsch used the letter f to designate both the binary form and this ternary form.
35Here again, Clebsch used the same letter J twice. On one hand, it designates an invariant of the binary

form f ; on the other hand, it denotes an invariant of the ternary form f .
36The article cited by Clebsch is (Hermite 1858b). Hermite’s research on algebraic equations of degree 4

is explained and discussed in (Goldstein 2011).
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Hermite had remarked that the every quartic equation of the form

x4 − 6Sx2 − 8Tx− 3S2 = 0 (1)

can be solved with the help of a special equation linked to the theory of elliptic func-
tions, namely the modular equation associated to the transformation of order 3 of elliptic
functions.37 The issue had then been to bring the general quartic equation into such a
form. Hermite had proceeded in two steps. The first one was to prove that an equa-
tion ax4 + 4bx3 + 6cx2 + 4dx + e = 0 of which the quadratic invariant i = ae− 4bc+ 3c2

vanishes can be brought into the form (1) thanks to a mere translation of the variable.
The second step was to show that every equation of degree 4 can be transformed into an
equation having its invariant i equal to zero. For that purpose, Hermite had found an
adequate polynomial transformation y = ϕ(x) of the unknown x.38 Further, Hermite had
cared to prove that the coefficients of this transformation could be expressed with the co-
efficients a, b, . . . , e of the starting equation through rational procedures and square roots.
In other terms, the coefficients of y = ϕ(x) imply the adjunction of square roots. The fact
that such irrationals (the adjoined roots) are of the second degree (they are square roots)
was important because it agreed with the solution of the quartic equation with radicals.39

Let us return to Clebsch’s treatment of the quartic equation. Clebsch used the sym-
bolic notation of the associated binary form f = a4x = b4x as well as that of its quadratic
invariant, i = (ab)4. As explained above, the quartic equation gives rise to a quadrilateral
in the plane, and Clebsch asserted that, up to a change of the plane coordinates, its sides
can be represented by the equations40

z1 + z2 + z3 = 0

−z1 + z2 + z3 = 0

z1 − z2 + z3 = 0

z1 + z2 − z3 = 0.

The product of the four left-hand sides of these equations, corresponding to the ternary
37Further explanations on the modular equation are given below, in the case of the quintic.
38Let us note that Clebsch’s use of rational transformations can be seen as a trace of his geometrical

approach, whereas Hermite’s use of polynomial transformations rather refers to an algebraic manner.
39Hermite’s attention on adjunctions of square roots refers to the incorporation in his research of elements

coming from Galois’ works. (Goldstein 2011, p. 250).
40To choose a projective frame of the plane is equivalent to choose a triangle of reference, of which the

sides become the axis of vanishing of the coordinates. To bring the equations of the sides of a quadrilateral
into the form announced by Clebsch, it is sufficient to choose the triangle formed by the three diagonals
of the quadrilateral as the triangle of reference (a quadrilateral is a set of 4 lines; these lines intersect in
six points and thus define three diagonals).
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form f representing the quadrilateral, is

f = z41 + z42 + z43 − 2z21z
2
2 − 2z22z

2
3 − 2z23z

2
1 .

Denoting it symbolically by f = a4z = b4z, Clebsch’s geometrical interpretation theorem
states that to find a substitution making i vanish is equivalent to find a tangent to the
curve of tangential equation i = (abu)4 = 0. In his memoir, Clebsch announced that this
equation is

i =
8

3
(u41 + u42 + u43 − u21u22 − u22u23 − u23u21) = 0.

To check this point, we have to make the expression (abu)4 explicit, so we first have to
find the substitution rules of the symbolic notation. Since

f = a4z = (a1z1 + a2z2 + a3z3)
4 = z41 + z42 + z43 − 2z21z

2
2 − 2z22z

2
3 − 2z23z

2
1 ,

we expand the expression (a1z1 + a2z2 + a3z3)
4:

(a1z1 + a2z2 + a3z3)
4 = a41z

4
1 + a42z

4
2 + a43z

4
3+

+4a31a2z
3
1z2+4a31a3z

3
1z3 + 4a1a

3
2z1z

3
2 + 4a32a3z

3
2z3 + 4a1a

3
3z1z

3
3 + 4a2a

3
3z2z

3
3+

+ 6a21a
2
2z

2
1z

2
2 + 6a22a

2
3z

2
2z

2
3 + 6a23a

2
1z

2
3z

2
1+

+ 12a21a2a3z
2
1z2z3 + 12a1a

2
2a3z1z

2
2z3 + 12a1a2a

2
3z1z2z

2
3 .

The comparison of the two preceding expressions now yields the following substitution
rules: 

a41 = a42 = a43 = 1

a31a2 = a31a3 = a1a
3
2 = a32a3 = a1a

3
3 = a2a

3
3 = 0

a21a
2
2 = a22a

2
3 = a21a

2
3 = −1/3

a21a2a3 = a1a
2
2a3 = a1a2a

2
3 = 0.

Furthermore, as explained above, similar rules can be obtained by replacing at once all the
letters a by letters b.

Let us now turn to the symbolic determinant (abu). By definition, one has

(abu)4 =

∣∣∣∣∣∣∣∣∣∣
a1 b1 u1

a2 b2 u2

a3 b3 u3

∣∣∣∣∣∣∣∣∣∣

4

=
(
(a1b2 − a2b1)u1 + (a3b1 − a1b3)u2 + (a1b2 − a2b1)u3

)4
.

The rules of symbolic calculus indicate that we have to completely expand this power before
proceeding to the substitutions. For instance, in the expression of (abu)4, the coefficient
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of u41 is
a41b

4
2 − 4a31a2b1b

3
2 + 6a21a

2
2b

2
1b

2
2 − 4a1a

3
2b

3
1b2 + a42b

4
1,

which is, according to the substitution rules, equal to

1 · 1− 4 · 0 · 0 + 6 · (−1

3
) · (−1

3
)− 4 · 0 · 0 + 1 · 1 =

8

3
.

Doing the same for the coefficients of u31u2, u21u22, . . ., we do find the expression that Clebsch
had announced:

i =
8

3
(u41 + u42 + u43 − u21u22 − u22u23 − u23u21).

