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Abstract

Felix Klein’s Erlanger Programm (1872) has been extensively studied by historians. If
the early geometrical works in Klein’s career are now well-known, his links to the theory of
algebraic equations before 1872 remain only evoked in the historiography. The aim of this
paper is precisely to study this algebraic background, centered around particular equations
arising from geometry, and participating on the elaboration of the Erlanger Programm. An-
other result of the investigation is to complete the historiography of the theory of general
algebraic equations, in which those “geometrical equations” do not appear.

1 Introduction

Felix Klein’s Erlanger Programm1 is one of those famous mathematical works that are often
invoked by current mathematicians, most of the time in a condensed and modernized form:
doing geometry comes down to studying (transformation) group actions on various sets, while
taking particular care of invariant objects.2 As rough and anachronistic this description may
be, it does represent Klein’s motto to praise the importance of transformation groups and their
invariants to unify and classify geometries.

The Erlanger Programm has been abundantly studied by historians.3 In particular, [Hawkins
1984] questioned the commonly believed revolutionary character of the Programm, giving evi-
dence of both a relative ignorance of it by mathematicians from its date of publication (1872) to
1890 and the importance of Sophus Lie’s ideas4 about continuous transformations for its elabora-
tion. These ideas are only a part of the many facets of the Programm’s geometrical background of
which other parts (non-Euclidean geometries, line geometry) have been studied in detail in [Rowe
1989b].

Beside this geometrical background, the historiography always mentions Camille Jordan,
sometimes for his research on movement groups, more often for his Traité des substitutions et
des équations algébriques:5 Klein had been inspired by the Traité’s presentation of the equation

1[Klein 1872], translated in English in [Klein 1893] and in French in [Klein 1974].
2However, this part about invariant objects is often neglected, if ever mentioned. [Perrin 2002] points out

the importance of invariants in the Erlanger Programm and suggests a reinforcement of the incorporation of
geometrical invariants in the French teaching of mathematics.

3Beside the references given above and below, see [Gray 1992; Gray 2005; Rowe 1983; Rowe 1985; Rowe 1992].
4About Lie’s early works, see [Rowe 1989b] and the first chapter of [Hawkins 2000].
5[Jordan 1870b].

1



theory within a group-theoretic framework and sought an analogous transformation group frame-
work for geometry.6 Whereas the historiography stops there on this algebraic point, this paper
will investigate deeper into the connections between Klein and the theory of algebraic equations
in the period preceding the publication of the Erlanger Programm. We will argue that Jordan’s
theory of substitutions as expressed in his Traité des substitutions et des équations algébriques
is actually one part of a broader algebraic background, the one of the “geometrical equations”7

The purpose of this investigation is obviously not to dismiss the historical works previously cited
but rather to help give a more complete and accurate picture of Klein’s pre-Programm math-
ematical background. Another goal of this investigation will be to broaden the historiography
of the general theory of algebraic equations in which a discussion of the role of the “geometrical
equations” has not yet appeared.

For the moment, let us go back to the Erlanger Programm itself and look for traces of equation
theory in it. One obvious and explicit trace can be found in the concluding remarks: they confirm
Klein’s desire for an analogy between geometry and theory of equations we mentioned above:

The further problems which we wished to mention arise on comparing the views here
set forth with the so-called Galois theory of equations. [...]

In the Galois theory, as it is presented for instance in Serret’s “Cours d’Algèbre
Supérieure” or in C. Jordan’s “Traité des Substitutions,” the real subject of inves-
tigation is the group theory or substitution theory itself, from which the theory of
equations results as an application. Similarly we require a theory of transformations,
a theory of the groups producible by transformations of any given characteristics.
[Klein 1893, pp. 241-242]

Besides this explicit reference, other hints to equation theory appear in the Programm. One of
them is a note in which Klein indicates that the terminology “groups of transformation” and
its very concept come from the theory of substitutions.8 Another is the idea to distinguish an
element of space and to consider the transformations leaving it unaltered, which is to be linked
to the notion of adjunction of an irrationality to an equation and its effect on its Galois group.9

Now, if we want to look for Klein’s works on algebraic equations, we can use his Gesam-
melte mathematische Abhandlungen. One can find a section called “Substitutionengruppen und
Gleichungstheorie”—disctinct from the section devoted to the Erlanger Programm10—which con-
tains only one article dated before 1872, year of the publication of the Programm. This article,

6For the mentions to movement groups, see [Rowe 1989b, p. 211] or Jean Dieudonné in the preface of the French
translation of the Programm, [Klein 1974, p. x]. For the Traité des substitutions et des équations algébriques, see
for instance [Hawkins 1984, p. 444] or [Birkhoff and Bennett 1988, p. 151]. Eventually, see also [Rowe 1989b,
p. 211] where David Rowe discusses the possibility that Klein and Lie actually learned substitution theory from
Jordan and his Traité while they were in Paris in 1870.

7See the end of this introduction for explanations about that expression.
8“Begriffsbildung wie Bezeichnung sind herübergenommen von der Substitutionentheorie”, [Klein 1872, p. 5].

In [Klein 1893, p. 217], “Bezeichnung” is translated into “notation.”
9[Klein 1893, p. 218]. In German, Klein uses the verb “hinzufügen” (to add) for the process of distinguish-

ing a given element of space, but he talks about the “Adjunction der Hauptgruppe invarianten Eigenschaften”
(adjunction of invariant properties to the principal group), [Klein 1872, p. 8].

10The section “Substitutionengruppen und Gleichungstheorie” is in the second volume of the Gesammelte math-
ematische Abhandlungen, [Klein Œuvres 2]. In the preface of the first volume [Klein Œuvres 1], the editors point
out that Klein actively participated to the editing process of his works, and especially to the organization of them.
The existence of the different sections, their title and their content are therefore strongly marked by Klein’s own
choices.
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entitled Ueber eine geometrische Repäsentation der Resolventen algebraischer Gleichungen, be-
gins as follows:

The general theory of algebraic equations is illustrated in the most beautiful way by
a number of particular geometrical examples; I just think (see Camille Jordan. Traité
des Substitutions. Paris 1870, p. 301ff.) of the problem of the inflection points of a
curve of order three, of the 28 double tangents of a curve of order four, of the 27 lines
on the surfaces of third degree etc., but also in particular of the cyclotomy.11 [Klein
1871, p. 346]

Jordan’s theory of substitutions is cited again but here with a hint to particular equations
arising from geometrical situations. These special equations are the objects we will deal with
in the present paper; like some of the mathematicians who will appear later, we will call them
“geometrical equations.” Let us remark that the cyclotomy mentioned by Klein will actually
not appear in the corpus of investigation (see below). That being said, we will come back to
the proximity expressed here between the cyclotomy and the “geometrical equations” in the
concluding remarks.12

Before turning to the formation of the corpus, we will give here some mathematical expla-
nations about the “geometrical equations.” While these explanations may not faithfully respect
the different approaches of the mathematicians we shall study in a moment; however they will
be useful to the reader to get the idea of the label “geometrical equations.” For a given ge-
ometrical situation, for instance the nine inflection points of a cubic curve, the corresponding
geometrical equation is the algebraic equation ruling the configuration. Thus the nine inflection
points equation is the algebraic equation of degree 9, the roots of which are the abscissas of the
inflection points. For other situations like the twenty-seven lines upon a cubic surface, one can-
not parametrize the geometrical objects with just one parameter: four parameters are required
for a line in space. The twenty-seven lines equation is the equation obtained by eliminating 3
parameters out of the 4 in the system of equations expressing that a line is entirely lying in the
surface. What the reader can remember is that the geometrical equation associated to a configu-
ration of n objects is an algebraic equation of degree n; its roots correspond to the objects of the
configuration and the relations existing between the roots correspond to the incidence relations
existing between the objects.

2 The geometrical equations: corpus

In order to form my investigation corpus, we used the section entitled “Geometrische Gleichungen”
of the chapter of the Encyklopädie der mathematischen Wissenschaften devoted to the Galois
theory and its applications.13 We could have used the Répertoire Bibliographique des Sciences

11“Die allgemeine Theorie der algebraischen Gleichungen wird in schönster Weise durch eine Anzahl besonderer
geometrischer Beispiele illustriert; ich erinnere nur (Vgl. Camille Jordan. Traité des Substitutions. Paris 1870, S.
301 ff.) an das Problem der Wendepunkte der Kurven dritter Ordnung, an die 28 Doppeltangenten der Kurven
vierter Ordnung, an die 27 Linien auf den Flächen dritten Grades usw., dann aber namentlich auch an die
Kreistheilung.”

12The role of the cyclotomic equation as a model for the theory of algebraic equations has been studied by
historians: see in particular [Neumann 2007] for its role in connection with Carl Friedrich Gauss’s Disquisitiones
Arithemticae and [Boucard 2011] for Louis Poinsot’s views on it.

13[Hölder 1899, pp. 518-520].
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Mathématiques,14 and indeed its section devoted to the Galois theory and the equation theory
contains a paragraph named “Applications to the theory of particular equations: equation of
the inflection points of a cubic, of the 27 lines of a cubic surface; modular equations, etc.”
However, all the references given there and concerning the geometrical equations are already
in the Encyklopädie, so we only considered this last work. Furthermore, no use could have
been made of the Jahrbuch über die Fortschritte der Mathematik and the Catalogue of scientific
papers because these classification journals do not contain any section devoted to the geometrical
equations.

In order to form the corpus from the section “Geometrische Gleichungen” of the Encyklopädie,
we first selected every reference that actually deals with algebraic equations. Indeed, some of
the given references are only about geometrical results whereas the others are about the corre-
sponding geometrical equation;15 the latter are the ones that interest us for the present paper.
Secondly, we repeated the same process (i.e. selecting the references dealing with geometrical
equations) for every text obtained in the first step. From all the texts thus gathered, we finally
removed those dated after 1872, the date of the Erlanger Programm.

