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1. Introduction

“We ‘big picture’ people rarely become historians,” proclaims the 6-year-old
boy Calvin after answering to his history test question on the significance of
the Erie Canal: “To the cosmic sense, probably nil.” [Watterson 1996, p. 13].
Choosing an appropriate spatiotemporal scale to put an historical event in
perspective is indeed a smart way to escape a sticky school situation, but more
virtuous reasons may also lead one to embed an event of the past into a bigger
picture, a more sensible canvas than the whole universe being then adopted.

For instance, when investigating the history of a mathematical object, a
common approach is to start by locating a definition of this object, which is
chosen according to certain criteria and is used as a reference point for the rest
of the inquiry. Drawing a bigger picture, then, may mean figuring out why and
how the object was defined at the time. It may also mean understanding how
it circulated afterwards, or from what it originated, two avenues which come
within the scope of reconstituting the future and the past of the object.

In such reconstruction processes, the issue of identifying the researched
object is crucial. The act of recognizing this object, possibly under the garments
of transformed or earlier versions, and of establishing connections between such
occurrences, indeed, is what founds the writing of a corresponding narrative.
The pitfall of anachronistic identifications must therefore be avoided, so as not
to produce pictures whose temporal extent and historical consistency would be
dubious.

To rely on traces left by past mathematicians is an obvious solution, which
still requires to be carefully reflected upon. In the case of the future of an
object, a possibility to cope with the identification problem is to track this
object thanks to features such as its name, its usual notation, or the references
to the author who is credited for having defined it. On the contrary, one has
to proceed a bit differently when trying to look backwards in time, since the
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issue is find footprints of something that does not exist yet, in the strict sense
of the term.

This does not mean that investigating the past of an object is a vain question
or a necessary impasse. Mathematical objects do not come from nowhere. They
are often introduced to address specific problems which have their own histories,
they enter into preexisting theories, they can be the outcome of mechanisms
of reworking of other objects, and their name and notation may have already
been used in related situations. But locating such elements and using them to
build genealogies must be handled with caution, a particularly acute danger
being to end up with illusory long-term histories.1

My aim in this chapter is to tackle such matters in the case of the objects
that are the genera of algebraic curves, by offering and discussing concrete
proposals for reconstituting their past.

In accordance with the previous lines, a point of reference must first be fixed.
The chosen one consists in the definitions given by the German mathematician
Alfred Clebsch in two papers published in 1865 in Journal für die reine und
angewandte Mathematik, [Clebsch 1865b,a]. Although they are not formulated
in the exact same way, these definitions perfectly match, and there is no reason
for me to treat them differently in respect with the present issue. One of them
reads as follows:

The class of Abelian functions that is connected with an algebraic curve
of the nth order is determined by the number p = n−1·n−2

2 if the curve
has no double point and no cusp, and, in the 63rd volume of this journal,
I have given a number of results which rest on this remark. [...] Instead
of classifying the algebraic curves in orders, and making subdivisions
in them according to the number of double points and cusps that they
contain, one can classify them into genera according to the number p;
in the first genus are thus the curves for which p = 0, in the second one
those for which p = 1, etc. Hence the different orders appear reciprocally
as subdivisions of the genera [...].2 [Clebsch 1865b, p. 43]

The genera defined by Clebsch are thus categories in a classification of algebraic
curves, i.e. curves that can be defined by a polynomial equation. They are
defined through the value of a number p coming from the theory of Abelian

1On this issue, see [Goldstein 1995, 2019], from which many of my reflections stem.
Other works on the history of objects or theorems influenced me, such as [Sinaceur 1991;
Brechenmacher 2010; Ehrhardt 2012].

2“Die Classe von Abelschen Functionen, mit welcher eine algebraische ebene Curve nter

Ordnung zusammenhängt, wird durch die Zahl p = n−1·n−2
2 bestimmt, wenn die Curve keine

Doppel- und Rückkehrpunkte besitzt, und ich habe im 63ten Bande dieses Journal pag. 189
eine Reihe von Resultaten angeführt, welche sich auf diese Bemerkung stützen. [...] Statt
die algebraischen Curven nach Ordnungen einzutheilen, und in diesen Unterabtheilungen zu
machen nach der Anzahl der Doppel- und Rückkehrpunkte, welche dieselben aufweisen, kann
man dieselben in Geschlechter eintheilen nach der Zahl p; zu dem ersten Geschlecht also alle
diejenigen für welche p = 0, zum zweiten diejenigen, für welche p = 1, u.s.w. Dann erscheinen
umgekehrt die verschiedenen Ordnungen als Unterabtheilungen in den Geschlechtern”.
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functions and given by the formula p = (n−1)(n−2)
2 − d, where n is the order

of the considered curve3 and d is an integer whose value depends on the
singularities on the curve.

Before proceeding, let me recall that only a few years after 1865, Clebsch
and his contemporaries designated the number p itself as the genus of an
algebraic curve, a practice that has persisted until today. However, such a shift
in meaning is not easy to locate with precision and does not seem to have been
accompanied by any precise (re)definition. I will thus neglect this phenomenon,
my aim being anyway to discuss issues related to the reconstitution of the past
of an object from a given point in time.

As is clear from the above quote, Clebsch’s 1865 definition of the genera
involve two mathematical domains, which appear together with hints at some
pieces of their history: on one hand, the theory of algebraic curves, associated
with the traditional classification in orders, and, on the other hand, the theory
of Abelian functions, the past of which surfaces through a citation to an earlier
paper of Clebsch, [Clebsch 1864b]. In what follows, we will see that these
two facets correspond to two historical threads that have remained essentially
distinct from one another before 1865, in the sense that they involve different
mathematicians and mathematical contents, have their own timelines, and
their own kinds of historical continuities and coherence.

More remarkable, perhaps, is the fact that these two threads also correspond
to two manners of investigating the past of the genera. Indeed, one customary
way of gaining a reasoned understanding of this past is to start with Clebsch’s
two 1865 articles, consider the publications that are cited therein, select those
where the number p appears in one way or another, and start the process again
with these publications. This allows to see p in a few texts published between
1865 and 1857, which corresponds to Bernhard Riemann’s famous memoir on
Abelian functions, [1857], and to recognize other versions of this number in
earlier publications, in a sense that will be explained below. All these texts
relate to the topic of Abelian functions, and, while only a handful of them
involve algebraic curves, none mention any object called “genus.”

An alternative way of doing consists in starting from a large set of publica-
tions related to a whole mathematical domain, and searching there elements
that are relevant for the purpose. For example, when considering a large
corpus made of texts on algebraic curves and dated before 1865, several notions
of genera of algebraic curves appear, contrary to anything connected to the
number p. Similarly, one could try to use a corpus on Abelian functions to spot
publications that involve the number p in one way or another. This exercise
yields the majority of the works found otherwise by the citation process, and
it turns out to be quite perilous to add new texts: as show the first works,
mathematicians of the time sometimes worked with what they saw as particular

3The order of a curve is the degree of its defining equation. As can be seen in the above
quote, the term “order” also designated the category made of the curves of a given degree.
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values of (earlier versions of) p, such as 1, which corresponds to the case where
the Abelian functions are elliptic integrals. Hence, in the absence of any trace
such as citations or a designation in the natural language – the number p is not
called by any name –, it seemed too hazardous to select texts where the number
1 could be interpreted as having a relevant role in the history of the genera.
Thus I chose to stick to recognition processes supported by the explicit traces
that are the citations and the identity of the name “genus,” which guarantees
more solid foundations.