Clebsch then remarked that this expression can be factorized:

i =
8

3
(u21 + εu22 + ε2u23)(u

2
1 + ε2u22 + εu23),

the number ε being a primitive cubic root of unity. This factorization proves that the
curve i = 0 is made of the conics defined by the tangential equations u21 + εu22 + ε2u23 = 0

and u21 + ε2u22 + εu23 = 0 respectively.41 Clebsch then concluded:

With this, one can attach a geometrical clothing to the solution of the equation of
degree 4 like Hermite [...]42 did, (Hermite 1858b). This solution relies on the fact that
one can change, by a superior transformation, the biquadratic equation into another for
which i vanishes [...]. Indeed, one only needs to take the quadrilateral f = 0 associated
to the equation of order 4 and to build [the curve i = 0]. According the above, this
equation splits into 2 conics, which can be done with the help of a quadratic equation;
each tangent of such a conic then gives a biquadratic equation for which i = 0 and
which is thus solved by a pure cubic equation.43 (Clebsch 1871b, p. 296)

It is interesting to underscore that Clebsch had no care for effectiveness. Indeed, to ex-
plicitly find the quadratic substitution making i vanish is a point that was not mentioned—
this feature puts him in opposition to Hermite who always looked for effective procedures.
Besides, we see here that Clebsch’s “geometrical clothing” consisted in interpreting the
coefficients of his quadratic substitution and the invariants meant to vanish in terms of
lines and curves. So it was not about geometrically interpret elements like the transforma-
tion y = ϕ(x) that Hermite had used in his research. For Clebsch, Hermite’s contribution

41Let us recall that the degree of one of these equations is the class of the associated curve. Here we
have curves of class 2, which correspond to the curves of degree 2, i.e. conics.

42In this quotation, besides the works of Hermite, Clebsch also mentioned those of Gordan, (Gordan
1870). The latter had studied the vanishing of another invariant of the equation of degree 4.

43“Man kann hieran in geometrischem Gewande die Lösung der Gleichung 4ten Grades knüpfen, wie Her-
mite (Comptes Rendus t. 46. p. 961) und Gordan (Borchardt’s Journal Bd. 71, p. 164) dieselbe gegeben
haben. Diese Lösung beruht darauf, dass man die biquadratische Gleichung durch eine höhere Transfor-
mation in eine solche verwandelt, für welche i [...] verschwindet [...]. In der That braucht man nur das zu
der Gleichung 4ter Ordnung gehörige Vierseit f = 0 zu nehmen, und [die Curve i=0 zu bilden. Diese] Glei-
chung zerfällt nach dem Obigen in 2 Kegelschnitte, eine Zerlegung, welche mit Hülfe einer quadratischen
Gleichung ausgeführt wird; jede Tangente eines solchen Kegelschnittes mliefert dann eine biquadratische
Gleichung, für welche i = 0 und welche also durch eine reine cubische Gleichung gelöst wird.”
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rather lied in the fact that he had solved the quartic equation by proving that it was
possible to make its invariant i vanish (which in turn allowed to use the theory of elliptic
functions).

However, it was important to Clebsch to control the irrationals that are implied in his
geometrical interpretation: these irrationals must fit with the methods he interpreted. In
the case in hand, since the curve i = 0 is made of two conics, the geometrical interpretation
only brings in square roots (corresponding to the cubic root of unity ε); to find a tangent
to one of these conics then introduces no supplementary irrational.44 Hence the only
introduced irrationals were square roots, just like in Hermite’s approach.

4 The quintic equation

After the example of the quadrilateral, Clebsch came to the general equation of the fifth
degree. As I mentioned at the beginning of the paper, Clebsch referred to Hermite’s and
Kronecker’s researches on the subject. Let us here recall the main points of their works,
which will allow us to compare with Clebsch’s approach afterwards.45

These works were linked with the theory of transformation of elliptic functions, which
consists in searching y, `, and M in function of x and k, so that

dy√
(1− y2)(1− `2y2)

=
1

M

dx√
(1− x2)(1− k2x2)

.

When y is searched into the form y = U(x)/V (x) with U, V coprime polynomials of degree n
and n− 1 respectively, the transformation is said to be of order n. In that case, ` is linked
to k by an equation of degree n+ 1 called the modular equation; M is also linked to k by
an equation of degree n+ 1 called the multiplier equation.

In 1832, Galois had announced that if n is equal to 5, 7, or 11, the modular equation has
a reduced equation of degree n. This result, that had been stated without demonstration,
had been proven by Betti in 1853 with considerations of decompositions of the group of the
modular equation. In modern terms this group is PGL(2,Fn), which reduces to PSL(2,Fn)

after the adjunction of a square root. The lowering of the modular equation seen by Galois
then corresponds to the existence of a (non-normal) subgroup of PSL(2,Fn) of index n.

The special case n = 5 is the one on which Hermite had based his approach of the
quintic. The French mathematician had gone further than Betti by explicitly searching
the form of the reduced equation of degree 5 corresponding to the subgroup of index 5—the
results had been published in 1858, (Hermite 1858a). For this purpose, he had found a

44In modern terms, if a conic is given by the vanishing of a quadratic form, its tangents are obtained
thanks to the associated bilinear form. All these reflections appear very vaguely in Clebsch’s memoir.

45I will use (Goldstein 2011) for what is about Hermite and (Petri & Schappacher 2004) for Kronecker.
Also see (Gray 2000; Houzel 2002) where other approaches (including Brioshi’s) are described. Like
Clebsch, I will completely omit Brioschi’s contribution on the topic.
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function of the roots of the modular equation taking exactly 5 values under the action
of PSL(2,F5). These values z1, . . . , z5 were of the form zi = Φ(ω + 16i), where ω is the
quotient of the periods of the elliptic functions and Φ a function (of which the form was
explicitly known) depending of quantities linked to the same functions. An important
point was that these formulas give rise to series developments. Hermite had deduced from
these developments that the five zi are the roots of the equation

Φ5 − αΦ− β = 0, (2)

where α and β are quantities depending (in an explicit way) of quantities linked to the
elliptic functions. This equation of degree 5 is the reduced equation of the modular equa-
tion.

The relation with the general equation of the fifth degree came from its so-called “Jer-
rard form.”46 The mathematician George Birch Jerrard had indeed proved that the general
quintic can be brought into the form

y5 − y −A = 0 (3)

with the use of an adequate Tschirnhaus transformation y = a+ bx+ cx2 + dx3 + ex4, of
which the coefficients imply only square and cubic roots of the coefficients of the quintic.
To solve the quintic, Hermite had then identified the forms (2) and (3), and had thus
explicitly expressed the roots y of the latter in function of the roots zi of the former.47 In
this way, the equation of degree 5 was solved with the help of elliptic functions.