The corpus obtained is made of 13 texts; one of them is a book, the others are research
articles or notes to the French or the Berliner Academies. These texts, except for the earliest
one written by Otto Hesse [Hesse 1847], belong to a quite close time period covering 1863, 1864
and then every year from 1868 to 1872. The two papers of 1863 and 1864 are Ernst Eduard
Kummer’s: [Kummer 1863; Kummer 1864]. Then we have two articles of Alfred Clebsch [Clebsch
1868; Clebsch 1871], Jordan’s Traité des substitutions et des équations algébriques [Jordan 1870b],
three short publications [Jordan 1869a; Jordan 1869b; Jordan 1869c] which are more or less
extracts of the Traité that preceded its publication and an additional note [Jordan 1870a], two
papers of Klein [Klein 1870; Klein 1871] of which the second is the one we talked about in the
introduction, and finally, an article of Lie, [Lie 1872].

Let us remark that all of the authors of this corpus are German, except for Jordan16 and
Lie. Furthermore, strong links exists between them. Clebsch learned analytic geometry with
Hesse during his study in Königsberg between 1850 and 1854, and Hesse’s research on algebraic
equations stimulated Clebsch’s interest in this subject.17 Clebsch was friends with Jordan and
they exchanged mathematical ideas in particular about special algebraic equations:

By the multiple relations he formed with Camille Jordan, [Clebsch’s] attention had
always been aimed to everything connected to curious groupings of roots of an equa-
tion. Reciprocally one has essentially to thank him if Camille Jordan had been able to
devote a particular chapter of his great work (Traité des substitutions et des équations
algébriques. [...]) to the “equations of the geometry.”18 [Brill et al. 1873, p. 47]

14The Répertoire Bibliographique des Sciences Mathématiques had been published first in 1894, but classified
retrospectively mathematical papers dated as from 1800, and even 1600 for history and philosophy of science.
See [Nabonnand and Rollet 2002].

15For instance, [Cayley 1849] and [Jordan 1870b] are both cited for the equation of the twenty-seven lines.
The latter actually deals with it, whereas the former is the article commonly designated as the first publication
mentioning and proving the existence of the twenty-seven lines on a cubic surface. For historical information
about the twenty-seven lines, see [Lê 2011].

16For whatever it is worth, Jordan is qualified as “almost German” in [Klein 1979, p. 318].
17[Neumann 1872, p. 550] and [Brill et al. 1873, p. 47].
18“Später wurde [Clebsch’s] Aufmerksamkeit durch die vielfachen Beziehungen, in die er mit Camille Jordan

getreten war, immer wieder auf Allesn was mit merkwürdigen Gruppirungen von Wurzeln einer Gleichung im
Zusammenhange steht, hingelenkt. Umgekehrt hat man es ihm hauptsächlich zu verdanken, wenn Camille Jordan
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At the beginning of 1869, Klein met Clebsch in Göttingen; the latter would become Klein’s
“professor and paternal friend.”19 A few month later Klein went to Berlin, where his friendship
relation with Lie began. He also met Kummer, who was professor in Berlin at that time but
was disappointed by and even despised his attitude, along with Karl Weierstrass’s and Leopold
Kronecker’s.20 In summer 1870 Klein and Lie went to Paris. They met in particular Jordan and
discovered the Traité des subtitusion et des équations algébriques, designated as a “book with
seven seals” by Klein.21 Let us finally add that Klein wrote an obituary of Hesse in 1875, which
suggests that Klein knew Hesse’s works quite well.

The different mathematicians of our corpus possessed thus numerous personal links. Moreover
this impression of great coherence is reinforced by the inter-textual links existing between the
texts of the corpus. These links can be seen in figure 1, where a continuous arrow is put if
an explicit citation is given: for instance, [Jordan 1870b] refers to [Clebsch 1868]. The dashed
arrows mean implicit references clear enough to guess what is the cited text: for instance, [Jordan
1870b, p. vi] mentions the “famous memoirs of Mr. Hesse on the inflection points of the curves
of the third order.” We also represented in the same block Jordan’s Traité des substitutions et
des équations algébriques and the three notes [Jordan 1869a; Jordan 1869b; Jordan 1869c] that
just preceded its publication.

Hesse 1847

Kummer 1863

Kummer 1864

Clebsch 1868

Clebsch 1871

Jordan 1870, Traité

Jordan 1870a

Klein 1870
Klein 1871

Lie 1872

1

Figure 1: Graph of citations. The dashed lines are implicit references. The block “Jordan
1870, Traité” represents the Traité des substitutions et des équations algébriques and the
three notes that preceded its publication.

The aim of the graph is not to make a proper investigation of the inter-textual links in our

im Stande war, in seinem grossen Werke (Traité des substitutions et des équations algébriques. Paris, Gauthier-
Villars 1870) ein besonderes Capitel den ‘Gleichungen der Geometrie’ zu widmen.”

19[Courant 1925, p. 199].
20[Rowe 2013, pp. 2-3].
21[Klein Œuvres 1, p. 51].
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corpus, but rather to see how interconnected our texts are. In particular, the Traité des substi-
tutions et des équations algébriques appears as a central work for the subject of the geometrical
equations. Let us also notice that Klein is connected to every other protagonist, except for
Hesse—however, Klein wrote Hesse’s obituary and deals with [Hesse 1847] in it. These connec-
tions confirm the coherence of our corpus as an algebraic background for Klein in his pre-Erlanger
Programm times. We now describe each of the texts in order to get an idea of this background.

3 Hesse and the nine inflection points: 1847

[Hesse 1847] deals with the solubility of certain algebraic equations of degree 9. More precisely,
the equations at hand are those for which the roots are linked three by three by symmetrical
relations: there exists a function θ such that for every couple of roots xχ, xλ, the quantity
xµ = θ(xχ, xλ) is another root of the equation and such that xλ = θ(xµ, xχ) and xχ = θ(xλ, xµ).
In the introduction, Hesse places his article in the lineage of Niels Abel’s works about the
resolution of particular algebraic equations, recalling a conjecture that Abel gave in [Abel 1830]:
if an equation is of prime degree and if its roots are linked three by three so that one of them
can be rationally expressed by the two others, then the equation is solvable by radicals.22

Hesse also indicates in a footnote that the study of these special equations of degree 9 has been
suggested by his former teacher Carl Gustav Jacob Jacobi after the latter had been acquainted
with Hesse’s research on cubic curves:

I [Hesse] bring out the following extract of a letter of January 1844 written in Rome
by Professor Jacobi to whom I communicated the first results of my research about
the inflection points. “You could also probably solve the general problem: to solve
an equation of degree nine, when a given rational and symmetric function F (x, x′)
of every two roots x, x′ always gives a third root x′′ such that if F (x, x′) = x′′, then
F (x′, x′′) = x and F (x′′, x) = x′. For this is the case here for the equations of the
inflection points of a curve of the third order. So would be revealed a new class of
solvable algebraic equations, totally different from those to which Abel applied the
method of Gauss.” With this hint, I undertook the present research on equations of
the ninth degree.23 [Hesse 1847, p. 202]

The mentioned research on the inflection points are probably those published in [Hesse 1844]. In
this research, Hesse proves in particular that the inflection points of a curve of order n are the
intersections of this curve with another of degree 3(n − 2) which was later called the “Hessian”

22The formulation of this conjecture is quite typical of Abel and Galois: see for instance [Abel 1829], an another
conjecture in [Abel 1830] and [Galois 1846, p. 395].

23“Aus einem vom Januar 1844 aus Rom datirten Schreiben des Herrn Professor Jacobi, dem ich die ersten
Resultate meiner Untersuchung über die Wendepunkte mitgetheilt hatte, hebe ich folgende Stelle heraus. ‘Sie
werden wahrscheinlich auch das allgemeine Problem lösen können: eine Gleichung neunten Grades aufzulösen,
wenn eine gegebene rationale symmetrische Function F (x, x′) je zweier Wurzeln x, x′ immer wieder eine dritte
Wurzel giebt, in der Art, dass wenn F (x, x′) = x′′, auch F (x′, x′′) = x, F (x′′, x) = x′ ist. Denn dieses ist hier
bei den Gleichungen der Wendepunkte der Curven dritter Ordnung der Fall. Es würde sich so eine neue Classe
von auflösbaren algebraischen Gleichungen eröffnen, welche von denen, auf die Abel die Gauss’sche Methode
ausgedehnt hat, total verschieden sind.’ Auf diese Andeutung hin habe ich die vorliegende Untersuchung der
Gleichung neunten Grades unternommen.”
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of the first curve.24 In the particular case n = 3, he deduces the (already known) fact that
every cubic curve has nine inflection points. Hesse goes further and proves that the twelve lines
containing three by three the inflections points form four triangles, each of them containing all
of the nine inflection points.25

We now describe Hesse’s approach of the special equations of degree 9 which are the objects
of [Hesse 1847]. Three roots xχ, xλ, xµ are called “conjugated” if they are linked with the relations
described above. Hesse then proves that there are exactly 12 triplets of conjugated roots and he
represents them on a table:

x1x2x3 x4x5x6 x7x8x9
x2x4x7 x3x5x8 x1x6x9
x5x7x1 x6x8x2 x4x9x3
x8x1x4 x9x2x5 x7x3x6

He then forms functions yχλµ = (α − xχ)(α − xλ)(α − xµ) of a new unknown α, where xχ, xλ,
xµ are conjugated roots. The twelve functions thus obtained are again represented on a table:

y123 y456 y789
y247 y358 y169
y571 y682 y493
y814 y925 y736

Hesse carries on the process and introduces the functions z = (β−yχλµ)(β−yχ′λ′µ′)(β−yχ′′λ′′µ′′)
of an other new unknown β, where the y’s are taken from a line of the last table. This gives him
four functions z1, z2, z3, z4 depending thus of an equation of degree 4, and he proves that the
coefficients of this equation are rational functions of the coefficients of the original equation.