The next two sections are devoted to each of the mentioned historical
threads, which correspond to tracking backwards the number p and the curve
category called “genus,” respectively. In both cases, I first make more explicit
the processes of corpus formation and comment briefly on them. Then I present
the corresponding narratives and analyze them in view of the “big picture”
issue, insisting in particular on the historical complexity of each situation and
on related historiographical questions. The concluding section finally compares
these two pictures and reflects on what would be one unified big picture of the
past of the genera of curves.

2. Tracking a number

2.1 Formation of the corpus

As explained above, the corpus considered in this section is obtained by selecting
the papers that are cited in the two 1865 articles by Clebsch and where p can
be found, and by repeating the operation from the obtained references. This
process has been performed three times. The reason to this is that a fourth
layer only adds texts that deal exclusively with elliptic functions, a situation
which more complicated to handle with respect to the issue of recognizing p
through particular values.

The corpus thus gathered is made of 29 texts by 13 authors. These texts
have been published over a century, between 1766 and 1865, although most of
them date from after the mid-1820s. They are represented, together with their
explicit4 citation links, in Figure 1.

As this graph immediately suggests, the situation is quite entangled, and
cannot be reduced to a linear sequence of texts nicely articulated with one
another and going from one chronological boundary to the other. That said,
there exist other features, which cannot be guessed from the appearance of
the graph and contribute to the complexity of the picture. On one hand,
the citations themselves are of different kinds, some being precise technical
borrowings while others acknowledge previous works that must be surpassed,

4Implicit references are important to take into account, too, but may be much more
difficult to grasp. An example will be seen below, in the case of [Jacobi 1832].
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Figure 1: Graph of explicit citations between the texts of the corpus on
Abelian functions.
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for example,5 and they do not necessarily concern p directly. On the other
hand, delving into the texts and focusing on how the number p is involved
reveals a variety of thematic threads, of which some are absent from certain
texts while others may coexist in given publications.

For reasons of space, I cannot describe all the texts of the corpus and
all their links. I will thus confine myself to a selection that illustrates the
above-mentioned phenomena concerning the number p. This selection is
made of texts which form an apparently continuous chain of citations, with a
limited number of ramifications. It contains the two 1865 papers by Clebsch
where the genera of curves are defined and the 1864 memoir of the same
that is cited therein, [Clebsch 1864b, 1865b,a], Riemann’s memoir on Abelian
functions, [Riemann 1857], as well as texts by Carl Weierstrass [1854, 1856],
Georg Rosenhain [1851], Carl Gustav Jacob Jacobi [1832], and Niels Henrik
Abel [1826/1841, 1828]. I will describe these texts chronologically, concentrating
on the occurrences of (earlier versions of) p, on Abel’s addition theorem and
the inversion problem, and on the connections between the texts.6

2.2 Local descriptions...

The first text in our chain is the broad memoir that Abel wrote and sent to
the French Academy of Science in 1826, but was published only posthumously,
in 1841, [Abel 1826/1841]. It is part of the corpus because both Abel himself
and Jacobi mentioned the 1826 version in published papers. The memoir was
devoted to what would later be called Abelian functions, that is, functions “of
which the derivatives can be expressed by the means of algebraic equations, all
the coefficients of which are rational functions of one and the same variable.”7

Such a function was denoted by

ψ(x) =
∫
f(x, y) dx,

where f is a rational function and y is a function of x defined implicitly by a
polynomial equation χ(x, y) = 0. Abel presented these functions as generaliza-
tions of rational and elliptic integrals. These integrals, indeed, correspond to
the case where χ(x, y) = y2 − p0(x) for a polynomial p0 of degree 1 or 2, or
3 or 4, respectively. They were taken as examples in the last section of the

5On the need to examine carefully the role of the citations and, more generally, on their
use in the history of mathematics, see [Goldstein 1999].

6Almost all the selected texts have been analyzed in other historical works, without
however focusing on the facets that interest me. See for instance [Gray 1989] or [Houzel 2002],
as well as other references that will be given below. Furthermore, my main objective here is
historiographical, which is not the case of such past research.

7“[Les fonctions] dont les dérivées peuvent être exprimées au moyen d’équations algébriques,
dont tous les coefficients sont des fonctions rationnelles d’une même variable”, [Abel 1826/1841,
pp. 176–177].
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memoir, together with the case where p0 is of degree 5 or 6, which leads to
hyperelliptic integrals.8

The main result in Abel’s memoir was the addition theorem. It was
introduced as encompassing the known theorems according to which the sum
of rational integrals is a rational integral, and that the sum of elliptic integrals
is an elliptic integral whose argument is determined algebraically in function of
the given data.9 One form of the addition theorem given by Abel states that if
ψ(x1), . . . , ψ(xα) are α values of an Abelian function ψ, there exist an integer
µ and an algebraic-logarithmic function v of quantities associated with the xi,
such that10

ψ(x1) + · · · + ψ(xα) = v − (ψ(xα+1) + · · · + ψ(xµ)).

The number µ−α corresponds to what would coincide with p decades later, at
least under some conditions on the equation χ(x, y) = 0. Abel highlighted that
this number is “very remarkable,”11 and he devoted many pages to investigate it.
In particular, in the final examples of the paper, Abel found that µ−α = 0, 1 or
2 for rational, elliptic, or hyperelliptic integrals, respectively, [Abel 1826/1841,
pp. 256–260].

The lack of response of the French Academy of Sciences to the submission
of his 1826 memoir prompted Abel to write an article that would be published
shortly after in Crelle’s Journal für die reine und angewandte Mathematik, [Abel
1828]. In the introduction, Abel first stated the general addition theorem,
referring to manuscript of 1826. Then he explained that his present aim was
to prove the theorem in the case of general hyperelliptic integrals

ψ(x) =
∫

r(x)√
R(x)

dx,

where r is a rational function and R a polynomial.12 In fact, for some interme-
diary results, Abel was led to consider integrals having the specific form∫

δ0 + δ1x+ · · · + δm−2x
m−2√

R(x)
dx,

8More generally, hyperellptic integrals correspond to χ(x, y) = y2 −p0(x) with p0 of degree
> 4. Abel did not use the phrase “hyperelliptic integrals.” The terminology was not settled
at the time, and the corpus even allows to follow part of its evolution. Nevertheless, I will
elude this issue for the sake of simplicity.

9The theorem on elliptic integrals is usually attributed to Leonhard Euler, including by
several authors in the corpus, as will be exemplified below.

10Abel also showed how to replace the sign − by a sign +, and how to extend the theorem
so as to treat linear combinations of values ψ(xi) with rational coefficients. On this addition
theorem and on other results that have been called “Abel’s theorem,” see [Kleiman 2004].

11“Dans cette formule le nombre des fonctions [ψ(xα+1), . . . , ψ(xµ)], est très-
remarquable.” [Abel 1826/1841, p. 210].