Kronecker’s research had been shared with Hermite in a letter of 1858, of which an
extract had then been published, (Kronecker 1858). Unlike Hermite though, Kronecker
neither used the Jerrard form of the quintic, nor based his approach on the modular
equation: instead, he considered the multiplier equation associated to the transformation
of order 5 of elliptic functions.

His starting point had been to consider a cyclic function

f = f(ν, x0, x1, x2, x3, x4)

depending on the roots x0, . . . , x4 of the quintic and of a parameter ν. In modern terms,
this means that f is unchanged under the action of a cyclic subgroup of the reduced group
of the quintic PSL(2,F5) ' A5. From f , Kronecker had exhibited five other cyclic func-

46One can also find the names “Bring-Jerrard form” or “Tschirnhaus-Jerrard form” as Clebsch would
write. See (Beauville 2012) for a modern point of view linking this form with the essential dimension of
the symmetric group S5.

47The equation Φ5 − αΦ − β = 0 can be brought into the form Ψ5 − Ψ − α−5/4β = 0 when
putting Φ = α1/4Ψ. The Jerrard form y5 − y − A = 0 being given, the next technical point is to find
elliptic functions giving rise to some constants α, β satisfying A = α−5/4β. This had been proven by
Hermite with the help of an equation of degree 4 with coefficients in Q[

√
5].
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tions f0, . . . , f4; the six functions f, f0, . . . , f4 then correspond to the six cyclic subgroups
of order 5 of A5. Since these functions are cyclic, the solution of the equation of de-
gree 6 on which they depend bring the quintic into a pure equation, i.e. an equation of the
form x5 = A, which is solvable with radicals. In other terms, once f is known, the roots xi
can be deduced from it with the help of radicals.

The equation on which f, f0, . . . , f4 depend is the one that Kronecker had linked to the
theory of elliptic functions. Indeed, he had indicated that it is possible to determine (with
the help of square roots) a parameter ν such that

f2 + f20 + f21 + f22 + f23 + f24 = 0.

Thanks to this condition, Kronecker had explicitly computed the form of the equation of
which the cyclic functions depend. More specifically, he had proven that the six functions
satisfy the equation

f12 − 10φf6 + 5ψ2 = ψf2,

where φ and ψ are rational functions of the coefficients of the quintic and of some square
roots. The equation in f had finally been linked to the multiplier equation, and Kronecker
had consequently expressed f, f0, . . . , f4 with the help of elliptic functions.

As I wrote earlier, after Kronecker and Brioschi completed their research on the quintic,
Hermite had sought a point of view which would unify the different approaches. He achieved
this through the theory of invariants, and in particular through the study of vanishing of
particular invariants, (Hermite 1865-66).

4.1 Jerrard form and C invariant

Let us now turn to Clebsch’s research. Clebsch gave a list of invariants and covariants48 of
the quintic, referring to works he and Gordan had done earlier, (Clebsch & Gordan 1867).
Among them, the most important for what follows is an invariant of degree 12 that Clebsch
noted C. Other invariants A,B and linear covariants α, δ also played a role, yet in a more
auxiliary way.49

Clebsch recalled that if the invariant C vanishes, then the equation of the fifth degree
can be brought into a Jerrard form by a linear substitution—as he specified himself, he
had published this result shortly before, (Clebsch 1871a). More precisely, Clebsch’s result

48A covariant of a binary form f(x1, x2) is a polynomial expression K(a0, . . . , an, x1, x2) implying the
coefficients of f and the variables x1, x2, such that for any invertible linear substitution acting on x1, x2, one
has K(a′0, . . . , a

′
n, ξ
′
1, ξ
′
2) = K(a0, . . . , an, x1, x2), the notations being those previously given. In particular,

a covariant is said to be linear when the variables x1, x2 are linearly implied.
49All these invariants and covariants were already listed in (Hermite 1865-66). A difference with Hermite

is that Clebsch defined the invariants and covariants by means of the symbolic notation. For instance,
denoting a quintic by f = a5z = b5z, he first defined a covariant i = (ab)4azbz and the invariant A was then
given by the symbolic relation A = (ii′)2.
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is that when the C invariant is zero, the linear substitution50

x =
δ −Bα
δ + B

2 α

has the effect of transforming the quintic into the equation

x5 − B

4A2
(5x+ 1) = 0,

which is “almost” a Jerrard form.
Basing himself on these previous results, Clebsch summed up the problem:

It is well-known that Hermite’s solution of the equations of the fifth degree is grounded
on a solution of the equation [in its Jerrard form] thanks to elliptic functions. Ac-
cording to the above, as soon as the C invariant of an equation of the fifth degree
vanishes, the equation is brought into this form and hence is solved in the Hermitian
sense. But if C is not zero for the given equation, then one can formulate the problem
of solving the equation of the fifth degree as follows: to bring, with the help of a su-
perior transformation, the equation into any other for which C vanishes. But in our
geometrical interpretation, this is nothing else than having to find any tangent to the
curve C = 0.51 (Clebsch 1871b, p. 318)

Clebsch also specified that such a tangent must be found with the help of square or cubic
roots, since the use of a Tschirnhaus transformation bringing the quintic into the Jerrard
form imply these kinds of radicals only.

He remarked further that once the tangent is found, it is possible to induce the supple-
mentary linear transformation

x =
δ −Bα
δ + B

2 α

by choosing adequate base points on this tangent. As we saw, this would then have the

effect to bring the starting equation into the form x5 − B

4A2
(5x+ 1) = 0.

Like in the case of the quartic equation, what is perceived by Clebsch as geometric is
here particularly clear: it is about replacing the search of a quadratic substitution by the
search of a tangent to a curve and of suitable points on this tangent. Moreover, we can see
that Clebsch considered the quintic solved “in the Hermitian sense” as soon as it has the

50Here, x is the new unknown, the starting one being implicitly contained in the variables of the covari-
ants α and δ.

