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Résumé

En 1849, Arthur Cayley et George Salmon démontrent que toute surface cubique
contient exactement vingt-sept droites. Résultat célèbre de la deuxième moitié du xixe

siècle, ce théorème a notamment donné lieu à des recherches sur une équation algébrique
particulière appelée « équation aux vingt-sept droites ». Dans notre thèse, nous étudions
les rapprochements entre groupes, équations et géométrie opérés dans ces recherches. Après
un travail préparatoire mettant en place certains points mathématiques et chronologiques
associés aux vingt-sept droites, nous nous intéressons au Traité des substitutions et des
équations algébriques de Camille Jordan, publié en 1870. Cet ouvrage contient une section
consacrée à l’équation aux vingt-sept droites dont nous analysons en détail les mathéma-
tiques. Pour mettre en contexte certains points, un corpus plus large est ensuite construit
autour des « équations de la géométrie », famille d’équations associées à des configurations
géométriques dont les vingt-sept droites ne sont qu’un exemple. Ce corpus s’étend de 1847
à 1896, et ses principaux auteurs sont Jordan, Alfred Clebsch et Felix Klein. Dans le but
de rendre compte de l’organisation particulière du savoir partagé dans le corpus, nous dis-
cutons et utilisons alors la notion de « culture ». Enfin, nous étudions précisément deux
textes du corpus proposant de géométriser certaines parties de l’algèbre et nous montrons
en quoi les équations de la géométrie ont participé à une compréhension géométrique de
la théorie des substitutions ainsi qu’à l’élaboration des idées du Programme d’Erlangen de
Klein (1872).

Mots-clés

Vingt-sept droites, équations de la géométrie, Jordan, Clebsch, Klein, culture, histoire de
l’algèbre et de la géométrie.
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Twenty-seven Lines on a Cubic Surface: Encounters
between Groups, Equations, and Geometry in the

Second Half of the 19th Century

Abstract

In 1849, Arthur Cayley and George Salmon proved that every cubic surface contains
exactly twenty-seven lines. A famous result in the second half of the 19th century, this the-
orem gave rise to research about a particular algebraic equation called the “twenty-seven
lines equation.” In our thesis, we study how groups, equations, and geometry interact
throughout this research. After a preparatory work presenting some mathematical and
chronological points about the twenty-seven lines, we look into Camille Jordan’s Traité
des substitutions et des équations algébriques, published in 1870. This book contained a
section devoted to the twenty-seven lines equation, the mathematics of which we thor-
oughly study. In order to contextualize some elements, a larger corpus is then built around
“geometrical equations,” a family of equations linked to geometrical configurations among
which the twenty-seven lines are just one example. The corpus extends from 1847 to 1896
and its main authors are Jordan, Alfred Clebsch, and Felix Klein. Aiming at describing
the particular organization of the knowledge shared in the corpus, we then discuss and
use the notion of “culture.” Finally, we closely study two texts of the corpus, each of
them presenting a geometrization of a part of algebra, and we ascertain that geometrical
equations participated to a geometrical understanding of substitution theory as well as the
elaboration of the ideas of Klein’s Erlanger Programm (1872).

Keywords

Twenty-seven lines, geometrical equations, Jordan, Clebsch, Klein, culture, history of al-
gebra and of geometry.
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Introduction

Cette thèse vise à mettre en lumière un épisode de l’acculturation de la théorie des
groupes en géométrie dans la deuxième moitié du xixe siècle. Son fil conducteur est un
théorème, démontré par Arthur Cayley et George Salmon en 1849, pouvant s’énoncer en
termes actuels de la façon suivante :

Théorème. Toute surface cubique non singulière de P3 contient exactement 27 droites.

Une surface cubique est un ensemble de points de l’espace dont les coordonnées véri-
fient une équation polynomiale de degré 3. Ces coordonnées sont des éléments d’un corps
algébriquement clos, disons ici le corps des nombres complexes C pour fixer les idées. Les
surfaces non singulières, ou lisses, sont celles pour lesquelles il est possible de « bien »
définir un plan tangent en chacun de leurs points. Le théorème stipule alors que toutes ces
surfaces contiennent un même nombre fini de droites, à savoir 27, dès lors qu’on accepte de
chercher des droites éventuellement situées à l’infini ou n’ayant aucun point à coordonnées
réelles. Pour visualiser la situation, voir le modèle en plâtre d’une surface cubique avec ses
droites proposé en page 16.

Le théorème des vingt-sept droites semble avoir été un résultat important pour les
mathématiciens, dès l’époque de Cayley et de Salmon. Par exemple pour leur collègue et
ami James Joseph Sylvester :

Avec probablement la même bonne raison qu’Archimède a fait graver le cylindre, le
cône et la sphère sur sa pierre tombale, nos compatriotes distingués pourraient laisser
des instructions testamentaires pour que l’eikosiheptagramme cubique soit gravé sur
la leur 1. [Sylvester 1866-69, p. 155]

Aujourd’hui encore, le résultat d’existence des vingt-sept droites des surfaces cubiques
reste présent dans la production mathématique, que ce soit dans des livres de géométrie
algébrique 2 ou des articles de recherche 3.

1. « Surely with as good reason as had Archimedes to have the cylinder, cone, and sphere engraved on his
tombstone might our distinguished countrymen leave testamentary directions for the cubic eikosiheptagram
to be engraved on theirs. » L’« eikosiheptagramme cubique » désigne la figure formée des vingt-sept droites
d’une surface cubique. Sauf mention du contraire, toutes les traductions faites dans cette thèse sont les
miennes, et tous les italiques des citations sont issues des textes d’origine.

2. [Hartshorne 1977 ; Beauville 1978 ; Reid 1988 ; Shafarevich 1994 ; Mumford 1995 ; Milne 2014].
3. Le moteur de recherche MathSciNet des Mathematical Reviews recense 121 d’articles de mathéma-

15
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Figure 1 – Modèle en plâtre de la surface cubique dite « surface de Clebsch » ou
« surface diagonale », d’équation homogène x3 + y3 + z3 +w3− (x+ y+ z+w)3 = 0.
Source : [Fischer 1986b].
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Alors que la notion de groupe n’est pas apparente dans l’énoncé du théorème des
vingt-sept droites, une partie de ces travaux récents parlent du « groupe des permutations
des vingt-sept droites », du « groupe des symétries des vingt-sept droites » ou encore du
« groupe des vingt-sept droites 4 ». Cela indique ainsi la mise en place, à un certain moment,
de processus de rapprochements mathématiques entre groupes et géométrie opérés autour
des vingt-sept droites.

Cette hypothèse est également appuyée par un constat historiographique. En effet,
le théorème d’existence des vingt-sept droites apparaît dans des travaux historiques se
rapportant à la fois à la géométrie, [Dieudonné 1974 ; Gray 1989 ; Barrow-Green & Gray
2006 ; Rowe 2013], et à l’algèbre, [Van der Waerden 1985 ; Gray 2000 ; Brechenmacher 2011],
dans la seconde moitié du xixe siècle. Dans ces derniers, on apprend que Camille Jordan
avait étudié du point de vue des groupes une certaine équation algébrique associée aux
vingt-sept droites, appelée « l’équation aux vingt-sept droites », dans son célèbre Traité des
substitutions et des équations algébriques publié en 1870 — le rôle clé de cet ouvrage dans la
constitution de la théorie des groupes a par ailleurs été montré dans les recherches de Hans
Wussing, [Wussing 1969] 5. Toutefois, ces apparitions sporadiques des vingt-sept droites sur
une surface cubique dans les histoires de la géométrie ou de l’algèbre ne permettent pas de
comprendre précisément comment ces deux domaines mathématiques se sont entremêlés
autour de ce résultat.

Il est commun d’associer la rencontre entre théorie des groupes et géométrie au Pro-
gramme d’Erlangen de Felix Klein (1872), souvent présenté comme le texte unificateur de
ces deux domaines. Par exemple, dans la préface d’une édition de ce Programme, Jean
Dieudonné écrit :

Le « programme d’Erlangen » de F. Klein est, à juste titre, considéré comme un des
jalons les plus importants de l’histoire des mathématiques au xixe siècle. Avec un siècle
de recul, on peut dire qu’il constitue une sorte de « ligne de partage des eaux » : il
apparaît comme un aboutissement de la longue et brillante évolution de la Géométrie
projective depuis le début du siècle, qu’il résume, condense et « explique » grâce à la
mise en valeur du rôle fondamental joué par le concept de groupe. [Klein 1974, p. ix]

Plusieurs travaux historiques ont été consacrés au Programme d’Erlangen 6. En particulier,
Thomas Hawkins a étudié l’influence qu’a eu le Programme durant les cinquante années qui
ont suivi sa publication, revenant ainsi sur des lieux communs le présentant comme le texte
le plus important et le plus influent de cette époque, [Hawkins 1984]. Il a ainsi montré que
le Programme est resté relativement inconnu pendant une vingtaine d’années après 1872,

tiques dont les comptes rendus comportent l’expression « 27 lines », publiés régulièrement entre 1940 (année
de début des recensions) et 2015.

4. Voir par exemple [Frame 1951 ; Benson 1989 ; Elsenhans & Jahnel 2011 ; Milne 2014].
5. Voir aussi [Kiernan 1971 ; Corry 2004].
6. Outre les références citées dans le paragraphe qui suit, voir [Birkhoff & M. K. Bennett 1988 ; Gray

1992 ; Gray 2005 ; Rowe 1983 ; Rowe 1985 ; Wussing 1969].
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que d’autres mathématiciens ont lié groupes et géométrie durant cet intervalle de temps et
que les travaux de Sophus Lie et ses élèves ont grandement participé à la diffusion des idées
du Programme. D’un autre côté, des recherches historiques se sont intéressées aux travaux
mathématiques qui avaient précédé et participé à l’élaboration du Programme d’Erlangen.
Ainsi, David E. Rowe a décrit les travaux communs de Lie et de Klein du début des années
1870 sur les transformations infinitésimales de courbes ainsi que les connaissances que
Klein avait à cette époque sur les géométries non euclidiennes et la Liniengeometrie, [Rowe
1989b ; Rowe 1992] 7.

Ces descriptions historiques du Programme d’Erlangen évoquent pour la plupart un
point particulier : Klein avait été inspiré par la présentation de la théorie des équations sous
l’angle de la notion de groupe de substitutions faite dans le Traité de Jordan, et avait voulu
la transporter par analogie au cas de la géométrie au moyen des groupes de transformations.
L’historiographie ayant davantage insisté sur les groupes de transformation que sur les
groupes de substitutions, la mise en œuvre de cette analogie restait toutefois encore à
comprendre. Dans la présente thèse, je montrerai notamment que le transfert voulu par
Klein de la théorie des équations à la géométrie a été nourri par des exemples techniques,
déjà étudiés avant lui, liés à des configurations géométriques telles que les vingt-sept droites.

Après l’ouvrage de référence de Jeremy Gray mettant en lumière certains transferts
entre groupes, équations différentielles et géométrie, [Gray 2000], et celui de Erhard Scholz
sur la cristallographie, les groupes et la géométrie, [Scholz 1989], d’autres rapprochements
disciplinaires impliquant soit l’algèbre soit la géométrie ont attiré l’attention des historiens.
Ainsi, Catherine Goldstein et Norbert Schappacher ont mis en évidence un champ de re-
cherche qu’ils ont baptisé « analyse algébrique arithmétique », à l’interface de l’algèbre,
l’analyse et la théorie des nombres, et mêlant équations algébriques, congruences, lois de
réciprocités, séries de Fourier et fonctions elliptiques, [Goldstein & Schappacher 2007]. Sé-
bastien Gauthier a quant à lui mené des recherches au sujet de la géométrie des nombres,
fruit de rencontres entre géométrie et théorie des nombres, [Gauthier 2007]. Plus récem-
ment, Tom Archibald a aussi étudié des rapprochements entre équations algébriques et
équations différentielles à travers la mise en place de la théorie de Galois différentielle, [Ar-
chibald 2011].

Les histoires de l’algèbre et de la géométrie au xixe siècle se sont par ailleurs beaucoup
enrichies récemment. D’un côté, mentionnons les travaux de Fréderic Brechenmacher et de
Caroline Ehrhardt qui ont permis de préciser les diverses identités de l’algèbre dans dif-
férents temps et espaces sociaux, [Brechenmacher 2007a ; Brechenmacher 2010 ; Ehrhardt
2011 ; Ehrhardt 2012 ; Brechenmacher & Ehrhardt 2010]. De l’autre côté, citons les re-
cherches du collectif Lise Bioesmat-Martagon sur l’espace projectif, [Bioesmat-Martagon
2011], ou celles de Jemma Lorenat, qui est revenue sur l’opposition entre géométrie analy-

7. Voir aussi [Hawkins 2000] pour une description plus détaillée des travaux communs de Lie et de Klein
sur les transformations de courbes.
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tique et géométrie synthétique au début du xixe siècle, [Lorenat 2015a]. Par le renouveau
qu’ils ont apporté sur les histoires de l’algèbre et de la géométrie, ces travaux récents sug-
géraient la pertinence d’étudier des épisodes de rencontres de ces domaines, comme ce qui
est proposé dans la présente thèse.

Pour mener à bien ce travail, j’ai presque systématiquement été au plus près des ma-
thématiques elles-mêmes. Ce faisant, j’ai adopté une démarche micro-historique comme
proposée par Carlo Ginzburg, consistant à analyser des détails et à les constituer en in-
dices, en traces de phénomènes plus larges qu’ils permettent ainsi de comprendre 8. La
fréquente présence du théorème des vingt-sept droites au xixe siècle, sa longévité et son
association avec des groupes dans les travaux mathématiques récents laissaient espérer qu’il
pouvait servir d’indice des rapprochements entre théorie des groupes et géométrie dans la
seconde moitié du xixe siècle ; c’est pourquoi il a été choisi comme fil conducteur de la
thèse.

J’avais au départ pensé suivre la démarche utilisée par plusieurs historiens pour tra-
cer l’« histoire d’un théorème ». Ces travaux ont chacun suivi un théorème particulier en
analysant précisément ses formulations successives et en étudiant comment ces modifica-
tions successives d’énoncé étaient révélatrices de changements de cadres ou de transferts
disciplinaires 9. Cette approche, pourtant, échoue dans le cas du théorème des vingt-sept
droites. En effet, nous verrons dans la suite que durant un intervalle de temps allant du
milieu du xixe siècle jusqu’à la Première Guerre mondiale, le théorème se caractérise par
une très grande stabilité de la forme de son énoncé : depuis Cayley qui écrit en 1849 « the
whole number of lines upon the surface is twenty-seven », les mathématiciens ne parlent
jamais d’autre chose que des vingt-sept droites sur les surfaces cubiques et ne cherchent
d’ailleurs que très rarement de nouvelles démonstrations de leur existence.

Dans les livres de géométrie algébrique récents mentionnés précédemment, ce n’est que
vers la fin du xxe siècle qu’on peut relever, parfois, des changements de formulation du
théorème, qui semblent résulter de modifications de la discipline elle-même. Pour James S.
Milne par exemple, le théorème énonçant l’existence des vingt-sept droites est le suivant 10 :
« l’ensemble des surfaces cubiques contenant exactement 27 droites correspond à un sous-
ensemble ouvert de P19 », [Milne 2014, p. 210]. Donnons également l’exemple d’Arnaud
Beauville, qui commence par montrer que les surfaces de Del Pezzo contiennent un nombre
fini de droites (les images des diviseurs exceptionnels) et en particulier que celles de degré 3

en contiennent 27, puis que toute surface cubique est une surface de Del Pezzo, [Beauville
1978, p. 63-64]. On remarquera toutefois que même dans ces réécritures, il s’agit encore de
droites incluses dans des surfaces : on est loin du cas d’André Weil, pour qui le théorème de
Fermat affirmant la non existence de « triangles rectangles en nombres d’aire carrée » n’était

8. [Ginzburg 1980 ; Ginzburg 1989].
9. [Gilain 1991 ; Sinaceur 1991 ; Goldstein 1995 ; Brechenmacher 2007a ; Bernard 2010 ; Ehrhardt 2012].
10. « The set of cubic surfaces containing exactly 27 lines correspond to an open subset of P19. »
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rien d’autre qu’un cas particulier du théorème de Mordell sur les courbes elliptiques 11.

Une autre piste s’est avérée plus prometteuse : dans la deuxième moitié du xixe siècle,
le théorème des vingt-sept droites est rapidement associé à l’équation algébrique déjà évo-
quée, « l’équation aux vingt-sept droites ». Suivre cet objet situé à l’articulation même
des équations algébriques et de la géométrie devait donc me permettre de pouvoir capter
des dynamiques intéressantes sur les rapprochements disciplinaires en vue 12. En partant de
l’équation aux vingt-sept droites, l’enquête a révélé toute une famille d’équations analogues,
associées à d’autres situations géométriques. J’ai ainsi été amené à étudier les façons de
faire associées à ces équations, au cœur du lien entre théorie des substitutions et géométrie.

Ces façons de faire, partagées par une poignée de mathématiciens pendant une période
de temps assez courte, ne peuvent être décrites par une catégorie d’analyse telle que « dis-
cipline », qui renvoie à un système d’activités systématisées 13. Par ailleurs, ces activités
intellectuelles partagées s’accompagnent de valeurs, ce qui m’a invité à chercher un des-
criptif plus large que celui de « pratiques 14 ». J’ai retenu ici le mot « culture » pour essayer
de décrire l’organisation du savoir en jeu.

Le mot « culture » a déjà été proposé en histoire des mathématiques pour décrire des
systèmes d’activités empreints de valeurs et soutenus par des structures institutionnelles 15.
Ainsi, Karine Chemla a défini une notion de culture mathématique pour comprendre des
manières de travailler partagées par des groupes de personnes et se retrouvant sur plusieurs
siècles, [Chemla 2009]. Pour expliquer certains aspects apparemment singuliers dans des
sources chinoises, elle a proposé de tenir compte d’éléments textuels (problèmes, nombres,
procédures, types de textes, instruments de calcul, figures, démonstrations), de valeurs
épistémologiques (la généralité, dans son cas) ainsi que des types d’institutions et groupes
sociaux dans lesquels les acteurs considérés sont impliqués. Ces composantes sont des
« complexes de pratiques », liés de façon cohérente par les valeurs épistémologiques, en
regard desquelles les aspects singuliers observés s’expliquent. De son côté, F. Brechenma-
cher définit des cultures associées à des réseaux de textes, en recourant à une notion de
culture dont les actes élémentaires sont les interactions existant entre des individus ou

11. [Goldstein 1995]. Le théorème de Mordell affirme que le groupe des points rationnels d’une courbe
elliptique définie sur Q est de type fini.
12. Alors que Jordan parle systématiquement du « groupe de l’équation aux vingt-sept droites », on

trouve plus tardivement des expressions comme « le groupe des 27 droites » ou « le groupe de Galois de
la configuration des 27 droites » dans des textes d’Élie Cartan, [Cartan 1896 ; Cartan 1946] — chez ce
dernier, les vingt-sept droites interviennent dans un contexte de théorie des groupes de Lie : leur groupe
est isomorphe au groupe de Lie exceptionnel E6 (voir [Hawkins 2000] au sujet des groupes de Lie). On
pourrait ainsi penser que le changement de cadre de « l’équation aux vingt-sept droites » vers « le groupe
des vingt-sept droites » se réalise dans le contexte des groupes de Lie à la toute fin du xixe siècle. Un
objectif de la thèse est de montrer que le groupe associé aux vingt-sept droites se trouve bien plus tôt au
centre de l’attention des géomètres.
13. Sur la notion de « discipline » en histoire des mathématiques, voir [Gauthier 2007 ; Goldstein &

Schappacher 2007].
14. [Brechenmacher 2007a ; Brechenmacher 2007b ; Roque 2015].
15. Outre les exemples qui suivent, voir le projet Mathematical Cultures, https://sites.google.com/

site/mathematicalcultures/home, et sa présentation [Larvor 2012].
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des groupes d’individus, [Brechenmacher 201 ?]. Il définit ainsi « la culture de l’équation
séculaire » en repérant, dans le réseau de textes associé à cette équation, des caractères
mathématiques partagés et soutenus par une valeur épistémologique, celle de la généralité.

Pour ma part, je soulignerai pour le moment que le mot « culture » renvoie à l’orga-
nisation particulière d’ensembles de traits (incluant connaissances, valeurs et symboles)
partagés par une pluralité de personnes, se transmettant par apprentissage et formant un
système lié 16. Ce dernier point est important : il signifie que les traits partagés ne sont pas
simplement juxtaposés les uns aux autres, mais forment un tout cohérent (au sens d’une
logique spécifique à la culture) au sein duquel ils prennent tout leur sens, alors qu’isolés,
ils peuvent conduire l’observateur à une situation d’incompréhension. En outre, cette ap-
proche nous permet d’éviter un piège, celui de domaines (que ce soit la géométrie ou la
théorie des groupes) qui seraient bien définis en eux-mêmes avant leur mise en contact.
Comme le remarque en effet Denys Cuche, les travaux sur les processus d’acculturation,
c’est-à-dire de rencontres de cultures, ont contribué à reconnaître le caractère dynamique
des cultures et ainsi à révoquer le mythe de cultures pures, repliées sur elles-mêmes. Au
contraire, ce sont les rencontres de cultures qui permettent de les appréhender :

Le processus que connaît chaque culture en situation de contact culturel, celui de dé-
structuration puis de restructation, est en réalité le principe même d’évolution de n’im-
porte quel système culturel. Toute culture est un processus permanent de construction,
déconstruction et reconstruction. [Cuche 2010, p. 70]

C’est justement cette dynamique d’acculturation qu’il s’agit de capter dans cette thèse, en
suivant les travaux sur l’équation aux vingt-sept droites dans la deuxième moitié du xixe

siècle.

Le premier chapitre de la thèse est un chapitre préparatoire. Lorsqu’ils proposent des
remarques historiques, presque tous les travaux mathématiques récents sur les vingt-sept
droites mentionnés précédemment utilisent une source commune. Il s’agit d’un livre de
Archibald Henderson intitulé The Twenty-Seven Lines upon the Cubic Surface, [Henderson
1915], qui se présente donc comme « l’histoire officielle » du sujet 17. Je vais m’intéresser à
cette histoire proposée par Henderson, ce qui me permettra de présenter différents aspects
mathématiques associés aux vingt-sept droites et de confirmer deux points que j’ai annoncés
précédemment : la stabilité de la forme d’énoncé du théorème d’existence des vingt-sept
droites et l’intérêt de se focaliser sur l’équation aux vingt-sept droites.