12With the 1826 notations, it corresponds to χ(x, y) = y2 −R(x) and f(x, y) = r(x)
y

.
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with R(x) of degree 2m − 1 or 2m. Retrospectively, one can see in this
formula the general expression of the integrals of the first kind associated
with χ(x, y) = y2 −R(x), that is, integrals that remain finite everywhere – a
related fact is that the numerator of the integrated fraction depends on m− 1
coefficients.

Further, these integrals helped Abel prove the addition theorem: if R is of
degree 2m − 1 or 2m, and if x1, . . . , xµ1 , x′

1, . . . , x
′
µ2 are any variables, there

exist algebraic functions y1, . . . , ym−1 of them, such that

ψ(x1)+ · · ·+ψ(xµ1)−ψ(x′
1)−· · ·−ψ(x′

µ2) = v+ε1ψ(y1)+ · · ·+εm−1ψ(ym−1),

where v is an algebraic-logarithmic function and the ε are ±1. In particular,
and although Abel did not write it explicitly, comparing this formulation of the
theorem with the 1826 version shows that µ− α = m− 1 in the present case.

While the memoir of 1826 could not be read by most mathematicians
before 1841, the version published in Crelle’s journal did circulate. Even if
Jacobi did not cite the latter explicitly in his paper belonging to our corpus,
the many attributions to Abel of results that are contained in it leaves little
doubt on the fact that he drew upon it.13 Jacobi’s general framework was
hyperelliptic integrals, which he presented based on known results on rational
and elliptic integrals. In particular, Jacobi underscored the importance of the
addition theorem, which he explicitly attributed to Abel and presented as the
generalization of Euler’s theorem on elliptic integrals

Π(x) =
∫ x

0

dx√
X
,

where X is a fourth-degree polynomial. After having stated Euler’s theorem,
Jacobi turned to particular hyperelliptic integrals

Π(x) =
∫ x

0

A+A1x√
X

dx,

with X of degree 5 or 6, and then to general hyperelliptic integrals

Π(x) =
∫ x

0

A+A1x+ · · · +Am−2x
m−2

√
X

dx,

with X of degree 2m− 1 or 2m. For these last integrals, the addition theorem
was stated under the form that for any variables x, x1, . . . , xm−1, there exist
algebraic functions a, a1, . . . , am−2 of them such that

Π(x) + Π(x1) + · · · + Π(xm−1) = Π(a) + Π(a1) + · · · + Π(am−2).
13On the other hand, Jacobi explicitly mentioned the 1826 memoir in a footnote, explaining

that it had been sent to the Academy of Sciences and that it should be published, [Jacobi
1832, p. 397].
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Jacobi then highlighted that this theorem implies that the sum of any number of
Π(xi) can be expressed by a sum of m− 1 values Π(bi): this result corresponds
to the addition theorem contained in [Abel 1828] and stresses the role of the
number m− 1, whose notation is the same as Abel’s.

The number m−1 also appeared in original results by Jacobi, among which
the statement of the so-called inversion problem. The initial question was to
find the reciprocal function of Π(x), i.e. to find λ(u) such that u = Π(x) if
and only if x = λ(u). Jacobi first recalled that it had already been solved for
rational and elliptic integrals. Passing to hyperelliptic integrals and using the
addition theorem, he explained that the adequate way to tackle the inversion
was to introduce several variables. Thus, if X is of degree 5 or 6, instead of
considering the single equation u = Π(x), the idea was to invert the system{

u= Φ(x) + Φ(y)
v = Φ1(x) + Φ1(y), (1)

where Φ(x) =
∫ dx√

X
and Φ1(x) =

∫ x dx√
X

. Similarly, Jacobi indicated that the
inversion problem for hyperelliptic integrals with X of degree 2m− 1 or 2m
consisted in inverting a system of m− 1 equations in m− 1 unknowns.

If Jacobi indicated the right way of tackling the inversion problem, to carry
it out effectively was left to some his successors. It was tackled in particular in
the case of hyperelliptic integrals corresponding to a polynomial X of degree
5 or 6 in a paper that Rosenhain sent to the French Academy of Sciences in
1846 at the occasion of the concours of this year. The paper was successful and
was published five years later, [Rosenhain 1851]. Jacobi’s name was associated
with the inversion problem only through vague references; explicit citations
concerned mostly the Fundamenta nova, [Jacobi 1829], from which Rosenhain
took the idea to consider θ-functions to solve the problem. Jacobi, indeed,
had used θ-functions of one variable to study elliptic functions, and Rosenhain
managed to define θ-functions of two variables to solve the inversion system (1).

Later, Weierstrass investigated and solved the problem for general hy-
perelliptic integrals. The main lines of the results were first indicated in
a short paper, [Weierstrass 1854], before a more complete version was pub-
lished, [Weierstrass 1856]. While acknowledging Rosenhain’s contribution,
Weierstrass explained that his predecessor’s approach could not be generalized
adequately, so that he developed a new way to handle the problem. Jacobi’s
name was mentioned a number of times, most often without explicit reference;
on the contrary, the 1828 paper by Abel was cited for the proof of the addition
theorem for hyperelliptic integrals.

Interestingly, Weierstrass did not follow Abel’s or Jacobi’s notations. He
fixed a polynomial R(x) = A0(x−a1)(x−a2) · · · (x−a2ρ+1) for a given integer
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ρ, the inversion problem being then encapsulated in the differential system

du1 = 1
2

P (x1)
x1−a1

· dx1√
R(x1)

+ 1
2

P (x2)
x2−a1

· dx2√
R(x2)

+ · · · + 1
2

P (xρ)
xρ−a1

· dxρ√
R(xρ)

du2 = 1
2

P (x1)
x1−a2

· dx1√
R(x1)

+ 1
2

P (x2)
x2−a2

· dx2√
R(x2)

+ · · · + 1
2

P (xρ)
xρ−a2

· dxρ√
R(xρ)

...
duρ = 1

2
P (x1)
x1−aρ

· dx1√
R(x1)

+ 1
2

P (x2)
x2−aρ

· dx2√
R(x2)

+ · · · + 1
2

P (xρ)
xρ−aρ

· dxρ√
R(xρ)

,

where P (x) = (x− a1)(x− a2) · · · (x− aρ). The number ρ thus appears both
as the number of equations and variables in the inversion problem, and as the
number of constants in the polynomials P (x)

x−aj
. In other words, it corresponds

to what was denoted by m− 1 in Abel [1828] and in Jacobi [1832]. Without
having the possibility of being assertive on this point, the change of notation
may be seen as a trace of a shift of focus: this number playing an important
role in these matters, the symbols are adapted to make it appear as an entity
in its own right.

Only one year after Weierstrass’s paper was published that of Riemann [1857],
whose framework was completely different. Like Abel, Riemann studied general
Abelian functions, that is, primitives of algebraic functions s defined implicitly
by a polynomial equation F (s, z) = 0. The investigation made use of the
surfaces that would soon bear Riemann’s name.14 Riemann studied these
surfaces first in a setting independent of Abelian functions. In particular, he
characterized them with their connectivity order, a surface being (n+ 1)-ply
connected if it can be separated in two pieces by making n cross-cuts. In
the special case of a Riemann surface associated with an algebraic function s,
Riemann then showed that the number n is necessarily even, the connectivity
order being thus of the form 2p+ 1. The number p thus introduced is the one
which will be eventually used to define the genera in Clebsch’s papers.