51“Bekanntlich beruht Hermite’s Auflösung der Gleichungen 5ten Grades auf einer Lösung der Glei-
chung (14) mit Hülfe der elliptischen Functionen. Sobald die Invariante C einer Gleichung 5ten Grades
verschwindet, ist durch das Vorige die Züruckführung der Gleichung auf diese Form, also ihre Lösung
im Hermite’schen Sinne. Ist bei der gegebenen Gleichung aber C von Null verschieden, so kann man die
Aufgabe, die Gleichung 5ten Grades zu lösen, darin setzen: dass mittelst einer höheren Transformation die
Gleichung in eine solche mit verschwindendem C verwandelt werden soll. Aber in unserer geometrischen
Interpretation heisst dies nichts anderes, als dass irgend eine Tangente der Curve C = 0 gefunden werden
soll.” Clebsch’s emphasis.
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Jerrard form. Thus all the intermediate steps of Hermite’s method were completely left
out, and they were not geometrically interpreted a fortiori. Rather, the very possibility to
solve the Jerrard quintic with elliptic functions was accepted as such, and the geometrical
interpretation concerned what allowed these functions to enter the picture.

4.2 The curve C = 0

Aiming at finding a tangent to the curve C = 0, Clebsch extensively studied the latter and
determined its genus in particular.52 Let us recall that the genus of an algebraic curve is
an integer depending on its degree and on its possible singularities. More specifically, the
genus of a smooth curve of degree n is the number

p =
(n− 1)(n− 2)

2
,

and in the case of a singular curve, one has to deduct quantities depending on the number
and the nature of the singularities. The name Geschlecht, translated in English by “genus,”
is usually attributed to Clebsch; as written in our introduction, it appeared in his works
dated from the beginning of the 1860s, in which he had presented a way to apply Abelian
functions to geometry.53

In the case of the curve C = 0, Clebsch used a dual version of the genus formula
written above, based on the class of the curve instead of its degree. On one hand, since
the invariant C is of degree 12, Clebsch’s theorem of geometrical interpretation stated
that the curve C = 0 is of class 5 · 12/2 = 30. On the other hand, Clebsch proved that
this curve has 12 double inflection tangents, that is, 12 lines that touch the curve at two
different inflection points. From the knowledge of the class of C = 0 and the number
of double inflection tangents, Clebsch eventually computed the genus p of the curve and
found p = 4.

4.3 Completion of the first geometrical interpretation

This genus computation was important to Clebsch because it enabled him to deploy his
past research on birational maps54 to successively transform the curve C = 0. In this
process, a crucial point was the possibility to find a birational map between the projective
plane and any cubic surface, i.e. any algebraic surface defined by a polynomial equation
of degree 3. Such a possibility had been proven in a 1866 paper called Die Geometrie auf

52In the process Clebsch proved many intermediate results, as well as a large number of properties that
he did not exploit for his geometrical interpretation of the quintic.

53At that time, Cayley would rather talk about the “deficiency” of a curve. See (Dieudonné 1974; Gray
1989; Houzel 2002). Moreover, let us recall that a different notion of genus existed, coming from the theory
of algebraic forms as exposed in Gauss’ Disquisitiones Arithmeticae. On this point, see (Lemmermeyer
2007).

54A rational map is a map defined almost everywhere and rationally transforming coordinates; a bira-
tional map is an invertible rational map of which the inverse is also rational.
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den Flächen dritter Ordnung, where Clebsch talked about the “representation of a cubic
surface on the plane,” (Clebsch 1866). He had constructed a birational map defined on the
whole plane excepted for six points placed in general position and called the fundamental
points of the representation—to each of the fundamental points corresponds not a point,
but an entire line contained in the cubic surface. Clebsch had also studied how the curves
of the plane and the curves on the surface transformed through the representation.55 In
particular, Clebsch had shown that each line joining two fundamental points and each
conic going through five of these points are transformed into a line contained in the cubic
surface. This yielded twenty-seven lines, which is the total number of lines contained in
every (smooth, complex) cubic surface.56

These results were applied to the curve C = 0 in the following way. First, since this
curve is of genus 4, Clebsch proved that it is birational to a plane curve of order 6 with 6

double points,57 say Γ. Since the curve C = 0 was described by tangential coordinates,
he asserted that this birational transformation maps each tangent of C = 0 to a point
of Γ. Next, Clebsch considered the six double points of Γ as the fundamental points of the
representation of a certain cubic surface on the plane containing Γ: in this representation,
the curve Γ is sent on a space curve γ which is the complete intersection of the cubic with
a certain quadratic surface.58 Clebsch then projected on the plane E “this quadric surface
from one of its points (which can be found with the help of just one quadratic equation) in
the usual way”59; this means that he stereographically projected the quadric from one of
its points. According to Clebsch, this projection would send the space curve γ on a plane
curve Γ′ of order 6 with 2 triple points.

Hence there exists a transformation associating to each tangent to the curve C = 0 a
point of the curve Γ′, and this transformation is almost birational since a square radical is
introduced by the choice of a point on the quadric.

Now, let us recall that Clebsch’s aim was to find a tangent to the curve of C = 0

with the help of square and cubic roots. For that purpose, Clebsch wrote that the two
triple points of Γ′ “split” with the help of a quadratic equation and that any line passing
through one of them intersects Γ′ in three additional points “which split by means of a

55See (Lê 2013, pp. 59-60) for deeper explanations on Clebsch’s results and proofs.
56The existence of 27 lines on every smooth, complex cubic surface had been stated and proved by Cayley

and Salmon, (Cayley 1849; Salmon 1849). See (Lê 2015c) for elements of a history of the twenty-seven
lines theorem, and especially its role in the encounters of groups, algebraic equations, and geometry in the
second half of the 19th century.

57A curve of order 6 with 6 double points is a curve of genus (6 − 1)(6 − 2)/2 − 6 = 4, which is equal
to the genus of C = 0. However, it must be underlined that the equality of the genera of two curves does
not imply the birational equivalence of the curves (whereas the reciprocal is true). Clebsch proved this
birational equivalence by an approach which could be nowadays qualified as a computation of dimensions
of spaces of curves.

58A paragraph of the paper (Clebsch 1866) in which Clebsch had proven the existence of plane repre-
sentations of cubic surfaces is devoted to such space curves.

59“[Man bildet] diese Fläche 2ter Ordnung sodann von einem ihrer Punkte (dessen Auffindung nur die
Lösung einer quadratischen Gleichung fordert) auf die gewöhnliche Weise ab”, (Clebsch 1871b, p. 327).
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cubic equation.” He concluded that “to each of these points finally corresponds a tangent
to C = 0”60, and these words marked the end of his first geometrical interpretation.