L’étude des travaux concernant cette équation débute au chapitre 2. Identifié par Hen-
derson comme point de départ pour la suivre, le Traité des substitutions et des équations

16. Ces caractéristiques de « culture » sont celles qui sont le plus communément acceptées en sciences
sociales. Voir à ce sujet [Kroeber & Kluckhohn 1952 ; Vermeersch 1965 ; Perrineau 1975 ; Cuche 2010 ;
Spencer-Oatey 2012].
17. Voir par exemple [Frame 1951, p. 83 ; Milne 2014, p. 211]. Un certain nombre d’autres travaux

mathématiques récents se réfèrent à des publications qui elles-mêmes renvoient au livre de Henderson.
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algébriques de Jordan est l’objet principal du chapitre. J’y étudie au plus près la façon dont
sont entremêlées géométrie et théorie des substitutions, autour des trois séries de résultats
mathématiques qui concernent les vingt-sept droites. La première est l’étude des propriétés
de résolubilité de l’équation aux vingt-sept droites ; la deuxième concerne des liens entre
cette équation et des équations liées à d’autres configurations géométriques ; la troisième
se rapporte aux vingt-sept droites et aux fonctions hyperelliptiques.

Pour mettre en contexte certains points du Traité difficilement explicables à partir de
la lecture de cet ouvrage, un corpus de textes est créé au chapitre 3. Ce corpus est défini
par les « équations de la géométrie », dont l’équation aux vingt-sept droites n’est qu’un
exemple. En décrivant les textes du corpus, je suggérerai que l’on peut interpréter certains
de leurs éléments comme des traces de cultures algébrique et géométrique au xixe siècle.
Par ailleurs, je montrerai que si les « équations de la géométrie » sont des objets mal définis,
ils donnent cependant lieu à des façons de faire assez précises et partagées par les auteurs
du corpus.

Le chapitre 4 est dévolu à une description plus précise de ces façons de faire. Je com-
mencerai par montrer que la catégorie d’analyse « discipline » ne permet pas d’en rendre
compte. Après cela, en procédant à une dissection de ces façons de faire caractéristiques
des équations de la géométrie, je montrerai en quoi l’organisation du savoir lié à ces objets
peut être décrit en tant que « système culturel ».

Enfin, le cinquième et dernier chapitre de la thèse est consacré à certains travaux de
deux des auteurs du corpus des « équations de la géométrie » : Alfred Clebsch et Felix
Klein. Ces deux mathématiciens seront privilégiés dans ce chapitre en tant qu’auteurs de
textes proposant des interprétations géométriques de certaines parties de la théorie des
équations. Celui de Clebsch se rapporte à l’équation générale du cinquième degré ; celui
de Klein sur une façon de représenter géométriquement des résolvantes d’équations. Je
montrerai alors en quoi ce dernier texte, et avec lui tout le corpus des « équations de la
géométrie, permet de relier ces équations au Programme d’Erlangen.

Je termine cette introduction en expliquant quelques résultats mathématiques utiles
sur les vingt-sept droites. Rappelons d’abord que le théorème d’existence peut s’énoncer
comme suit :

Théorème. Toute surface cubique non singulière de P3 contient exactement 27 droites.

Pour fixer les idées, je ne considérerai ici que l’espace projectif P3 est défini sur le
corps C des nombres complexes 18. Muni de coordonnées homogènes (x : y : z : w), on y
définit les surfaces cubiques comme étant les lieux décrits par des équations algébriques
homogènes de degré 3. Autrement dit, une surface cubique est l’ensemble des points de P3

18. Comme écrit précédemment, il est possible de considérer plus généralement un corps algébriquement
clos quelconque. Je me limiterai ici au cas des nombres complexes, ce qui est en accord avec tous les textes
primaires qui seront utilisés dans la thèse.
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dont les coordonnées (x : y : z : w) vérifient une équation P (x, y, z, w) = 0, où P est un
polynôme homogène de degré 3. Par exemple, l’équation x3 + y3 + z3 +w3 = 0 définit une
surface cubique, de même que l’équation xyz − w3 = 0 ou encore 2x2y + iz3 − zw2 = 0.

Dire que la surface est non singulière (ou lisse) signifie qu’elle ne contient aucun point
singulier, c’est-à-dire qu’aucun point de coordonnées (x : y : z : w) appartenant à la surface
d’équation P = 0 ne vérifie en outre les équations

∂P

∂x
=
∂P

∂y
=
∂P

∂z
=
∂P

∂w
= 0.

Parmi les exemples précédents, on peut vérifier que la surface x3 + y3 + z3 + w3 = 0 est
lisse, tandis que celle d’équation xyz−w3 = 0 possède trois poins singuliers, de coordonnées
respectives (1 : 0 : 0 : 0), (0 : 1 : 0 : 0) et (0 : 0 : 1 : 0).

Le théorème énonce qu’étant donnée une surface cubique non singulière, il existe exac-
tement 27 droites qui y sont incluses. Regardons l’exemple de la surface lisse d’équa-
tion x3 + y3 + z3 + w3 = 0. La droite qui relie les points de coordonnées (1 : −1 : 0 : 0)

et (0 : 0 : 1 : eiπ/3) est formée de tous les points de coordonnées (x : −x : z : eiπ/3z), les
paramètres x et z parcourant C sans être simultanément nuls. On vérifie alors que pour
tous tels paramètres x, z, le point (x : −x : z : eiπ/3z) appartient à la surface cubique : c’est
dire que la droite considérée est incluse dans la surface. Plus généralement, les vingt-sept
droites de cette surface sont celles paramétrées comme suit :

(x : ωx : z : ω′z) ou (x : y : ωy : ω′x) ou (x : y : ωx : ω′y),

où ω et ω′ sont des racines cubiques de −1.
Lorsqu’une surface est définie par un polynôme à coefficients réels, on peut se placer

dans P3(R) et ne considérer que les points à coordonnées réelles vérifiant son équation de
définition, ainsi que les droites réelles qui y sont incluses. Dans ce cas, le nombre de telles
droites n’est pas nécessairement 27. Dans l’exemple précédent, il y a des droites réelles,
comme celle paramétrée par (x : −x : z : −z), mais d’autres ne le sont pas, comme celle
paramétrée par (x : −x : z : eiπ/3z). De façon générale, une surface cubique réelle peut
contenir 27, 15, 7 ou 3 droites réelles.

Les vingt-sept droites ont la particularité d’être liées par des relations d’incidence qui
sont les mêmes quelque soit la surface cubique considérée. Plus précisément, chacune des
vingt-sept droites en coupe 10 autres, qui s’intersectent elles-mêmes deux à deux. Ainsi,
les vingt-sept droites peuvent se regrouper en triplets, dont les éléments sont des droites se
coupant deux à deux. Ces triplets peuvent être vus comme des triangles et on peut montrer
qu’il existe en tout 45 tels triangles. Un plan défini par un triangle intersecte la surface
cubique exactement en ce triangle 19 et il est tangent à la surface en chacun des sommets

19. L’intersection d’un plan quelconque avec une surface cubique est une courbe cubique. Ici, cette courbe
consiste en la réunion de trois droites.
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Fig. 2. The surfaces KM1, . . . , KM15. The colors of the lines indicate their multi-
plicities: ! 1, ! 2, ! 3, ! 4, ! 5, ! 6, ! 8, ! 9, ! 10, ! 12, ! 15, !
16, ! 27.

Figure 2 – Les trois droites tracées sur cette surface cubique se coupent deux à deux
et forment un des 45 triangles (ou plans tangents triples). Cette image provient de la
page web http://cubics.algebraicsurface.net gérée par Oliver Labs.

du triangle : pour cette raison, il est baptisé plan tangent triple. Voir la figure 2.

Soient abc et a′b′c′ deux des 45 triangles dont les côtés (ici notés a, b, . . . , c′) sont
tous distincts. Alors il existe un triangle a′′b′′c′′ dont les côtés coupent a, b, . . . , c′ de sorte
à former trois triangles aa′a′′, bb′b′′ et cc′c′′ (voir la figure 3). Trois triangles abc, a′b′c′

et a′′b′′c′′ ainsi définis forment un trièdre T dit de Steiner ; ce dernier est associé à un
autre trièdre T ′ de Steiner, à savoir aa′a′′, bb′b′′, cc′c′′, et on obtient ainsi un double trièdre.
Ces doubles trièdres peuvent enfin être groupés trois à trois en réunissant ensemble ceux
qui n’ont aucune droite commune. Comme chaque double trièdre est défini avec 9 droites,
ces triplets de doubles trièdres contiennent les 27 droites. On peut montrer qu’il existe
exactement 40 tels triplets de doubles trièdres de Steiner.

Enfin, définissons l’équation aux vingt-sept droites. Pour simplifier un peu la présenta-
tion, considérons ici les droites de l’espace définies par des équations (en les coordonnées
homogènes de l’espace) de la forme  x = αz + βw

y = γz + δw.
(∗)

Si l’équation de la surface cubique est P (x, y, z, w) = 0, alors une telle droite est incluse
dans la surface si et seulement si

∀z, w ∈ C, P (αz + βw, γz + δw, z, w) = 0.

Comme P est un polynôme du troisième degré, cette condition peut également s’écrire sous
la forme

∀z, w ∈ C, f3(α, β, γ, δ)z3 + f2(α, β, γ, δ)z2w+ f1(α, β, γ, δ)zw2 + f0(α, β, γ, δ)w3 = 0,
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Figure 3 – Début de construction d’un trièdre de Steiner. Les triangles abc et a′b′c′
sont donnés et on suppose qu’ils n’ont aucun côté en commun. Il existe alors une
droite a′′ (parmi les vingt-sept) qui intersecte a et a′, formant ainsi un nouveau
triangle aa′a′′. On peut construire de même des droites b′′ et c′′, et ainsi obtenir deux
trièdres de Steiner : abc, a′b′c′, a′′b′′c′′ d’une part, aa′a′′, bb′b′′, cc′c′′ d’autre part.

où les fi sont des polynômes homogènes de degré 3. Ainsi, une droite d’équations (∗) est
incluse dans la surface si et seulement si

f3(α, β, γ, δ) = 0

f2(α, β, γ, δ) = 0

f1(α, β, γ, δ) = 0

f0(α, β, γ, δ) = 0.

Maintenant, si l’on élimine par exemple β, γ, δ parmi ces quatre équations, il reste une
équation de degré 27 en α. À chacune des racines de cette équation correspond un tri-
plet (β, γ, δ) et donc une des vingt-sept droites de la surface cubique. L’équation en α est
l’équation aux vingt-sept droites. Ce n’est pas une équation générale de degré 27 : il y a des
relations algébriques entre ses racines qui correspondent aux relations d’incidence existant
entre les vingt-sept droites.
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Chapitre 1

Sur « l’histoire officielle » des
vingt-sept droites

Un livre, systématiquement cité lors des remarques historiques de travaux mathéma-
tiques sur les vingt-sept droites, a été mis en évidence dans l’introduction générale. Il s’agit
de The Twenty-seven Lines upon the Cubic Surface d’Archibald Henderson, [Henderson
1915]. Seul ouvrage entièrement dévolu au sujet des vingt-sept droites, il en constitue ainsi
ce que l’on peut appeler « l’histoire officielle », pour une période allant du milieu du xixe

siècle jusqu’à la Première Guerre mondiale.
Ce premier chapitre s’attache à examiner cette histoire officielle et à en mettre en évi-

dence quatre problèmes. Le premier est que l’histoire proposée par Henderson est écrite
suivant un modèle analogue à la History of the Theory of Numbers de Dickson, c’est-à-dire
qu’elle est découpée de façon arbitraire en thèmes, décrits à l’aide de petits résumés juxta-
posés les uns aux autres. Si cette écriture a pour effet de briser la chronologie générale du
sujet, la description superficielle de chaque article cité par Henderson pose aussi problème :
ces discussions souvent trop sommaires, en particulier du point de vue mathématique, em-
pêchent de voir les cohérences globales des articles en question et brisent certaines unités
existant entre les thèmes choisis par Henderson. Enfin, ce dernier ne justifie pas la manière
dont il a sélectionné les travaux mathématiques pour construire son histoire. En exami-
nant les sources de Henderson, nous verrons que la question de savoir repérer des textes en
rapport avec les vingt-sept droites n’est pas évidente et en particulier que la bibliographie
du livre de Henderson n’épuise pas ce sujet.

1.1 Une histoire thématique à la Dickson

1.1.1 Archibald Henderson : vers l’écriture de son livre

Commençons par donner quelques informations au sujet du parcours professionnel de
Henderson. Ces informations ont été trouvées grâce à deux sources : une courte note bio-

27
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graphique que l’on trouve au début du livre sur les vingt-sept droites, ainsi que l’entrée du
Dictionary of North Carolina Biography consacrée à Henderson, [Putzel 1988].

Archibald Henderson (1877-1963) est un mathématicien, mais aussi un critique litté-
raire, un biographe et un historien américain 1. Entré à l’université de Caroline du Nord en
1894, il y obtient en 1902 un doctorat de mathématiques ; la thèse, intitulée The Cone of
the Normals and an Allied Cone for Surfaces of the Second Degree, avait déjà été publiée
sous forme d’un article en 1901, [Henderson 1901]. Recruté en 1902 dans cette même uni-
versité en tant que associate professor de mathématiques, Henderson choisit de poursuivre
en parallèle sa formation mathématique à l’université de Chicago durant quatre trimestres
(été 1901 et année académique 1902-1903). Sous la direction de Leonard Eugene Dickson,
il commence, toujours en 1902, un travail sur les vingt-sept droites des surfaces cubiques,
en vue d’obtenir un doctorat de l’université de Chicago.

D’après Della Dumbaugh, il était à l’époque tout à fait inhabituel de préparer un
deuxième doctorat aux États-Unis — Henderson est même le seul cas qui lui ait été porté
à connaissance. Ni la note biographique du livre de Henderson ni l’entrée du Dictionary
lui étant consacrée ne donnent d’explication à ce fait exceptionnel. Une hypothèse est que
Henderson, voulant approfondir ses connaissances en mathématiques, avait été attiré par
l’université de Chicago qui était alors en pleine expansion : à titre comparatif, entre 1862 et
1934, l’université de Caroline du Nord n’avait décerné que 2 doctorats en mathématiques
(dont celui de Henderson), contre 237 pour celle de Chicago 2.

À cette époque, Dickson avait fait ou avait fait faire par certains de ses étudiants
doctoraux des bilans historiographiques sur des sujets mathématiques qui l’intéressaient
et sur lesquels il voulait travailler 3. De tels bilans lui permettaient de se familiariser avec
un sujet avant de se lancer dans la recherche mathématique proprement dite 4. Le travail
doctoral de Henderson sur les vingt-sept droites semble s’inscrire dans cette série : une
recherche des travaux de Dickson dans le Jahrbuch über die Fortschritte der Mathematik
montre que celui-ci a publié des articles dont les titres mentionnent explicitement les vingt-
sept droites en 1901, 1902 et 1915 5, ce qui coïncide grosso modo avec les dates de début
et de fin du projet de Henderson.

Revenons plus spécifiquement à l’élaboration de ce projet. Entre 1903 et 1905, Hender-

1. D’après [Putzel 1988], les travaux non mathématiques de Henderson incluent notamment une bio-
graphie de Mark Twain, de nombreux écrits biographiques sur George Bernard Shaw et des travaux sur
l’histoire des États-Unis.

2. Pour ces chiffres, voir [Richardson 1936, p. 203]. Sur l’université de Chicago, voir le chapitre 9
de [Parshall & Rowe 1994].

3. Voir [Dumbaugh Fenster 1999] pour le cas de l’étudiant de Dickson nommé Albert Everett Cooper,
chargé d’une synthèse historique sur la loi de réciprocité quadratique. Voir également [Dumbaugh Fens-
ter 1997] sur les relations (notamment celle de « modèle ») de Dickson avec certains de ses étudiants
et [Dumbaugh Fenster 2005] au sujet de History of the Theory of Numbers.

4. [Dumbaugh Fenster 2005, p. 835].
5. [Dickson 1901c ; Dickson 1902 ; Dickson 1915]. On peut ajouter les livres [Dickson 1901b] et [Miller

et al. 1916], dans lesquels les vingt-sept droites apparaissent également.
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son publie trois articles concernant les vingt-sept droites d’une surface cubique, [Henderson
1903 ; Henderson 1904 ; Henderson 1905]. En 1910-1911, il effectue un voyage scientifique
en Europe, où il rencontre notamment Henry Frederick Baker et Bertrand Russell à Cam-
bridge, Issai Schur et Hermann Schwarz à Berlin, ainsi qu’Émile Picard et Édouard Goursat
à Paris 6. Une première version du livre sur les vingt-sept droites, The Twenty-seven Lines
upon the Cubic Surface, [Henderson 1911], est publiée à l’issue du voyage, comme treizième
opus des Cambridge Tracts in Mathematics and Mathematical Physics — les trois articles
de Henderson précédemment cités se retrouvent quasiment tels quels dans le livre 7. Ce
dernier fut ensuite republié à Chicago en 1915 en tant que thèse doctorale, sans autre
modification que l’ajout de la courte note biographique évoquée précédemment.

Son second doctorat obtenu à Chicago et plusieurs propositions de postes dans d’autres
universités n’ont pas détourné Henderson de l’université de Caroline du Nord : promu full
professor dès 1908, il y devint chef du département de mathématiques en 1920 et y resta
jusqu’à sa retraite en 1948. Noter que les 19 travaux de Henderson recensés par le Jahrbuch
et MathSciNet ne concernent plus les vingt-sept droites à partir de 1915 8. Du reste, ces
dix-neuf publications sont pour une bonne partie dévolues à la relativité générale ; parmi
les autres, on trouve la version de 1911 de son livre sur les vingt-sept droites et un des
articles qui en est un extrait, quelques articles de géométrie plane, deux autres sur les équa-
tions quadratiques, cubiques et biquadratique (incluant des interprétations géométriques
de transformations qui y sont associées), un article sur certaines équations différentielles,
une publication sur l’enseignement de la géométrie et une autre sur l’histoire de la Elisha
Mitchell Scientific Society 9. Henderson s’écarte donc définitivement du sujet des vingt-sept
droites après avoir obtenu son doctorat et être rentré à l’université de Caroline du Nord, ce
qui conforte d’ailleurs l’impression qu’il s’agissait d’un projet de Dickson lié à l’obtention
d’un doctorat à Chicago.

1.1.2 Structure et contenu de The Twenty-seven Lines

Le livre de Henderson est formé d’une centaine de pages. Il se compose de remerciements
adressés à Eliakim Moore, à Dickson et à Baker 10, d’une table de matières, d’un résumé

6. Le voyage en Europe est conforme à ce qui avait été préconisé par Dickson pour les recherches qui
devaient mener à son History of the Theory of Numbers. Voir [Dumbaugh Fenster 2005, p. 835].

7. Dans l’ordre chronologique de publication, [Henderson 1903] est la première partie du chapitre VII
du livre, [Henderson 1904] en est la suite (mais contient quelques calculs supplémentaires) et [Henderson
1905] est la reprise du résumé historique, de l’introduction, du chapitre I et du début du chapitre II.

8. MathSciNet recense toutefois une réimpression de [Henderson 1911] de 1960.
9. Voir la liste de ces publications en annexe A. Noter que les périodiques dans lesquels Henderson publie

sont The American Mathematical Monthly et National Mathematics Magazine, qui sont deux journaux
destinés à un public très large, ainsi que le Journal of the Elisha Mitchell Society. Ce dernier était destiné
à rassembler des publications relatives à toutes les sciences et dont les auteurs étaient essentiellement issus
de l’université de Caroline du Nord.
10. Henderson les remercie d’avoir lu son manuscrit et d’avoir fait des suggestions pour l’améliorer.

Comme écrit précédemment, Henderson avait rencontré Baker à Cambridge. Moore, avec Oskar Bolza et
Heinrich Maschke à ses côtés, dirigeait le département de mathématiques de Chicago ; il avait en outre
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historique, d’une introduction générale, de sept chapitres, d’une bibliographie, d’un tableau
annexe et de treize figures. La table des matières du livre est reproduite en table 1.1.
Examinons brièvement le contenu des principales parties du livre.

Dans l’introduction, Henderson commence par prévenir qu’en raison de la richesse du
sujet des vingt-sept droites, il lui a été impossible d’en traiter tous les aspects :

Le problème des vingt-sept droites sur les surfaces cubiques est d’une telle ampleur
et d’une telle envergure, et est associé à tant d’importants problèmes que donner
un résumé de tout ce qui a été fait sur le sujet étendrait le présent mémoire en
un livre volumineux. Il s’est avéré irréalisable de tenter de couvrir même les phases
géométriques du problème, en particulier avec leur raccord au problème apparenté des
quarante-cinq plans tangents triples, bien que les deux sujets vont de pair. Dans ce
mémoire, cependant, est donné un tour d’horizon général sur le problème des vingt-
sept droites d’un point de vue géométrique 11. [Henderson 1915, p. 8]

En évoquant un « point de vue géométrique », Henderson sous-entend l’existence d’autres
points de vue, qui ne sont cependant pas représentés dans les chapitres mathématiques du
livre 12.

La suite de l’introduction consiste en une description sommaire des chapitres mathé-
matiques. Le premier contient des théorèmes sur l’existence des vingt-sept droites et des
quarante-cinq plans tangents triples ainsi qu’une présentation d’une notation des droites.
Les chapitres suivants concernent les notions de double-six et de couples de trièdres as-
sociés aux vingt-sept droites ; l’établissement d’équations pour les vingt-sept droites et
les quarante-cinq plans tangents ; les constructions de modèles de double-six et d’autres
configurations de droites ; la dérivation de la configuration de l’hexagramme de Pascal à
partir de celle des vingt-sept droites. Les figures du livre se rapportent à divers chapitres ;
ce sont des dessins de certaines des configurations associées aux vingt-sept droites. Enfin,
la table est un tableau représentant les intersections mutuelles des vingt-sept droites : il
y a vingt-sept lignes et vingt-sept colonnes, et chaque case est marquée d’un point si et
seulement si les deux droites correspondantes s’intersectent (voir la figure 1.1).

Les chapitres mathématiques de The Twenty-seven Lines sont surtout des expositions
de travaux sur les surfaces cubiques déjà connus, auxquels Henderson ajoute quelques
contributions personnelles. Ce dernier garnit en outre les chapitres II et V (concernant
la notion de double-six) de paragraphes à vocation historique, intitulés respectivement

dirigé la thèse de Dickson. Voir [Parshall & Rowe 1994, p. 364 et suiv.].
11. « The problem of the twenty-seven lines upon the cubic surface is of such scope and extent, and is

allied to so many other problems of importance, that to give a résumé of all that has been done upon the
subject would enlarge the present memoir into an extensive book. It has not proved feasible to attempt to
cover even the geometrical phases of the problem, in their extension in particular to the cognate problem
of the forty-five triple tangent places, although the two subjects go hand in hand. In this memoir, however,
is given a general survey of the problem of the twenty-seven lines, from the geometric standpoint ».
12. Ainsi le « point de vue de la théorie des groupes » dont il est fait mention dans le résumé historique

(cf. infra).
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« Histoire du théorème [du double-six] 13 » et « Informations historiques ». Dans ces para-
graphes, Henderson reprend et développe les points correspondants du résumé historique
général placé au début du livre.