This number was pivotal in Riemann’s whole theory of Abelian functions.
For instance, Riemann proved that it is equal to the maximal number of linearly
independent integrals of the first kind. This resulted from the writing of such
an integral as ∫

φ(s, z)
∂F
∂s

dz,

where φ is a polynomial having p independent coefficients – this encompasses the
elliptic and hyperelliptic integrals considered by Abel, Jacobi, and Weierstrass,
for which the number of coefficients was denoted by m − 1 and ρ. However,
contrary to the latter, the number p cannot be read directly on the writing
of the polynomial F (s, z). Instead, Riemann established a formula expressing
p in function of numbers associated with F : if n is its degree with respect to

14On Riemann surfaces, see for instance [Scholz 1980]. As is well known, these surfaces
were first introduced in Riemann’s doctoral dissertation, [Riemann 1851].
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s and if w is the number of pairs (s, z) such that F (s, z) = ∂F
∂s (s, z) = 0 and

∂F
∂z (s, z) ̸= 0, then

p = w

2 − (n− 1),

provided a supplementary technical condition is satisfied.
As for Jacobi’s inversion problem, Riemann first acknowledged that Weier-

strass had solved it in the hyperelliptic case. However, he added that he mostly
knew what Weierstrass had sketched in the 1854 paper, and thus that the
correspondence “not only in the results but also in the methods leading to them
will for the most part only be revealed by the promised detailed presentation”
given in [Weierstrass 1856].15 Riemann did not restrict himself to hyperelliptic
integrals: he expressed the inversion problem as the issue of finding, for each
system of complex numbers (e1, . . . , ep), some values η1, . . . , ηp such that

(e1, . . . , ep) ≡
( p∑

ν=1
u1(ην), . . . ,

p∑
ν=1

up(ην)
)
,

where u1, . . . , up form a system of linearly independent integrals of the first
kind, and where the congruence sign refers to their periods. The problem was
then solved with the help of θ-functions of p variables, the theory of which was
developed in the same paper.

Finally, Abel’s addition theorem also appeared in Riemann’s paper, but
there was no question in proving it again. Instead, Riemann reformulated it
and used it, “after Jacobi [1832], for the integration of a system of differential
equations,”16 which refers to a theorem of Jacobi’s that I chose not to mention.

A number of Riemann’s results were taken by Clebsch in his 1864 memoir
devoted to the application of Abelian functions to geometry, [Clebsch 1864b].
Clebsch explained that Riemann’s paper contained everything that was needed
for such applications, but that the difficulties to read it had refrained mathe-
maticians to do so. At the same time, he asserted that instead of conceiving
integrals as Riemann did, one should adopt the viewpoint of Jacobi [1832],
which seems to refer to a refusal of using Riemann surfaces.

Clebsch was first and foremost interested in the study of algebraic curves.
At the beginning of his work, he considered a plane algebraic curve defined by

15“[I]n wie weit zwischen den späteren Theilen dieser Arbeiten und meinen hier dargestellten
eine Uebereinstimmung nicht bloss in Resultaten, sondern auch in den zu ihnen führenden
Methoden stattfindet, wird grossentheils erst die versprochene ausführliche Darstellung
derselben ergeben können.” [Riemann 1857, p. 116]. The exact reference to Weierstrass’s 1856
paper was given in Riemann’s paper but, oddly enough, at the end of the sentence where
was described the 1854 one (which was also cited a few lines before). That Riemann wrote
that he would compare the methods and results later seems to indicate that he added the
reference quite late, or even that the journal editor added himself the exact bibliographic
data shortly before publication.

16“Ich benutze nun nach Jacobi (dieses Journals Bd. 9 Nr. 32 §. 8) das Abel’sche Addi-
tionstheorem zur Integration eines Systems von Differentialgleichungen”. [Riemann 1857,
p. 137].

11



an equation f(x1, x2, x3) = 0 of degree n between homogeneous coordinates of
the plane, which he saw as the locus of the intersection points of the lines of
two pencils whose parameters s and z are linked by an equation F (s, z) = 0.17

The similarity with Riemann’s notations is no coincidence: it prepared the
effective mathematical transfer, especially the transformation of the formula
p = w

2 − (n − 1). Indeed, having linked the curve f = 0 with an equation
F (s, z) = 0 allowed Clebsch to interpret w as the class of the curve, that is,
as the number of tangents that can be drawn to it from any (generic) point
of the plane. The combination of the well-known equality w = n(n− 1) − d,
where d is the number of double points of f = 0,18 with Riemann’s formula
eventually yielded

p = (n− 1)(n− 2)
2 − d.

The number p can be seen in many other places of Clebsch’s paper. For
instance, it was involved in the homogeneous writing of the integrals of the
first kind: ∫

Θ ·
∑

±c1x2 dx3

c1
∂f
∂x1

+ c2
∂f
∂x2

+ c3
∂f
∂x3

,

where
∑

±c1x2 dx3 is the determinant whose elements are the ci, xj , and dxk,
and where Θ is a polynomial having p independent coefficients. Just like in
Riemann, this writing was associated with the fact that p is the maximal
number of independent integrals of the first kind, a system of which being
denoted by u1, . . . , up.

On the other hand, contrary to Riemann, Clebsch did not deal with Jacobi’s
inversion problem. One of his main results is what he presented as a consequence
of Abel’s addition theorem:19 mn points x1, . . . , xmn of the curve f = 0 are
the intersection points of this curve with a curve of order m if and only if

u1(x1) + · · · + u1(xmn) ≡ 0
...

...
up(x1) + · · · + up(xmn) ≡ 0,

modulo the periods of the Abelian functions. As can be seen, p occurs here as
the number of equations, which corresponds to the number of integrals of the
first kind.

17For more details on Clebsch’s research on this point, see [Lê 2020, pp. 79–84].
18This expression of w had been proved by Poncelet in the 1820s. We will encounter the

definition of this concept of class in the next section. In the case studied by Clebsch, its
validity comes from Riemann’s supplementary condition mentioned above, which amounts to
the fact that the curve f = 0 has only nodes as singularities.

19The reference given by Clebsch was [Abel 1829], and not [Abel 1826/1841] or [Abel 1828].
The cited paper contains what Steven L. Kleiman [2004] called “Abel’s elementary function
theorem.”
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We finally arrive at Clebsch’s publications of 1865 where the genera of
curves are defined, [Clebsch 1865b,a]. The main reference for this definition was
the memoir on the application of Abelian functions to geometry, a reference
that was used above all for the formula p = (n−1)(n−2)

2 − d. This formula
was taken as such, without being reworked, and served to gather algebraic
curves into genera, as has been seen in our introduction. Riemann’s memoir
was also cited in [Clebsch 1865a], when Clebsch presented the property of p
being invariant under birational transformations of a curve as being “another
clothing of Riemann’s theorem.”20 This invariance was used to derive results
on algebraic curves, which I will not report here.