To recapitulate, this interpretation was grounded on the fact that a quintic can be
brought into a Jerrard form (and hence can be solved “in the Hermitian” sense) when its C
invariant vanishes. In Clebsch’s geometrical terms, it was thus about finding any tangent
to the curve C = 0 with the help of square and cubic roots, which was achieved thanks to
the transformation of C = 0 into another curve Γ′. It finally remained to select a point
on the latter, which corresponds to a tangent to C = 0. Note that Clebsch used thrice
quadratic and cubic equations “splitting” points to control the introduced irrationals and
ensure they are square or cubic roots.61

Clebsch did not stop there. He then expressed his will to find “the formulas of the
transformation and so the analytic solution of the question.” For this he went through a
second interpretation, implying the Tschirnhaus transformation itself.

4.4 Geometrical interpretation of “the Tschirnhaus method”

According to Clebsch, this geometrical interpretation of the Tschirnhaus method was “not
so direct”62 as the previous one concerning the quadratic substitution. He recalled that
this method consists in considering the transformation

ξ = a+ bλ+ cλ2 + dλ3 + eλ4, (4)

where a, b, c, d, and e should be chosen so that the coefficients of the second, third, and
fourth powers in the quintic f(λ) vanish. The roots of the transformed equation being
noted ξ1, . . . , ξ5, these conditions are equivalent to

5∑
i=1

ξi = 0,

5∑
i=1

ξ2i = 0,

5∑
i=1

ξ3i = 0.

Replacing all the ξi thanks to the equality (4), these conditions can be rationally expressed
with the coefficients a, . . . , e and with symmetric functions of λ1, . . . , λ5, which are also

60“Jedem dieser Punkte endlich entspricht eine Tangente von C = 0.”(Clebsch 1871b, p. 327).
61Such “splitting” equations are part of a bigger family, that of “geometrical equations,” which are

algebraic equations associated to the determination of diverse geometrical configurations. For Clebsch
among other mathematicians, these equations participated to an intuitive, geometrical understanding of
the theory of substitutions, especially during the period 1868-1872, (Lê 2015a). See also (Lê 2015b), where
the special organization of the activities involving geometrical equations is characterized as a cultural
system.

62“Auch diese Jerrard’sche Modification der Tschirnhausen’schen Methode ist, wenngleich nicht so direct
wie die quadratische Substitution, einer Art geometrischer Deutung fähig”. (Clebsch 1871b, p. 328).
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rational functions of a, . . . , e. This gives a system
Φ(a, b, c, d, e) = 0

Ψ(a, b, c, d, e) = 0

X(a, b, c, d, e) = 0,

where Φ, Ψ, X are homogeneous polynomial functions of order 1, 2, 3 respectively.
As Clebsch explained, the linear function Φ allows to consider a, b, c, d, e as pentahedral

coordinates of space which means that it allows to linearly eliminate one of these quan-
tities so that the remaining four can be seen as homogeneous coordinates of space. The
equations Ψ = 0 and X = 0 then become the respective equations of a quadric and a cubic
surface. Their intersection is a space curve of order 6, and to each of its points corresponds
an adequate Tschirnhaus transformation.

To establish a link with his first geometrical interpretation, Clebsch next sought to find
a quadratic substitution having the same effect than a Tschirnhaus transformation: with
the previous notations, it is equivalent to find quadratic polynomials ϕ(λ) and ψ(λ) such
that

ϕ(λi)

ψ(λi)
= a+ bλi + cλ2i + dλ3i + eλ4i

holds for every root λi. It is thus sufficient to find ϕ and ψ such that for any λ,

ϕ(λ) = (a+ bλ+ cλ2 + dλ3 + eλ4)ψ(λ) + (p+ qλ)f(λ),

the scalars p and q being arbitrary constants. Putting as above

ϕ(λ) = y1 + λy2 + λ2y3 and ψ(λ) = x1 + x2λ+ x3λ
2,

and noting f = α+ βλ+ γλ2 + δλ3 + ελ4 + ζλ5, the searched condition is equivalent to

y1 = ax1 + pα

y2 = ax2 + bx1 + pβ + qα

y3 = ax3 + bx2 + cx1 + pγ + qβ

0 = bx3 + cx2 + dx1 + pδ + qγ

0 = cx1 + dx2 + ex1 + pε+ qδ

0 = dx3 + ex2 + pζ + qε

0 = ex3 + qζ.

This system allows to rationally determinate x1, . . . , y3 as functions of a, b, . . . , e, or con-
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versely to express a, . . . , e as rational functions of x1, . . . , y3. The formulas thus obtained
connect the two geometrical interpretations of Clebsch: to a point of pentahedric coordi-
nates (a, b, c, d, e) in the interpretation of the Tschirnhaus method corresponds a couple
of points x, y in the interpretation of the quadratic substitution, and reciprocally. Fur-
ther, both interpretations make appear a space curve of order 6, which I here note C ,
and which is the complete intersection of a cubic surface and a quadric surface. But
now, the advantage—that is what Clebsch announced—is that these surfaces have equa-
tions: Φ = Ψ = 0 and Φ = X = 0, and the representation formulas can be deduced from
the previous system.

More precisely, the Cramer formulas yield

ρx1 = M1 σy1 = N1

ρx2 = M2 σy2 = N2

ρx3 = M3 σy3 = N3,

where M1, . . . , N3 are homogeneous functions of a, b, . . . , e and where ρ, σ are constants.
These expressions of x1, x2, x3 on one hand, and of y1, y2, y3 on the other hand, are the
formulas of representation on the plane of the two surfaces Φ = Ψ = 0 and Φ = X = 0

respectively. Hence to each point (a, . . . , e) of the space curve rationally corresponds two
points x, y such that the line (xy) is tangent to C = 0. One can finally deduce the formulas
of representation of the curve C = 0:63

τu1 = M2N3 −M3N2

τu2 = M3N1 −M1N3

τu3 = M1N2 −M2N1.

In other words, these formulas rationally associate to a point (a, . . . , e) of the space curve C ,
a line of coordinates u1, u2, u3 which is tangent to C = 0. As a result, in order to find a
tangent to C = 0 with square and cubic radicals, it is sufficient to find a point of C with
square and cubic radicals.