Since this last equation is of degree 4, it is solvable by radicals (with the coefficients of the
original equation): Hesse indicates that one can find one of its roots, say z1, as an entire function
of β. Then the equation z1 = 0 is of degree 3 in β and so its roots y123, y456, y789 can be found
by radicals. Finally, the equation y123 = 0 is of degree 3 and is as such solvable by radicals. But
its roots are x1, x2, x3; and similarly, the remaining roots x4, . . . , x9 can be found by radicals
too.

Hesse then turns to the inflection points equation. He defines this equation as the result of
the elimination of one variable between the equations of a cubic curve and of what it was later
called its Hessian. In order to prove that the inflection point equation is of the kind of those
he investigated previously, Hesse refers to a paper of Jean-Victor Poncelet, [Poncelet 1832], to
recall that the nine points are lined up three by three. This geometrical property is used to prove
that the roots of the inflection points equation satisfy relations like those described in the title
of the paper: three roots are linked by the θ relations when the points they represent are lined
up. Finally, since the inflection points equation belongs to the class investigated by Hesse, it is
solvable by radicals.

Let us remark that Hesse has proceeded in two distinct steps. The first one is the algebraic
investigation of a geometrically disembodied equation; the second one is the incarnation, via the
alignment of the inflection points, of this equation into the nine points equation. It is interesting

24Let us recall that a first curve has an homogeneous equation f(x1, x2, x3) = 0, then its Hessian is the curve
given by the equation H = 0 where H = det( ∂2f

∂xi∂xj
)1≤i,j≤3.

25It was already known that the inflection points are lined up three by three. The Encyklopädie and Hesse
himself (as we shall see later) refer to [Poncelet 1832].
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to compare the descriptions of this process made by two of the authors we shall deal with later:
Clebsch and Klein. In a passage of Julius Plücker’s obituary, Clebsch evokes cubic curves and
Hesse:

As he found [the four triangles] (Crelle’s Journal, vol. 28, 1844), Hesse could deduce
the true nature of the problem. So appeared the wonderful character of this class of
algebraically solvable equations of degree 9 which bear Hesse’s name and for which
the inflection points form the first example.26 [Clebsch 1872, p. 22]

The existence of the four triangles as a way to reveal the nature of the equation is also emphasized
in Hesse’s obituary, written by Klein:

Hesse seized the problem of the algebraic determination of the nine inflection points.
Because one can sort in four triangles the twelve lines on which the points lie three
by three, the resolution of the equation of the ninth degree depends on an equation
of the fourth degree.27 [Klein 1875, p. 48]

Clebsch and Klein both put the four triangles as the core of the resolution of the nine inflec-
tion points equation. Yet, even if one can indeed recognize the importance of the incidence
information coded in the triangles for the formation of resolvents, Hesse never mentions them
in his paper. Thus Clebsch and Klein seem to derive algebraic results directly from geometrical
properties. This is an important feature of their treatment of the geometrical equations, and we
shall encounter it again many times.

4 Kummer and the quartic surfaces: 1863-1864

The two references of Ernst Eduard Kummer that appear in our corpus are dated 1863 and
1864. These years correspond to the beginning of what has been called Kummer’s “third period”
devoted to geometry.28 Kummer’s first geometrical papers were published in 1862 and 1863 (but
some are dated 1860); they are investigations on ray systems but also on models of such systems
and of particular surfaces.29

The two references in our corpus deal with special algebraic surfaces of order 4: some contain-
ing conic sections and some having 16 singular points—such surfaces would be called “Kummer
surfaces” later on. Like many papers on geometry of that time, they do not explicitly aim at
a particular result and are (more or less coherent) collections of geometrical results such as the
existence of singularities, the incidence relations between elements of the surfaces, the study of
particular intersections with other objects, the discussion of particular cases of surfaces, etc. A

26“Indem Hesse diese fand (Crelles Journ. Bd. 28, 1844), vermochte derselbe die wahre algebraische Natur des
Problems zu erschliessen. Es zeigte sich der wunderbare Character jener Classe algebraische lösbarer Gleichungen
9. Grades, welche Hesse’s name führen, und für welche die Wendepuncte das erste Beispiel bilden.”

27“Andererseits ergriff Hesse das Problem der algebraischen Bestimmung der neun Wendepuncte. Weil man die
zwölf Linien, auf welchen dieselben zu drei vertheilt liegen, in vier Dreiecke ordnen kann, hängt die Lösung der
betr. Gleichung neunten Grades von einer Gleichung vierten Grades ab.”

28See [Lampe 1892-93] and André Weil in the preface of [Kummer Œuvres, vol. 2]. The first and second periods
concern respectively function theory and number theory. According to Emil Lampe, Kummer had found his
ground ideas on geometry from Carl Friedrich Gauss’s Disquisitiones generales circa superficies curvas. In a letter
dated of July 1862, Kummer described to Kronecker his interest for George Salmon’s treatise on geometry of
three dimensions which he was studying “with diligence and pleasure,” see [Kummer Œuvres, vol.1, p. 100]

29About mathematical models, Klein and the Kummer surface, see [Rowe 2013].
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typical example of such a result is the following. In [Kummer 1863], Kummer proves that if a
quartic surface contains a conic section with multiplicity 2 and exactly two other double points
such that their junction line do not intersect the conic section, then every plane containing these
double points intersect the quartic surface in two conic sections.

After other geometrical results in the same vein, one geometrical equation appears near
the end of [Kummer 1863]. Just before, Kummer proves that every quartic surface having a
double conic section is intersected by every double tangent plane in a pair of conics. He follows
considering the general form of the equation of the surface: φ2 = 4p2ψ (where φ, ψ are quadratic
forms and p is a linear form), which is equivalent to (φ + 2λp2)2 = 4p2(ψ + λφ + λ2p2) for all
parameters λ. Then Kummer proves that if ψ + λφ+ λ2p2 = 0 is the equation of a cone, every
tangent plane to this cone is tangent to the quartic surface in two contact points and intersect
it additionally in a couple of conics. He follows:

The easy-to-develop condition that ψ + λφ + λ2p2 = 0 represents a cone leads to
an equation of the fifth degree for the constant λ, the five roots of which give five
cones.30 [Kummer 1863, p. 335]

The end of the paper is a discussion on the roots of this equation of degree 5. For instance, he
indicates that if the equation has imaginary roots, then so are the corresponding tangent plans.

Here the geometrical equation is not studied for itself, but it is rather used to find the number
of particular cones. We will see in what follows that this role for the geometrical equation differs
from the other texts of the corpus.

We now turn to the second paper of Kummer, [Kummer 1864]. It begins with the proof of
the existence of quartic surfaces with 16 singular points and the proof that this number is the
maximal number of singularities on a surface of order four. Kummer proves that each of the
16 singular plans contains exactly 6 singular points and that each singular point is contained in
exactly 6 singular plans. A paragraph is also devoted to the description of a wire model of a
surface with 16 singularities.

Kummer then indicates how to link those surfaces with the theory of caustics and proves the
following result:

The complete ray system of order 12 and class 28 which has a general surface of the
fourth order for caustic surface consists, when this caustic has 16 singular points,
firstly of 16 ray systems, of which each consists only of all the lines lying on a plane;
secondly of four ray systems of order 2 and class 2; and thirdly of one ray system of
order 4 and class 4.31 [Kummer 1864, p. 258]

Kummer goes on to specify that when the plane in which the 12 rays of the four systems of class
2 and of the system of class 4 is a tangent plane to the surface, then the 12 rays merge two
by two. The six rays thus obtained become then tangent lines to the surface which all meet in
another point on the surface. He deduces immediately:

30“Die leicht zu entwickelnde Bedingung, daß ψ + λφ + λ2p2 = 0 eine Kegelfläche darstellt, führt auf eine
Gleichung fünften Grades für die Constante λ, deren fünf Wurzeln fünf Kegelflächen geben.”

31“Das vollständige Strahlensystem 12ter Ordnung und 28ter Klasse, welches eine allgemeine Fläche vierten
Grades zur Brennfläche hat, besteht, wenn diese Brennfläche vierten Grades 16 singuläre Punkte hat, erstens aus
16 Strahlensystemen, deren jedes nur aus allen in einer Ebene liegenden graden Linien besteht, zweitens aus vier
Strahlensystemen zweiter Ordnung und zweiter Klasse, und drittens aus einem Strahlensysteme vierter Ordnung
und vierter Klasse.”

9



The equation of degree 6 with which are determined on the most general surface of
fourth degree the six tangents having a common contact point and touching once the
surface in another point falls, for the quartic surface with 16 singular points, into
four factors of degree 1 and one factor of degree 2 which can be rationally expressed
with the coordinates of the common contact point.32 [Kummer 1864, p. 259]

This is the only appearance of a geometrical equation in [Kummer 1864]. This equation is not
at the core of the investigation. Instead, it appears more like an incidental remark following
geometrical properties: the equation splits into four factors of degree 1 and one factor of degree
2 because the six lines group themselves into four “systems” of one line and one “system” of
two lines. The secondary role of the geometrical equation can be confirmed from a letter from
Kummer to Kronecker:33 this letter is indeed all about the result concerning the ray systems
but does not mention anything about the corresponding geometrical equation.

The geometrical equations have thus an auxiliary role in Kummer’s papers. However, they
show Kummer’s ability to transfer geometrical properties to algebraic results and to work on
them in order to find geometrical results. We now continue the description of the corpus with
another text dealing with particular quartic surfaces.