Le résumé historique que Henderson propose est partagé en plusieurs paragraphes.
Les deux premiers sont introductifs et se rapportent au sujet des surfaces cubiques. À
l’exception d’un seul, chacun des paragraphes suivants débute par une phrase par laquelle
un thème en rapport avec les vingt-sept droites lui est clairement attribué. Le paragraphe
qui échappe à cette règle consiste en une liste de références concernant plusieurs de ces
thèmes. Écrits selon leur ordre d’apparition dans le résumé historique, les paragraphes sont
les suivants :

— Abondance, à l’époque d’Henderson, des écrits mathématiques concernant les surfaces
cubiques ;

— Premier article traitant spécifiquement de surfaces cubiques, dû à Leopold Mossbrug-
ger (1841) ;

— Existence des vingt-sept droites avec Arthur Cayley et George Salmon ;

— Base d’une « théorie purement géométrique 14 » des surfaces cubiques avec Jacob
Steiner ;

— Problème de notation des vingt-sept droites et notion de double-six ;

— Travaux de Rudolf Sturm et de Luigi Cremona sur les surfaces cubiques du « point
de vue synthétique 15 » ;

— Classifications des surfaces cubiques en regard de la réalité des droites qu’elles con-
tiennent ou de leurs singularités ;

— Modèles des surfaces cubiques et de leurs droites ;

— Formes et modèles des surfaces cubiques ;

— Liens entre les vingt-sept droites et les vingt-huit tangentes doubles des courbes
quartiques planes ;

— Liens entre les vingt-sept droites et l’hexagramme de Pascal ;

13. Ce théorème est énoncé de la façon suivante par Henderson : « Given five lines a, b, c, d, e which
meet the same straight line X; then may any four of the five lines be intersected by another line. Suppose
that A, B, C, D, E are the other lines intersecting (b, c, d, e), (c, d, e, a), (d, e, a, b), (e, a, b, c), and (a, b, c, d)
respectively. Then A, B, C, D, E will all be met by one other straight line x. » [Henderson 1915, p. 14-15].
14. « The basis for a purely geometric theory of cubic surfaces was laid by Steiner in a short but extremely

fruitful and suggestive memoir. » [Henderson 1915, p. 1].
15. « The first significant papers on cubic surfaces from the synthetic standpoint, following Steiner’s

memoir above mentioned, were by Cremona and Rudolf Sturm. » [Henderson 1915, p. 2].
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Figure 1.1 – Extraits de [Henderson 1915] : table d’intersection des vingt-sept droites
et figure représentant un trièdre de Steiner.
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— Paragraphe de références sur des travaux concernant les doubles-six ou le lien entre
les vingt-sept droites et les vingt-huit tangentes doubles ;

— Recherches de Corrado Segre sur les variétés du troisième ordre dans un espace de
dimension 4 ;

— Point de vue sur les vingt-sept droites de la théorie des groupes 16.

Henderson décrit brièvement ces thèmes et donne pour chacun d’eux quelques références
bibliographiques de travaux mathématiques s’y rapportant. Les descriptions de Hender-
son consistent principalement en des successions de faits, parfois étoffés de quelques re-
marques anecdotiques. Par exemple, les paragraphes concernant respectivement l’existence
des vingt-sept droites avec Cayley et Salmon et l’approche de Steiner sont les suivants :

La théorie des droites sur une surface cubique a d’abord été étudiée dans une corres-
pondance entre les mathématiciens britanniques Salmon et Cayley ; et les résultats ont
été publiés, [Cayley 1849 ; Salmon 1849]. L’observation qu’un nombre défini de droites
doivent reposer sur la surface est initialement due à Cayley, alors que la détermina-
tion de ce nombre a été faite en premier par Salmon (voir [Salmon 1882, §530, note]
et [Cayley Œuvres, vol. 1, p. 589]).

La base pour une théorie purement géométrique des surfaces cubiques a été posée
par Steiner dans un mémoire court mais extrêmement fructueux et suggestif, [Steiner
1856b]. Cet article contient de nombreux théorèmes, donnés soit entièrement sans
preuve, soit avec au plus une indication minime de la méthode de dérivation — une
habitude de « ce célèbre sphinx », comme l’a décrit Cremona 17. [Henderson 1915,
p. 1-2]

La division du sujet des vingt-sept droites en plusieurs thèmes et le style d’écriture
des paragraphes correspondants n’est ainsi pas sans rappeler la façon de faire adoptée par
Dickson dans History of the Theory of Numbers 18. Cette constatation appelle ainsi une
série de questions sur la pertinence même de ce procédé d’écriture : comment Henderson
a-t-il choisi ses thèmes ? Comment a-t-il décidé de la répartition des travaux mathéma-
tiques à effectuer en conséquence ? Certains thèmes ont-ils des rapports de cohérence entre
eux ou sont-ils tous complètement disjoints ? Dans un cas ou dans l’autre, des travaux
mathématiques ne relèvent-ils nécessairement que d’un unique thème ?

16. « The problem of the twenty-seven lines is full of interest from the group theoretic standpoint. »
[Henderson 1915, p. 6].
17. « The theory of straight lines upon a cubic surface was first studied in a correspondence between

the British mathematicians Salmon and Cayley; and the results were published, Camb. and Dublin Math.
Journal, Vol. iv. (1849), pp. 118–132 (Cayley), pp. 252–260 (Salmon). The observation that a definite
number of straight lines must lie on the surface is initially due to Cayley, whereas the determination of
that number was first made by Salmon [Salmon, Geometry of Three Dimensions, 4th edition...]. The basis
for a purely geometric theory of cubic surfaces was laid by Steiner [“Ueber die Flächen dritten Grades”] in
a short but extremely fruitful and suggestive memoir. This paper contained many theorems, given either
wholly without proof, or with at most the barest indication of the method of derivation—a habit of “ce
célèbre sphinx,” as he has been styled by Cremona. »
18. Voir [Dumbaugh Fenster 2005, p. 835-839].
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Il est d’autant plus difficile de répondre à ces questions avec la lecture seule du ré-
sumé historique que, comme le suggère l’extrait cité plus haut, Henderson n’entre pas du
tout dans les détails mathématiques. Les descriptions superficielles des articles mention-
nés tout au long du résumé induisent ainsi un autre problème consistant en la perte de
compréhension de leurs cohérences.

Par ailleurs, l’écriture du résumé historique en paragraphes thématiques entraîne une
perte globale de la chronologie, pour deux raisons. D’abord, chaque paragraphe pris isolé-
ment étant chronologiquement ordonné, les dates de fin de l’un sont en général postérieures
aux dates de commencement du suivant. Par exemple, le paragraphe sur les notations et
le double-six s’étend de 1849 à 1894, mais le suivant, sur les travaux de Sturm et Cre-
mona, débute en 1868. Ensuite, les paragraphes du résumé ne sont pas non plus classés par
chronologie de leurs dates de début. À titre d’illustration, celui sur les variétés cubiques
commence en 1887 alors que celui qui lui succède dans le résumé, consacré à la théorie des
groupes, débute en 1869.

Pour tenter d’élucider tous ces problèmes, je vais décrire de façon plus précise le résumé
historique de Henderson et surtout expliquer plus que lui le contenu mathématique des
textes qui y sont cités. Cependant, afin de pouvoir porter un regard plus critique sur
l’utilisation par Henderson de ces textes pour construire son histoire, je diffère légèrement ce
travail et examine dès à présent la question des sources et de la bibliographie de Henderson.

1.2 Les sources et la bibliographie de Henderson

Henderson n’indique pas explicitement quelles ont été les méthodes de travail et les
sources qui lui ont servi pour l’élaboration de son livre. Un indice est toutefois donné
dans le premier paragraphe du résumé historique, dans lequel est évoquée, comme dit
précédemment, la multitude de travaux mathématiques sur le sujet des surfaces cubiques :

La littérature sur le sujet [des surfaces cubiques] est très étendue. Dans une biblio-
graphie sur les courbes et surfaces compilée par J. E. Hill, de la Columbia University
de New York, la section sur les surfaces cubiques contenait deux cent cinq titres, [Hill
1897]. Le volume de mathématiques pures (1908) du Catalogue of Scientific Papers
de la Royal Society de Londres, 1800-1900, en contient bien plus 19. [Henderson 1915,
p. 1]

Les deux références données ici par Henderson sont autant d’indices sur ses possibles sources
bibliographiques.

19. « The literature of the subject is very extensive. In a bibliography on curves and surfaces compiled
by J. E. Hill, of Columbia University, New York, the section on cubic surfaces contained two hundred and
five titles (Bull. Am. Math. Soc. Vol. iii (1897), pp. 136-146). The Royal Society of London Catalogue of
Scientific Papers, 1800-1900, volume for Pure Mathematics (1908), contains very many more. »



36 CHAPITRE 1

1.2.1 Un article de Hill concernant une bibliographie

L’article cité par Henderson est un article de John Ethan Hill 20. Dans cet article, Hill
décrit sommairement une bibliographie qu’il a constituée sur le sujet des surfaces et des
courbes gauches. Hill n’explique pas comment il a formé cette bibliographie et se contente
de présenter rapidement les différentes sections qu’il a établies. Sur les 3 715 références de
sa bibliographie, il en évoque 205 se rapportant aux surfaces cubiques, ce qui concorde
avec ce qu’écrit Henderson. Néanmoins, sur ces 205, Hill n’en donne explicitement que
trois : d’une part, un article de Leopold Mossbrugger, [Mossbrugger 1841], qui est d’après
Hill chronologiquement le premier à « traiter spécifiquement de la surface cubique », [Hill
1897, p. 137] ; d’autre part, les deux articles de Cayley et de Salmon sur les vingt-sept
droites, [Cayley 1849 ; Salmon 1849], qui sont selon Hill « les premiers articles anglais listés
dans cette section [sur les surfaces cubiques] », [Hill 1897, p. 137].

Henderson semble donc avoir repris telle quelle l’information concernant l’article de
Mossbrugger dans son propre résumé historique. Henderson frôle d’ailleurs ici la para-
phrase : comparer

Alors qu’il ne fait aucun doute que la classification des surfaces cubiques est achevée,
le nombre d’articles se rapportant à ces surfaces et continuant à apparaître d’année
en année fournit d’abondantes preuves du fait qu’elles exercent encore la même fasci-
nation qu’au moment de la découverte des vingt-sept droites sur la surface cubique.
[...] Le premier article à traiter spécifiquement avec la surface cubique est de L. Moss-
brugger 21. [Henderson 1915, p. 1]

avec

Il est remarquable que le premier article que je peux trouver qui traite spécifiquement
avec la surface cubique est un article de L. Mossbrugger [...]. Bien que l’on puisse
dire que la classification des surfaces cubiques est pratiquement achevée, l’étude de
ces surfaces semble, encore aujourd’hui, nourrir la même fascination que lorsque fut
annoncée la découverte de l’existence et des relations des vingt-sept droites de la
surface cubique générale 22. [Hill 1897, p. 137]

Henderson s’est donc bel et bien servi de l’article de Hill, [Hill 1897]. En revanche, rien
ne permet de dire s’il a eu accès à la bibliographie de Hill elle-même. Celle-ci ne semble

20. En 1897, Hill (1864-1941) était tutor à la Columbia University. Il avait obtenu son doctorat en 1895
à la Clark University avec une thèse intitulée « On Quintic Surfaces ». Voir la nécrologie [Hill 1943].
21. « While it is doubtless true that the classification of cubic surfaces is complete, the number of papers

dealing with these surfaces which continue to appear from year to year furnish abundant proof of the fact
that they still possess much the same fascination as they did in the days of the discovery of the twenty-
seven lines upon the cubic surface. [...] The first paper that deals specifically with the cubic surface was
by L. Mossbrugger ».
22. « It is remarkable that the first paper that I can find that deals specifically with the cubic surface is

one by L. Mossbrugger [...]. Although one one may say that the classification of cubic surfaces is practically
complete, the study of these surfaces appears, still to-day, to have the same fascination as was exhibited
when the discovery of the existence and the relations of the 27 lines of the general cubic surface was first
announced ».
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d’ailleurs pas avoir été publiée — elle n’est en tout cas recensée ni dans le Jahrbuch ni
sur MathSciNet. Remarquons pour finir sur ce point que si l’article de Hill mentionne
bien une section sur les surfaces cubiques, rien n’est dit sur une supposée sous-section qui
concernerait en particulier le sujet des vingt-sept droites.

1.2.2 Le Catalogue of Scientific Papers

Pour rappel, le Catalogue of Scientific Papers, également cité par Henderson, est le
fruit d’une entreprise de recension bibliographique d’articles scientifiques parus dans des
périodiques, menée par la Royal Society of London entre le milieu du xixe siècle et le début
du xxe siècle. Le Catalogue se compose de 19 volumes publiés entre 1867 et 1925, listant
les articles scientifiques publiés entre 1800 et 1900. Entre 1908 et 1914 ont également été
publiés trois volumes d’un subject index visant à classifier les articles recensés jusqu’alors
dans le Catalogue. Paru en 1908, le premier volume, intitulé Pure Mathematics 23, est celui
évoqué par Henderson.

Les premières divisions du volume de Pure Mathematics sont données en table 1.2. Les
sections reproduites dans cette table sont encore subdivisées en plusieurs numéros, compre-
nant différents items. Sous ces items sont enfin listées les références bibliographiques, parfois
regroupées par mots-clés. Par exemple, le détail du numéro correspondant à « Algebraic
Curves and Surfaces of Degree Higher than the Second », dans lequel l’item « Configu-
rations » répertorie entre autres des articles ayant « 27 straight lines » et « Triple tan-
gent planes » dans leurs mots-clés, est reproduit en table 1.3. Si les auteurs du Catalogue
n’expliquent pas comment ils ont créé et attribué ces mots-clés, on peut constater qu’ils
reprennent souvent (mais pas systématiquement) les termes des titres des articles classi-
fiés. Par exemple,une note de Camille Jordan a pour titre « Sur une nouvelle combinaison
des vingt-sept droites d’une surface du troisième ordre » et a pour mots-clés « 27 straight
lines, new combination », [Jordan 1870a] ; un article de Cayley a pour titre « On the
Triple Tangent Planes of Surfaces of Third Order » et a pour mots-clés « Triple tangent
planes », [Cayley 1849] 24, etc.

Par l’existence des mots-clés, les vingt-sept droites forment donc une rubrique a priori
bien identifiable dans le Catalogue. Mais l’ensemble de toutes les références bibliographiques
de Henderson n’est pas égal à l’ensemble des articles ayant pour mots-clés « 27 straight
lines » ou « Triple tangent planes ». Précisons cela.

La bibliographie de Henderson est située à la fin du livre The Twenty-seven Lines. Elle
est intitulée « A Bibliography of Books and Papers Referring to the Subject of the Present

23. Le deuxième volume est intitulé Mechanics et le troisième Physics. La publication s’est arrêtée à ce
troisième volume en raison de la Première Guerre mondiale.
24. Rappelons que cet article [Cayley 1849] est celui qui contient deux des premières démonstrations de

l’existence des vingt-sept droites, ce qui indique que les mots-clés « Triple tangent planes » sont a priori
associés de très près aux vingt-sept droites.
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PURE MATHEMATICS

Arithmetic and Algebra

— Foundations of Arithmetic

— Universal Algebra

— Theory of Groups

Algebra and Theory of Numbers

— Elements of Algebra

— Linear Substitutions

— Theory of Equations

— Theory of Numbers

Analysis

— Foundations of Analysis

— Theory of Functions of Complex Variables

— Algebraic Functions and their Integrals

— Other Special Functions

— Differential Equations

— Differential Forms and their Differential Invariants

— Analytical Methods connected with Physical Problems

— Difference Equations and Functional Equations

Geometry

— Foundations

— Elementary Geometry

— Geometry of Conics and Quadrics

— Algebraic Curves and Surfaces of degree higher than the second

— Transformations and General Methods for Algebraic Configurations

— Infinitesimal Geometry; applications of Differential and Integral Calculus to Ge-
ometry

— Differential Geometry; applications of Differential Equations to Geometry

Appendix

Table 1.2 – Classification des mathématiques pures du Catalogue of Scientific Papers.
Chaque item écrit ici est encore subdivisé en plusieurs numéros. En outre, certaines
de ces subdivisions sont données avant la partie « Arithmetic and Algebra ». Elles
concernent des sujets comme la philosophie, l’histoire, mais aussi les tables de valeurs
de fonctions, les instruments de calcul et les modèles.



1.2. LES SOURCES ET LA BIBLIOGRAPHIE DE HENDERSON 39

Algebraic Curves and Surfaces of degree higher than the second

7600 General

7610 Metrical and projective properties of algebraic plane curves of degree higher than
the second

7630 Special plane algebraic curves

7640 Algebraic surfaces of degree higher than the second
— Contacts, and Tangent Lines and Planes
— Surfaces, 2nd and 3rd, 2nd, 3rd and 4th, degrees
— Surfaces, 3rd degree
— Configurations

– 27 real straight lines, forms of surfaces containing.
– — straight lines.
– — — —, delineation.
– — — —, determination and classification of surfaces with respect to.
– — — —, equation.
– — — —, — determining, resolution.
– — — —, groups of substitutions connected with.
– — — —, new combination.
– — — —, and parabolic curve.
– — — —, representation on plane.
– — — — and 45 triple tangent planes.
– — — — — — — — — and 36 double-sixers, construction of models

showing lines.
– Triple tangent planes.
– — — —, Cayley’s theorem, proof.
– — — —, polyhedral configurations.
– — — —, property.

— Surfaces, 3rd and 4th, 4th, 4th and 5th, 5th, (m+ n)th, nth degrees

7650 Special algebraic surfaces
— Anallagmatic surfaces
— Kummer’s surface
— Steiner’s surface
— Surfaces, 3rd degree, 3rd and 4th degrees
— Surfaces, 4th degree
— Surfaces, 5th, 6th, 7th, 8th, nth, (n+ 2)th degrees
— Tore or Anchor-ring
— Wave surface

7660 Skew algebraic curves

Table 1.3 – Détail de la section « Algebraic Curves and Surfaces of degree higher than
the second » du Catalogue of Scientific Papers. À noter qu’à part « 27 straight lines » et
« Triple tangent planes » (seuls) qui regroupent respectivement 7 et 3 articles, tous les
autres mots-clés sont associés à un unique article. En outre, l’item « Configurations »
comporte d’autres mots-clés que ceux écrits dans cette table.
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Memoir » et comporte 75 références 25 publiées entre 1849 et 1911. Plusieurs constatations
peuvent être faites à son sujet. D’abord, elle ne coïncide pas avec l’ensemble des références
données dans le corps du livre, c’est-à-dire le résumé historique, l’introduction et les sept
chapitres. Plus précisément, si toutes les références données dans l’introduction et les sept
chapitres sont présentes dans la bibliographie, il y en a d’autres, issues du résumé historique,
qui n’y apparaissent pas. Ces références sont facilement identifiables. Viennent d’abord
les articles de Hill et de Mossbrugger dont nous avons déjà parlé [Hill 1897 ; Mossbrugger
1841] ; un article de Sylvester qui ne se rapporte pas aux surfaces cubiques, mais dans lequel
quelques commentaires les évoquent, [Sylvester 1866-69] ; trois articles donnés en référence
dans le paragraphe concernant les variétés cubiques dans un espace de dimension 4, [C.
Segre 1887 ; C. Segre 1889 ; Richmond 1902]. Mais la plus grande masse des références du
résumé historique qui ne sont pas reprises dans la bibliographie se rapportent au « point de
vue de la théorie des groupes », ce qui représente 18 items — en fait, seules deux références
citée à ce sujet apparaissent dans la bibliographie, [Jordan 1869a ; Kasner 1903].

Réciproquement, certaines références de la bibliographie ne sont citées à aucun endroit
du livre. Or, on peut remarquer que la plupart d’entre elles y ont des titres erronés. Par
exemple, le titre de [Affolter 1874] est « Zur Theorie der Flächen dritter Ordung », mais
il devient « The twenty-seven lines on the cubic surface » chez Henderson ; de même, le
titre de [Caron 1880] est « Sur l’épure des vingt-sept droites d’une surface du troisième
degré, dans le cas où ces droite sont réelles », qui devient « Delineation of the twenty-
seven lines upon the cubic surface » dans la bibliographie du livre de Henderson. Ces
incorrections semblent en fait être des reprises des mots-clés du Catalogue of Scientific
Papers sous lesquels ils sont référencés. Cette hypothèse est confirmée par le fait que pour
ces références litigieuses, la pagination donnée n’est jamais complète : seule la page de
début est indiquée, comme dans le Catalogue, au contraire des autres références de la
bibliographie de Henderson.

En comptant l’ensemble de toutes les références bibliographiques présentes dans [Hen-
derson 1915], on obtient une liste de 99 items. Cette liste est donnée en annexe B ; les
titres y ont été corrigés et leur provenance dans le livre de Henderson (résumé historique
ou section bibliographique) y est indiquée.

À partir de ces 99 références, regardons comment les 68 qui sont des articles publiés
avant 1901 sont répartis dans le Catalogue 26. Elles sont 59 à appartenir à la section de
géométrie, dont 2 (resp. 2, resp. 5) qui sont également listées dans la section d’arithmétique
et d’algèbre (resp. la section d’analyse, resp. la section générale) ; 3 à appartenir seulement
à cette section d’arithmétique et d’algèbre ; 2 à appartenir seulement à la section d’analyse ;

25. La liste elle-même en comporte une de plus, qui est une redondance. Il s’agit de « On the Double-
sixers » de Cayley et daté de 1879, mais dont les références (Trans. Camb. Phil. Soc., vol. xii, p. 366)
renvoient en fait à [Cayley 1873], qui est également présent dans la bibliographie de Henderson.
26. Rappelons que les recensions du Catalogue s’arrêtent en 1900 et ne concernent que des articles publiés

dans des revues. En particulier, ni les livres ni les thèses n’y sont listés.
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1 à appartenir seulement à la section générale. En outre, 3 articles n’ont pas été localisés 27.
Le détail de la répartition est donné dans le tableau de l’annexe B.

Parmi les 59 références apparaissant dans la section de géométrie, il y en a 44 qui
proviennent du numéro sur les surfaces algébriques de degré supérieur au second. Ces 44
comportent en particulier toutes les références ayant « 27 straight lines » ou «Triple tangent
planes » dans leurs mots-clés, ce qui représente respectivement 20 et 6 items. Le reste se
répartit dans diverses autres numéros de la section géométrique.