2.3 ... of a global picture

In the narrative that has been written, the number p, or some of its earlier
versions, can be recognized at each step, whether in the very writing of the
hyperelliptic integrals, the addition theorem or the inversion problem. However,
the process of identifying of these versions and making links between them
takes different forms according to the cases. In the passage from Riemann to
Clebsch, the comparison is made quite easy by a range of features: Clebsch
adopted Riemann’s same notations for p, F (s, z), w, etc., cited him explicitly
for the formula for p, and worked at the same degree of generality for Abelian
functions, in the sense that the grounding equation F = 0 was given by a
polynomial of any form and any degree. On the contrary, no such elements are
available to connect explicitly Riemann with his predecessors, or to connect
some of them with one another. In particular, as mentioned, the fact that the
numbers µ− α, m− 1, ρ, and p do not bear any name in the natural language
contributes to the difficulty of the situation.

Hence it is the responsibility of the historian to identify Riemann’s p and
Abel’s µ− α, for instance. In general, such a process is often performed via
the understanding of the mathematical content, and it may be more or less
immediate – and it can be done more or less explicitly in the final historical
outcome. This is where features such as citations between texts, even if vague
or not directly linked to the investigated object, are useful safeguards. It is
with this in mind that I warned against the hazard of recognizing the number 1
as a particular value of p in texts that would deal with elliptic functions all the
while being disconnected from sources where p or its earlier versions appear
explicitly.21 In any case,

These observations thus provide some perspective on the actual circulation
of the number under scrutiny in our selection of texts, even though these texts
form a continuous chain of citations. The above analysis also shows that these

20“In der That ist dieser Satz nur eine andere Einkleidung desjenigen, welchen Herr Riemann
dieses Journal Band 54 pag. 133 gegeben hat.” [Clebsch 1865a, p. 98].

21The case of p = 0, which is associated with rational (or trigonometric) functions, would
be even more problematic because of the greater number of possible concerned texts.

13



citations may incarnate a spectrum of positions, from the plain adoption to the
claim of breaks in approach, by way of ambivalent attitudes, with one author
refusing a part of a work while still borrowing results. Moreover, the addition
theorem and the inversion problem are examples of specific questions that are
important to take into account to understand the evolution of p but have their
own dynamics in terms of first occurrences, proofs, uses, and reformulations.
The succession of the chosen texts, finally, does not reflect any process such as
a progressive rise in generality or in rigor.

All this contributes to drawing a bigger picture into which the episode of
the definition of the genera of curves fits, and which must be thought of with
the necessary nuances and caution. In particular, even if having extracted
a sequence of texts could have first been interpreted as a way to provide an
easy narrative, it is not the case. To employ a mathematical metaphor, the
situation at hand is locally linear (and has been locally depicted), but globally
much more complex.

Of course, an even bigger picture could be obtained by taking into account
elements that have been ruled out above, such as entire texts, or topics that
are connected to p and are tackled in the publications considered above, as
illustrates Riemann’s counting of 3p − 3 constants on which depends each
birational class of equations F (s, z) = 0 for which p > 1. Such avenues, which
will not be explored here, illustrate the richness of the situation and, thus, the
difficulties to which one is confronted when searching for a global description.

3. Tracking a name

I now turn to the second path, associated with the name “genus” and with
algebraic curves.

3.1 Formation of the corpus

Let me first recall that none of the references of Clebsch’s 1865 papers intro-
ducing the genera of curves deal with a notion bearing the same name. This is
why the angle of attack must be changed, for instance by starting from a large
corpus of texts related to algebraic curves and then searching in it what can
be relevant for the purpose. This corpus is constructed in the following way.

Because the introduction of algebra in geometry made by René Descartes
and Pierre Fermat changed to a great extent the ways to deal with curves, I
chose the year 1637, when La Géométrie has been published and the Isagoge
has been written, as the lower bound of my time interval. The corpus thus
extends approximately over two centuries and a half, from 1637 to 1865.

To collect publications on algebraic curves, I first used the Catalogue of
scientific papers, which allows to survey the period 1800–1865. Specifically,
the Catalogue contains a section devoted to “Algebraic Curves and Surfaces

14



of degree higher than the second,” and I considered all the papers referenced
to in the subsections on generalities and on plane curves, which represents
368 articles. For earlier publications, I drew, on one hand, upon Jeremias
David Reuss’ Repertorium commentationum, of which the chapter devoted
to mathematics contains sections on algebraic curves: 74 articles, published
between 1694 and 1795, are thus retained. To complete the corpus, I eventually
gathered all the primary references listed in Carl B. Boyer’s History of analytic
geometry and dated between 1637 and 1799, which adds 80 new references.22

Then I investigated these 522 texts, searching in particular for any notion
called Geschlecht, which is the German original word employed by Clebsch. In
order not to restrict myself to German publications, words used at different
times as explicit foreign equivalents of Geschlecht have also been taken into
account: the Latin genus, the French genre, the Italian genere, the English
“genus,” as well as a few other ones.23

The examination of these words reveals two important points. First, they
all refer to categories of curves, and there are mainly four different notions of
genera that have successively been proposed, due to Descartes (1637), Newton
(1704), Euler (1748) and Cramer (1750), before that of Clebsch was defined in
1865.24 Second, the context of using genera of curves is always that of curve
classifications, and, except for the case of Descartes, they are accompanied by
considerations of other taxons of curves, such as orders, classes, and species.
Although special attention is paid to genera, to include these categories in the
study thus helps build a more coherent narrative and understand phenomena
that concern genera. I will elaborate on this issue after describing the most
salient points of this narrative.25

3.2 Classifications of curves

The first genera that can be found in our corpus are defined by René Descartes
in La Géométrie, [Descartes 1637]. In the second book of this text, Descartes

22A historical work not reduced to being a topical bibliography, Boyer’s book, [Boyer 1956],
is different in nature than the Catalogue and Reuss’ Repertorium. The main reason that I
chose to rely on it is that Boyer used bibliographies made by mathematicians of the past to
which I could not access. Of course, my narrative has been constructed independently from
Boyer’s, who, besides, dealt with a different historical issue.

23Let me recall that the investigation follows here a nominal way. Thus the question is
not to locate concepts which would correspond mathematically to genera but would have a
completely unrelated name. That said, it turns out that the corpus does not bear any trace
of such phenomena.

24A few other technical or semi-technical meanings of the genus of curves can be found,
and will be accounted for below. Non-technical meanings are not retained as relevant for
the present study: for instance, the French genre is used in phrases such as “ce genre de
considérations,” which can be translated by “this kind of considerations,” or “this type of
considerations.”

25A similar study is proposed in [Lê 2023], although the corpus is a bit different and no
special emphasis is made on the genera.
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proposed to “distinguish [curves] in order in certain genera”26 by using the
equations defining them. More precisely, if n > 1, the nth genus encompassed
the curves whose equation is of degree 2n − 1 or 2n. As for the first genus,
it consisted only of curves with an equation of the second degree because
Descartes did not recognize straight lines as curves – significantly, he called
the latter “curved lines.”