5 Clebsch and the quartic surfaces with double conic section:
1868

The first article of our corpus written by Clebsch is devoted to special quartic surfaces, those
containing a double conic section, [Clebsch 1868]. According to the authors of Clebsch’s obituary,
this article belongs to the group of works concerning the theory of surface representations.34 Such
works had begun in 1865 with a paper in which Clebsch proved the possibility of representing a
cubic surface on a plane.35 Afterward he treated other examples: the so-called Steiner surface,
the ruled cubic surfaces and finally, the quartic surfaces with double conic section which are the
object of Clebsch’s paper that we are studying here. One of the main goals of the development
of the representation of surfaces theory was to study the “geometry on the surfaces,”36 that is
the investigation of special points and curves lying upon the surfaces.

In order to establish the representations of the cited special surfaces, Clebsch used previous
works on those surfaces; in the case of [Clebsch 1868], the main reference is [Kummer 1863] which
we described in the preceding section. In the first paragraph of this paper, Clebsch defines the
quartic surfaces he is about to study, gives the formulas of its representation on a plane and
affirms that there is exactly 16 lines lying upon the surface.

32“Die Gleichung sechsten Grades, durch welche auf der allgemeinsten Fläche vierten Grades die sechs Tangenten
bestimmt werden, die einen Berührungspunkt bestimmt werden, die einen Berührungspunkt gemein haben, und
die Fläche außerdem jede noch einmal berühren, zerfällt für die Flächen vierten Grades mit 16 singulären Puntken
in vier Faktoren ersten Grades und einen Faktor zweiten Grades, welche durch die Coordinaten des gemeinsamen
Berührungspunktes rational ausgedrückt werden.”

33 [Kummer Œuvres, vol. 1, p. 101].
34[Brill et al. 1873, pp. 30-37].
35[Clebsch 1866]. In modern words, a representation of a surface on a plane is a birational map from the surface

to the (projective) plane; Clebsch’s representation of the cubic surface can be interpreted as the blowup of the
projective plane along six points in general position. See [Lê 2013, pp. 59-60] for a description of Clebsch’s proof
of existence of the cubic surface representation on a plane.

36[Brill et al. 1873, p. 33].

10



Accordingly, the equation of the sixteen lines is the one that appears in the paper. Although
the quantitative room granted to it remains quite modest, the equation appears in the second
paragraph, crowning the results on the groupings of the lines. Thus in contrast with Kummer’s
papers, the geometrical equation seems more to be an object of interest in itself, explicitly linked
with the groupings of lines. As we shall see, the equation is the object of two other paragraphs,
one devoted to the proof of the number of the lines lying upon the surface, the other to a
refinement of its resolution process.37

These scattered appearances fit with the description of Clebsch’s interest for the algebraic
equations given in his obituary:

The general theory of algebraic equations, as founded by Lagrange, further developed
by Gauss and Abel and elevated by Galois to its present generality, interested Cleb-
sch a great deal. However, he did no proper investigation in that direction; but he
touched those questions indirectly by not letting any occasion pass, when a geomet-
rical or algebraic problem led to equations of particular character, to point out these
noteworthy equations. It was really the investigations of Hesse and furthermore of
Abel that turned Clebsch’s interest to the algebraic side of geometrical problems.38

[Brill et al. 1873, p. 47]

We already mentioned the links between Clebsch and Hesse earlier. Moreover this quotation
hints at points of an history of the reception of Galois theory that have not yet been studied
by historians:39 an actor, Clebsch, and particular equations, the geometrical equations—we will
come back to this point later.

We now come to Clebsch’s treatment of the sixteen lines equation in [Clebsch 1868]. The
second paragraph of this article is entitled “Gruppierungen der Geraden.” Clebsch uses the
representation of the surface on a plane in order to establish the incidence relations between the
16 lines. At first, he proves that each line intersects five other lines that do not meet; the results
are summed up in a table (for instance, the line 1 meets the lines 6, 7, 8, 9 and 16):

1) 6, 7, 8, 9, 16 9) 1, 5, 10, 11, 13
2) 6, 10, 11, 12, 16 10) 2, 3, 8, 9, 15
3) 7, 10, 13, 14, 16 11) 2, 4, 7, 9, 14
4) 8, 11, 13, 15, 16 12) 2, 5, 7, 8, 13
5) 9, 12, 14, 15, 16 13) 3, 4, 6, 9, 12
6) 1, 2, 13, 14, 15 14) 3, 5, 6, 8, 11
7) 1, 3, 11, 12, 15 15) 4, 5, 6, 7, 10
8) 1, 4, 10, 12, 14 16) 1, 2, 3, 4, 5

37Nevertheless, this last point uses long calculations and no special feature; since it would wander us off the
subject of the premises of the Erlanger Programm, we will not deal with it

38“Die allgemeine Theorie der algebraischen Gleichungen, wie sie durch Lagrange begründet, durch Gauss und
Abel weiter entwickelt, durch Galois zu ihrer jetzigen Allgemeinheit erhoben worden ist, hat Clebsch in hohem
Masse interessirt. Er hat freilich in dieser Richtung nicht eigentlich einige Untersuchungen angestellt, aber er
hat indirect diesen Fragen genützt, indem er keine Gelegenheit vorübergehen liess, wenn ein geometrisches oder
algebraisches Problem zu Gleichungen besonderen Charakters hinleitete, auf eben diese Gleichungen als an und für
sich beachtenswerth hinzuweisen. Es waren wohl die Untersuchungen von Hesse und weitherin von Abel gewesen,
die Clebsch’s Interesse für diese algebraische Seite der geometrischen Probleme rege gemacht hatten.”

39See for instance [Kiernan 1971; Neumann 1996] and the more recent [Ehrhardt 2012].
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From this table, Clebsch deduces another, representing the 40 couples of secant lines:

1, 6 2, 6 3, 7 4, 8 5, 9 6, 13 7, 15 9, 11
1, 7 2, 10 3, 10 4, 11 5, 12 6, 14 8, 10 9, 13
1, 8 2, 11 3, 13 4, 13 5, 14 6, 15 8, 12 10, 15
1, 9 2, 12 3, 14 4, 15 5, 15 7, 11 8, 14 11, 14
1, 16 2, 16 3, 16 4, 16 5, 16 7, 12 9, 10 12, 13

Now, to each couple correspond three other non-intersecting couples (for instance to the couple
(2, 6) correspond the couples (3, 7), (4, 8) and (5, 9) because the lines 2, 6, 3, 7, 4, 8, 5 and 9 do
not meet), so that the 40 couples split in ten groups of 4 formed by non secant lines. These ten
groups split in five times two “conjugated” groups containing the 16 lines. Again, a table is used
to represent these groups:

2, 6; 3, 7; 4, 8; 5, 9. 1, 16; 10, 15; 11, 14; 12, 13.
1, 6; 3, 10; 4, 11; 5, 12. 2, 16; 7, 15; 8, 14; 9, 13.
1, 7; 2, 10; 4, 13; 5, 14. 3, 16; 6, 15; 8, 12; 9, 11.
1, 8; 2, 11; 3, 13; 5, 15. 4, 16; 6, 14; 7, 12; 9, 10.
1, 9; 2, 12; 3, 14; 4, 15. 5, 16; 6, 13; 7, 11; 8, 10.

Clebsch writes directly after this last table:

This table is of great importance, for it teaches that the equation of degree 16 of
which the sixteen lines of the surface depend is solved with the help of an equation
of degree 5. This equation, which delivers the five couples of groups, is no other than
the one with the help of which Mr. Kummer obtained the five cones of order 2, the
tangent planes of which doubly touch the surface, [Kummer 1863].40 [Clebsch 1868,
p. 145]

This quotation closes the second paragraph and the sixteen lines equation is not dealt with again
until its next appearance many pages later. Here, the groupings of the lines seem to be an
important matter for understanding the configuration of the sixteen lines. Represented in tables,
the incidence relations imply directly the existence of a resolvent of degree 5.

The use of this table recalls for instance Enrico Betti’s treatment of the modular equation
of order 5 in 1853. Indeed Betti represented in a table a partition of the group of the modular
equation into 5 sets, and this proved the possibility of reducing the modular equation to an
equation of degree 5.41 One can also find such use of a table in [Galois 1846, p. 428] where Galois
links the steps of the resolution of the equation of degree 4 with the decomposition of its group,
the substitutions of which are represented in successive tables. Thus if a, b, c, d are the four
roots of the general equation of degree 4, Galois describes in a table the group of the equation

40“Diese Tafel ist vorzugsweise von Wichtigkeit, weil sie lehrt, dass die Gleichung sechzehnten Grades, von
welcher die sechzehn Geraden der Oberfläche abhängen, mit Hülfe einer Gleichung fünften Grades gelöst wird.
Diese Gleichung, welche die fünf Paare von Gruppen liefert, ist keine andere, als diejenige, mit deren Hülfe
Herr Kummer die fünf Kegel zweiter Ordnung erhalten hat, deren Seiten die fragliche Fläche doppelt berühren.
(Sitzung der Berl. Acad. vom 16. Juli 1863.)”

41See [Goldstein 2011] for further explanations and in particular a copy of Betti’s table.
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reduced by the adjunction of a square root:

abcd, acbd, adbc,
badc, cabd, dacb,
cdab, dbac, bcad,
dcba, dcba, cbda.

He goes on and writes that “this group divides into three groups [...]. Thus with the extraction
of one radical of the third degree, there only remains the group

abcd,
bacd,
cdab,
dcba.”