Il est clair que le Catalogue of Scientific Papers, ou du moins son index, a été utilisé par
Henderson. L’argument le plus fort en faveur de cette assertion est, semble-t-il, la présence
dans The Twenty-seven Lines de références ayant un titre erroné, et dont les mauvais
titres reprennent justement les mots-clés du Catalogue contenant « 27 straight lines ».
Comme écrit précédemment, toutes les entrées du Catalogue étiquetées avec ces mots-clés
sont présentes dans la bibliographie de Henderson : ce dernier a ainsi manifestement voulu
compléter sa bibliographie avec le Catalogue.

Les autres références de Henderson proviennent de divers endroits du Catalogue, que
ce soit dans la partie sur les surfaces algébriques ou dans les sections qui ne relèvent pas
de la géométrie. Ce constat permet de réfuter l’hypothèse que Henderson n’a utilisé que
le Catalogue pour sa bibliographie — d’ailleurs, cette dernière contient aussi des éléments
publiés après 1900.

Mais l’éparpillement dans le Catalogue des articles référencés par Henderson met en
lumière un autre problème : le sujet des vingt-sept droites ne semble pas pouvoir être cir-
conscrit par une étude d’articles qui leur seraient principalement dévolus. En particulier, la
possible exhaustivité (entre 1800 et 1900) que l’on pourrait imaginer découler de l’existence
de mots-clés « 27 straight lines » est loin d’exister. Par exemple, même les deux articles
acceptés comme fondateurs en ce qui concerne le sujet des vingt-sept droites, [Cayley 1849 ;
Salmon 1849], ne sont pas référencés avec ces mots-clés.

En tout cas, la bibliographie de Henderson, puisqu’elle comprend strictement la partie
du Catalogue associée aux mots-clés « 27 straight lines », semble plus prometteuse que
le Catalogue pour espérer obtenir un corpus raisonnable de textes concernant le sujet des
vingt-sept droites. Afin de mesurer cela, je vais à présent utiliser un autre outil de recension,
le Jahrbuch über die Fortscrhitte der Mathematik.

1.2.3 Comparaison avec le Jahrbuch

Au contraire de l’index du Catalogue, le Jahrbuch ne possède pas de rubrique cor-
respondant au sujet des vingt-sept droites. Avec le moteur de recherche du site web de

27. Le premier est [Steiner 1856b], reprise exacte de [Steiner 1856a] qui est lui répertorié dans le Cata-
logue. Le deuxième est [Cayley 1868a] qui n’apparaît pas non plus dans le volume de recension du Catalogue
correspondant. Le dernier est [Sylvester 1866-69], que je n’ai pas réussi à trouver.
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Zentralblatt, j’ai d’abord listé les publications parues entre 1868 (date de début des recen-
sions du Jahrbuch) et 1911 dont le titre contient « vingt-sept droites » ou ses équivalents
anglais, allemand et italien.

Cette recherche fournit 34 résultats dont seulement 6 nouveaux (parmi lesquels 4 sont
postérieurs à 1900) par rapport aux références bibliographiques de Henderson, si l’on omet
les publications comme les courtes notes annonçant les résultats d’un article plus important
qui est lui référencé chez Henderson. Une recherche de « vingt-sept droites » dans les
titres n’apporte donc que peu de nouvelles publications — cela semble d’ailleurs conforter
le fait que les mots-clés du Catalogue sont souvent créés à partir des titres des articles
correspondants.

J’ai ensuite modifié la recherche en sélectionnant des textes dont le titre ou le rapport
contiennent « vingt-sept droites ». Cette fois, 101 résultats sont obtenus, parmi lesquels 66
n’apparaissent pas parmi les références bibliographiques de Henderson et dont l’un concerne
vingt-sept droites qui n’ont aucun rapport avec celles des surfaces cubiques.

Une bonne partie des nouveaux travaux ainsi trouvés sont des prolongements d’autres
travaux qui apparaissent chez Henderson. On a par exemple toute une série d’articles de
Dickson et de William Burnside (tous datés de la première décennie du xxe siècle) qui se
rattachent à l’étude de groupes associés aux vingt-sept droites d’une surface cubique. On
a aussi un article de Geiser, [Geiser 1869c], où est établi un lien entre les droites d’une
surface cubique et celles de surfaces quartiques particulières — cet article apparaîtra de
façon naturelle dans la suite de la thèse, parce qu’il est lié à deux autres publications, [Geiser
1869b ; Jordan 1870b], qui sont elles discutées par Henderson.

En revanche, le repérage effectué avec le Jahrbuch met en évidence certains travaux
qui n’apparaissent pas du tout chez Henderson : ceux de Clebsch sur la représentation
de surfaces sur un plan. Ces travaux renvoient en particulier à un article de 1866 (qui
n’est pas référencé par le Jahrbuch puisqu’il est antérieur à 1868), où Clebsch établit
une représentation de la surface cubique sur un plan, c’est-à-dire qu’il montre comment
construire (en termes modernes) une application birationnelle entre la surface cubique et le
plan projectif, [Clebsch 1866]. En outre, une attention particulière est portée par Clebsch
sur le comportement les vingt-sept droites vis-à-vis de l’application ainsi construite. Ces
travaux de Clebsch apparaîtront eux aussi de façon plus saillante dans la suite de la thèse,
et j’aurai alors l’occasion de les discuter plus précisément.

Je ne décrirai pas davantage les références bibliographiques obtenues par le Jahrbuch,
le but étant ici surtout de souligner les difficultés de repérage du sujet des vingt-sept
droites. Ainsi, bien que les vingt-sept droites forment explicitement une rubrique dans le
Catalogue, elles se trouvent dans bien des publications qui y échappent. Cela montre donc
des décalages existant entre les différents outils de repérage potentiels du sujet. On gardera
en particulier à l’esprit que l’histoire proposée par Henderson manque un certain nombre
de textes concernant le sujet des surfaces cubiques et de leurs vingt-sept droites.
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1.3 Le résumé historique de Henderson disséqué

Je reviens maintenant à la description détaillée du résumé historique de The Twenty-
seven Lines et des articles qui y sont cités. Cette description est faite en suivant strictement
l’ordre d’écriture adopté par Henderson. Si l’ordre chronologique sera ainsi mis à mal, je le
rétablirai dans le paragraphe récapitulatif final afin de mettre en exergue les renversements
opérés par Henderson.

En revanche, à l’inverse de ce dernier, j’entrerai davantage dans les détails mathéma-
tiques des textes cités. Cela aura pour effet de montrer que le rangement thématique de
ces textes n’est pas systématique, c’est-à-dire qu’un certain nombre d’entre eux pourraient
appartenir à plusieurs des thèmes de Henderson, au contraire de ce que laisse supposer la
lecture seule du résumé historique. Cette porosité entre les différents thèmes sera encore
soulignée par l’existence de citations entre des articles classés par Henderson dans différents
paragraphes.

Nous avons déjà vu que le premier paragraphe du résumé historique concerne l’abon-
dante littérature, encore au début du xxe siècle, sur le sujet des surfaces cubiques. Déjà
commenté, ce paragraphe ne sera pas repris ici et je commencerai avec celui sur l’article
de Mossbrugger.

1.3.1 L’article de Mossbrugger

Comme écrit précédemment, Henderson se base très probablement sur un texte de
Hill, [Hill 1897], pour situer la première publication d’un travail concernant spécifiquement
les surfaces cubiques en 1841, avec l’article de Mossbrugger, [Mossbrugger 1841]. Cet article
propose en fait d’interpréter géométriquement les coefficients des équations générales à la
fois des surfaces quadriques et des surfaces cubiques. L’interprétation consiste à montrer
que ces coefficients sont égaux à certaines distances relatives aux surfaces en question.

Pour ce qui est d’une surface cubique, Mossbrugger note ainsi son équation

z3 +By3 + Cx3 + 3Ayz2 + 3Dxz2 + 3Ey2z + · · · = 0.

Il montre alors que, étant données des valeurs quelconques x, y, x′, y′, on a par exemple

A = −M1N1 +M2N2 +M3N3

3PP ′
,

où les points M1, . . . , N3, P, P
′ sont définis en termes d’intersections et de projetés ortho-

gonaux à partir de la surface cubique et des trois droites d’équations respectives{
x = x′

y = y′
;

{
x = x′′

y = y′
;

{
x = x′′

y = y′′.

Tout le travail de Mossbrugger consiste à trouver des expressions similaires pour les autres
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coefficients de l’équation de la surface cubique. Dans tout l’article, il n’est toutefois jamais
question de droites incluses dans des surfaces cubiques.

1.3.2 Existence des vingt-sept droites avec Cayley et Salmon

Henderson situe en 1849 les premières publications contenant la preuve d’existence des
vingt-sept droites sur toute surface cubique : il s’agit de deux articles du Cambridge and
Dublin Mathematical Journal, l’un écrit par Arthur Cayley et l’autre par George Salmon 28,
ayant pour objet d’étude les surfaces algébriques du troisième ordre, [Cayley 1849 ; Salmon
1849]. Leurs titres respectifs sont « On the Triple Tangent Planes of Surfaces of Third
Order » et « On the Triple Tangent Planes to a Surface of the Third Order » : ils n’insistent
pas sur les vingt-sept droites, mais plutôt sur les plans tangents triples.

Les deux articles contiennent en tout trois démonstrations de l’existence de vingt-sept
droites sur une surface cubique sans point singulier ; l’une d’elles permet aussi de voir que
ces droites sont coplanaires trois à trois, et que les plans ainsi définis sont au nombre
de quarante-cinq. Cayley et Salmon exhibent également certaines écritures particulières
des équations définissant les surfaces cubiques et établissent une liste des équations des
quarante-cinq plans contenant les vingt-sept droites trois à trois. Ils proposent en outre
trois systèmes de notation des vingt-sept droites ainsi qu’une discussion des cas de surfaces
ayant des singularités. Enfin, on trouve quelques résultats divers concernant par exemple les
birapports de plans passant par deux droites coplanaires parmi les vingt-sept, ou encore des
configurations spéciales de points et de droites obtenues en intersectant la surface cubique
pas des plans.

Comme l’écrit Cayley lui-même, le contenu de son article avait été mûri dans une
correspondance avec Salmon 29. C’est notamment ce dernier qui avait trouvé le nombre 27,
Cayley ayant vu auparavant que les surfaces cubiques devaient contenir un même nombre
fini de droites :

En conclusion, je me permets de signaler que le sujet tout entier de ce mémoire a été
développé dans une correspondance avec M. Salmon, et en particulier que je lui suis
redevable de la détermination du nombre de droites sur la surface et des recherches
liées à la représentation des vingt-sept droites au moyen des lettres a, b, c, d, e, f
comme développées précédemment 30. [Cayley 1849, p. 132]

28. Sur Cayley, voir [Crilly 2006] ; sur Salmon, voir [Gow 1997 ; Gow 2006].
29. Je n’ai pas pu retrouver cette correspondance. [Crilly 2006, p. 559] indique qu’à la dispersion du

Nachlass de Cayley, les lettres des mathématiciens alors décédés (ce qui inclut Salmon) n’ont pas survécu,
sauf celles de Sylvester. Rod Gow m’a par ailleurs indiqué que la correspondance de Salmon conservée aux
archives du Trinity College de Dublin ne contient rien de mathématique.
30. « I may mention in conclusion that the whole subject of this memoir was developped in a corre-

spondance with Mr. Salmon, and in particular, that I am indebted to him for the determination of the
number of lines upon the surface and for the representation of the twenty-seven lines by means of the
letters a, b, c, d, e, f , as developped before. » Voir aussi [Cayley Œuvres, vol. 1, p. 589] ou encore [Salmon
1882, p. 496] : « The theory of right lines on a cubical surface was first studied in the year 1849, in a
correspondance between Prof. Cayley and me, the results of which were published [in the Cambridge and
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Les problèmes de la notation et des singularités évoqués dans cette citation seront discutés
dans les prochains paragraphes. En ce qui concerne les démonstrations d’existence des
vingt-sept droites, deux sont données dans l’article de Cayley, alors que la troisième se
trouve dans celui de Salmon.

La première démonstration présentée par Cayley suppose acquise l’existence d’une
droite sur la surface cubique. L’intersection d’un plan avec une surface cubique devant
être une courbe cubique, celle-ci se compose, lorsque le plan contient la droite donnée, de
cette dernière et d’une conique. Cayley affirme alors que parmi tous les plans contenant
la droite donnée, il y en a exactement 5 pour lesquels la conique résiduelle dégénère en
deux droites : cela donne ainsi 1 + 5× 2 = 11 droites (voir figure 1.2). Les plans contenant
ainsi trois droites incluses dans la surface sont appelés plans tangents triples par Cayley 31.
Cayley procède alors au comptage des droites obtenues de cette façon. Étant donné un

1

Figure 1.2 – Parmi les plans contenant une droite donnée (en rouge), il y en a 5
(comme celui en marron) pour lesquels la conique résiduelle dégénère en 2 droites. Un
tel plan est appelé plan tangent triple.

plan tangent triple, chacune de ses trois droites est contenue dans 4 autres plans tangents
triples. Ces 12 nouveaux plans tangents triples donnent ainsi lieu à 24 nouvelles droites, ce
qui fait 27 en comptant les trois du plan tangent triple de départ. En outre, Cayley compte
par ce biais 45 plans tangents triples.

Cayley vérifie ensuite que toute droite de la surface cubique a forcément été obtenue par
ce procédé. En effet, comme les trois droites d’un plan tangent triple forment exactement
son intersection avec la surface, toute autre droite D incluse dans celle-ci intersecte le plan
tangent triple en un point situé sur une de ses trois droites. Avec cette droite, D définit
donc un plan ; alors ce dernier coupe la surface cubique en déjà deux, donc finalement trois
droites 32. Il s’agit donc d’un plan tangent triple, et donc D avait bien déjà été comptée.
Ainsi, Cayley trouve exactement vingt-sept droites et quarante-cinq plans tangents triples.

Dublin Mathematical Journal ]. Prof. Cayley first observed that a definite number of right lines must lie
on the surface; the determination of that number [has been] supplied by me. »
31. Ces plans sont en effet tangents à la surface cubique en chacun des points d’intersection mutuels des

trois droites qu’ils contiennent
32. L’intersection du plan et de la surface est une courbe cubique qui, ici, contient déjà deux droites :

c’est qu’elle dégénère en trois droites.
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Pour la deuxième démonstration, Cayley commence par souligner qu’au contraire de la
première, elle ne présuppose pas l’existence d’une droite incluse dans la surface :

Le nombre de droites sur la surface peut également être obtenu par la méthode sui-
vante, qui a l’avantage de ne pas supposer a priori l’existence d’une droite sur la
surface 33. [Cayley 1849, p. 119]

Dans cette méthode, Cayley considère un point de l’espace n’appartenant pas à la surface
cubique et le cône tangent à cette dernière ayant pour sommet le point donné, c’est-à-dire
le cône formé de toutes les droites passant par ce point et qui sont tangentes à la surface. Il
établit ensuite une correspondance biunivoque entre les droites incluses dans la surface et
les plans doublement tangents au cône. Cayley invoque alors une article de Salmon, [Salmon
1847], où sont calculés l’ordre ainsi que le nombre d’arêtes doubles et cuspidales 34 d’un
cône tangent à une surface de degré n, qui sont respectivement 6, 0 et 6 dans le cas des
surfaces cubiques n = 3. Il cite enfin le livre Theorie der algebraischen Curven de Julius
Plücker, [Plücker 1839], pour conclure :

Par la formule de la p. 211 de Theorie der algebraischen Curven de Plücker, énoncé
de sorte à s’appliquer aux cônes plutôt qu’aux courbes planes (à savoir que, n étant
l’ordre, x le nombre de droites doubles, y celui de droites cuspidales, u celui de plans
tangents doubles, alors

u =
1

2
n(n− 2)(n2 − 9)− (2x+ 3y)(n2 − n− 6) + 2x(x− 1) + 6xy +

9

2
y(y − 1)),

le nombre de plans tangents doubles est vingt-sept, ce qui est par conséquent également
le nombre de droites sur la surface 35. [Cayley 1849, p. 119]

Enfin, la troisième démonstration d’existence des vingt-sept droites est proposée dans
l’article de Salmon, [Salmon 1849]. Elle s’inscrit dans un problème plus général qui y est
traité : étant donnée une surface algébrique de degré n, déterminer le degré du lieu de ses
points par lesquels on peut mener une droite lui étant tangente avec un contact d’ordre
au moins 4. Pour n = 3, une telle droite est nécessairement incluse dans la surface, de
sorte que le lieu en question devient plus simplement l’ensemble formé de telles droites, en
nombre égal au degré cherché.

33. « The number of lines on the surface may also be obtained by the following method, which has the
advantage of not assuming a priori the existence of a line upon the surface. »
34. Une arête du cône est double, resp. cuspidale, lorsque le point selon lequel elle touche la surface est

un point double, resp. un point de rebroussement de première espèce (ou cusp), de la courbe intersection
de la surface avec le cône.
35. « [B]y the formula in Plücker’s “Theorie der Algebraischen Curven,” [sic] p. 211, stated so as to

apply to cones instead of plane curves, (viz. n being the order, x the number of double lines, y that of the
cuspidal lines, u that of the double tangents planes, then

u =
1

2
n(n− 2)(n2 − 9)− (2x+ 3y)(n2 − n− 6) + 2x(x− 1) + 6xy +

9

2
y(y − 1).)

The number of double tangent planes is twenty-seven, which is therefore also the number of lines upon the
surface. »
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Pour résoudre ce problème, Salmon utilise des méthodes provenant d’un article anté-
rieur de Cayley, [Cayley 1847]. Prenant deux points de coordonnées (homogènes) x, y, z, w
et x′, y′, z′, w′, il paramètre la droite qui les relie par les coordonnées `x+mx′, `y +my′,
`z+mz′, `w+mw′. Substituer ces dernières dans l’équation de la surface donne une équa-
tion homogène en ` : m dont les racines donnent les coordonnées des points où la droite
rencontre la surface.

Si cette surface a pour équation U = 0, Salmon effectue ladite substitution et obtient

`nU + `n−1mδU +
1

1 · 2`
n−2m2δ2U +

1

1 · 2 · 3`
n−3m3δ3U + · · ·

+ · · ·mnU ′ +mn−1`δ′U ′ +
1

1 · 2m
n−2`2δ′2U ′ +

1

1 · 2 · 3m
n−3`3δ′3U ′ + · · · = 0

avec δ = x′ ddx + y′ ddy + z′ ddz +w′ ddw et δ′ = x d
dx′ + y d

dy′ + z d
dz′ +w d

dw′ . Pour que le point de
coordonnées x′, y′, z′, w′ soit un point de contact d’ordre au moins 4, Salmon obtient donc
les conditions

U ′ = 0, δU ′ = 0, δ′2U ′ = 0, δ′3U ′ = 0.

Le lieu cherché s’obtient ainsi en éliminant x, y, z, w parmi ces quatre équations. En se
référant au même article de Cayley de 1847, Salmon indique qu’il obtient une équation
de degré (11n − 24). Le lieu cherché est donc une courbe de degré 36 n(11n − 24), soit 27

lorsque n = 3. Comme expliqué plus haut, cela donne dans ce cas le nombre de droites
incluses dans la surface.

Après avoir détaillé ces démonstrations, nous voyons (au moins partiellement) que les
recherches de Cayley et Salmon sur les vingt-sept droites se rattachent à d’autres travaux
de la première moitié du xixe siècle, relatifs aux courbes et surfaces algébriques ou à
des techniques d’élimination. Le sujet des courbes et surfaces de petit degré est donc, à
l’époque, relativement familier pour Cayley et Salmon. Il est d’ailleurs intéressant de noter
que Cayley avait déjà considéré une surface cubique contenant des droites (mais pas vingt-
sept) dans un article paru cinq ans plus tôt, [Cayley 1844] : pour étudier certaines courbes
cubiques, il était parti d’une surface cubique définie par la condition de contenir les six
arêtes d’un tétraèdre donné. Cette remarque montre bien que le sujet des surfaces cubiques
et des droites incluses n’était pas tout à fait nouveau en 1849.

1.3.3 Le mémoire de Steiner

D’après Henderson, un mémoire de Steiner constitue la base d’une « théorie purement
géométrique » des surfaces cubiques, [Steiner 1856b]. Il correspond à une communication
faite par Steiner à l’Académie des sciences de Berlin le 31 janvier 1856. En omettant

36. Coquille dans l’article, où est écrit « 11(un− 24) ».
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souvent d’indiquer les démonstrations, Steiner y énonce de nombreux résultats concernant
les surfaces cubiques.

Une série de ces résultats concernent les façons d’engendrer des surfaces cubiques,
c’est-à-dire de les construire à partir d’objets de base comme des plans ou des surfaces
quadriques. Par exemple, Steiner indique que si deux trièdres et un point quelconque de
l’espace sont donnés, alors il existe une seule surface cubique contenant le point donné
ainsi que les neuf droites qui sont les intersections mutuelles des deux trièdres. Un autre
exemple décrit par Steiner consiste à partir d’un faisceau de surfaces quadriques et d’un
faisceau de plans projectifs l’un à l’autre 37 : deux tels faisceaux engendrent alors une
surface cubique, au sens où toutes les courbes coniques résultant de l’intersection de deux
éléments correspondants des faisceaux forment une surface du troisième ordre.

D’autres résultats du mémoire de Steiner concernent des objets particuliers qui peuvent
être associés à une surface cubique. Les exemples les plus simples de tels objets sont les
vingt-sept droites, les quarante-cinq triangles que forment ces droites trois à trois 38, ou
encore les trièdres qui ont par la suite été appelés trièdres de Steiner.

Expliquons, en suivant Steiner, ce que sont ces trièdres. Parmi les quarante-cinq tri-
angles formés à partir des vingt-sept droites d’une surface cubique, on en considère deux, A
et B, dont les côtés notés respectivement a, a1, a2 et b, b1, b2 sont supposés être tous dis-
tincts. Soit δ la droite d’intersection des plans contenant A et B. Alors les points d’intersec-
tion des côtés de A et B avec δ coïncident deux à deux 39. Quitte à changer les notations,
on peut donc supposer que les côtés qui se coupent sur δ sont a et b, a1 et b1, a2 et b2.
Ces paires de droites définissent alors trois nouveaux triangles 40 A1 = abc, B1 = a1b1c1

et C1 = a2b2c2 (voir la figure 1.3). Enfin, les trois droites c, c1, c2 sont sécantes deux à
deux et forment donc un triangle C. Les deux trièdres définis par les triangles A,B,C
d’une part, et A1, B1, C1 d’autre part, forment une paire de trièdre conjugués ou encore
une paire de trièdres de Steiner. Ce dernier montre en outre qu’il existe 120 telles paires
de trièdres, et que ces paires se regroupent trois à trois en 40 triplets, de sorte que chaque
triplet contienne l’ensemble de toutes les vingt-sept droites.