Clebsch settled this last point using again “geometrical equations”:

If one considers, with Hermite, the equation

x5 − ax− b = 0 (1)

as being directly solved by elliptic functions, then it only matters to bring the quintic
into this form. So we only need to determine any point of the space curve of order 6,

63For that purpose, remember that a line u1z1 + u2z2 + u3z3 = 0 contains two points (x1 : x2 : x3)
and (y1 : y2 : y3) if and only if (u1 : u2 : u3) = (x2y3−x3y2 : x3y1−x1y3 : x1y2−x2y1). Let us underscore
that did not make explicit any of the formulas of representation.
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which is done by intersecting a generator of the surface Ψ = 0 with the diagonal
surface [X = 0]. For that purpose, a quadratic equation and a cubic equation are to
be solved; the first one to find a generator of the surface of the second order; the other
one to determine the intersection points of this surface with the diagonal surface. The
point of the space curve of order 6 found this way gives a tangent to C = 0, and it
has been seen how the system of the points of intersection on this tangent leads to the
form (1). If one knows the points of intersection of this system, then the sides of the
quintilateral are split and the equation of the fifth degree is solved.64 (Clebsch 1871b,
p. 341)

These sentences ended Clebsch’s geometrical interpretation of Hermite’s solution of the
quintic.

Here again, a special attention was given to the irrationals which are introduced in
the different geometrical steps and controlled by “geometrical equations.” Our analysis of
the second geometrical interpretation also confirms what we stated earlier about the first
one: Clebsch did not use Hermite’s steps of the solution of the quintic by the means of
elliptic functions, as the search for an explicit writing of reduced equation of order 5 of the
modular equation and of its roots. On the contrary, he considered that this solution was
assured once and for all, as soon as the Jerrard form is found.

As previously written, Clebsch also wanted to geometrically interpret Kronecker’s
method of solving the quintic. To transcribe his approach, I will now be briefer, the
ideas being of the same vein as the ones I have been depicting until now. The first step is
actually connected to what we just saw, since it is about examining the properties of the
surface Φ = X = 0.

4.5 The diagonal surface

In order to investigate more closely the surface defined by the equations Φ = X = 0, Clebsch
changed the pentahedric coordinates. Indeed, he came back to ξ1, ξ2, . . . , ξ5, linked by the
relation

∑
ξi = 0, so that the equation of the cubic surface was then

∑
ξ3i = 0.

The planes ξi = 0 are the five faces of the pentahedron of the cubic surface65; each
of them is cut by the others in a quadrilateral. Each of these quadrilaterals have three

64“Wenn man nach Hermite die Gleichung x5 − ax − b = 0 (1) als durch elliptischen Functionen
unmittelbar gelöst betrachtet, so kommt es nur darauf an, die Gleichung 5ten Grades in diese Form zu
bringen. Man hat dann nur einen belibiegen Punkt der Raumcurve 6ter Ordnung zu ermitteln, was geschieht,
indem man eine Erzeugende der Fläche Ψ = 0 mit der Diagonalfläche schneidet. Dazu ist eine quadratische
und eine cubische Gleichung zu lösen; erstere, um eine Erzeugende der Fläche 2ter Ordung zu finden; die
andere, um die Durchschnitte derselben mit der Diagonalfläche zu bestimmen. Der gefundene Punkt der
Raumcurve 6ter Ordnung giebt eine Tangente von C = 0, und wie das Schnittpunktsystem auf dieser zu
der Form (1) führt, ist in §11. gezeigt worden. Kennt man die Schnittpunkte dieses Systems, so sind auch
die Seiten des Fünfseits getrennt, die gegebene Gleichung 5ten Grades gelöst.”

65In 1851, James Joseph Syvester had asserted that every cubic form F (x, y, z, w) = 0 can be brought
to the form F = a1z

3
1 + a2z

3
2 + a3z

3
3 + a4z

3
4 + a5z

3
5 where z1, . . . , z5 are linear forms in x, y, z, w satisfying

the condition z1 + z2 + z3 + z4 + z5 = 0. The pentahedron of the cubic surface defined by F = 0 is the set
of the five planes respectively defined by zi = 0.
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diagonals, that Clebsch proved to be some of the twenty-seven lines of the cubic surface.66

For this reason, Clebsch called the surface X = 0 the “diagonal surface of the pentahedron”
or shorter the “diagonal surface.”67

Therefore, for this particular cubic surface, there are 15 lines that are “immediately
known”68 once the faces of the pentahedron are known: these are the previously de-
scribed diagonals, which are the mutual intersections of the pentahedron faces. Clebsch
found the 12 missing lines using again the sides of the pentahedron. To be more accu-
rate, he proved that if ω is a primitive fifth root of unity, all the points of space having
for pentahedral coordinates (ωα1 , ωα2 , . . . , ωα5) or the conjugates (ω−α1 , ω−α2 , . . . , ω−α5),
where (α1, α2, . . . , α5) is any permutation of {1, 2, . . . , 5}, are points belonging to the
diagonal surface, and he further showed that all the lines joining these points two by
two are completely included in the surface.69 Now, there are 12 points of coordinates
(ωα1 , ωα2 , . . . , ωα5)—some permutations α give the same points—which yields the 12 miss-
ing lines. From that, Clebsch finally deduced a result on another “geometrical equation,”
namely the twenty-seven lines equation:

The equation of degree 27 on which the 27 lines of the surface depend only demands,
for the diagonal surface, the solution of the equation of degree 5 occurring for the
pentahedron, as well as the determination of fifth roots of unity.70 (Clebsch 1871b, p.
333)

Through a study of the incidence relations existing between the lines of the diagonal
surface, Clebsch also came to the conclusion that one of the double-sixes of the surface71

is “rationally known.” Afterwards, he considered a representation of the diagonal surface
corresponding to one of the two halves of this rational double-six. He finally proved,
thanks to the incidence relations of the twenty-seven lines of the diagonal surface that
the six fundamental points of the representation can be assembled into ten Brianchon

66For instance, he proved that on the face ξ5 = 0, the equations of the diagonals are of the type
ξ1 + ξ2 = 0

ξ3 + ξ4 = 0

ξ5 = 0.

It is then easy to check that each quintuplet (ξ1, . . . , ξ5) satisfying these conditions also satisfy the equa-
tion ξ31 + · · ·+ ξ35 = 0 of the surface.

67“Ich werde diese specielle Fläche deswegen die Diagonalfläche des Pentaeders nennen.” (Clebsch 1871b,
p. 333). Afterwards, Clebsch shortened the name and wrote “die Diagonalfläche.”