Galois’s process of selecting one of the three columns with the help of a radical of the third
degree can be seen as analogous to Clebsch’s process of finding a resolvent of degree 5 thanks to
his table. Let us temporary leave Galois’ line of thought and come back to Clebsch.

As stated earlier, the next appearance of this equation is linked with the proof that 16 is the
actual number of lines upon the surface. In order to do that, Clebsch forms the equation of the
lines as the result of an elimination and proves that its degree is 16. He then explains how the
equation can be solved:

1. Search for a root of the equation of degree 5 of which the five cones depend.

2. Resolution of a quadratic equation [from which] the two families of conics [...]
are deduced.

3. Complete resolution of two biquadratic equations [...] which deliver the 2.4
couples of lines of the two families of conics.

4. Resolution of eight quadratic equations giving the individual lines of the eight
couples.42 [Clebsch 1868, pp. 172-173]

One can read these steps and compare them to the last table that Clebsch gave. The search of
one root of the equation of the cones corresponds to the selection of one line of the table; the
resolution of the quadratic equation of the families of conics corresponds to the knowledge of
both of the groups of 4 couples in the line; then the biquadratic equations split each group into
their 4 couples; finally each couple is split with a quadratic equation.

Again, one can link these steps to what Galois did for the equation of degree 4. Indeed Galois
continues from the group

abcd,
bacd,
cdab,
dcba,

42“1. Aufsuchung einer Wurzeln der Gleichung fünften Grades, von welcher die fünf Kegel abhängen.
2. Auflösung einer quadratischen Gleichung [...]. Durch diese quadratische Gleichung werden die beiden
Kegelschnittschaaren [...] ermittelt. 3. Vollständige Auflösung zweier biquadratischen Gleichungen [...], welche
die 2.4 Geradenpaare der beiden Kegelschnittschaaren liefern. 4. Auflösung der acht quadratischen Gleichungen,
welche die einzelnen Geraden der acht Paare geben.”
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writing: “this group splits again in two groups:

abcd, cdab,
badc, dcba.

Thus, after only one extraction of a square root, there will remain

abcd,
badc;

which will be eventually solved with only one extraction of a square root.”
The comparison that we just made between Galois and Clebsch pleads in favor of an un-

derstanding of the equation theory arising from the geometry and somewhat analogous to the
Galois theory. As explained earlier, Clebsch knew of substitution theory thanks to his links with
Jordan; but in a letter to him, he wrote:

I want to thank you for your friendly sending of the second part of your [Traité des
substitutions et des équations algébriques]. I just wished you could have also sent
the necessary understanding; for unfortunately I have to confess that these deep and
important investigations go far beyond my competence. I stick to the first half, where
geometry comes to my rescue [...].43

The difficulties of understanding the Galois theory44 and the emphasis on the help provided
by geometry confirm the idea that Clebsch went through equation theory thanks to a kind of
geometrical reading of Galois’ ideas. We shall encounter again this articulation between geometry
and substitution theory in a paper of Klein just preceding the Erlanger Programm, so we will
come back to it in the concluding remarks. Before that, let us return to the chronological
progression of our corpus and take a look at Jordan’s Traité des substitutions et des équations
algébriques we just evoked.

6 Jordan: around the Traité des substitutions et des équations
algébriques, 1870

As we saw in section 2, our corpus contains the Traité des substitutions et des équations al-
gébriques and three short papers that announced the publication of the Traité. Accordingly we
will focus on the Traité and more specifically on the chapter called “Applications géométriques.”
The three short publications are indeed about geometrical equations and one of them is devoted
to a link between the twenty-seven lines equation and the equation of the trisection of hyper-
elliptic functions. This emphasis indicates that Jordan wanted to put in the foreground those
special equations that consequently became the parts of the Traité that actually circulated and

43“Erst jetzt also kann ich Ihnen meinen Dank aussprechen für die freudliche Uebersendung der zweiten Abbil-
dung Ihrer Bucher. Ich wollte nur, Sie hätten mir auch zugleich das nödrige Verständniss mitschicken können;
denn leider, ich muss es gestehen, gehen diese liefen und wichtigen Untersuchungen bis jetztweit über meinn Fas-
sungsgabe hinaus. Ich hate mich an die erste Hälfte, wo die Geometrie mir zu Hülfe kommt.” Extract of a letter
from Clebsch to Jordan, dated 5th March 1871. The letter is conserved in the Archives of the École Polytechnique.

44The authors of Clebsch’s obituary do not mention any work that Clebsch would have done on substitution
theory.
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contributed to its fame.45 Our corpus contains an additional note of Jordan in which he comes
back to the link between the twenty-seven lines and the hyperelliptic functions; we will also
discuss with this note in the present section.

In the introduction of the Traité, Jordan recalls some points on the development of equa-
tion theory, mentions the equations arising from the elliptic functions and then turns to the
geometrical equations:

Another fruitful research path has been opened up to analysts by Mr. Hesse’s fa-
mous memoirs on the inflection points of the curves of third order. The problems
of the analytic Geometry give indeed many other remarkable equations of which the
properties, studied by the most illustrious geometers and especially by Mssrs. Cay-
ley, Clebsch, Hesse, Kummer, Salmon, Steiner, are now well known and allow easy
application to the methods of Galois. [...] We also want to thank here Mssrs. Clebsch
and Kronecker for the precious hints they gave to us. Thanks to the liberal commu-
nications of Mr. Clebsch, we have been able to tackle the geometrical problems of the
Livre III, chapitre III.46 [Jordan 1870b, pp. vi-viii]

We already mentioned Clebsch’s influence on the elaboration of Jordan’s chapter on the “Appli-
cations géométriques.” It is divided into six parts, each dealing with a particular geometrical
situation: the nine inflection points of a cubic curve, some curves with prescribed contact prop-
erties, the sixteen lines on a quartic surface with double conic section, the sixteen singular points
of the Kummer surface, the twenty-seven lines on a cubic surface and eventually another kind of
curves with given contact properties and which encompass the twenty-eight double tangents to
a quartic curve. In each part, Jordan begins by recalling geometrical properties of the objects
in hand, for instance the alignment three by three of the inflection points. For these geometrical
properties, Jordan refers to the authors that appear in our previous quotation: Cayley, Clebsch,
Hesse, Kummer, Salmon and Steiner.47 Thus Jordan is probably assimilating the geometrical
properties and the properties of the equations: this explains why Cayley, Salmon and Steiner do
not appear in our corpus of the geometrical equations.

The application of “the methods of Galois” is one of the actual goals of the Traité des sub-
stitutions et des équations algébriques: in his book, Jordan develops the theory of substitutions
and applies it to the theory of algebraic equations. With the help of groups of substitutions,
he wants to place the problem of resolution with radicals as “the first ring of a long chain of
questions concerning the transformation of the irrationals and their classification.”48 It must

45The letters that Jordan received after he sent the Traité to other mathematicians mainly contain comments
about the link between the twenty-seven lines and the hyperelliptic functions. See [Brechenmacher 2011].

46“Une autre voie féconde de recherches a été ouverte aux analystes par les célèbres mémoires de M Hesse sur
les points d’inflexion des courbes du troisième ordre. Les problèmes de la Géométrie analytique fournissent, en
effet, une foule d’autres équations remarquables dont les propriétés, étudiées par les plus illustres géomètres, et
principalement par MM. Cayley, Clebsch, Hesse, Kummer, Salmon, Steiner, sont aujourd’hui bien connues et
permettent de leur appliquer sans difficulté les méthodes de Galois. [...] Nous tenons également à remercier
ici MM. Clebsch et Kronecker des précieuses indications qu’ils nous ont fournies. C’est grâce aux libérales
communications de M. Clebsch que nous avons pu aborder les problèmes géométriques du Livre III, Chapitre III.”

47For the alignment of the inflection points, Jordan gives no reference but the corresponding section is called
“Équation de M. Hesse.”. For the twenty-seven lines, the property is that the lines meet three by three and form
thus forty-five triangles. Jordan refers to Steiner, but adds in a note situated at the very end of the Traité that
Cayley and Salmon had known this property before Steiner, [Jordan 1870b, p. 665].

48[Jordan 1870b, p. vi]. See [Ehrhardt 2012, pp. 173-182] for an analysis of Jordan’s works on Galois theory
and [Brechenmacher 2011] for more general relations between Jordan and Galois.
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be emphasized here that in the Traité, all of the groups are composed of substitutions; even
in the geometrical applications—of which we will talk about right now— there is no group of
transformations of space.49

For the case of the geometrical equations, Jordan has a specific method he applies to each
of them: using the incidence relations existing between the objects, he creates an algebraic
function having the same group of substitutions as the equation. Jordan then studies this group
in order to get results on the resolution of the equation in particular. For instance, the nine
roots of the inflection points equation are noted with the symbols (xy) where x, y are integers
between 0 and 2 so that three points corresponding to the roots (xy), (x′y′), (x′′y′′) are lined
up if and only if x + x′ + x′′ ≡ y + y′ + y′′ ≡ 0 (mod 3). The corresponding algebraic function
is then ϕ =

∑
(xy)(x′y′)(x′′y′′), the sum being taken for all x, . . . , y′′ satisfying the preceding

condition. In other words, each term of ϕ corresponds to three inflection points that are lined up.
Jordan then states that the group of the nine points equation is the same as the group leaving
ϕ unaltered. He works on the latter—research of order, of chains of (normal) sub-groups—to
prove eventually that the nine points equation is solvable with radicals.