37. Un faisceau de plans est l’ensemble des plans passant par une droite donnée de l’espace. Un faisceau
de surfaces quadriques est l’ensemble de telles surfaces passant par une courbe gauche d’ordre 4. Les
deux faisceaux sont dits projectifs si on a associé à chaque plan du premier, une surface du second.
Écrivons-le avec des équations : on se donne une droite qui est l’intersection de deux plans d’équations
respectives a = 0 et b = 0. Alors les plans du faisceau correspondant sont tous les plans ayant une
équation de la forme λa+ µb = 0. De même, un faisceau de quadriques est formé de surfaces d’équations
de la forme λP + µQ = 0, où P = 0 et Q = 0 sont deux équations de surfaces quadriques. En fixant
(arbitrairement) de part et d’autre les paramètres λ, µ, on associe les faisceaux de façon projective : au
plan λa+ µb = 0 correspond la quadrique λP + µQ = 0, et réciproquement.
38. Steiner parle ainsi plutôt de triangles, là où Cayley et Salmon parlaient de plans tangents triples.
39. En effet, ces points d’intersection, a priori au nombre de 6, sont des points communs à δ et à la

surface cubique. Or, une telle surface est en général intersectée par une droite en 3 points.
40. Comme par exemple les droites a et b sont sécantes, elles sont coplanaires. Le plan qui les contient

coupe la surface cubique en une courbe cubique qui doit donc contenir a et b : c’est qu’elle dégénère en
trois droites a, b et c.
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b1
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c

Figure 1.3 – Construction partielle d’une paire de trièdres de Steiner. Les droites a, b
se coupent sur δ et il existe une droite c avec laquelle elles forment un triangle A1.

Dans tout son mémoire, Steiner ne cite aucun travail antérieur fait par d’autres mathé-
maticiens ou par lui-même sur quelque sujet que ce soit. Le seul nom de mathématicien qui
apparaît est celui de Jean-Victor Poncelet, pour un résultat sur des faisceaux de surfaces
quadriques 41. En particulier, Steiner ne mentionne pas les travaux de Cayley et de Sal-
mon sur les vingt-sept droites. Il était pourtant au courant de la découverte des vingt-sept
droites dès 1853, comme le montre une de ses notes personnelles :

Paris. Juillet 1853. Notes.

1. De Sylvester. Un anglais (Cayley) aurait trouvé que f3 [une surface cubique] contient
en général 27 droites. Voir combien j’en ai trouvé par les difficiles considérations de
polaires. Pour une surface déterminée f31 , il n’y avait que 6 droites ; pour la panpo-
laire 42 F 3 sur [un faisceau de quadriques] B(f2) seulement 11 droites 43. [Graf 1896,
p. 91]

On pourra noter que Steiner n’a pas l’air de connaître Cayley en 1853 44. Ce dernier écrit
quant à lui dans des notes à ses Collected Papers : « comme mentionné à la conclusion du

41. [Steiner 1856b, p. 134].
42. Étant donnés une surface F d’équation U(x, y, z, w) = 0 et un point M ′ de coordonnées x′, y′, z′, w′,

on appelle première polaire de M ′ par rapport à F , la surface d’équation x′ ∂U
∂x

+ y′ ∂U
∂y

+ z′ ∂U
∂z

+w′ ∂U
∂w

= 0.
Étant donnés un faisceau de surfaces F et un point M ′, on appelle panpolaire de M ′, le faisceau des
premières polaires de M ′ par rapport aux surfaces F .
43. « Paris. Juli 1853. Notizen. 1. Von Silvester [sic]. Ein Engländer (Cayley) soll gefunden haben:

dass f3, im Allgemeinen, 27 G. enthält. Nachzusehen wie viele ich bei den schwierigen Polar-Betrachtungen
gefunden habe. Bei einer bestimmten f3

1 zeigten sich früher nur 6 G; bei der Panpolare F 3 auf B(f2) nur 11
G. »
44. En fait, les deux mathématiciens n’ont jamais été en relation proche. À la mort de Steiner en 1863,

Cayley écrit en effet à Schläfli : « [Prof. Steiner’s death] is indeed a great loss to mathematical science. I
had not the advantage of a personal acquaintance with him. » [Graf 1905, p. 31].
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mémoire [sur les vingt-sept droites], [Cayley 1849], le sujet tout entier a été développé dans
une correspondance avec Dr. Salmon. Les recherches de Steiner sur les surfaces cubiques
sont plus tardives 45 ».

Le seul autre commentaire que j’ai pu trouver à ce sujet se trouve dans le Traité des
substitutions et des équations algébriques de Jordan, où ce dernier précise que «MM. Cayley
et Salmon avaient découvert et étudié ces droites avant Steiner 46 », [Jordan 1870b, p. 665].
En particulier, aucune des lettres que j’ai pu lire (dont celles déjà citées entre Steiner et
Schläfli ainsi qu’entre Cayley et Schläfli, mais également celles de Sylvester 47) ne contient
de trace de dispute concernant la priorité de la découverte des vingt-sept droites. Au
contraire, dans ses lettres à Schläfli, Steiner parle souvent des « droites de Cayley 48 » pour
désigner les vingt-sept droites d’une surface cubique.

En fait, les articles de Cayley et de Salmon de 1849 semblent avoir peu circulé sur le
continent européen, au moins dans les années 1850. On a vu dans la citation précédente
que Steiner a été mis au courant des travaux de Cayley par voie orale, via Sylvester. De
même, c’est Steiner qui a informé oralement Ludwig Schläfli de cela, comme le montre
l’extrait suivant d’une lettre de ce dernier à Cayley datant de 1856 :

La raison [à mon article] m’a été donnée par votre découverte des vingt-sept droites
sur la surface du troisième degré, que m’a communiquée oralement M. Steiner. Je n’ai
malheureusement pas pu avoir eu main sur votre article correspondant dans le Cam-
bridge and Dublin Mathematical Journal, et je risque de donner des résultats de mes
recherches sans savoir à quel point elles sont rendues superflues par des publications
déjà faites 49. [Graf 1905, p. 9]

L’article dont parle Schläfli est justement cité par Henderson dans la suite de son résumé
historique, dans son paragraphe sur les problèmes de notation des vingt-sept droites et sur
les doubles-six.

1.3.4 Notations des vingt-sept droites et notion de « double-six »

Henderson évoque trois systèmes de notation contenus dans les articles de Cayley et
de Salmon de 1849 : un premier dû à Cayley, un deuxième de Salmon et un troisième,

45. « As mentionned at the conclusion of the Memoir [Cayley 1849] the whole subject was developped in
a correspondence with Dr. Salmon. Steiner’s researches upon Cubic Surfaces are of later date. » [Cayley
Œuvres, vol. 1, p. 589].
46. Cette précision est une note corrective du Traité faisant suite à une remarque que Cremona a écrite

à Jordan dans une lettre de 1869. Nous y reviendrons.
47. [Parshall 1998].
48. « Cayley’sche Geraden », [Graf 1896, p. 125 et suiv.].
49. « Die Veranlassung dazu gab mir Ihre von Herrn Steiner mir mündlich mitgetheilte Entdeckung

der 27 Geraden auf der Fläche 3ten Grades. Ihre betreffende Abhandlung im Cambridge und Dublin
Mathematical Journal konnte ich freilich bis jetzt nicht zur Hand bringen, und so wage ich es einiges
von den Resultaten meiner Untersuchung vorzulegen, ohne zu wissen, in wie weit dieselben durch bereits
Erschienenes überflüssig gemacht sind. »
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attribué à Andrew Hart 50. Les deux premiers systèmes de notation sont présentés dans
l’article de Cayley de 1849 alors que le troisième se trouve dans celui de Salmon de la même
année, [Cayley 1849 ; Salmon 1849]. Présentons-les brièvement.

Dans son article, après avoir donné ses deux démonstrations de l’existence des vingt-
sept droites, Cayley s’attaque au problème de trouver des équations explicites pour les
plans tangents triples. Il commence par indiquer qu’il est toujours possible de choisir des
coordonnées (homogènes) de l’espace x, y, z, w de sorte que x = 0, y = 0, z = 0 et w = 0

sont les équations de plans tangents triples ayant la propriété suivante : les trois droites
(parmi les vingt-sept) contenues dans le w = 0 sont les intersections respectives de ce plan
avec les plans x = 0, y = 0, z = 0. Cayley montre alors que l’équation de la surface est
de la forme wP + kxyz = 0, où P est un polynôme du second ordre et k un paramètre. Il
ajoute que le choix de la coordonnée z influe sur le fait que P se scinde en deux facteurs
linéaires ou non.

Dans le cas où P n’est pas scindé, Cayley exprime la propriété selon laquelle les
plans x = 0, y = 0 et z = 0 doivent être tangents à la surface P = 0 et obtient ainsi
une équation de la surface cubique de la forme

w

{
x2 + y2 + z2 + yz

(
mn+

1

mn

)
+ zx

(
n`+

1

n`

)
+ xy

(
`m+

1

`m

)
+

xw

(
`+

1

`

)
+ yw

(
m+

1

m

)
+ zw

(
n+

1

n

)}
+ kxyz = 0,

où `,m, n sont des paramètres. Sans indiquer de démonstration, Cayley énumère ensuite
les équations des quarante-cinq plans tangents triples. Les coefficients de chaque équation
s’expriment en fonction de k, `,m, n et chaque équation est nommée par une lettre qui
représente également la fonction linéaire définissant le plan en question. Voici quelques
exemples :

(w) w = 0

(θ) `x+my + nz + w

[
1 +

1

k

(
`− 1

`

)(
m− 1

m

)(
n− 1

n

)]
= 0
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+
y

m
+
z

n
+ w

[
1− 1

k

(
`− 1

`

)(
m− 1

m

)(
n− 1

n

)]
= 0

(ξ) x+
1

k

(
m− 1

m

)(
n− 1

n

)
w = 0

50. Andrew Searle Hart (1811-1890) était un mathématicien britannique qui était, en 1849, fellow au
Trinity College de Dublin — il y devint vice-provost en 1876 — et collègue de Salmon. Ses quelques
publications mathématiques concernent la géométrie des courbes et des surfaces (travaux de géodésie, mais
aussi sur les courbes cubiques). Il est également cité en tant que relecteur dans les préfaces de [Salmon 1852 ;
Salmon 1882]. Voir [Gow 1997] et la courte notice nécrologique à la p. 78 de l’appendice des Proceedings
of the Royal Irish Academy, sér. 3, vol. 2, 1891-1893.
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(η) y +
1

k

(
n− 1

n

)(
`− 1

`

)
w = 0

(ζ) z +
1

k

(
`− 1

`

)(
m− 1

m

)
w = 0

(x) x+
l(p− α) + 2mn

p+ β
w = 0

(x) x+
1
` (p− α) + 2 1

mn

p− β w = 0,

où les paramètres α, β, p sont définis par

α = `mn+
1

`mn
, β = `mn− 1

`mn
, k =

p2 − β2

2(p− α)
.

Cayley utilise alors ces notations pour les plans tangents triples afin d’en déduire celles des
vingt-sept droites. Toujours sans fournir d’explications, il numérote ces droites a1, b1, c1,
a2, b2, . . . , c9 en les définissant suivant les cinq plans tangents triples qui les contiennent
chacune. Par exemple, la droite contenue dans les plans (w), (x), (ξ), (x) et (x) est appelée
a1, celle contenue dans les plans (w), (y), (η), (y) et (y) est appelée b1, etc. Le tout est
représenté en un tableau :

(a1).(w, x, ξ, x, x) (a4).(x, g,h, l, l1) (a7).(x,m1,n, q1, r)

(b1).(w, y, η, y, y) (b4).(y,h, f,m,m1) (b7).(y,n1, l, r1,p)

(c1).(w, z, ζ, z, z) (c4).(z, f, g,n,n1) (c7).(z, l1,m,p1, q)

(a2).(ξ, f, θ, p,p1) (a5).(x, g,h, l, l1) (a8).(x,m1,n, q1, r)

(b2).(η, g, θ, q, q1) (b5).(y,h, f,m,m1) (b8).(y,n1, l, r1,p)

(c2).(ζ,h, θ, r, r1) (c5).(z, f, g,n,n1) (c8).(z, l1,m,p1, q)

(a3).(ξ, f, θ,p,p1) (a6).(x,m, n1, q, r1) (a9).(x,m, n1, q, r1)

(b3).(η, g, θ, q, q1) (a6).(y, n, l1, r,p1) (b9).(y,n, l1, r, p1)

(c3).(ζ,h, θ, r, r1) (c6).(z, l,m1,p, q1) (c9).(z, l,m1,p, q1).

Enfin, Cayley écrit réciproquement la liste des triplets de droites contenues dans chacun
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des quarante-cinq plans tangents triples :

(w) a1b1c1 (f) a3b5c4 (l) a5b7c9 (p) a3b7c6

(θ) a2b2c2 (g) b3c5a4 (m) b5c7a9 (q) b3c7a6

(θ) a3b3c3 (h) c3a5b4 (n) c5a7b9 (r) c3a7b6

(x) a1a4a5 (f) a2b4c5 (l) a4b8c6 (p) a2b8c9

(y) b1b4b5 (g) b2c4a5 (m) b4c8b6 (q) b2c8a9

(z) c1c2c3 (h) c2a4b5 (n) c4b8a1 (r) c2a8b9

(ξ) a1a2a3 (x) a1a6a7 (l1) a5b9c7 (p1) a2b6c7

(η) b1b2b3 (y) b1b6b7 (m1) b5c9a7 (q1) b2c6a7

(ζ) c1c2c3 (z) c1c6c7 (n1) c5a9b7 (r1) c2a6b7

(x) a1a8a9 (l1) a4b6c8 (p1) a3b9c8

(y) b1b8b9 (m1) b4c6a8 (q1) b3c9a8

(z) c1c8c9 (n1) c4a6b8 (r1) c3a9b8.

Ce premier système de notation des vingt-sept droites n’est pas commenté par Cayley,
lequel passe tout de suite à la présentation du deuxième.

Pour ce deuxième système de notation (celui dû à Salmon), Cayley repart de l’équa-
tion wP +kxyz = 0, mais suppose cette fois que le polynôme P est scindé en deux facteurs
linéaires. En changeant encore une fois les coordonnées de l’espace, Cayley indique que
l’équation de la surface peut alors se mettre sous la forme ace − bdf = 0, où a, b, c, d, e, f
sont toutes des formes linéaires. Il fait la remarque que les neuf droites qui sont les inter-
sections mutuelles des plans a = 0, c = 0, e = 0 avec b = 0, d = 0, f = 0 sont incluses dans
la surface, et les note ab, ad, . . . , ef , où par exemple ab désigne la droite intersection des
plans a = 0 et b = 0.

Cayley poursuit et indique que dans un plan tangent triple contenant la droite ab
(par exemple), l’une des deux autres droites du plan rencontre cd et ef , tandis que l’autre
rencontre cf et de. Il suggère alors de noter ces droites ab.cd.ef et ab.cf.de respectivement.
Les plans tangents triples ainsi utilisés étant à chaque fois au nombre de trois, Cayley
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adjoint des indices à ces notations, de sorte que les vingt-sept droites sont les suivantes :

ab ad af

cb cd cf

eb ed ef

(ab.cd.ef)1 (ab.cd.ef)2 (ab.cd.ef)3

(ad.cf.eb)1 (ad.cf.eb)2 (ad.cf.eb)3

(af.cb.ed)1 (af.cb.ed)2 (af.cb.ed)3

(ab.cf.ed)1 (ab.cf.ed)2 (ab.cf.ed)3

(ad.cb.ef)1 (ad.cb.ef)2 (ad.cb.ef)3

(af.cd.eb)1 (af.cd.eb)2 (af.cd.eb)3

Cayley met ensuite cette notation en relation avec la précédente, c’est-à-dire qu’il indique
la correspondance entre les deux. Sa conclusion révèle cependant son insatisfaction devant
ces notations :

Il est très difficile de concevoir la figure complète formée par les vingt-sept droites.
Et je pense en effet que cela ne peut guère être accompli sans qu’une notation plus
parfaite ne soit découverte 51. [Cayley 1849, p. 127]

Puisque Cayley connaissait très certainement la notation de Hart présentée dans [Salmon
1849], il est raisonnable de penser que cette remarque s’y applique également.

Dans cette notation, les vingt-sept droites de la surface sont appelées A1, B1, C1,
A2, . . . , C3, a1, . . . , c3, α1, . . . , γ1, avec la convention que des symboles issus du même al-
phabet désignent des droites qui se rencontrent lorsque soit les lettres sont identiques, soit
les indice le sont. Par exemple, A1, A2, A3 s’intersectent deux à deux (et donc sont incluses
dans un même plan tangent triple), de même que A1, B1, C1, etc. Les relations d’incidence
entre droites désignées par des symboles issus d’alphabets différents sont données par le

51. « This is of great difficulty in conceiving the complete figure formed by the twenty-seven lines, indeed
this can hardly I think be accomplished until a more perfect notation is discovered. »
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tableau suivant :
a1 b2 c3 b1 c2 a3 c1 a2 b3

A1 B1 C1

α1 β2 γ3 β1 γ2 α3 γ1 α2 β3

c2 a3 b1 a2 b3 c1 b2 c3 a1

A2 B2 C2

β3 γ1 α1 γ2 α1 β2 α3 β1 γ2

b3 c1 a2 c3 a1 b2 a3 b1 c2

A3 B3 C3

γ2 α3 β1 α2 β3 γ1 β2 γ3 α1

La règle de lecture de ce tableau est que la droite désignée par une lettre située au milieu
d’un petit carré rencontre chaque paire verticale de droites du même petit carré. Par
exemple, les plans tangents triples contenant A1 sont ainsi A1a1α1, A1b2β2 et A1c3γ3

(ainsi que A1A2A3 et A1B1C1 déjà mentionnés). Salmon ne fait pas de commentaire au
sujet de la notation de Hart.

Henderson mentionne ensuite une notation « très marquante » due à Schläfli, présentée
dans une publication de 1858 et basée sur ce qui appelé un « double-six », [Schläfli 1858] 52.
Comme écrit dans son en-tête, l’article de Schläfli a été traduit en anglais par Cayley lui-
même. En fait, Schläfli avait communiqué une partie des résultats de l’article dans une lettre
de 1856 écrite à Cayley 53. C’est dans cette lettre, dont un extrait a été cité précédemment
(p. 50), que Schläfli écrivait qu’il n’avait pas eu accès aux publications de 1849 de Cayley
et qu’il ne savait pas si ses résultats avaient déjà été trouvés ou non. Comme nous allons
le voir, des analogies existent effectivement entre les travaux de Schläfli et ceux de Cayley
et Salmon.

L’article de Schläfli est séparé en deux parties. La première concerne les surfaces al-
gébriques de degré quelconque et ne concerne pas la notation des vingt-sept droites. La
seconde partie a pour cadre celui des surfaces cubiques. Schläfli commence par montrer
que l’équation d’une telle surface peut s’écrire sous la forme uvw + xyz = 0, où u, . . . , z
désignent des fonctions linéaires en les coordonnées de l’espace. Cette écriture lui permet
de mettre en évidence l’existence de neuf droites tracées sur la surface 54 : ce sont les in-
tersections respectives des plans u = 0, v = 0, w = 0 et x = 0, y = 0, z = 0. Une notation
provisoire est introduite par Schläfli : par exemple, la droite définie par les plans u = 0 et

52. « Schläfli was who invented the notation which may be called epoch-making—that of the double-
six. » [Henderson 1915, p. 2]. Si la notation de Schläfli et celle de Hart sont décrites dans [Cajori 1929],
celle de Salmon y est seulement vaguement évoquée.
53. Voir [Graf 1905, p. 5-10].
54. On voit ici la proximité avec l’approche de Salmon qui est exposée dans [Cayley 1849].
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x = 0 est notée ux.

Schläfli introduit ensuite six coefficients A,B,C,D,E, F dépendant linéairement d’un
même paramètre et tels que Au+Bv + Cw +Dx+ Ey + Fz = 0. Il calcule :

Au(Bv +Dx)(Cw +Dw) +Dx(Au+ Ey)(Au+ Fz) = ABCuvw +DEFxyz.

Le membre de gauche est alors une équation de la surface lorsque ABC = DEF . Cette
dernière condition étant du troisième degré en le paramètre dont dépendent A, . . . , F ,
elle possède trois solutions, auxquelles correspondent donc trois sextuplets (a, b, c, d, e, f),
(a′, . . . , f ′), (a′′, . . . , f ′′). Pour chacun de ces sextuplets, on a donc une équation de la
surface, comme

au(bv + dx)(cw + dw) + dx(au+ ey)(au+ fz) = 0.

Pour cette dernière équation, Schläfli remarque alors que la droite d’équations

au+ dx = 0 ; bv + ey = 0 ; cw + fz = 0

est contenue dans la surface 55. Il indique que pour un sextuplet (a, . . . , f), on peut trouver
6 droites de ce type, notées `,m, n, p, q, r. En tenant compte des deux autres sextuplets,
cela donne donc 18 droites `, `′, `′′,m, . . . , r′′.

Les relations d’incidence existant entre les neuf droites obtenues précédemment et les
dix-huit nouvelles sont données par Schläfli :∣∣∣∣∣∣∣∣∣∣

à travers ux, vy, wz passent `, `′, `′′

” uy, vz, wx ” m,m′,m′′

” uz, vx, wy ” n, n′n′′

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
à travers ux, vz, wy passent p, p′, p′′

” uz, vy, wx ” q, q′, q′′

” uy, vx, wz ” r, r′, r′′

∣∣∣∣∣∣∣∣∣∣
Il donne également les règles décrivant les relations d’incidence entre les dix-huit droites
notées `, . . . , r′′ : si deux de ces droites sont sur un même tableau, elles se rencontrent si
et seulement si les lettres et les accents qui les représentent sont différents ; sinon, elles se
rencontrent si et seulement si les symboles qui les représentent ont le même accent 56.

55. Remarquer que la dernière de ces équations est toujours conséquence des deux premières à cause de
l’égalité au+ bv+ cw+ dx+ ey+ fz = 0. Remplacer dx = −au, ey = −bv et fz = −cw dans l’équation de
la surface donne une égalité à 0, ce qui montre que la droite ayant ces équations est incluse dans la surface.
56. Par exemple, ` rencontre m′,m′′, n′, n′′, p, q, r (ainsi que ux, vy, wz).
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Schläfli continue son travail et montre que les vingt-sept droites peuvent se grouper
douze à douze en ce qu’il appelle des doubles-six, selon les relations d’incidence qu’elles
entretiennent entre elles. Par exemple, les douze droites(

uz, vx, wy, `, `′, `′′

vy, wz, ux, n, n′, n′′

)

forment un double-six car deux d’entre elles s’intersectent si et seulement si elles ne sont
écrites ni sur une même ligne ni sur une même colonne. Schläfli prouve en outre qu’il existe
exactement trente-six doubles-six que l’on peut former à partir des vingt-sept droites.