68“Man sieht, dass auf dieser Fläche sofort 15 der 27 Geraden bekannt sind.”(Clebsch 1871b, p. 333).
69To check this point, remark that the line joining (ωα1 , . . . , ωα5) and (ω−α1 , . . . , ω−α5) is parameterized

by (χ, λ) 7→ (χωα1+λω−α1 , . . . , χωα5+λω−α5). A simple computation proves that these coordinates satisfy
the equation

∑
ξ3i = 0.

70“Die Lösung der Gleichung 27ten Grades, von welcher die 27 Geraden der Fläche abhängen, erfordet
bei der Diagonalfläche nur die Lösung der beim Pentaeder auftretenden Gleichung 5ten Grades und die
Bestimmung von fünften Wurzeln der Einheit.”

71A double-six is a set of twelve lines among the twenty-seven contained in a cubic surface, satisfying
particular incidence relations. In his paper on the plane representation of cubic surfaces, Clebsch had
proven that the lines corresponding to the six fundamental points build the half of a double-six.
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hexagons: this means that these six points can be joined one another in ten different ways
so that they form hexagons of which the diagonals are concurrent.

In the note published in the Nachrichten von der Königlichen Gesellschaft der Wissen-
schaften und der Georg-Augusts-Universität that had announced the results of his paper
on the quintic, Clebsch underscored the difficulty to clearly understand the configuration
of the 27 lines of a cubic surface. He also stressed that the diagonal surface offers a simpler
case and thus wished for the creation of a concrete model of the surface:

For the actual representation of the system of the 27 lines of a surface of the third
order, which form a very entangled system, the diagonal surface offers a simple and
easy-to-construct example which exhibits with no major modification the largest part
of the properties of the general system. A production of handy models of this surface
should therefore be recommended.72 (Clebsch 1871c, p. 342)

I do not want to go deeper in the details of the production of models, but the reader should
note that plaster models of the diagonal surface have indeed been produced afterwards
(see figure 1).73 So Clebsch’s work of the quintic made appear a particular surface when
interpreting coefficients as coordinates of space, but the research on the quintic was not
supported by a visual tool. On the contrary, the process of constructing of a model was
nourished by this research and the actual building has been realized later.

Figure 1 – Plaster model of the diagonal surface. Source: (Fischer 1986).

72“Für die wirkliche Darstellung des Systems der 27 Geraden einer Oberfläche dritter Ordnung, welche ein
sehr verwickeltes System bilden, giebt die Diagonalfläche ein einfaches und leicht construirbares Beispiel,
welche zugleich die grösste Zahl der Eigenschaften des allgemeines Systems ohne zu grosse Modificationen
aufweist. Es dürfte sich daher zu Herstellung bequemer Modelle diese Fläche besonders empfehlen.”

73See (Lê 2015c, pp. 64-69). About models of surfaces in the second half of the 19th century, see
also (Polo-Blanco 2007; Rowe 2013). The scattered appearances of Clebsch’s article on the quintic in
histories of geometry that I mentioned in my introduction are linked to this diagonal surface.
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4.6 Interpretation of Kronecker’s approach

As explained earlier, Kronecker had proven that the quintic can be brought into a pure
equation z5 = A thanks to the multiplier equation (of degree 6) associated to the transfor-
mation of order 5 of elliptic functions. Clebsch carried out his geometrical interpretation
of this approach in two steps. The first one was to find an equation of degree 6 of which
the resolution brings the quintic into a pure equation; the second one was to prove that
this equation of degree 6 is analogous to the multiplier equation.

For the first point, Clebsch based his approach on the study of a curve associated
to a certain invariant B of the quintic. He proved that this curve breaks down in two
curves B1 = 0 and B2 = 0, each of them having six double tangents. Then he demonstrated
that if one uses one of these double tangents as the basis for a quadratic substitution, the
quintic transforms into a pure equation. Consequently, it remained to show that the
“splitting equation” of the six double tangents to B1 = 0 is the same as the multiplier
equation.

For that purpose, Clebsch started by proving that the splitting equation of the six
tangents is analogous to the equation splitting the six vertices of the rational Brianchon
hexagon found in the representation of the diagonal surface. Again, invariant properties
were put to the front: referring to the paper (Clebsch 1871a), Clebsch indicated that if an
equation of degree 6 has two of its invariants (noted a and c) equal to zero, then it can
be transformed into the multiplier equation thanks to a linear substitution. It was thus
about proving that this was the case for the equation splitting the six vertices. Clebsch
symbolically noted this equation ϕ = α6

u = 0, a ternary form in u1, u2, u3 of which each
factor represents one of the vertices of the hexagon.74

Clebsch had then the idea to translate by duality the principle of geometrical interpre-
tation of the beginning: an equation ϕ = α6

u = β6u = 0 defines a hexagon; to any quadratic
substitution acting on this equation corresponds a point of the plan, and the substitutions
making an invariant a = (αβ)6 vanish correspond to the points belonging to the curve
of punctual equation a = (αβx)6 = 0; moreover, the vertices of the hexagon are double
points of this curve.

Now, in the present case, since the six vertices have been taken as the fundamental
points of the representation of the diagonal surface, each curve containing these points
with mutliplicity 2 correspond to a curve of order 6 contained in the diagonal surface,
namely a curve which is the complete intersection of the diagonal surface with a certain
quadric surface.75 Just like above, one can find the points of this curve thanks to quadratic
and cubic equations. Therefore, such points yield points of the plane which correspond
to quadratic substitutions making the invariant a vanish. Finally, Clebsch proved that

74In tangential coordinates (u1 : u2 : u3), the linear equation z1u1 +z2u2 +u3z3 = 0 represents the point
of punctual coordinates (z1 : z2 : z3).

75Once again, this result had already been proven in (Clebsch 1866).
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in the case of a Brianchon hexagon, the vanishing of the invariant a implied that of the
invariant c, which thus completed the geometrical interpretation of Kronecker’s method.

Here, nothing from what Kronecker had done to prove the connection between the mul-
tiplier equation and the solution of the quintic even appears in Clebsch’s interpretation—
this obliteration seems even more radical when compared to the case of the interpretation
of Hermite’s approach, where at least the crucial Jerrard form prominently appeared in the
reasoning of Clebsch. But just like in the Hermitian case, the geometrical interpretation
went through a use of invariants which established the connection between the quintic and
the multiplier equation.