Each geometrical equation is treated the same way. In the paragraph concerning the twenty-
seven lines of a cubic surface though, Jordan wanders from his method for a moment and deduces
some resolution properties directly from the existence of geometrical objects made from the
twenty-seven lines. Those objects are the forty-five planes containing three by three the twenty-
seven lines, the forty so-called “triples of double Steiner’s trihedrons”50 and the thirty-six double-
sixes of Schläffli. For those double-sixes for instance, Jordan writes:

One can determine in 27 ·16/2 different ways a couple of lines which do not intersect.
Besides, one can group these couples by six (Schläffli’s double-sixes) so that each line
of a couple meets a line of every other couple of the double-six. The double-sixes
depend thus on an equation of degree 27 · 16/2 · 6 = 36 which will be equivalent to
[the equation of the 27 lines].51 [Jordan 1870b, p. 319]

This argument consisting of deducing algebraic results directly from the existence of geometrical
objects encoding the incidence relations vividly recalls Clebsch and Klein putting the existence
of the four triangles as the very reason of the resolution of the nine inflection points equation (see
the end of section 3). This relation between the existence of certain superior geometrical objects
and the understanding of a problem can also be found around the link between the twenty-seven
lines and the hyperelliptic functions.

In the chapter “Applications à la théorie des transcendantes,” Jordan deals with hyperelliptic
functions, that is functions of two complex variables which are the inverse functions x = λ0(u, v),
y = λ1(u, v) of hyperelliptic integrals

u =

∫ x

0

µ+ νx

∆(x)
dx+

∫ y

0

µ+ νy

∆(y)
dy and v =

∫ x

0

µ′ + ν ′x

∆(x)
dx+

∫ y

0

µ′ + ν ′y

∆(y)
dy,

49See [Lê 2013] for explanations about the mathematical content of the Traité and a discussion of the relations
between the theory of substitutions and geometry around the twenty-seven lines equation.

50A “Steiner trihedron” is a trihedron made from some of 45 planes, having special incidence relations. These
triherons can be grouped by pairs and then by triples of pairs, according to other incidence relations. The final
objects are the “triples of double Steiner’s trihedrons.” See [Henderson 1911] for detailed explanations.

51“On peut déterminer de 27 · 16/2 manières différentes une paire de droites qui ne se coupent pas. On peut
d’ailleurs grouper ces paires six à six (doubles-six de Schläfli), de sorte que les droites d’une paire rencontrent
chacune une droite de chaque autre paire du double-six. Les doubles-six dépendent donc d’une équation de degré
27 · 16/2 · 6 = 36, qui sera encore équivalente à la proposée.”
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where ∆2 is a polynomial of degree 6. The problem of the trisection is to determine λ0(u/3, v/3)
and λ1(u/3, v/3) with the help of λ0(u, v) and λ1(u, v), when u and v have particular values
called the periods. Jordan tackles the problem studying the corresponding equation; he manages
to prove that this equation has a reduced equation having the same group as the twenty-seven
lines equation.

As explained, this result contributed to the immediate fame of the Traité des substitutions
et des équations algébriques. In fact, in a letter he wrote to Jordan in December 1869, Luigi
Cremona designated the link between the twenty-seven lines and the hyperelliptic functions as
a “riddle to explain,” to which Jordan answered that it would be interesting to find a “definitive
demonstration” of it.52 The note [Jordan 1870a] of our corpus is Jordan’s answer to the problem.
He explains:

In order to facilitate the ulterior comparison between those two problems, apparently
so different, it can be useful to reciprocally search for what is the combination of
the 27 lines (or of the 45 triangles) which, taken as the unknown, will depend on an
equation which is analogous to the equation of the division of an abelian function.53

[Jordan 1870a, p. 326]

The combination that Jordan gives then is a system of nine planes with particular incidence
properties. Going beyond the mathematical details, we can see again the importance given to
the formation of geometrical objects encoding particular incidence relations and presented as
keys to the understanding of an equation (or of links between equations). The groupings of lines,
here represented in geometrical objects, are at the core of the resolution; as we saw, this feature
is shared at least by Clebsch and Klein.

7 The theory of linear complexes: Klein, 1870

The paper we refer to is Klein’s first publication, [Klein 1870]. It is a work taking elements from
his thesis and deepening it, which he did under Plücker’s supervision and which he presented in
1868.54 In his Gesammelte mathematische Abhandlungen, Klein writes that a difference between
his thesis and this paper is the influence that Göttingen, and especially Clebsch, had on him:

Compared with the thesis, one recognizes the stimulating influence that the envi-
ronment of Göttingen had on me. I chose this quite uncertain expression because
besides Clebsch himself, the still little number of students he had gathered around
him gained the most lively influence on me.55 [Klein Œuvres 1, p. 50]

We will return to this difference between [Klein 1870] and his thesis a bit later. Let us note that if
Klein’s enthusiasm for Göttingen expressed in the last quotation is certainly genuine, one should

52The letter written by Cremona is conserved in the Archives of the École Polytechnique (ref. VI2A2(1855)
9). This letter and its answer have been edited by Simonetta Di Sieno and Paola Testi Saltini. Cremona’s whole
correspondence will be published soon, under the direction of Giorgio Israel.

53“Pour faciliter la comparaison ultérieure de ces deux problèmes, en apparence si différents, il peut être utile de
rechercher réciproquement quelle est la combinaison des 27 droites (ou des 45 triangles) qui, prise pour inconnue,
dépendra d’une équation analogue à celle qui dnne la division d’une fonction abélienne.”

54[Klein 1868].
55“Beim Vergleich mit der Dissertation wird man den anregenden Einfluß erkennen, den die Göttinger Umgebung

auf mich ausgeübt hat. Ich wähle dieser etwas unbestimmten Ausdruck, weil neben Clebsch selbst die vorab noch
kleine Zahl von Spezialschülern, die er um sich versammelt hatte, regsten Einfluß auf mich gewann.”
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bear in mind that in 1921, Klein had already managed to construct the “great Göttingen,” erecting
as heroes mathematicians from the past like Carl Friedrich Gauss and Bernhard Riemann. So
even at a smaller scale, Clebsch’s name could have been magnified as Klein was writing his
history in 1921.56

The theme of [Klein 1870] is the study of the linear complexes of degree 2, that is, sets of
lines of space satisfying some conditions. More precisely, a line of space can be described with
six homogeneous coordinates satisfying a quadratic equation; a linear complex of degree 2 is the
set of all lines, the coordinates of which satisfy an additional homogeneous quadratic equation.
In this publication that Klein himself called “vague,” special care is given to the link between
the linear complexes and Kummer’s quartic surface. Geometrical equations appear repeatedly
at the conclusion of little paragraphs: they are not central objects of investigation. Let us now
see this typical structure in an example.

Klein notes a1, a2, . . . , a6 the six homogeneous coordinates of the lines of space. He proves
that one can suppose their quadratic identity to be

∑
a2i = 0, which happens to be invariant if

one changes the signs of the ai. Then Klein concludes that the lines of space can be grouped by
32: for a given 6-uple a1, . . . , a6, the 32 lines are those of coordinates ±a1,±a2, . . . ,±a6. Now,
Klein indicates that each group of 32 lines split into two groups of 16 lines according to the parity
of the number of negative coordinates. Finally, if one line of a group of 16 is given, Klein proves
that the lines of the other group of 16 split into two groups: those which are the conjugated polar
lines of the given line with respect to the six fundamental complexes, respectively with respect
with the ten fundamental surfaces.57 He then writes immediately:

The equation of the 32th degree, by which such a system of lines [...] is determined,
requires, after the six fundamental complexes have been found by an equation of the
6th degree, only the resolution of equation of the second degree.58 [Klein 1870, p. 210]

This result is not explained nor used or commented in the paper: it really seems to be a remark
crowning a little paragraph. Other examples of such properties of equation resolution following
geometrical groupings run throughout Klein’s paper. In particular, Klein proves with this kind
of reasoning a result that Jordan demonstrated with his substitutions techniques: that the 16
singular points equation depends on an equation of degree 6 and on other quadratic equations.
All these algebraic results on geometrical equations following particular groupings of lines are
precisely one obvious difference between [Klein 1870] and Klein’s thesis. So we can see them as
artifacts of the “stimulating atmosphere” of Göttingen that was mentioned in the first quotation
of the present section.

With only this first publication, one can see Klein’s early mathematical influences as well as
some works related to his: Kummer and his investigation on quartic surfaces; Clebsch’s emphasis
on the groupings of lines; Jordan’s result on the sixteen points equation. This knitting shows
different types of relations between Klein and the cited authors, namely groundings of work,

56See [Rowe 1989a]. About Clebsch, a deeper investigation could be done to determine his precise relationship
with Klein. Concerning a construction of Clebsch’s posthumous fame (Clebsch died in November 1872), let us just
recall here that the first lecture that Klein gave in the Evanston Colloquium is entirely devoted to Clebsch, [Klein
1894].

57The six fundamental complexes are the sets of lines defined each to be the vanishing locus of one of the six
coordinates. The ten fundamental surfaces are the sets of lines defined by equations such that a21 + a22 + a23 = 0.

58“Die Gleichung des 32ten Grades, durch welche ein derartiges System von geraden Linien [...] bestimmt wird,
verlangt, nachdem die sechs Fundamentalcomplexe durch eine Gleichung des 6ten Grades gefunden worden sind,
nur noch die Auflösung von Gleichungen des zweiten Grades.”
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influence and rereading of results. On this last point, we are about to see that Lie puts Klein’s
approach as the geometrical footing for the possibility to lower the sixteen points equation to an
equation of degree 6. Thus we have again the idea that geometry is the way to understand links
between equations.

This weaving of Klein’s ideas between those of Clebsch, Kummer and Jordan shows a par-
ticular practice around the geometrical equations in the earliest works of Klein; moreover, the
impression of closeness around this practice is about to be reinforced with some comments of
Lie.