Il écrit enfin que l’« on arrive, au moyen des doubles-six, [...] à une description aisée
des vingt-sept droites et des quarante-cinq plans de la [surface] 57 ». Pour cela, il considère
un double-six, qu’il note cette fois(

a1, a2, a3, a4, a5, a6

b1, b2, b3, b4, b5, b6

)
.

Avec les règles d’incidence données précédemment (deux droites s’intersectent si et seule-
ment si elles ne sont ni sur une même ligne ni sur une même colonne), deux droites ai et bj
se rencontrent lorsque i 6= j et forment ainsi deux côtés d’un triangle, dont le troisième côté
est noté cij . Il y a donc quinze droites c12, . . . , c56 ; une telle droite c intersecte parmi les
droites a, b seulement celles dont les indices correspondent (par exemple, c12 ne rencontre
que a1 et b2) et deux droites c se rencontrent lorsque leurs indices n’ont pas de chiffre en
commun, et seulement dans ce cas-là.

Il est intéressant de remarquer que certaines références bibliographiques de Henderson,
qui ne sont pourtant pas citées pour le problème des notations, comportent des commen-
taires sur celles-ci. Ainsi, dans un grand mémoire sur les surfaces cubiques, [Cayley 1869a],
Cayley commente :

Il y a, dans le système des 27 droites et des 45 plans, une symétrie compliquée et
many-sided qui exclut l’existence d’une notation unique : la notation ne peut être
obtenue qu’en partant d’un arrangement qui n’est pas unique mais qui fait partie
d’un système d’arrangements analogues. La notation employée dans mon article ori-
ginal, [Cayley 1849], [avec les (w), (ξ), etc.] part d’un tel arrangement ; mais elle est
si compliquée qu’elle ne peut guère être considérée comme mettant en évidence les
relations des droites et des plans ; celle du Dr. Hart (dans [Salmon 1849]), dépendant
d’un arrangement des 27 droites selon un cube 3×3, est particulièrement élégante [...].
Mais la plus commode est celle de Schläfli, basée sur un double-six 58. [Cayley 1869a,
p. 243]

57. « By means of the double-sixes we arrive [...] at an easy survey of the 27 lines and 45 planes of the
[surface]. » [Schläfli 1858, p. 116].
58. « There is in the system of the 27 lines and 45 planes a complicated and many-sided symmetry

which precludes the existence of any unique notation: the notation can only be obtained by starting from
some arrangement which is not unique, but one of a system of several like arrangements. The notation
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Par ailleurs, dans son Treatise on the Geometry of Three Dimensions, Salmon expose sa
propre notation (présentée dans [Cayley 1849]) puis commente celle de Schläfli :

Le professeur Schläfli a fait un nouvel arrangement des droites, conduisant à une
notation plus simple et donnant une conception plus claire de la manière dont elles
sont disposées 59. [Salmon 1882, p. 499]

Ces deux commentaires de Cayley et de Salmon insistent ainsi sur l’importance de la
simplicité d’une notation, et lient explicitement l’utilité d’une notation à la compréhension
des relations d’incidence existant entre les vingt-sept droites.

L’insistance mise sur les avantages de la notation de Schläfli se confirme en partie par
son utilisation dans un certain nombre de travaux listés dans la bibliographie de Hender-
son, comme [Schröter 1863 ; Cayley 1869a ; Cayley 1873 ; Salmon 1882], ou dans d’autres
publications que nous rencontrerons plus tard, comme [Clebsch 1866 ; D’Ocagne 1895 ;
Hartshorne 1977]. Cette circulation (sur une période de temps plutôt longue) donne raison
à Florian Cajori qui écrit, dans son livre sur l’histoire des notations mathématiques, que
« la notation [des vingt-sept droites] la plus généralement adoptée est celle du “double-six”,
due à L. Schläfli », [Cajori 1929, p. 324].

Toutefois, une autre proposition de notation est encore mentionnée par Henderson dans
son résumé historique. Il s’agit de celle de Henry Martyn Taylor, qui établit un système
de notation indépendant de tout choix initial 60, [Taylor 1894]. L’article de Taylor débute
en rappelant que l’existence des vingt-sept droites a initialement été prouvée dans une
correspondance entre Cayley et Salmon de 1849 et que les résultats ont été publiés dans
les articles de 1849. Il continue en écrivant :

Dans l’article mentionné précédemment, [Cayley 1849], Cayley remarque : « Il est très
difficile de concevoir la figure complète formée par les vingt-sept droites. Et je pense
en effet que cela ne peut guère être accompli sans qu’une notation plus parfaite ne soit
découverte ».

Schläfli a découvert une notation de grand mérite qui donne une puissante méthode
pour travailler avec les vingt-sept droites ; elle est basée sur la sélection de douze
droites qui forment un « double-six ». L’auteur du présent article a tenté de trouver
une notation des vingt-sept droites qui ne dépendait d’aucune sélection particulière
parmi elles 61. [Taylor 1894, p. 37]

employed in my original paper [...] starts from such an arrangement; but it is so complicated that it can
hardly be considered as at all putting in evidence the relations of the lines and planes; that of Dr. Hart
[...], depending on an arrangement of the 27 lines according to a cube of 3 each way, is a singularly elegant
one [...]. But the most convenient one is Schläfli’s, starting from a double-sixer ».
59. « Prof. Schläfli has made a new arrangement of the lines, which leads to a simpler notation, and

gives a clearer conception how they lie. »
60. Comme le remarque Cayley dans sa citation donnée précédemment, la notation de Schläfli dépend

du choix initial d’un double-six.
61. « In the above-mentionned paper, Cayley remarks, “there is of great difficulty in conceiving the

complete figure formed by the twenty-seven lines: indeed this can hardly, I think, be accomplished until
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Pour faire cela, Taylor commence par montrer que l’équation d’une surface cubique peut
toujours se mettre sous la forme

xyzu = (x− aT )(y − bT )(z − cT )(u− dT ),

où x, y, z, u sont les coordonnées de l’espace, T est une fonction linéaire de ces coordonnées
et a, b, c, d sont des paramètres. Il en déduit les équations de chacune des vingt-sept droites :
par exemple, une de ces droites, notée par le chiffre 1, a pour équations

x = aT et y = 0.

Les vingt-sept droites sont ainsi notées 1, 2, . . . , 27, au fur et à mesure de l’énumération de
leurs équations. Il s’agit de la notation dont Taylor parle ; le reste de l’article consiste à
établir toutes sortes de relations d’incidence entre les droites. Taylor fait ainsi la liste des
droites se coupant deux à deux, de celles qui forment des triangles, de celles qui forment
des quadrilatères, etc.

On ne trouve pas de commentaire sur la notation de Taylor dans les références bi-
bliographiques de Henderson, et elle n’est pas non plus discutée dans le livre de Cajori.
Seul Henderson lui-même écrit : « [la notation de Taylor] ne peut être vue comme une
amélioration de celle élaborée par Schläfli 62 ».

Toujours dans le morceau du résumé historique concernant les notations et le double-
six, Henderson renvoie au premier paragraphe du chapitre II de The Twenty-seven Lines,
qui est intitulé « Histoire du théorème ». Le théorème évoqué dans le titre est énoncé dans
l’article de Schläfli de 1858, déjà discuté plus haut :

Les doubles-six donnent lieu à la remarque que l’on peut voir ici un théorème ap-
paremment très élémentaire, pouvant être énoncé ainsi : « traçant à notre gré cinq
droites a, b, c, d, e qui rencontrent une droite F , on suppose que les droites de tout
groupe de quatre parmi ces cinq sont intersectées par une autre droite que F . Sup-
posons que A,B,C,D,E sont les autres droites intersectant (b, c, d, e), (c, d, e, a),
(d, e, a, b), (e, a, b, c) et (a, b, c, d) respectivement. Alors A,B,C,D sont intersectées
par la droite e ; il doit y avoir une autre droite f intersectant ces quatre droites, et
cette droite va elle-même intersecter la droite restante E ; autrement dit, il y aura
une droite f intersectant les cinq droites A,B,C,D,E. » Y a-t-il, pour ce théorème
élémentaire, une démonstration plus simple que celle dérivée de la théorie des formes
cubiques 63 ? [Schläfli 1858, p. 117]

a more perfect notation is discovered.” Schläfli has discovered a notation of great merit which affords
a powerful method of dealing with the twenty-seven lines; it is based upon the selction of some twelfe
of the lines which form a “double-six.” The author of this paper endeavoured to find a notation for the
twenty-seven lines, which did not depend on any special selection among them. »
62. « [Taylor’s notation] cannot be regarded as an improvement upon the notation devised by Schläfli. »
63. « The double-sixes give rise to the remark that there is here exposed to view an apparently very

elementary theorem which may be thus enuntiated: “Drawing at pleasure five lines a, b, c, d, e which meet
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En d’autres termes, ce théorème indique que si onze droites de l’espace entretiennent
entre elles les mêmes relations que onze droites issues d’un double-six, alors il existe une
douzième droite complétant les onze premières en un double-six. Il s’agit alors de démontrer
ce résultat sans faire appel à la théorie des surfaces cubiques, ce que Schläfli ne fait pas
dans la suite de son article. Henderson indique une série d’articles ayant tenté de répondre
à la question, de Sylvester (1861), Cayley (1868, 1870), Friedrich Schur (1881), Edward
Kasner (1903) et Baker (1910) ; mais ces travaux ne concernant ni les surfaces cubiques ni
a fortiori leurs vingt-sept droites, ils ne seront pas décrits ici.

1.3.5 Les travaux de Sturm et Cremona

Continuant à suivre le résumé historique de Henderson, nous arrivons aux « premiers
articles significatifs sur les surfaces cubiques d’un point de vue synthétique, suivant le mé-
moire de Steiner mentionné précédemment, [dûs à] Cremona et Rudolf Sturm 64 », [Hen-
derson 1915, p. 2]. Comme l’indique Henderson, les deux travaux en question avaient été
soumis à l’Académie des sciences de Berlin pour concourir à un prix que Steiner avait voulu
être créé après sa mort. Pour le premier cru de ce « Prix Steiner », en 1864, Ernst Eduard
Kummer avait annoncé que l’enjeu était de compléter les démonstrations manquantes du
mémoire de Steiner sur les surfaces cubiques et de développer les idées de ce dernier :

Notre collègue décédé le 1er avril de l’année dernière [1863] à légué à l’Académie un
legs de 8 000 thalers avec la consigne d’utiliser les produits nets des intérêts pour des
prix biennaux pour des exercices dans le domaine de la géométrie synthétique qu’il a
donnés, avec surtout une considération des méthodes et principes qu’il a érigées. [...]

Dans un des Monatsberichte de l’Académie de janvier 1856, de même que dans un mé-
moire publié dans le 53e volume du journal de Crelle, Steiner a communiqué une série
de propriétés fondamentales des surfaces du troisième degré, et posé avec cela les bases
d’une théorie purement géométrique de celles-ci. L’Académie souhaite que ces travaux
distingués du grand géomètre soient approfondis et complétés sur quelques points es-
sentiels. Pour cela, il sera d’abord nécessaire de donner les preuves des théorèmes
principaux, la plupart du temps seulement indiquées ou complètement manquantes 65.

a line F , then may any four of the five lines be intersected by another line besides F . Suppose that
A,B,C,D,E are the other lines intersecting (b, c, d, e), (c, d, e, a), (d, e, a, b), (e, a, b, c), and (a, b, c, d) re-
spectively. Then A,B,C,D are intersected by the line e; there must be another line f intersecting these
four lines, and this line will of itself intersect the remaining line E; i.e. there will be a line f intersecting
the five lines A,B,C,D,E.” Is there, for this elementary theorem, a demonstration more simple than the
one derived from the theory of cubic forms? »
64. « The first significant papers on cubic surfaces from the synthetic standpoint, following Steiner’s

memoir above mentioned, were by Cremona and Rudolf Sturm. »
65. « Unser am 1. April vorigen Jahre verstorbener College Steiner hat der Akademie ein Legat von 8000

Rthlrn. vermacht mit der Bedingung der Reinertrag der Zinsen alle zwei Jahre zu Preisen zu verwenden,
für von ihr gestellte Aufgaben in dem Bereiche der synthetischen Geometrie, hauptsächlich mit Berück-
sichtigung der von ihm aufgestellten Methoden und Principien. [...] In einer in den Monatsberichten der
Akademie vom Januar 1856, sowie in dem 53. Bande der Crelle’schen Journals veröffentlichten Abhandlung
hat Steiner eine Reihe von Fundamentaleigenschaften der Flächen dritten Grades mitgetheilt, und dadurch
den Grund zu einer rein geometrischen Theorie derselben gelegt. Die Akademie wünscht, dass diese aus-
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En 1866, l’Académie décerna le prix conjointement à Luigi Cremona et à Rudolf Sturm.
Les travaux de ces derniers furent publiés peu après : l’un sous forme d’un livre, [Sturm
1867], l’autre en tant que (long) article dans le Journal für die reine und angewandte
Mathematik, [Cremona 1868].

Chacune de ces publications rappelle dans son introduction que le travail proposé
consiste d’abord à compléter tout ce que Steiner avait annoncé dans son mémoire de 1856,
et met en avant la restriction des méthodes à celles de la « géométrie pure 66 ». Par exemple
pour Cremona :

Obéissant aux prescriptions de l’Académie et heureux d’ailleurs de pouvoir suivre son
propre penchant, l’auteur s’est servi exclusivement de la géométrie pure, dite (peut-
être improprement) synthétique ; et il se flatte qu’on jugera que le procédé uniforme et
facile, qu’il a suivi dans tout le cours de cet écrit, rentre dans l’esprit de ces méthodes
puissantes et lumineuses qui ont valu à Steiner la découverte d’un si grand nombre de
propriétés très-importantes, propriétés que ce célèbre sphinx géométrique a léguées à
ses successeurs, comme autant d’énigmes à déchiffrer. [Cremona 1868, p. 2-3]

Les travaux de Sturm et de Cremona diffèrent au niveau de leur approche des surfaces
cubiques et des points-clés qu’ils mettent en avant. Ainsi, le mémoire de Cremona se base
sur des considérations portant sur le surfaces algébriques de degré quelconque qu’il applique
dans un deuxième temps aux surfaces cubiques. Il propose également une construction de
la représentation d’une telle surface sur un plan afin de traiter de façon détaillée l’étude
des courbes algébriques qui y sont contenues.

Sturm met quant à lui plutôt en valeur les différentes manières d’engendrer les surfaces
cubiques et la classification de ces dernières eu égard à la réalité de leurs droites. Comme
Sturm l’écrit lui-même, son mémoire qui avait été déposé pour le prix de l’Académie était
un développement de sa thèse de doctorat, faite sous la direction de Heinrich Schröter 67.
Ce dernier avait lui aussi travaillé sur les surfaces cubiques, comme l’atteste d’ailleurs la
présence d’un de ses articles dans la bibliographie de Henderson, [Schröter 1863]. Dans
cet article, Schröter avait pour but de démontrer l’existence des vingt-sept droites en se
basant sur une certaine façon d’engendrer les surfaces cubiques. Cette génération était
celle que Hermann Grassmann avait présentée sans la démontrer une dizaine d’année au-
paravant, [Grassmann 1855] : toute surface cubique est le lieu des points d’intersection de

gezeichnete Arbeit des grossen Geometers nach synthetischer Methode weiter ausgeführt und in einigen
wesentlichen Punkten vervollständigt werde. Dazu würde es zunächst nothwendig sein, die grösstentheils
nur angedeuteten oder ganz fehlenden Beweise der aufgestellten Hauptsätze zu geben », extrait de la séance
du 7 juillet 1864 prononcé par Kummer et rapporté dans le Monatsberichte der Königlichen Preußischen
Akademie der Wissenschaften zu Berlin, pages 475-476.
66. La restriction des méthodes à celles de la « géométrie pure » ne s’accompagne pas d’un clivage

extrêmement marqué entre cette géométrie et celle dite « analytique » — [Sturm 1867, p. x] parle quand
même de cette dernière comme la rivale de la première. Des travaux récents ont commencé à revenir sur
les récits du tournant du siècle, comme [Fano 1907], opposant deux camps, l’un du côté de la géométrie
pure (ou synthétique), l’autre du côté de la géométrie analytique. Voir [Lorenat 2015b], et en particulier
les références données p. 2.
67. Voir [Sturm 1867, p. vi] et [Ludwig 1926].
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trois gerbes projectives de plans 68. Sturm connaissait d’ailleurs tous ces travaux, cités et
redémontrés dans son libre, [Sturm 1867].

1.3.6 Classifications de surfaces cubiques

Le résumé historique de Henderson se poursuit avec un paragraphe dans lequel il évoque
deux types de classification des surfaces cubiques, l’une par le caractère réel de leurs droites,
l’autre par leurs singularités.

En ce qui concerne la réalité des droites, Henderson, en précisant qu’il s’agit d’une
« simple inspection du problème 69 », réfère d’abord à l’article de Schläfli déjà commenté
en partie précédemment, [Schläfli 1858]. Il mentionne également la thèse de Friedrich Au-
gust, [August 1862], puis un nouveau mémoire de Schläfli, [Schläfli 1863], dans lequel le
sujet est traité en plus grand détail — tout ce qui concerne la question de réalité des droites
et qui est abordé dans l’article de Schläfli de 1858 est en fait repris et réexpliqué dans son
mémoire de 1863.

Dans ce mémoire, Schläfli définit ce que sont des systèmes réels : ce sont des objets
géométriques qui peuvent être décris par des équations ayant tous leurs coefficients réels.
Ainsi, lorsqu’une surface cubique est réelle, la question que pose Schläfli est de déterminer,
parmi les vingt-sept droites et les quarante-cinq plans tangents triples, combien sont réels.
Pour répondre à la question, il se base sur l’écriture uvw − xyz = 0 de l’équation d’une
surface cubique (rappelons que u, . . . , z sont des formes linéaires en les coordonnées de
l’espace). Cette surface étant supposée réelle, les formes cubiques uvw et xyz sont réelles,
mais certaines des formes linéaires u, . . . , z peuvent elles être complexes.

Schläfli procède au comptage de droites et de plans réels en suivant une discussion des
cas de réalité des formes linéaires u . . . , z et des racines de l’équation du troisième degré
en un paramètre 70 ABC = DEF . Par exemple, si toutes les formes linéaires et toutes
les solutions de ABC = DEF sont réelles, alors les vingt-sept droites et les quarante-cinq
plans le sont aussi ; si les formes linéaires sont réelles, mais que l’équation ABC = DEF

68. Une gerbe de plans est l’ensemble de tous les plans passant par un point donné de l’espace. Si ce
point est l’intersection de trois plans d’équations respectives a = 0, b = 0 et c = 0, où a, b, c sont des
fonctions linéaires en les coordonnées de l’espace, alors les plans de la gerbe correspondante sont tous les
plans ayant une équation de la forme χa + λb + µc = 0. Trois gerbes de plans sont dites projectives si on
associe (arbitrairement) les plans des gerbes entre eux. Ainsi, dire que la surface est le lieu d’intersection de
trois gerbes projectives de plans revient à dire que tout point de la surface a pour coordonnées la solution
(homogène) d’un système 

χa + λb + µc = 0

χa′ + λb′ + µc′ = 0

χa′′ + λb′′ + µc′′ = 0,

où chaque équation correspond à une des gerbes et les inconnues sont les coordonnées de l’espace.
69. « [Schläfli] contented himself with a mere survey of the problem. » [Henderson 1915, p. 3].
70. Rappelons que la surface contient neuf droites du type uz, qui est l’intersection des plans u = 0

et z = 0, et dix-huit droites dont les équations dépendent d’un paramètre solution d’une équa-
tion ABC = DEF . Par exemple, une de ces droites a pour équations au + dx = 0 et bv + ey = 0.
Voir le paragraphe 1.3.4.
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possède une solution réelle (et deux complexes conjuguées), alors Schläfli montre qu’il y
a quinze droites réelles et quinze plans réels. La classification obtenue par Schläfli est que
pour une surface lisse, il n’y a que cinq possibilités pour les nombre de droites et de plans
réels, à savoir (27, 45), (15, 15), (7, 5), (3, 13) et (3, 7).

Toujours dans le même article, la recherche des nombres de droites et de plans réels dans
le cas de surfaces singulières conduit Schläfli à lister toutes les possibilités de singularités
pour les surfaces cubiques. C’est ce qu’indique Henderson, qui souligne également que la
division de ces surfaces selon leurs singularités a ensuite été adoptée par Cayley dans un
grand mémoire sur les surfaces cubiques, [Cayley 1869a].

Le début du mémoire de Schläfli de 1863 indique que l’influence des singularités sur le
comptage même des droites d’une surface cubique avait déjà été traitée dans l’article de
Salmon contenant une démonstration de l’existence des vingt-sept droites, [Salmon 1849].
Dans l’article conjoint, Cayley avait en effet fait la remarque que ses démonstrations de
l’existence des vingt-sept droites n’était plus valable dans le cas d’une surface cubique non
lisse 71. Une surface singulière contenant a priori moins de vingt-sept droites, Salmon avait
mis en place une multiplicité de comptage de celles-ci afin que le nombre 27 reste valable.

Par exemple, Salmon avait indiqué qu’une droite passant par un point conique simple 72

doit être comptée avec multiplicité 2. Cette convention permet effectivement de garder le
nombre 27 : Salmon avait montré que si une surface cubique n’a pour seule singularité qu’un
point conique simple, alors elle comporte 6 droites passant par ce point, et 15 droites qui n’y
passent pas. Avec la multiplicité décrite précédemment, il dénombrait bien 6× 2 + 15 = 27

droites. Le même travail avait alors été répété pour chacun des onze cas de surfaces singu-
lières énumérés par Salmon.

Dans son mémoire de 1863, [Schläfli 1863], Schläfli met en évidence d’autres cas que les
onze donnés par Salmon et aboutit ainsi à vingt-deux types de surfaces cubiques. Comme
indiqué au début du mémoire, c’est Cayley qui l’avait communiqué à la Royal Society of
London et il y avait ajouté, avec l’accord de Schläfli, des notes personnelles entre crochets.
Une de ces notes indique que Schläfli avait oublié un cas de surface cubique singulière,
portant ainsi le nombre de cas à vingt-trois.