Descartes justified this way of classifying curves only by alluding to the fact
that the “difficulties” of the fourth degree can be “reduced” to the third degree,
and that those of the sixth degree can similarly be reduced to the fifth degree.27

This justification referred to the possibility of reducing equations with one
unknown of degree 4 to equations of degree 3, a possibility that Descartes
apparently believed to be true also for higher degrees and for equations with
two unknowns.28

The classification proposed by Descartes was received in different ways in
the 17th century. Fermat, for one, criticized it in his Dissertatio tripartita and
preferred to classify curves degree by degree, calling “species” the resulting
families of curves.29 Another mathematician who adopted such a negative
position decades later is Jacob Bernoulli [1695]. On the other hand, Descartes’
genera were fully integrated in the works of other mathematicians, such as
Frans van Schooten [1657] and Jacques Ozanam [1687].

In the corpus under scrutiny, only one 17th-century reference contains a
notion of genus of curves that is not related to Descartes’. This is a book by
John Craig, where genera are used to divide the totality of curves, be they
algebraic or not. Specifically, algebraic curves themselves form the first genus,
while transcendent curves are classified into the other genera according to
further criteria, [Craig 1693, p. 42]. Such a definition, however, does not seem
to have been taken up by later mathematicians.

This contrasts with the notion introduced by Isaac Newton in his famous
Enumeratio linearum tertii ordinis, published in 1704 as an appendix to the
treatise Opticks, [Newton 1704].30 At the very beginning of this text, Newton
asserted that lines can be divided into orders “according to the dimensions of
the equation expressing the relation between absciss and ordinate, or, which is
the same thing, according to the number of points in which they can be cut by

26“[D]istinguer [les lignes courbes] par ordre en certains genres” [Descartes 1637, p. 319].
On La Géométrie, see [Bos 2001; Serfati 2005; Herreman 2012, 2016].

27“[I]l y a règle générale pour réduire au cube toutes les difficultés qui vont au quarré de
quarré, & au sursolide toutes celles qui vont au quarré de cube” [Descartes 1637, p. 323].

28See for instance [Bos 2001, p. 356]. Another interpretation of Descartes’ grouping of
curves is given in this reference, and is linked with the issue of constructing curves associated
with the problem of Pappus and with the Cartesian classification of geometrical problems.

29The Dissertatio is edited in [Fermat 1891, pp. 118–132]. According to [Mahoney 1999,
p. 130], it has probably written at the beginning of the 1640s. See also a 1657 letter from
Fermat to Kenelm Digby where the arguments of the Dissertatio are taken up and made
more explicit, [Fermat 1999, pp. 491–497].

30On the Enumeratio, see [Guicciardini 2009, pp. 109–136].
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a straight line.”31 The nth order was thus made up of the lines defined by an
equation of degree n. Furthermore, echoing the distinction between lines and
curves, Newton proposed a parallel classification of curves, the corresponding
categories being genera. More precisely, the nth genus of curves was that of
the curves defined by an equation of degree n + 1, so that “[a] curve of the
second genus is the same as a line of the third order.”32

The title of his work made clear that Newton’s aim was to classify the
lines of the third order. In fact, once past this title and the very first lines,
Newton mainly used the vocabulary of curves in the text, where he divided the
curves of the second genus in 72 species. Such a terminology thus refers to the
usual articulation between genera and species, the orders not being common
categories of classification at the time.33

Many publications from the first half of the 18th century used the same clas-
sifying vocabulary. They often involved both lines and curves, even though a
certain prevalence of the former can be observed. For instance, James Stirling’s
Lineae Tertii Ordinis Neutonianae only dealt with lines and their orders, [Stir-
ling 1717], while François Nicole also mentioned curves and their genera in his
Traité des lignes du troisième ordre, ou des courbes du second genre, [Nicole
1731]. Such works were direct continuations of Newton’s Enumeratio, but
orders and genera appeared in other type of publications. One of them is a
1705 book by Nicolas Guisnée, entitled Application de l’algèbre à la géométrie,
where the double classification was adopted although Newton was not referred
to, [Guisnée 1705]. Other examples are Edmund Stone’s New Mathematical
Dictionary, [Stone 1726], and Colin Maclaurin’s Treatise of algebra, [MacLaurin
1748], where the English words used to refer to what Newton designated as
genera are “genders” and “kinds,” respectively. Maria Gaetana Agnesi [1748],
for her part, also spoke both about orders of lines and genera of curves, the
Italian words being ordine and genere. But she also made use of the latter
term in a less technical sense, like when she described the curve defined by
am−1x = ym as a “curve of the genus of the parabolas,” a phrase which recalls
the taxonomic connotation of the word.34

No publication, however, used the vocabulary of curves and genera without
involving that of lines and orders. Moreover, in many cases the terminology of
curves appeared only in the titles of the papers or of their sections, or were
involved in a reduced way in the statement of theorems and their proofs, to
the benefit of lines and orders.35 Lines and orders are therefore the objects

31“Lineae Geometricae secundum numerum dimensionum aequationis qua relatio inter
Ordinatas & Abscissas definitur, vel (quod perinde est) secundum numerum punctorum in
quibus a linea recta secari possunt, optimè distinguuntur in Ordines.” [Newton 1704, p. 139].
The given English translation comes from [Talbot 1860].

32“Curva secundi generis eadem cum Linea Ordinis tertii.” [Newton 1704, p. 139].
33On this point, see [Lê 2023, pp. 96–100].
34“am−1x = ym, curva del genere delle parabole.” [Agnesi 1748, p. 940].
35This is thus the exact opposite to Newton’s case.
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that were mainly used in practice during in the first half of the 18th century.
The coexistence of lines and curves was explicitly abolished in two major

books published in the middle of that century. One of them is Leonhard Euler’s
Introductio ad analysin infinitorum, whose second volume contained chapters
devoted to the theory of algebraic curves [Euler 1748]. Euler first defined the
orders of “curved lines” via the degree of the equations. Further, to encompass
the case of straight lines, he explained that since it would be inappropriate to
qualify the latter as curves, he would only speak about “lines” to refer to both
cases, [Euler 1748, p. 26].

Genera in the Newtonian sense thus disappeared together with the distinc-
tion between lines and curves, but Euler did introduce genera to divide lines of
a given order. For instance, in the chapter devoted to the lines of the third
order, Euler first explained that they can be classified into species, according
to the number and the nature of their infinite branches. After having brought
out 16 such species, he emphasized that they are not the same as Newton’s 72
species, and he showed how these 72 can be distributed into the 16. At the
end, he added:

Most of these species are so extensive that they each include quite consid-
erable varieties, if we consider the shape they present in a finite space. It
is for this reason that Newton multiplied the number of species, in order
to distinguish one from another the curves that offer notable differences
in this space. It will therefore be more appropriate to call Genera what
we have designated as Species, and to refer to Species the varieties they
contain.36 [Euler 1748, p. 126]

In other words, Euler adjusted the terminology to fit with the great number
of categories he had to deal with, and what he had first called “species” were
renamed “genera.”