8 Interlude: Lie’s comments, 1871

Lie’s paper to which the Encyklopädie refers is an augmented and German-translated version
of his doctoral thesis, [Lie 1872].59 It is quite a long paper (more than 100 pages) but the
Encyklopädie refers to a precise passage of it, where some comments on the geometrical equations
appear. These comments are situated at the end of the paper, as Lie is about to tackle some
quartic surfaces.

Among the surfaces of the fourth order, there are two, firstly investigated by Mr.
Kummer, that I shall consider here: the one with 16 nodes, f4, and the one with a
double conic section, F4. Both give grounds to an equation of the sixteenth degree;
one by its nodes, the other by the lines lying upon it. The latter led Mr. Clebsch
to an equation of the fifth degree already considered by Mr. Kummer (Borchardt’s
Journal vol. 6760). On the other hand, Mr. Jordan found that the former comes
back to an equation of the sixth degree [Jordan 1869c]. The geometrical grounds of
it lie in Mr. Klein’s investigations relative to that surface [Klein 1870].61 [Lie 1872,
pp. 250-251]

This quotation does not contain anything new mathematically speaking, but it is interesting to
see that Lie refers to almost everything we have been dealing with until now. Not only Lie is
acquainted with the geometrical research concerning the quartic surfaces, but he also knows of
the corresponding geometrical equations.

It is true that Lie does not here develop anything about geometrical equations. Yet, his
comments emphasize the fact that these equations are really part of the mathematical bath in
which he and Klein are immersed at those times just preceding the elaboration of the Erlanger
Programm.

59[Engel 1900, p. 36].
60This volume contain no article written by Kummer, and those written by Clebsch have nothing to do with

quartic surfaces with double conic section. Lie is probably referring to [Kummer 1863] or [Clebsch 1868].
61“Unter den Flächen vierter Ordnung, giebt es zwei, zuerst von Herrn Kummer untersuchte, welche ich hier

betrachten will: die mit 16 Knotenpunkte, f4, und die mit einem Doppelkegelschnitt, F4. Beide Flächen geben
Anlass zu einer Gleichung sechzehnten Grades; die eine durch ihre Knotenpunkte, die andere durch die auf ihr
gelegenen geraden Linien. Die letzere fürhte Herr Clebsch auf eine schon von Herr Kummer aufgestellte Gleichung
fünften Grades zurück. (Borchardt’s Journal Bd. 67.) Andererseits fand Herr Jordan, dass die ertere Gleichung
auf eine solche vom sechsten Grade zurückkommt (Borchardt’s Journal Bd. 70.). Es fand dies seine geometrische
Begründung in den auf diese Fläche bezüglichen Untersuchungen des Herrn Klein (Math. Ann. Bd. 2.).”
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9 Clebsch’s geometrical interpretation of the quintic, 1871

We now turn to [Clebsch 1871] which is not a direct reference of the Encyklopädie, but which is
quoted in Klein’s paper Ueber eine geometrische Repräsentation der Resolventen algebraischer
Gleichungen we evoked in the introduction. Clebsch’s goal is to give a geometrical interpretation
of the theory of the equation of the fifth degree:62

The object of present article is mainly the different forms that an equation of the
fifth degree can take by a superior transformation. [...] So one obtain [...] a com-
plete overview of the relations existing between the equations of degree 5 and their
resolvents, and in particular of the relations with the Jerrard form and the modular
equation.63 [Clebsch 1871, pp. 284-285]

The actual core of this geometrical interpretation is to consider the coefficients of the inter-
vening transformations as coordinates of space. For instance, a transformation ξ = y1+y2λ+y3λ2

x1+x2λ+x3λ2

meant to act on an algebraic equation f(λ) = 0 is represented as the line of the plane joining the
points of homogeneous coordinates x1, x2, x3 and y1, y2, y3. One of the main points of Clebsch’s
method is to find transformations such that prescribed invariants of the transformed equation
vanish. Such transformations are geometrically represented by lines that are tangent to certain
curves, created from the prescribed invariants.

Clebsch also interprets the Tschirnhaus transformation ξ = aλ4 + bλ3 + cλ2 + dλ+ e. If one
wants the transformed equation to be of the form ξ5 + Aξ + B = 0, the coefficients a, b, . . . , e
must satisfy three conditions Φ(a, b, c, d, e) = 0, Ψ(a, b, c, d, e) = 0 and X(a, b, c, d, e) = 0, where
Φ, Ψ and X are homogeneous polynomials of degree 1, 2 and 3 (resp.). The linear identity
Φ(a, b, c, d, e) = 0 allows Clebsch to interpret a, b, c, d, e as pentaedric coordinates of space,
that is to eliminate one of the five coefficients a, . . . , e with the help of Φ = 0 and then consider
the four remaining as homogeneous coordinates of space. Then Ψ = 0 becomes the equation of
a quadratic surface and X = 0 the equation of a cubic surface. So, in order to determine an
appropriate Tschirnhaus transformation, one has to find a point on the curve (of order 6) which
is the intersection of these surfaces.

Geometrical equations appear incidentally as ways to control the irrationalities in the process
of finding a point on the curve of order 6—since the Tschirnhaus transformation does not involve
radicals superior to the fourth order, so must the geometrical process. Clebsch summarizes his
method as follows:

One has just to determine any point of the space curve of the sixth order, which is
carried out by intersecting a generator of the surface Ψ = 0 with the [cubic surface
X = 0]. For this, a quadratic equation and a cubic equation are to be solved; the
former to find a generator of the surface of the second order; the latter to determine
the intersection of this surface with the [cubic] surface.64 [Clebsch 1871, p. 341]

62On the general equation of degree 5, see the chapter VII of [Houzel 2002] and the chapter IV of [Gray 2000].
63“Der vorliegende Aufsatz hat vorzugsweise die verschiedenen Formen zum Gegenstande, welche einer Gle-

ichung 5ten Grades durch eine höhere Transformation gegeben werden können. [...] So erhält man [...] eine
vollständige geometrische Uebersicht über die Zusammenhänge, welche zwischen den Gleichungen 5ten Grades
und ihren Resolventen bestehen, insbesondere über den Zusammenhan mit der Jerrard’schen Form und der Mod-
ulargleichung.”

64“Man hat dann nur einen beliebigen Punkt der Raumcurve 6ter Ordnung zu ermitteln, was geschieht, indem
man eine Erzeugende der Fläche Ψ = 0 mit der Diagonalfläche schneidet. Dazu ist eine quadratische und eine
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Other passages of Clebsch’s paper contain geometrical equations. For instance, Clebsch inter-
prets Kronecker’s method of resolution of the quintic, which consists of resolving the modular
equation of degree 6 in order to transform the quintic into a pure equation.65 In the geometrical
interpretation, the modular equation is proved to be the same as the equation of degree 6, which
“separates” six double tangents to a certain curve.

This mixing of equation theory, invariant theory and geometry is very characteristic of this
paper.66 These mathematical domains are precisely those which are at the core of Klein’s paper
on the geometrical representation of equations.

10 Geometrical representation of resolvents: Klein 1871

We finally come to [Klein 1871], that we mentioned at the beginning of the present paper. In
the introduction, Klein emphasizes the intuitive character of the geometrical equations:

The large advantage of these examples is that they intuitively present to the eye the
in themselves so abstract ideas of the theory of substitutions. They refer most of the
time to equations of very particular character, of which the roots present particular
groupings and thus give a view on why such particular equations can occur.”67 [Klein
1871, p. 346]

He goes on and announces his general and fundamental principle: to conceive every algebraic
equation as a geometrical equation, embodying the roots of an equation in geometrical objects
and replacing the substitutions of the roots by transformations of the space. Together with the
previous quotation, this articulation between algebra and geometry reveals two main mottoes of
Klein: to bring geometry to the fore because of the intuition it allows and to stress the importance
of transformation groups.

At the end of the introduction, Klein reveals that both Clebsch and Lie helped shape the ideas
of the paper. The former with the “geometrical considerations” that he used in the interpretation
of the quintic in [Clebsch 1871] and that he “had the kindness to share with [Klein] during
repeated personal conversations.”68 The latter because of his common investigations on linear
transformations of geometrical objects published in [Klein and Lie 1871].

This last reference is one of those which usually appears in the historiography of the Erlanger
Programm. On the one hand, this confirms a link between Klein’s early research on algebraic

cubische Gleichung zu lösen; erstere, um eine Erzeugende der Fläche 2ter Ordnung zu finden; die andere, um die
Durchschnitte derselben mit der Diagonalfläche zu bestimmen.”

65On the modular equation of degree 6 and its links with the quintic (without geometry) treated in particular
by Charles Hermite, see [Goldstein 2011].

66However, let us recall that the geometrical interpretation of the theory of invariants had been developed by
Clebsch himself years before. See [Brill et al. 1873, p. 37 ff.]. Besides, the application of the invariant theory
to geometry had begun with the works of Cayley, Sylvester and Salmon. About the history of invariant theory,
see [Fisher 1966; Hunger Parshall 1989]

67“Der hohe Nutzen dieser Beispiele liegt darin, daß sie die an und für sich so eigenartige abstrakten Vorstel-
lungen der Substitutionstheorie in anschaulicher Weise dem Auge vorführen. Sir beziehen sich zumeist auf Gle-
ichungen von sehr partikulärem Character, zwischen deren Wurzeln besondere Gruppierungen statthaben, und
lassen also übersehen, wieso derartige besondere Gleichungen auftreten können.”

68“Die nächste Veranlassung zu den hiermit angedeuteten Dingen sind mir die geometrische Betrachtungen
gewesen, die Herr Clebsch in dem vorstehenden Aufsatze behufs Discussion der Gleichungen 5ten Grades angewandt
hat, und welche mir derselbe in wiederholten persönlichen Unterhaltungen mitzutheilen die Güte hatte.” [Klein
1871, p. 347].
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equations and his common work with Lie; on the other hand, the reference to Clebsch indicates
an influence that has been, in our view, not emphasized or studied enough in the historiography.
We will come back to these points in the concluding remarks. We will now roughly describe each
of the four parts in which Klein’s paper is divided.