Dès le début du mémoire [Cayley 1869a], Cayley écrit que tout ce qu’il y développe est
basé sur, et est complémentaire à celui de Schläfli, [Schläfli 1863]. Le but de Cayley est
de reprendre la classification en vingt-trois types de surfaces cubiques, et dans chaque cas,
établir toute une série de résultats concernant la surface : forme simple de son équation,

71. « It should be remarked that the preceeding theory is very materially modified when the surface of
the third order has one or more conical points; and in the case of a double line (for which the surface
becomes a ruled surface) the theory ceases to be applicable. » [Cayley 1849, p. 132].
72. En termes modernes, si l’on choisit (0 : 0 : 0 : 1) comme coordonnées projectives de la singularité,

alors l’équation de la surface cubique à laquelle le point appartient est de la forme wf(x, y, z)+g(x, y, z) = 0,
où f et g sont des formes quadratique et cubique respectivement. Le point singulier est appelé point conique
simple lorsque la forme quadratique f est de rang 3. Voir [Bruce & Wall 1979] pour un point de vue récent
sur la classification des surfaces cubiques par leurs singularités.
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équations des droites et des plans tangents triples, relations d’incidence entre ces objets
et équation de la surface réciproque, mais aussi l’ordre d’un cône circonscrit à la surface,
le nombre d’arêtes doubles de ce cône, etc. — en tout, 42 nombres de cette sorte sont à
chaque fois calculés : voir le tableau récapitulatif de Cayley en figure 1.4.

1.3.7 Modèles et formes des surfaces cubiques

Le résumé historique de Henderson continue avec deux paragraphes concernant tous
deux les modèles concrets de surfaces cubiques et la forme de ces dernières 73. D’après lui,
le premier modèle d’une surface cubique a été proposé par Christian Wiener en 1869. Ce
modèle sur lequel apparaissaient les vingt-sept droites (réelles) de la surface est rapidement
décrit dans un article de 1873 :

Le modèle est fait de plâtre, et est contenu dans un cube 18,2 pouces de côté : les
droites a, b, c sont colorées en bleu, jaune et rouge respectivement ; les droites a1, b2, b5
[sont] à angle droit l’une de l’autre 74. [Cayley 1873, p. 366]

Cayley établit ensuite, à partir de mesures effectuées sur le modèle, les équations de cer-
taines des vingt-sept droites et donne les équations théoriques correspondances sans pour
autant commenter la comparaison. Comme le souligne Henderson, Sylvester avait gran-
dement mis en valeur la construction du modèle de Wiener en la décrétant être l’un des
événements scientifiques les plus importants de l’année 1869 75. En citant [Smith 1876],
Henderson indique également qu’un modèle des vingt-sept droites, sans la surface cubique
qui les contient, avait été proposé par Olaus Henrici, mais aucune date n’est donnée 76.

Henderson continue en écrivant qu’en 1872, Alfred Clebsch avait construit un modèle
de la surface diagonale 77. Aucune référence n’est donnée par Henderson, mais on peut
lire dans les Nachrichten von der Königlichen Gesellschaft der Wissenschaften und der

73. Il s’agit ici du mot « forme » faisant référence à l’aspect d’un objet (Gestalt en allemand, shape en
anglais). En français, le terme peut éventuellement porter à confusion en mathématiques à cause d’un
autre sens faisant référence à des polynômes homogènes (Form en allemand et en anglais). Au sujet des
modèles, voir [Polo-Blanco 2007 ; Rowe 2013].
74. « The model is formed of plaster, and is contained within a cube, the edge of which is = 18.2 inches:

the lines a, b, c are coloured blue, yellow, and red respectively; the lines a1, b2, b5 [are] at right angles at
each other. » Cayley fait ici référence à la notation de Schläfli des vingt-sept droites : il y a les droites ai,
bj et cij .
75. [Sylvester 1866-69, p. 155].
76. Le passage correspondant chez Smith ne contient pas non plus de date, voir [Smith 1876, p. 48].
77. La surface diagonale est la surface cubique d’équation x3 + y3 + z3 + w3 − (x + y + z + w)3 = 0.

Elle a la particularité d’avoir toutes ses droites réelles et d’être la seule, à équivalence projective près, à
avoir cette propriété — c’est Clebsch qui l’avait baptisée « surface diagonale ». En effet, dans [Sylvester
1851], Sylvester avait indiqué (sans le démontrer) que toute forme cubique F (x, y, z, w) = 0 peut s’écrire
sous la forme F = a1z

3
1 + · · ·+ a5z

3
5 , où les zi sont des formes linéaires en x, y, z, w soumises à la condition

z1 + · · · + z5 = 0 et sont uniques à l’ordre près. Le pentaèdre de la surface cubique d’équation F = 0 est
l’ensemble des cinq plans d’équations respectives z1 = 0, . . . , z5 = 0. Le nom de « surface diagonale » avait
été décidé dans [Clebsch 1871b] pour la raison suivante : parmi les plans de son pentaèdre, si l’on en prend
un quelconque, les quatre autres l’intersectent selon un quadrilatère. Alors les diagonales de ce quadrilatère
sont des droites contenues dans la surface.



1.3. LE RÉSUMÉ HISTORIQUE DE HENDERSON DISSÉQUÉ 65

Figure 1.4 – Tableau des singularités donné dans [Cayley 1869a, p. 235]. Les colonnes
représentent les vingt-trois types de surfaces cubiques, numérotées en chiffres romains.
Les égalités tout en haut du tableau indiquent les singularités caractérisant chaque
type (par exemple, la classe II est celle comportant un seul point conique simple C2).
Enfin, les lettres disposés à l’extérieur des colonnes désignent des nombres associés
aux surfaces : n pour leur ordre, a pour l’ordre (générique) de leur cône circonscrit, δ
pour le nombre d’arêtes doubles de ce cône, etc.



66 CHAPITRE 1

Georg-Augusts-Universität zu Göttingen de cette année-là (p. 402-404) que Clebsch avait
exposé à l’Académie deux modèles construits par son élève Adolf Weiler. Le premier était
un modèle des vingt-sept droites sans le support de leur surface, et le second un modèle
en plâtre de la surface diagonale, décrit comme suit :

Les droites de la surface se séparent en 15 et 12, dont les premières sont les diagonales,
tandis que les autres forment un double-six. Le pentaèdre a été choisi de sorte que
d’abord, un tétraèdre raide avec une base horizontale soit construit et se transforme
en lui-même par rotation de 120o autour d’un axe vertical ; le cinquième plan a été
posé parallèlement à la base, à égale distance de la base et du sommet. Par cette
organisation [...], il a été facile d’obtenir un aperçu de la forme de la surface et de
ses droites : les parties remarquables de celles-ci se trouvent dans un espace pas trop
grand et ont été étendues sur une longueur telle que la partie en forme de selle, avec
laquelle la surface s’étend à l’infini, ne présente pas d’autre difficulté 78.

On le voit dans cette citation, la question des modèles est liée de près à celle de la forme
des surfaces cubiques.

Ce lien est encore évoqué dans la suite des Nachrichten, où est décrit un autre modèle de
surface cubique, construit par Friedrich Neesen et présenté à l’Académie par Felix Klein.
Cette fois, il s’agit de la surface de Cayley 79, présentant quatre points singuliers. Une
description analogue à la précédente est donnée, et on y lit que toutes les formes possibles
pour les surfaces cubiques peuvent être obtenues à partir de la forme de la surface de
Cayley par déformation continue de ses points singuliers. D’après Henderson, ces travaux
consistant à déterminer les formes des surfaces cubiques à partir de celle de la surface de
Cayley sont ceux que Klein expose dans un article de 1873, [Klein 1873] (voir la figure 1.5).

Henderson mentionne deux séries de modèles en plâtre représentant toutes les formes
possibles des surfaces cubiques. La première est une série que Klein avait montrée à l’expo-
sition universelle de Chicago en 1893 80. La seconde est due à Carl Rodenberg, et Henderson
fait référence à [Rodenberg 1879]. Dans cet article, Rodenberg étudie en fait les modifica-
tions que la présence de singularités sur une surface cubique implique sur son pentaèdre,
ce qui l’entraîne à proposer une classification de ces surfaces en fonction de leur pentaèdre.

78. « Die Geraden der Fläche theilen sich in 15 und 12, von denen erstere die oben angegebenen Dia-
gonalen sind, während die 12 andern eine durch sie bestimmte Doppelsechs bilden. Das Pentaeder war so
gewählt, dass zunächst ein steiles Tetraeder mit horizontaler Basis gebildet war, welches durch eine Dre-
hung von 120o um eine Verticalaxe in sich selbst überging; die fünfte Ebene war der Basis parallel gelegt,
und gleichweit von der Spitze wie von der Basis entfernt. Bei dieser Einrichtung [...] war es leicht, eine
Uebersicht der Gestalt der Fläche und ihrer Geraden zu gewinnen: die bemerkenswerthen Theile derselben
liegen in einem nicht zu grossem Raume, und waren so weit fortgesetzt, dass die sattelförmigen Theile, mit
welchen die Fläche sich ins Undendliche erstreckt, der Vorstellung keine weitern Schwierigkeiten boten. »
79. Il s’agit de la surface d’équation xyz + yzw + zwx+ wxy = 0.
80. Henderson donne 1894 comme année de l’exposition universelle de Chicago et il cite [Klein 1894]

(conférences de Klein à l’Evanston Colloquium de 1894). Au sujet de l’exposition universelle et d’Evanston,
voir [Parshall & Rowe 1994, p. 295-361].
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Figure 1.5 – Figures extraites de [Klein 1873] et montrant des déformations autour
d’un point singulier d’une surface cubique.

D’après Gerd Fischer, la série de Rodenberg, composée de 26 surfaces cubiques en plâtre,
date quant à elle de 1881, [Fischer 1986a ; Fischer 1986b]. Voir la figure 1.6.

(a) Surface diagonale, d’équation x3 +
y3 + z3 + w3 = (x+ y + z + w)3

(b) Surface de Cayley, d’équation xyz +
yzw + zwx+ wxy = 0

Figure 1.6 – Modèles en plâtre de surfaces cubiques particulières, issus de la collection
Rodenberg. Source : [Fischer 1986b].

Les autres mathématiciens s’étant intéressés au problème des modèles de surfaces ou
de leurs droites et cités par Henderson sont Sylvester, Cayley, Percival Frost, Hieronymus
Zeuthen, J. de Vries, Henry Martyn Taylor et William Henry Blythe 81. L’article de Syl-

81. [Sylvester 1861a ; Cayley 1870 ; Cayley 1873 ; Frost 1882 ; de Vries 1901 ; Blythe 1905]. Aucune
référence précise n’est donnée pour les autres mathématiciens évoqués.
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vester, [Sylvester 1861a], ne fait qu’évoquer l’idée de construire un modèle en fil de fer du
système des vingt-sept droites,

de sorte qu’on pourra éprouver le plaisir inattendu de voir avec les yeux du corps
toutes les droites (le squelette pour ainsi dire) d’une surface du 3e degré avec leurs 135
points d’intersection, les 45 triangles, les hexagones situés sur le même hyperboloïde et
d’autres non pas ainsi situés, et les autres merveilles de cette involution si compliquée,
mais en même temps si symétrique. [Sylvester 1861a, p. 980]

Aucune méthode de construction concrète n’est pourtant décrite par Sylvester. Remar-
quons que la métaphore organique employée ici n’a pas été reprise dans les autres travaux
sur le sujet cités par Henderson. Parmi ceux-ci, [Cayley 1870] propose des calculs numé-
riques servant à la réalisation d’un modèle de double-six et [Cayley 1873] est l’article déjà
cité contenant une description du modèle de Wiener.

L’article de Frost, [Frost 1882], traite de la construction d’un modèle des vingt-sept
droites sans leur surface cubique. Plus précisément, il s’agit de trouver des équations pour
ces droites et des valeurs numériques adéquates pour la construction du modèle — on
remarquera également, dans la citation qui suit, l’aspect récréatif accordé à la fabrication
de modèles :

La méthode suivante pour obtenir les équations des 27 droites, réelles ou imaginaires,
incluses dans une surface cubique, pourra, par sa simplicité, inviter certains des lec-
teurs du Quarterly Journal à passer quelques minutes sur le sujet, et éventuellement
à s’amuser, comme je l’ai fait, à construire un modèle. J’ai fait une suggestion allant
dans la direction d’un choix convenable des valeurs des constantes qui apparaissent
dans les équations, de sorte à garder les droites distinctes tout en n’ayant pas à gé-
rer des nombres trop grands pour déterminer tous les points d’intersection. Je dois
avouer, n’ayant essayé qu’une fois d’en faire un, que deux ou trois des droites sont
trop éloignées pour apparaître dans mon modèle, mais ceux qui me suivent pourront
être plus chanceux ou avoir plus de place à disposition 82. [Frost 1882, p. 89]

L’article de Frost ne présente pas d’illustration de son modèle. En revanche, une réfé-
rence dans laquelle Taylor s’intéresse également à ce problème est [Taylor 1900] 83 ; des
photographies d’un modèle des vingt-sept droites y est proposé (voir la figure 1.7) .

L’article [de Vries 1901] cité par Henderson ne se rapporte pas à la forme ou à la
construction de modèles de surfaces cubiques ou de leurs droites. Il s’agit d’un article

82. « The following method of obtaining the equations of the 27 lines, real or imaginary, which lie on a
cubic surface, may, from its simplicity, invite some of the readers of the Quarterly Journal to spend a few
minutes on the subject, and possibly to amuse themselves, as I have done, by constructing a model. I have
given a hint towards choosing values of the constants which appear in the equations, so as to keep the lines
distinct, and yet not to have to deal with inconveniently large numbers in determining all the points of
intersection. I must confess, having only tried once to make one, that two or three of the lines are too far
off to appear in my model, but those who follow me may be more fortunate, or have more space at their
disposal. »
83. Il s’agit ainsi peut-être de l’article auquel Henderson référait en mentionnant Taylor. Notons en outre

que Taylor apparaît dans la bibliographie de Henderson avec [Taylor 1894], qui a été discuté au paragraphe
concernant les notations et qui ne se rapporte pas à la question des modèles.
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Figure 1.7 – Modèle en fil des vingt-sept droites proposé dans [Taylor 1900].

présentant les relations d’incidence entre les droites de surfaces cubiques particulières,
possédant des singularités.

Enfin, un livre de Blythe, [Blythe 1905], réunit ses résultats sur les modèles de surfaces
cubiques et publiés dans divers articles (voir les références bibliographiques de Henderson en
annexe B). Dans son introduction, Blythe précise qu’il avait interrompu ses constructions
de modèles après que Klein eut présenté sa collection à Chicago, mais que les descriptions
faites dans son livre présentent l’intérêt de pouvoir donner au lecteur une idée des formes
des surfaces cubiques 84.

1.3.8 Lien entre les vingt-sept droites et les vingt-huit tangentes doubles

Deux paragraphes du résumé historique de Henderson sont consacrés aux liens entre
la configuration des vingt-sept droites et deux autres configurations. La première est celle
des vingt-huit tangentes doubles que possède toute courbe quartique plane 85.

D’après Henderson, le premier article dans lequel ont été reliées les vingt-huit tangentes
doubles et les vingt-sept droites est dû à Carl Friedrich Geiser, [Geiser 1869b]. Dans cet
article, Geiser commence par considérer une surface cubique et un point lui appartenant.
Le cône circonscrit à la surface en ce point se compose alors du plan tangent à la surface
en ce point et d’un cône d’ordre 86 4. L’intersection de ce dernier avec un plan quelconque
est une courbe quartique ; Geiser montre que vingt-sept de ses tangentes doubles sont les
projections des vingt-sept droites sur le plan de la quartique et que la vingt-huitième est
l’intersection de ce plan avec le plan tangent à la surface cubique. Réciproquement, Geiser
prouve que toute courbe quartique plane peut se réaliser de cette façon. Autrement dit, il
prouve que toute courbe quartique est l’intersection de son plan avec le cône circonscrit à

84. [Blythe 1905, p. v].
85. Le fait que toute courbe quartique plane possède vingt-huit tangentes doubles était connu depuis [Plü-

cker 1839]. Pour des explications mathématiques et historiques à ce sujet, voir le chapitre 5 de [Gray 2000].
86. L’utilisation d’un cône circonscrit à la surface rappelle la deuxième démonstration d’existence des

vingt-sept droites, mais Geiser ne mentionne pas [Cayley 1849].



70 CHAPITRE 1

une certaine surface cubique.
Les démonstrations de ces résultats ne forment que le début de l’article de Geiser. Le

but de celui-ci est en effet d’utiliser la construction précédente des courbes quartiques afin
de déduire des propriétés sur leurs tangentes doubles grâce à celles, connues, des vingt-sept
droites. En fait, et Geiser l’écrit lui-même, la plupart des résultats sur les tangentes doubles
ainsi obtenus ne sont pas nouveaux :

En conséquence de l’aperçu précis que l’on a sur les positions mutuelles des 27 droites
d’une surface du troisième degré, les conclusions que l’on peut tirer de ce théorème [le
lien entre les deux configurations via la projection] sont nombreuses. Celles-ci devront
plus tard être exposées aux mathématiciens dans une présentation détaillée, et être
mises en rapport avec les résultats de la théorie des tangentes doubles d’une courbe du
quatrième degré que l’on doit à Aronhold, Clebsch, Hesse, Roch, Salmon et Steiner.

Pour expliquer cela, nous ne donnerons ici que quelques exemples, qui conduisent pour
la plupart à des résultats connus. 87. [Geiser 1869b, p. 133]

Un exemple d’un tel résultat est le suivant. Geiser rappelle que les vingt-sept droites
d’une surface cubique se regroupent six à six suivant qu’elles sont incluses dans un même
hyperboloïde 88. Il en déduit, par projection sur un plan coupant le cône circonscrit à la
cubique, que les tangentes doubles d’une courbe quartique se regroupent six à six suivant
qu’elles enveloppent une même conique. Ce résultat, d’après Geiser, avait déjà été vu par
Siegfried Aronhold et par Otto Hesse (aucune référence précise n’est donnée).

Henderson explique ensuite que les résultats de Geiser ont été utilisés par Zeuthen
en 1874 pour retrouver ceux de Schläfli concernant les possibilités pour les nombres de
droites réelles parmi les vingt-sept d’une surface cubique. En effet, dans [Zeuthen 1874], il
détermine les formes possibles de courbes quartiques planes en s’aidant de leurs tangentes
doubles, déterminant pour cela le nombre de ces dernières qui peuvent être réelles 89 : ce
nombre peut être 28, 16, 8 ou 4. Zeuthen trouve 36 formes possibles pour les courbes
quartiques qu’il décrit par des expressions comme : « quartique quadrilatérale, composée
d’un trifolium, d’un unifolium et d’un ovale », et dont il donne quelques dessins (voir
la figure 1.8). Dans la suite de l’article, Zeuthen rappelle et utilise le résultat de Geiser
pour appliquer aux surfaces cubiques ce qu’il a trouvé sur les courbes quartiques. Ainsi, à
partir des nombres 28, 16, 8 ou 4 pour les tangentes doubles réelles, il déduit que parmi

87. « Im Folge der genauen Einsicht, welche man in die gegenseitige Lage der 27 Geraden einer Flä-
che dritten Grades hat, sind die Folgerungen, welche man aus diesem Satze ziehen kann, sehr zahlreich.
Dieselben sollen späterhin in einer umfassenderen Darstellung den Mathematikern vorgelegt, und mit den
Resultaten aus der Theorie der Doppeltangenten einer Curve vierten Grades in Zusammenhang gebracht
werden, welche man den Herren Aronhold, Clebsch, Hesse, Roch, Salmon und Steiner verdankt. Hier mö-
gen nur zur Erläuterung einige Beispiele angeführt werden, die zum grössten Theil auf bekannte Resultate
führen. »
88. Ce résultat se trouve dans [Cayley 1849, p. 128] et [Steiner 1856b, p. 136]. Geiser lui-même ne donne

toutefois pas de référence précise.
89. Comme le souligne [Zeuthen 1874, p. 415], « Plücker avait présumé [dans [Plücker 1839]] que le

nombre de tangentes doubles réelles ne peut avoir d’autres valeurs que 28, 16, 8, 4, 0 ».
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Figure 1.8 – Illustrations de [Zeuthen 1874] décrivant les formes possibles de courbes
quartiques planes. La quartique composée d’un trifolium, d’un unifolium et d’un ovale
est la courbe 1 de la figure 3.

les vingt-sept droites d’une surface cubique, il peut y en avoir 27, 15, 7 ou 3 de réelles,
retrouvant ainsi le résultat de Schläfli. Enfin, Zeuthen utilise le même procédé pour compter
les nombres possibles de triangles réels parmi les quarante-cinq.

Dans un autre article également cité par Henderson, [Zeuthen 1875], Zeuthen conjugue
cette fois la méthode de Geiser avec ses propres résultats sur les formes des courbes quar-
tiques pour en déduire quelles sont les formes possibles des surfaces cubiques 90. Tout au
long de son travail, il montre que sa façon de faire est tout à fait compatible avec celle
utilisée dans [Klein 1873] : la dérivation par Klein des formes des cubiques à partir de la
surface de Cayley correspond à la dérivation par Zeuthen des formes des quartiques à partir
de celle composée de quatre ovales. Zeuthen s’appuie en outre sur les vingt-sept droites
de la surface cubique qu’il cherche à décrire pour la décomposer en morceaux élémentaires
qu’il appelle « triangles », « ouvertures » ou « parois » et qui lui servent à déterminer la
forme de la surface.

Henderson mentionne ensuite un article de Heinrich Emil Timerding, [Timerding 1900].
Mais cet article concerne en fait très largement les courbes quartiques seules, c’est-à-dire
sans leur lien avec les surfaces cubiques. Si Geiser est bien cité dans l’introduction, Timer-
ding y écrit que l’utilisation de sa méthode aurait trop étendu son article 91.

1.3.9 Lien entre les vingt-sept droites et la configuration de Pascal

Henderson consacre le paragraphe suivant du résumé historique au lien entre les vingt-
sept droites et la configuration de Pascal. Rappelons que cette dernière consiste en les six
droites joignant les sommets opposés d’un hexagone inscrit dans une conique ; la propriété

90. [Zeuthen 1875] est ainsi certainement la référence à laquelle Henderson pensait lorsqu’il évoquait le
nom de Zeuthen dans le paragraphe sur les formes des surfaces cubiques.
91. « Diese Herleitung [durch die Geisersche Weise] der einzelnen Sätze genauer zu verfolgen, wäre aber

unmöglich gewesen, ohne den Umfang dieses Aufsatzes über Gebühr zu erweitern. ».
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de ces droites est que leurs intersections mutuelles consistent en trois points qui sont alignés
(voir la figure 1.9).

D’après Henderson, le lien entre cette configuration et les surfaces cubiques a été établi
dans un publication de Cremona, [Cremona 1876-77] 92. Essentiellement, Cremona part
d’une surface cubique ayant comme seul point singulier un point conique simple. La confi-
guration de Pascal s’obtient en projetant sur un plan certaines des droites (parmi celles de
la surface cubique), à partir du point singulier.