A similar situation occurred in Gabriel Cramer’s Introduction à l’analyse
des lignes courbes algébriques, [Cramer 1750].37 In the preamble of the book,
Cramer recalled that “Algebra alone provides the means to distribute Curves
into Orders, Classes, Genera & Species” and that “it is to the illustrious Newton
that Geometry is most indebted for this distribution.”38 Later, Cramer defined
the orders of lines through the degree of their defining equation. He then
explicitly recalled the old distinction between lines and curves:

36“Species autem hae plerumque tam late patent, ut sub unaquaque varietates fatis notabiles
contineantur; si quidem ad formam, quam Curvae habent in spatio finito, respiciamus.
Hancque ob causam Newtonus numerum specierum multiplicavit, ut eas Curvas, quae in
spatio finito notabiliter discrepant, a se invicem secerneret. Expediet ergo has, quas Species
nominavimus, Genera appellare, atque varietates, quae sub unoquoque deprehendantur, ad
Species referre.”

37On this book, see [Joffredo 2017, 2019].
38“[L]’Algèbre seule fournit le moyen de distribuer les Courbes en Ordres, Classes, Genres

& Espèces” and “c’est à l’illustre Newton que la Géométrie est surtout redevable de cette
distribution” [Cramer 1750, p. viii]
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Mr. Newton distinguishes between the Orders of Lines & the Genera of
Curves. Since the first Order contains only the straight Line [...], he calls
Curves of the first Genus the Lines of the second Order, Curves of the
second Genus the Lines of the third Order, & so on. However reluctant
one may be to deviate from the denominations established by this Great
Man, it seemed to me that this expression was too cumbersome in terms
of expression, & I decided to say indifferently Curves or Lines of the
second Order, Curves or Lines of the third Order, &c.39 [Cramer 1750,
p. 53]

Just like in Euler, the notion of genus that Newton had defined thus vanished
with the disappearance of the difference between curves and lines. Although
neither of these authors explained why they favored lines and orders, it is
most likely that these objects survived because their enumeration corresponds
exactly to the degrees of the equations.

Genera of lines can still be found in Cramer’s text, as subcategories of each
order that reflect properties related to the infinite branches. In particular,
Cramer classified curves of the third order into 14 genera, and he systematically
indicated their correspondence to Newton’s species. For instance, the curves
with three concurrent asymptotic lines were gathered in one genus, which
“contains the nine species of redundant hyperbolas whose asymptotes intersect
at one point. Newton, Nb. 4.”40

Comments on the appropriate classification scale appeared when Cramer
treated the case of curves of the fourth order. Imitating the approach he used
in the third-order case, Cramer was first led to consider eight cases of equations
of curves. The three first cases yielded 1, 6, and 9 genera, respectively. But
when Cramer treated the next case, he indicated that the number of genera
was too great to be completely listed: “It would be impossible to enumerate
all the genera of curves included in this IVth Case: but they can be reduced
to five Classes.”41 In other words, since the genera became too numerous to
be enumerated exhaustively, Cramer decided to introduce a new type of curve
categories, situated between the fourth order and its genera.

Strikingly, no technical use of the word “genus” can be found in the texts
of our corpus between Euler’s and Cramer’s books and 1833, when Euler’s
genera were mentioned again. On the contrary, the orders of lines (or curves,

39“Mr. Newton distingue les Ordres des Lignes & les Genres des Courbes. Comme le
premier Ordre ne renferme que la Ligne droite [...], il appelle Courbes du premier Genre, les
Lignes du second Ordre, Courbes du second Genre, les Lignes du troisième Ordre, & ainsi
de suite. Quelque répugnance qu’on ait à s’écarter des dénominations établies par ce Grand
Homme, il m’a paru que cette distinction génoit trop l’expression, & je me suis déterminé à
dire indifféremment, Courbes ou Lignes du second Ordre, Courbes ou Lignes du troisième
Ordre, &c.”.

40“Ce Genre contient les neuf espèces d’Hyperboles redondantes dont les trois asymptotes
se croisent en un point. Newton, N.o 4.” [Cramer 1750, p. 362].

41“On ne saurait énumérer tous les genres des courbes comprises dans ce IVe Cas : mais
on peut les réduire à cinq Classes.” [Cramer 1750, p. 379].
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the difference being abandoned) were absolutely commonplace in the texts that
have been published during this period. Their use engendered many comments
at the occasion of a specific episode, during which new “classes” of curves were
introduced.

This episode is the famous duality controversy, which, at then end of the
1820s, opposed Joseph-Diez Gergonne and Jean-Victor Poncelet.42 Let me
briefly recall that Gergonne’s principle consisted in associating a dual theorem
with any given theorem, the two being related by the exchange of the words
“points” and “lines,” and of associated verbs and adjectives. However, Gergonne
made the mistake to do as if curves of order n > 1 were replaced by curves
of the same order in this process: this is one of the points that Poncelet used
against him. When he reworked his theory, Gergonne [1827/1828] introduced
the notion of “class,” a curve being of the nth class if n tangents can be drawn
to it from a given point of the plane. The principle of duality could then be
corrected by making curves of the nth class correspond to curves of the nth
order.

Classification issues were part and parcel of Gergonne’s and Poncelet’s
arguments. On one hand, Gergonne emphasized that orders and classes
provided two dual ways of classifying curves which were dual to one another. On
the other hand, Poncelet blamed Gergonne for having “admitted simultaneously
two essentially different classifications for curves,” and he insisted that he
himself did not “shy away from the difficulty of preserving [to the classification]
of curves [its] legitimate and universally [accepted] definition.”43 If Poncelet
thus refused the classification itself, he was still interested in evaluating the
number of tangents that can be drawn to a curve, and he found that this
number is n(n − 1) − d if the curve is of order n and has only d nodes as
singularities.

In spite of Poncelet’s hostility, the notion of class defined by Gergonne was
adopted quite quickly by the 19th-century geometers. In the corpus, the first
one to use it is Julius Plücker, who published many papers on algebraic curves
during the 1830s,44 including those where he completed Poncelet’s formula for
the class-number of a curve.

Genera are mentioned in one of these papers, which is a presentation
of the book System der analytischen Geometrie, [Plücker 1833, 1835]. As
this presentation explained, one of the aims of the book was to rework the
classification of the curves of the third order. Plücker rooted the question in

42On this controversy, see [Lorenat 2015] and the references given on p. 547, as well
as [Etwein, Voelke, and Volkert 2019].

43“[I]l ne s’est agi de rien moins que de torturer le sens des mots, en admettant simultanément
deux classifications essentiellement distinctes pour [les] courbes.” Further: “je n’ai pas reculé
devant la difficulté de conserver aux classifications des courbes [...] leur définition légitime et
universellement admise.” [Poncelet 1828, pp. 300, 302].

44The adoption of the notion of class by Plücker and other mathematicians is described
in [Lê 2023, pp. 110–116].
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Newton’s Enumeratio and declared that Euler, though having made progress
in the theory of infinite branches, did not succeed to settle down the issue. The
genera that Euler had defined were thus briefly evoked in this discussion – the
presentation paper, written in French, used the word genres, while the book
itself referred to these categories by the term Geschlechter. However, no genera
were involved in Plücker’s own classification, which consisted in dividing the
third order into species only.