5 A glimpse at Clebsch’s geometry, in the shadow of the
icosahedron

The interpretation of the method of Kronecker closed the paper of Clebsch, and the latter
concluded: “So, really all the elements of the solution of the equations of the fifth degree
are here grouped and linked in a geometrical image.”76

Clebsch thus asserted to have put together everything connected to the solution of the
quintic. However, even a glance at the (cursory) chronology sketched in the introduction
of the present paper proves that, besides the missing intermediate steps of Hermite and
Kronecker, other points are lacking: in particular, the names and the contributions of Abel,
Galois, Betti, or Brioschi do not appear in Clebsch’s article. How can this be explained?
Firstly, we saw that Clebsch took for granted Hermite’s approach, that is, the possibility to
solve the quintic with elliptic functions as soon at it has the Jerrard form. In other words,
elliptic functions were plainly accepted by Clebsch as a way to express the solutions of the
quintic; as such, there was no need for him to reconsider the issue of solving the quintic
with radicals and hence to mention Abel. Moreover, we saw that Clebsch did not discuss
the intermediary steps of Hermite’s approach like the (crucial) one consisting in forming
a reduced equation of the modular equation. Therefore the contributions of Galois and
Betti, which are linked to the existence of this reduced equation, may have been cast out
of the picture because they were seen as transitional elements in Hermite’s solution of the
quintic. Let us also add that beside this solution with elliptic functions, Clebsch omitted
another facet of the contribution of Hermite: the one where the latter offered an unifying
picture of the works of himself, of Kronecker, and of Brioschi with help of the theory of
invariants.

Apart those missing names and contributions, other remarkable absentees from the
article of Clebsch are worth a comment. These absentees are mathematical objects that
one could have expected to find in a 1871 paper on the quintic equation, namely groups

76“So finden sich denn wirklich alle Elemente der Auflösung der Gleichungen 5ten Grades hier in einem
geometrischen Bilde zusammengefasst und verbunden”, (Clebsch 1871b, p. 345).
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of substitutions.77 Now, this observation may partially explain why Clebsch’s geometrical
interpretation of the quintic has been forgotten by the historiography. Indeed, the tradi-
tional history of algebraic equations (at least after Galois’ works) has been constructed
in a large part through the retrospective prism of group theory.78 Clebsch elaborated his
research on the quintic at the very beginning of the 1870s, a period during which the theory
of algebraic equations underwent sharp changes because some other works insisted more
and more on groups—for instance, Camille Jordan’s celebrated Traité des substitutions et
des équations algébriques was published in 1870, just before the paper of Clebsch. The
absence of groups in this paper thus made it out of accordance with the new disciplinary
tendencies of the time. Since these tendencies have later been used to select what should
be kept in the history of algebraic equations, it could explain why Clebsch’s contribution
eventually disappeared from the picture.

Another possible reason of the oblivion of Clebsch’s paper in the historiography bears
upon Felix Klein’s 1884 Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen
vom fünften Grade. Similarly to Clebsch’s one, this work consisted in exposing the theory
of the quintic equation within a geometrical frame. Nevertheless Klein’s approach was
different from Clebsch’s, for it was grounded on the interpretation of the five roots of the
quintic as coordinates of the 3-dimensional space, and on the isomorphism between their
group of substitutions and the group of space transformations leaving a regular icosahedron
unaltered. Some of the elements that Clebsch developed in his paper on the quintic do
appear in Klein’s book, but they are treated in diverse ways. For instance, the idea to
interpret the conditions

∑
ξi =

∑
ξ3i = 0 as the equations of a cubic surface is not imputed

to Clebsch, but the latter is referred to for the mere study of this particular surface. In
other words, Clebsch is not mentioned for his general method of geometrical interpretation,
but for technical tools that eventually appear as disconnected from the quintic.79 Doing
so, Klein gave the impression that the only geometrical interpretation of the quintic was
his own—this maneuver is also particularly flagrant in the chapter on the history of the
quintic equation, where Klein completely eluded Clebsch’s contribution. Since it is Klein’s
research on the icosahedron that eventually survived in the historiography as the geometric
approach of the quintic, one thus understands why Clebsch remained invisible with his
research to the topic.80

77Groups of transformations are not to be found in Clebsch’s article either. More generally, there are
neither groups of substitutions, nor groups transformations in all the publications and manuscripts of
Clebsch that I read. In fact, some passages of his correspondence indicate that Clebsch had difficulties to
understand these objects. See (Lê 2015b, p. 18).

78The effects of this prism on the reception of Galois’ works themselves have been thoroughly analyzed
in (Ehrhardt 2012).

79For the mentions of the diagonal surface, see (Klein 1884, pp. 166, 218, 226). Moreover, let use note
that the article of Clebsch is cited as an inspirational source in (Klein 1871). In this paper, which is cited
in the Vorlesungen über das Ikosaeder, Klein expressed for the first time the general idea to represent roots
of an equation and their substitutions by points of the space and associated linear transformations.

80The conclusions of this paragraph and the preceding one match with the fate of Hermite’s research
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The main objective of my paper was to see how Clebsch used geometry to cope with an
algebraic problem. As we saw, geometry appeared through many objects and techniques:
coefficients of quadratic substitutions as well as coefficients of the Tschirnhaus transforma-
tions were interpreted as coordinates of lines, curves, or surfaces; the vanishing of invariants
were linked to conditions of tangencies; the study of curves and surfaces implied particu-
lar associated points or lines, genus computation, and representations of surfaces; finally,
the appearing irrationals were geometrically controlled with the help of “geometrical equa-
tions.” These objects and techniques, which were not accompanied by any figure, any
diagram, or any concrete surface model, formed the material of the “geometrical clothing”
of the theory of the quintic that Clebsch wanted to sew.

Does this geometrical clothing provide a clearer, more intuitive frame for the theory of
the quintic equation? Of course, the possible answers to this question depend on when and
whom it is asked: the modern reader, unused with all the ways of doing we described above,
may still be skeptical. However, we see by contrast that the constituents of the arsenal
that Clebsch deployed throughout his paper are tools that he (and his close colleagues)
perceived as geometric and intelligible. Excavating the article of Clebsch was meant to
discuss the diverse facets that geometry can have. It led us to unveil and understand parts
of the research of this almost forgotten mathematician, yet presented by some of his pairs
as one of the “greatest representative” of “the German algebraico-geometric science” of his
time.81
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