In the first part, Klein gives more accurate explanations on his general principle of geometrical
representation. Thus if the equation is general and of degree n, an element of space takes in
general n! different places when the n! transformations corresponding to the n! substitutions act
on it. According to Klein, this system of n! elements of space is the image of the Galois resolvent
of the equation. Furthermore, Klein points out that there are special elements in space such that
some of the n! transformed elements are coincident. In that case, “the Galois resolvent becomes
a power of an expression which is designated as a particular resolvent.”69

In the second part of the paper, Klein links the theory of equations with the theory of
covariants: the groups of n! elements obtained in general are covariants of the system made of
the n given elements corresponding to the n roots.

The third part deals briefly with particular equations, like the nine inflection points equation
but also the cyclotomic equations. Klein emphasizes again the importance of the transformations
of space:

As a geometrical image for the equation of the 9th degree, we do not consider the
curve of the third order which contains the inflection points, but rather the inflection
points themselves and the transformation cycles by which they are permuted among
themselves.70 [Klein 1871, p. 354]

Finally, in the fourth and last part, Klein comes to the general equation of degree 6. He applies
his theory of linear complexes and refers to [Klein 1870] for geometrical results. Substitutions of
the roots correspond to transformations of linear coordinates and just like in the other references
of our corpus, groupings of lines lead directly to algebraic results. For instance, Klein finds 15
pairs of directrices, each being associated to a pair of fundamental complexes, and he deduces
immediately that:

The 15 pairs of directrices are the image of a resolvent of degree 15.

The 15 pairs of directrices build the edges of 15 tetrahedrons (in the sense that one
can, in 15 ways, divide six elements into 3 groups of 2).

These 15 tetrahedrons represent a second resolvent of degree 15.

From these 15 tetrahedrons, one can now choose five that have for edges the 30
directrices, in 6 ways.

These groups of five tetrahedrons represent a resolvent of degree 6.71 [Klein 1871,
p. 357]

69“Die Galoissche Resolvente wird dann eine Potenz eines Ausdrucks, der als eine besondere Resolvente beze-
ichnet wird.” [Klein 1871, p. 348].

70“Als geometrisches Bild für die Gleichung 9ten Grades betrachten wir nun nicht die Curve 3ter Ordnung,
welche die Wendepunkte besitzt, sondern die Wendepunkte selbst und den Transformationscyclus, durch welche
diese untereinander vertauscht werden.” (Klein’s emphasis).

71“Die 15 Directricenpaaren sind das Bild einer Resolvente 15ten Grades. Die 15 Directricenpaaren bilden nun
die Kanten von 15 Tetraedern (dem entsprechend, dass man 6 Elemente auf 15 Weisen in 3 Gruppen von 2 theilen
kann). Diese 15 Tetraedern stellen eine zweite Resolvente 15ten Grades dar. Aus den 15 Tetraedern nun kann
man auf 6 Weisen solche 5 aussuchen, die zusammen alle 30 Directricen zu Kanten haben. Diese Gruppen von 5
Tetraedern repräsentieren eine Resolvente des 6ten Grades.” (Klein’s emphasis).
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We recognize here the formation of resolvents directly from the existence of geometrical objects,
as it was presented for instance in Jordan’s Traité des substitutions et des équations algébriques
(cf. supra).

At the very end of the paper, Klein explains very quickly (and very vaguely) how, in his
geometrical representation, one can find the rational transformation of an equation of degree 6,
the effect of which is to vanish a given invariant. In particular, he refers at Clebsch’s paper on
the geometrical interpretation of the quintic, [Clebsch 1871], where that kind of transformations
was at the core.

All of the main points developed by Klein in the paper to which this section was devoted form
one of the bases of Klein’s theory of the quintic and the icosahedron.72 However, as explained
in the introduction, equation theory is part of the mathematical background of the Erlanger
Programm. Our point here is thus to emphasize that what is usually linked to the research on
the icosahedron must also be understood as premises of the Erlanger Programm.

11 Conclusion

The present investigation put the geometrical equations to the fore, filling up a hole in the
historiography well fitted to these particular equations. Following these particular equations,
one can indeed track some important points of the history of algebraic equations: the formation
of resolvents in the tradition of Gauss and Abel; Galois theory as explained and used by Jordan;
works on the quintic crowned with Klein’s approach linked to the icosahedron. What also
appears, although less directly, is a proximity with the modular equation on the one hand,
and the cyclotomic equation on the other hand. But like those special equations, one should
not consider the geometrical equations just as mere examples illustrating the development of
equation theory, for they did contribute to this development.

The cyclotomic and modular equations have been extensively studied by historians, and their
importance as paradigmatic models has already been emphasized. Moreover, a link between
the groupings of the roots of the cyclotomic equation and geometry has been commented on
in [Boucard 2011]. To the contrary, the connections between geometry and the modular equations
as they appear for instance in Clebsch’s paper on a geometrical interpretation of the quintic
theory have not yet been investigated.

In fact, Clebsch himself remains historically too little studied. Although he is usually con-
nected to the domains of invariant theory, abelian functions and surface representations, his
interest for the algebraic equations have been emphasized in the present paper. A central actor
in our corpus because of his relations with Hesse, Jordan and Klein, Clebsch is the one giving
for the first time a kind of geometrical understanding of Galois theory. As we noticed earlier,
this shared understanding goes through a careful study of the groupings of geometrical objects
(and not of roots), sometimes expressed in tables or incarnated in superior objects. We touch
here on an important point of the development of the substitution theory, already stressed by
Max Noether in 1875:

With the research on the inflection points of the cubic curve [...] an insight into
the particular nature of the [inflection points equation] has been given through the
proof of the four triangles [...]. A geometrical image for all the relations concerning

72In the book on the icosahedron, Klein explicitly refers to this paper. See [Klein 1884, p. 160].
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the groupings of the roots had been gained. Such intuitive [anschauliche]73 special
examples really participated to an easier perception and to the development of the
so abstruse substitution theory.74 [Noether 1875, p. 86]

Yet the geometrical equations are not only interesting for the history of substitution theory.
Indeed, nourished by his common research with Lie, Klein connected substitutions and linear

transformations of space through a geometrical interpretation of the roots of any algebraic equa-
tion based on the examples of the geometrical equations. But the transformations of space are at
the core of the Erlanger Programm; more specifically, the central pillar of the Programm is the
very notion of groups of transformations. As mentioned in the introduction, the importance of
groups of transformation was stressed in the Programm with an analogy with the Galois theory.
The emphasis on invariant elements of space comes also from this analogy:

In the theory of equations the first subjects to engage the attention are the symmetric
functions of the coefficients, and in the next place those expressions which remain
unaltered, if not under all, yet under a considerable number of permutations of the
roots. In treating a manifoldness on the basis of a group our first inquiry is similarly
with regard to the bodies [...], viz., the configurations which remain unaltered under
all the transformations of the group. But there are configurations admitting not all
but some of the transformations of the group, and they are next of particular interest
from the point of view of the treatment based on the group. [Klein 1893, p. 242]

Thus Klein’s wish for a theory of transformation groups similar to the theory of substitutions
indicates how important was the background of equation theory.

What happened next is better known. The “few readers and listeners [of the Erlanger Pro-
grmam] must have realized that they were being exposed to new and fundamental perspectives,
even if they barely understood them.”75 It would be of great interest to know the reactions to
the Programm of all the authors we studied in this paper; but this is another story. At least
we can take for granted that Clebsch could not have reacted, for he suddenly died in November
1872.

“During the elaboration of my program, I naturally always thought of what my dear
professor Clebsch (whom I undoubtedly had to thank for the early nomination to
Erlangen) would have to say about my explanations, which differ so much from his
systematic-projective way of thinking. In vain! For Clebsch suddenly succumbed
from a case of diphtheria on the November 7th 1872, at the age of just 39. His
opinion, which I was awaiting with a mixing of hope and fear, thus never came.76

[Klein Œuvres 1, p. 412]
73A discussion about the nature of this intuition, its manifestations and its uses in the texts is worth a detailed

investigation. Such an investigation will be done later.
74“Bei der Untersuchung der Wendepunkte der Curve dritter Ordnung [...] ergab sich durch den Nachweis

der vier Dreiseite, in die sich die Geraden gruppiren, ein Einblick in die besondere Natur der Gleichung neunten
Grades, welche die neun Punkte bestimmt. [...] [Es] war auch ein geometrisches Bild für alle auf die Gruppirungen
der Wurzeln bezüglichen Verhältnisse gewonnen. Solche anschauliche speciellere Beispiele haben wesentlich auf
die leichtere Auffassung und auch auf die Ausbildung der an sich so abstrusen Substitutionentheorie gewrikt.”

75 [Birkhoff and Bennett 1988, p. 152].
76“Bei der Ausarbeitung meines Programms habe ich selbsverständlich immer daran gedacht, was wohl mein

verehrter Lehrer Clebsch (dem ich zweifellos auch die frühzeitige Berufung nach Erlangenzu verdanken hatte)
zu meinen Darlegungen, die so vielfach von seiner systematische-projective Denkweise abwischen, sagen würde.
Vergeblich! Denn Clebsch ist am 7. November 1872, im Alter von nur 39 Jahren, einem Anfall von Diphteritis
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This mixed feeling that Klein recalled serves to tone down the image of the dazzling 23-year-old
Ordinatus and shows the zealous mathematician at the beginning of his “Faustian quest,”77 both
aware of the boldness of his ideas and yet still caring for his elders’ approval.
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