Only a very few occurrences of genera occur in the corpus between 1833
and 1865. They either correspond to concepts defined by past mathematicians,
or concepts that are used in a less technical way, in the image of Agnesi’s
example given above. For instance, Joseph Dienger devoted a paper published
in 1847 to a “curve deriving from the ellipse, of the genus Conchoid”45 and
Ernest De Jonquières, in an article of 1861, was led to consider a “curve of the
fourth order, of the genus of the lemniscates.”46 Finally, a paper published in
1863 by a certain F. Lucas also employed the term “genus” as he referred to
Newton’s works on the classification of third-order curves, [Lucas 1863].

Such a paucity shows that when Clebsch defined the Geschlechter in 1865,
the word was, so to speak, available to be endowed with a new technical
definition. Moreover, we saw that when Clebsch did so, the idea of introducing
a new classification of curves was clear. A notable difference between his
Geschlechter and the other notions of genus that we encountered is that these
genera were not presented as subcategories of orders, quite the opposite. The
idea was to divide the totality of algebraic curves into genera, each of them
being then subdivided according to the orders. This classification program was
thus different from Gergonne’s, for whom the distribution in classes was not
supposed to replace that in orders, but to offer another way to conceive the
division of curves.

3.3 Continuities and discontinuities

If the episode of Clebsch defining the genera is thus embedded into a narrative
that extends over almost two centuries and a half, it is true that there is no
direct, effective link made by Clebsch between this episode and the previous
ones – his mention of the classification by orders appears more as a general
mathematical fact than a historical reference per se.

More generally, the genera proposed by Descartes, Netwon, Euler, Cramer,
and Clebsch, have no direct mathematical link to one another. They cannot be
seen as different instances of one and the same concept which would correspond
to different degrees of generality of the associated algebraic curves, for example.
The situation is thus distinct from that of the numbers p, ρ and m − 1, the

45“Note sur une Courbe dérivant d’une ellipse (du genre Conchoïde)”, [Dienger 1847, p. 234].
The words that are here between parentheses are in a footnote in the original paper.

46“[La courbe...] est une courbe du quatrième ordre, du genre des lemniscates.” [Jonquières
1861, p. 211].
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first becoming equal to the other two if the framework of Abelian functions
in which it is defined is particularized. Nor are they concepts, each of which
would have been developed from the previous one following a discussion of
its relevance and an attempt to replace it. Significantly, if Cramer did refer
explicitly to Newton to explain why the latter’s genera should be abandoned,
his own genera referred to something else, and the bridge with Newton was
made on the level of species.

From this point of view, isolating the works of the five above-mentioned
mathematicians, focusing on their definition of genera solely, and juxtaposing
their description would yield quite a discontinuous result, both in terms of
chronology and intellectual dynamics. Greater coherence is achieved by taking
into account both other works that contain a notion of genus (be it a simple
adoption of Descartes’ notion, for example, or a semi-technical one) and works
involving other categories of curves, namely orders, classes, and species. In
doing so, the historian weaves a more complete and continuous historical fabric
related to the classifications of curves, in which the episodes of the definitions
of the genera can be advantageously included.

As in the previous section, this bigger picture could obviously made more
complex. For instance, most of the texts that have been kept silent above do
not contain any new notion of genera, orders, classes, or species, but they could
be used to get a view on the range of mathematical questions in which these
categories have been involved, or to analyze the process of their banalization.
And questions revolving around the tension between the categories of curves
and the numbers that characterize them, or the mathematical links between
these numbers, could also be investigated further.

4. Bigger pictures

The two pictures obtained by following the paths of the number p and of the
name “genus” are essentially disjointed in terms of content, which reflects
the historical divide between the theory of Abelian functions and the theory
of algebraic curves. Most mathematicians, indeed, only contribute to one
of these pictures, the three exceptions being Clebsch, Jacobi, and Siegfried
Aronhold, among whom only the first has papers that belong to both corpora.
The mathematical questions, and the techniques that are deployed to address
them, are also proper to both pictures, up these three mathematicians’ cases –
Clebsch’s interpretation of the number of ramification points as the class of a
curve nicely illustrates this point.47

The two narratives have also their own timelines and their own pace,
with one extending over two centuries and a half while the other is mainly

47Aronhold and Jacobi mix together elliptic functions and algebraic curves in papers that
belong to the corpus on Abelian functions, [Jacobi 1828; Aronhold 1862]. Their works are
analyzed and compared to Clebsch’s approach, [Clebsch 1864a], in [Lê 2018].
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concentrated in forty years. As explained in the introduction, this difference
does not merely stems from a convention of corpus formation. It reflects
an asymmetry in the process of identifying earlier versions of mathematical
objects and in the limits to which the historian is confronted when doing so.
In particular, by providing an apparent greater stability, the nominal path
seems to allow a more straightforward writing of a long-term history. It must
be remembered, however, that this stability is not based on the sameness48

of an object but on the common framework of classifying algebraic curves, a
framework that is general enough to give rise to different ways of approaching
it, and to answers having little in common apart from the names of the
considered categories of curves. This eventually echoes the differences between
the intellectual dynamics that underlie the succession of the diverse concepts of
genera and that of the numbers µ−α, m− 1, ρ, and p: contrary to the former,
the latter can be seen as being the same, provided the technical frameworks
with which they are associated are adjusted to one another.

As disconnected as the two pictures that have been obtained can be, both
have their own kind of coherence, and there can be no question of raking them,
by asserting that one would be more relevant or more significant than the other.
Quite simply, they refer to two types of connection of a newly defined object
with its past, and it is important to be clear on this point in the historical
account.

This takes us eventually back to the issue of drawing one picture into which
the episode of the 1865 definition of the genera can be embedded, a picture
which would correspond to the reconstruction of the past of these genera.

Considering all this, I think it would be misguided to aim at writing a
final result consisting in one unified narrative, well-ordered chronologically
and integrating all the above elements. In fact, what has been proposed in
this chapter corresponds better to what should be done to draw a bigger
picture, in my view: the construction of corpora on the basis of explicit criteria,
their systematic study in view of determined objectives, the comparison of the
obtained results, and a reflection on the possibility of merging them or not. In
particular, I do not see what has been produced as a mere juxtaposition of
two narratives, even though these narratives are related to quite autonomous
historical situations.

Of course, the result is still a partial picture, since other entire tracks
could be followed and yield other pictures with their own content, dynamics,
and chronologies. For instance, one could try tracing back the topological
interpretation of the number p as the half of the number of sections required to
disconnect a surface, or researching the past of the number (n−1)(n−2)

2 , which
would lead to the path of questions on curve singularities.

But my point is that big pictures are not meant to stay out of range of the
historian of mathematics, as long as sound methodological groundings underpin

48I borrow this term from [Goldstein 2019].
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their drawing and significant details are still taken into account to delineate
clearly the specificity of each author, of each text. I have tried to illustrate
this in the case of the reconstruction of the past of a mathematical object.
Considering other objects, searching for their future or trying to thicken the
comprehension of the episode of their definition in synchronicity rather than
in diachronicity would probably require to address other questions. In this
respect, this chapter presents itself not so much as a way of settling the question
by inferring general laws, but rather as a case study aimed at stimulating
historiographical and methodological reflection.
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