Plus précisément, Cremona part d’une surface cubique avec un point conique simple
noté O. Il indique qu’il y a six droites incluses dans la surface 93 qui passent par O, et qui
ont la propriété d’être situées sur un même cône quadratique de sommet O ; ces droites
sont notées 1, 2, . . . , 6. Cremona rappelle aussi qu’à part ces six droites, il y en a quinze
autre sur la surface cubique, notées 12, 13, 14, 15, 16, 23, 24, 25, 26, 34, 35, 36, 45, 46,
56, de sorte que les droites 1, 2 et 12 sont situées dans un même plan, etc. En outre, ces
quinze droites se répartissent trois à trois en neuf triangles :

(12.34.56) (12.35.46) (12.36.45)

(13.34.56) (13.25.46) (13.26.45)

(14.23.56) (14.25.36) (14.26.35)

(15.23.46) (15.24.36) (15.26.34)

(16.23.45) (16.24.35) (16.25.34).

Cremona met ensuite en évidence, parmi ces triangles, ceux qui forment des paires de
trièdres de Steiner. Un exemple qu’il donne est le suivant :

(12.34.56) (12.35.46)

(15.23.46) (15.26.34)

(14.26.35) (14.23.56).

L’idée de Cremona est alors de projeter toutes ces droites sur un plan quelconque, à partir
de O, et de montrer que les points et droites obtenus forment la configuration de Pascal.

Détaillons tout cela un peu plus que Cremona. Comme les droites 1, . . . , 6 passent
par O, elles se projettent en six points, que je noterai 1′, . . . , 6′ dans ces explications.
Puisque les droites 1, . . . , 6 sont incluses dans un même cône quadratique, les points pro-
jetés 1′, . . . , 6′ sont situés sur une même conique. Ensuite, la droite 14, qui ne passe pas

92. Le résumé historique de Henderson renvoie également au chapitre de [Henderson 1915] concernant
la configuration de Pascal. La référence supplémentaire qui y est donnée, [Cayley 1868c], traite de la
configuration de Pascal mais ne parle par des droites des surfaces cubiques.
93. Cela avait déjà été remarqué par Salmon dans son article de 1849 : il leur avait attribué la multiplicité

de comptage égale à 3.
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par O, se projette sur une droite du plan ; comme 14 rencontre la droite 1 et la droite 4,
sa projection contient les points 1′ et 4′. La droite 14 se projette donc en la droite 1′4′, et
il en est de même pour toutes les autres droites de ce type-là. Voir la figure 1.9. Il reste
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Figure 1.9 – Hexagramme de Pascal

à vérifier que la configuration obtenue est bien la configuration de Pascal. Par exemple, le
point d’intersection I de 4′6′ et 3′5′ provient, dans la projection, du point d’intersection
de 46 et 35, lequel appartient à la droite de rencontre des plans (15.23.46) et (14.26.35).
De même, l’intersection J de 1′5′ et 2′6′, ainsi que celle K de 2′3′ et 1′4′, proviennent de
cette même droite intersection des plans (15.23.46) et (14.26.35). Les trois points I, J et K
sont donc alignés sur la projection de cette droite, et on obtient donc la configuration de
Pascal.

1.3.10 Un paragraphe de références

Comme écrit plus haut, le paragraphe suivant du résumé historique de Henderson est
composé uniquement de références, qui sont « parmi les récentes recherches sur la théorie
des surfaces cubiques, les problèmes alliés des vingt-sept droites et des tangentes doubles des
courbes quartiques, avec des généralisations à des dimensions supérieures 94 ». Les noms
que donne Henderson sont ceux de Herbert William Richmond, Alfred Cardew Dixon,
Marjorie Long, Henry Frederick Baker et Geoffrey Thomas Bennett.

Ces cinq mathématiciens ont le point commun d’avoir été formés ou d’avoir été profes-
seurs de mathématiques à Cambridge au début du vingtième siècle. Il est donc probable que
Henderson ait ajouté toutes les références correspondantes suite à son séjour à Cambridge
en 1910-1911.

La majorité de ces références concernent les doubles-six. Ainsi, [Dixon 1908] et [Dixon
1910] sont des investigations sur des doubles-six considérés sans leur rapport avec les vingt-
sept droites des cubiques ; [Richmond 1908] propose une généralisation de la notion de

94. « Among recent investigations on the theory of the cubic surface, the allied problems of the twenty-
seven lines, and the bitangents to the plane quartic curve, with generalization to higher dimensions, are
the papers [...] », [Henderson 1915, p. 5].
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double-six dans un espace de dimension 5 ; [Burnside 1910], [G. T. Bennett 1911] et [Baker
1911a] développent une théorie de doubles-six associés non pas à des surfaces cubiques
mais à des surfaces quadriques.

L’article [Long 1911] a pour but de prouver des propriétés des tangentes doubles d’une
courbe quartique plane grâce à la méthode de projection de Geiser. Comme ce dernier,
Long précise d’emblée que tous les résultats qu’elle obtient ainsi sont déjà connus et ont
été prouvés 95.

Enfin, [Baker 1911b] est un mémoire concernant à la fois les tangentes doubles des
courbes quartiques et les surfaces cubiques. Il récapitule en grande partie des résultats
connus sur le sujet (projection de Geiser, doubles-six, propriétés des tangentes doubles,
etc.) et en propose quelques nouveaux. Dans son introduction, Baker met en particulier
un résultat nouveau en avant : on considère un double-six formé de douze des vingt-sept
droites d’une surface cubique et un point quelconque de la surface. Dans le double-six, il
y a six paires de droites qui ne se coupent pas ; chacune de ces paires définit, avec le point
donné, une nouvelle droite (celle qui passe par le point et intersecte les deux droites de la
paire). Alors ces six nouvelles droites sont situées sur un même cône d’ordre 2.

1.3.11 Variétés cubiques dans un espace de dimension 4

Henderson passe ensuite rapidement en revue les travaux de Corrado Segre publiés en
1887 et 1889, [C. Segre 1887 ; C. Segre 1889]. Il s’agit de recherches sur une (hyper)variété
cubique d’une espace de dimension 4, c’est-à-dire un ensemble de points de coordonnées
homogènes x1, x2, . . . , x5 vérifiant une équation polynomiale de degré 3.

Cette variété est projetée sur des espaces de dimension 3 de façon adéquate, de sorte
à retrouver un certain nombre de configurations géométriques et de résultats associés déjà
connus, comme les surfaces cubiques et leurs vingt-sept droites, mais aussi les courbes
quartiques planes et leurs vingt-huit tangentes doubles, la configuration de Pascal et la
surface de Kummer et ses seize points singuliers 96.

On pourra remarquer que dans ces travaux, les vingt-sept droites n’occupent pas de
place particulière. Il n’est d’ailleurs pas question de redémontrer ou même de justifier leur
existence à partir de la variété cubique : elles sont évoquées en tant qu’objets naturellement
associés à des surfaces cubiques.

95. « The properties of the bitangents in question have already been fully discussed by other points of
view. » [Long 1911, p. 205].
96. La surface de Kummer est une surface quartique possédant exactement seize points singuliers, soit

le maximum pour les quartiques.
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1.3.12 Point de vue de la théorie des groupes

Enfin, Henderson clôt son résumé historique par un paragraphe concernant le point de
vue du problème des vingt-sept droites depuis la théorie de groupes 97. Pour lui, ce sujet
commence en 1869, lorsque Camille Jordan démontre un lien entre les vingt-sept droites
et les fonctions hyperelliptiques, [Jordan 1869a].

Plus précisément, ce lien concerne les équations algébriques associées respectivement
aux vingt-sept droites et à la trisection des périodes des fonctions hyperelliptiques. La
première est une équation algébrique de degré 27 en une inconnue, dont chaque racine
correspond à une des vingt-sept droites, les relations algébriques entre ces racines reflétant
les relations d’incidence existant entre les droites (voir la fin de l’introduction générale).
La seconde est liée aux fonctions hyperelliptiques, qui sont des fonctions (généralement
définies deux par deux) λ0(u, v) et λ1(u, v) de deux variables complexes et possédant
quatre périodes par variable. Le problème de la trisection est de déterminer λ0(u/3, v/3)

et λ1(u/3, v/3) en fonction de λ0(u, v) et λ1(u, v) ; il devient le problème de trisection
des périodes lorsque u et v sont des combinaisons linéaires à coefficients entiers des pé-
riodes de λ0 et λ1. Ce problème dépend de deux équations à deux inconnues (l’une pour
λ0(u/3, v/3), l’autre pour λ1(u/3, v/3)), et l’équation de trisection est celle résultant de
l’élimination d’une des deux inconnues. Ce que démontre Jordan est que le groupe de
l’équation de trisection (réduit par adjonction d’un radical carré) est identique à celui de
l’équation aux vingt-sept droites.

Remarquons que Henderson fait également référence au Traité des substitutions et des
équations algébriques de Jordan, [Jordan 1870b]. Dans cet ouvrage, le résultat précédent
est repris, mais l’équation aux vingt-sept droite est également étudiée sans son lien avec
les fonctions hyperelliptiques : en se basant sur des résultats géométriques comme la copla-
narité trois à trois des vingt-sept droites en les quarante-cinq triangles — le mémoire de
Steiner que j’ai décrit plus haut est cité pour ce résultat, [Steiner 1856b] —, Jordan étudie
le groupe de l’équation et en déduit des propriétés de résolubilité. D’autres équations par-
ticulières y sont également étudiées, associées à des configurations géométriques que nous
avons déjà rencontrées comme les vingt-huit tangentes doubles ou les seize points singuliers
de la surface de Kummer, et d’autres comme les neuf points d’inflexion des courbes cubiques
planes ou les seize droites des surfaces quartiques contenant une conique double. Lors de
son étude du groupe l’équation associée aux vingt-huit tangentes doubles, Jordan montre
qu’un de ses sous-groupes est identique au groupe de l’équation aux vingt-sept droites. Il
commente à ce propos : « Ainsi se retrouve entre le problème des vingt-sept droites et celui
de doubles tangentes, le lien remarquable remarqué par M. Geiser », [Jordan 1870b, p. 330]
— Jordan fait référence à l’article de Geiser décrit plus haut dans cette section, [Geiser
1869b]. Le Traité contient en outre un lien entre l’équation aux vingt-sept droites et celle

97. « The problem of the twenty-seven lines is full of interest from the group theoretic standpoint. »
[Henderson 1915, p. 6].
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aux seize droites des surfaces quartiques à conique double, situation géométrique qui n’est
quant à elle pas mentionnée par Henderson.

Ce dernier indique ensuite qu’en 1887, Klein avait « ébauché la réduction effective d’un
problème à l’autre 98 » (celui des vingt-sept droites et celui des fonctions hyperelliptiques).
Dans la publication correspondante, [Klein 1888] (qui est un extrait d’une lettre écrite à
Jordan), Klein commence par rappeler sa résolution de l’équation générale du cinquième
degré par les fonctions elliptiques, au cœur de laquelle se trouve l’icosaèdre 99. Il explique
alors qu’il souhaite calquer cette méthode au cas de l’équation dont dépendent les vingt-
sept droites, qu’il souhaite résoudre par les fonctions hyperelliptiques. Pour ce faire, il se
base notamment sur des travaux de deux de ses élèves, Heinrich Maschke et Alexander
Witting, dont les mémoires correspondants sont également donnés par Henderson 100. Ce
dernier écrit en outre que Heinrich Burkhardt a complètement mené à terme l’ébauche de
Klein en 1893, [Burkhardt 1893].

Henderson donne encore une liste de travaux concernant le groupe de Galois de l’équa-
tion aux vingt-sept droites. Les mathématiciens cités sont Dickson, Friedrich Kühnen,
Heinrich Weber, Ernesto Pascal et Edward Kasner 101. Décrivons brièvement les travaux
correspondants, dans l’ordre chronologique.

La publication de Weber citée, [Weber 1884], est un article qui a pour objet d’étude
principal le groupe de Galois de l’équation associée aux vingt-huit tangentes doubles d’une
courbe quartique. De façon différente que Jordan l’avait fait dans le Traité des substitu-
tions, Weber étudie ce groupe en en cherchant le cardinal, les sous-groupes remarquables,
les facteurs de composition, etc. En particulier, il met en évidence un sous-groupe parti-
culier, isomorphe au groupe de l’équation aux vingt-sept droites, retrouvant ainsi un lien
également vu par Jordan dans le Traité. La référence citée par Henderson de Kühnen est
sa thèse, [Kühnen 1888] ; elle s’attache à étudier le groupe de Galois de l’équation aux
vingt-sept droites, de façon tout à fait analogue à ce qu’avait fait Weber dans le texte cité
précédemment 102. Ce groupe de Galois est obtenu comme groupe de substitutions sur des
racines laissant certaines relations entre ces racines inaltérées. Comme dans l’article de
Weber décrit à l’instant, Kühnen cherche à déterminer les sous-groupes remarquables, les
facteurs de compositions, etc., du groupe de Galois en question.

Les travaux de Dickson sur le groupe de l’équation aux vingt-sept droites et cités par
Henderson peuvent se diviser en deux parties, au vu de la façon dont ce groupe est réalisé.

98. « In 1887, Klein sketched the effective reduction of the one problem to the other », [Henderson 1915,
p. 6].
99. À propos des travaux de Klein sur l’icosaèdre, voir [Gray 2000].

100. [Maschke 1887 ; Maschke 1888 ; Maschke 1889 ; Maschke 1890 ; Witting 1887b].
101. [Dickson 1901a ; Dickson 1901b ; Dickson 1901c ; Dickson 1902 ; Kühnen 1888 ; Weber 1884 ; Pascal
1892 ; Pascal 1893 ; Kasner 1903]
102. Kühnen n’indique pas qui a dirigé sa thèse. La proximité avec la structure, les méthodes et les
notations de [Weber 1884] laisse supposer que le directeur de thèse était Weber. En outre, la thèse a été
effectuée à Marbourg, où se trouvait ce dernier entre 1884 et 1892.
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Dans un des articles de 1901, [Dickson 1901a], Dickson fait l’étude du groupe qu’il note
SA(4, pn) et qu’il appelle abélien 103. Il en cherche notamment les classes de conjugaison, les
sous-groupes cycliques et les générateurs. Le groupe associé aux vingt-sept droites apparaît
tout à la fin, en tant que cas particulier : Jordan avait montré que pour pn = 3, le groupe
abélien correspond au groupe de l’équation aux vingt-sept droites. Dickson en déduit grâce
au travail général fait en amont, diverses propriétés de ce groupe. Les autres travaux de
Dickson, [Dickson 1901b ; Dickson 1901c ; Dickson 1902] réalisent le groupe associé aux
vingt-sept droites comme groupe de substitutions laissant des relations invariantes. Là
encore, il s’agit pour Dickson de trouver sous-groupes particuliers, classes de conjugaison,
etc.

Les deux articles d’Ernesto Pascal, [Pascal 1892 ; Pascal 1893], relient quant à eux la
théorie des fonctions abéliennes avec celle de monodromie sur les surfaces de Riemann.
Pour une surface de Riemann particulière (de genre 3), Pascal parvient à réaliser le groupe
de Galois de l’équation aux vingt-huit tangentes doubles comme un certain groupe de
monodromie de la surface. Le groupe de l’équation aux vingt-sept droites est alors vu
comme un sous-groupe de ce groupe de monodromie, puis est étudié sous cet angle — à
ce sujet, Pascal cite à la fois les travaux de Jordan et ceux de Geiser sur le lien entre les
vingt-sept droites et les vingt-huit tangentes doubles.

La publication de Kasner que cite Henderson, [Kasner 1903], a pour principal objet
d’étude un double-six, qu’il précise être réalisé sans l’aide d’une surface cubique : il s’agit
donc de droites de l’espace disposées de façon particulière, mais sans rapport a priori avec
les vingt-sept droites. Il définit certains birapports associés aux double-six puis étudie des
transformations de Cremona 104 définies à partir de ces birapports. L’article de Kasner ne
traite donc pas des vingt-sept droites d’une surface cubique.

Pour finir, Henderson mentionne encore deux articles de Moore et de Herbert Ellsworth
Slaught, [E. H. Moore 1900 ; Slaught 1900] qu’il dit être proches de [Kasner 1903]. Mais ces
publications de Moore et de Slaught concernent des groupes de transformation de Cremona
sans aucun rapport avec les vingt-sept droites ou même les surfaces cubiques. Avec cela,
Henderson clôt son paragraphe sur la théorie des groupes et les vingt-sept droites, et
termine ainsi son résumé historique.

On pourra remarquer que presque toutes les références donnée par Henderson au su-
jet de la théorie des groupes sont liées aux travaux de Jordan des années 1869-1870 sur
l’équation aux vingt-sept droites.

103. En termes modernes, il s’agit du groupe symplectique Sp4(Fpn), formé des substitutions sur quatre
variables laissant inchangée la forme bilinéaire alternée x1y2 − x2y1 + x3y4 − x4y3.
104. Une transformation de Cremona est une transformation birationnelle de l’espace.
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1.3.13 Bilan : thèmes et chronologie

Il est temps de revenir sur les questions qui avaient été posées supra. Il s’agissait d’abord
de voir si la division thématique de Henderson pouvait résister à une analyse plus détaillée
des articles mathématiques qu’il mentionnait. La réponse est que si cette division peut
effectivement refléter une variété de sujets associés aux vingt-sept droites, on ne peut pas
la penser comme un moyen de classifier les recherches sur les vingt-sept droites dans des
rubriques distinctes et étanches.

En effet, beaucoup d’articles listés par Henderson pourraient relever de plusieurs de
ses thèmes. Quelques exemples sont les suivants : les articles de Cayley et de Salmon de
1849 traitent de l’existence des vingt-sept droites, mais aussi des problèmes de notation et
des singularités ; les travaux de Cremona et de Sturm, isolés par Henderson parce ce qu’ils
constituent les « premiers articles significatifs du point de vue synthétique », contiennent
des démonstrations des possibilités pour le nombre de droites réelles parmi les vingt-sept et
pourraient donc être cités dans le paragraphe thématique correspondant ; enfin, Jordan, qui
utilise effectivement la théorie des groupes pour étudier l’équation aux vingt-sept droites,
mais qui retrouve aussi le lien de Geiser entre vingt-sept droites et vingt-huit tangentes
doubles.

Il existe également des travaux qui appartiennent à un thème mais qui sont motivés
par ou s’appuyant sur des recherches classifiées dans un autre thème. Par exemple, les
mémoires de Cremona et de Sturm reprennent et démontrent tous les résultats du mémoire
de Steiner ; l’article de Zeuthen sur les formes des surfaces cubiques utilise la projection
employée par Geiser pour mettre lier ces surfaces aux courbes quartiques planes ; dans son
article sur la configuration de Pascal, Cremona fait appel au fait (vu déjà chez Salmon)
que par un point conique simple d’une surface cubique passe six droites, et utilise aussi les
résultats de répartition des droites en paires de trièdres Steiner.

La pluralité des problèmes traités à l’intérieur de certains articles, la circulation de
méthodes et de résultats témoigne ainsi d’une histoire plus riche que celle que la lecture
seule du résumé historique de Henderson laisse imaginer.

En ce qui concerne maintenant la chronologie du sujet des vingt-sept droites, on peut
voir à quel point le résumé historique de Henderson la mettait à mal, à cause de l’écriture
en paragraphes thématiques mais aussi à cause de l’ordre de présentation de ces derniers.
Si l’on reprend les travaux cités par Henderson en les remettant dans l’ordre chronologique,
la succession obtenue est la suivante.

En 1841, Mossbrugger publie son article sur l’interprétation en termes de distances des
coefficients des équations de surfaces quadriques et cubiques. En 1849, les articles de Cayley
et de Salmon contenant les démonstrations d’existence des vingt-sept droites, mais aussi
des considérations sur la notation des droites et sur la possible présence de singularités sur
les surfaces cubiques.
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Sept ans plus tard, en 1856, Steiner communique à l’Académie des sciences de Berlin ses
travaux sur les surfaces cubiques, lesquels apparaissent ensuite dans le journal de Crelle.
En 1858, Schläfli (sans connaissance précise des travaux de Cayley et Salmon) écrit un
article où il définit les doubles-six, propose une notation basée sur ces objets et annonce
les possibilités pour les nombres de droites réelles parmi les vingt-sept.

Schläfli reprend ce dernier problème dans un mémoire de 1863, dans lequel il complète
la classification des surfaces cubiques selon leurs singularités ébauchée par Salmon. Le
premier prix Steiner, annoncé en 1866, couronne les travaux de Sturm et de Cremona, qui
sont publiés en 1867 et 1868 respectivement. L’année 1869 est riche : Cayley publie son
grand mémoire sur les surfaces cubiques, dans lequel il reprend et complète notamment
la classification de Schläfli des surfaces cubiques par leurs singularités. De plus, le modèle
en plâtre de Wiener est construit et présenté, Geiser établit le lien entre les vingt-sept
droites et les vingt-huit tangentes doubles et Jordan publie ses articles dans lesquels il
étudie l’équation aux vingt-sept droites.

Ces travaux de Jordan paraissent également dans le Traité des substitutions et des
équations algébriques de 1870, dans lequel sont également étudiées les équations associés
à d’autres configurations de points et de droites. En 1872, les modèles de la surface dia-
gonale et de la surface de Cayley sont présentées par Clebsch et par Klein à l’Académie
des sciences de Göttingen. Un an plus tard, Klein publie ses recherches sur les formes pos-
sibles des surfaces cubiques. Ensuite, en 1874, Zeuthen s’intéresse aux formes des courbes
quartiques puis, en 1875, à celles de surfaces cubiques (il retrouve aussi à ce moment la
classification de Schläfli de ces surfaces eu égard à la réalité de leurs droites). En 1876, Cre-
mona montre comment déduire la configuration de Pascal à partir des vingt-sept droites.
En 1879, Rodenberg aboutit à une classification des cubiques en fonction de leur pentaèdre
et commence sa série de modèles en plâtre.

À partir de 1884, une série d’articles concernent à nouveau le groupe de l’équation aux
vingt-sept droites. Ainsi, celui de Weber (nettement centré sur les vingt-huit tangentes
doubles) de 1884, ceux de Witting (1887) et de Maschke (chaque année de 1887 à 1890)
sur lesquels Klein s’appuie en 1888 pour revenir sur la résolution de l’équation aux vingt-
sept droites par les fonctions hyperelliptiques, et enfin la thèse de Kühnen (1888) sur le
groupe de Galois de cette même équation. Par ailleurs, en 1889, Corrado Segre développe
ses résultats concernant les variétés cubiques d’un espace de dimension 4.

Le début des années 1890 est encore centré sur les groupes, avec les articles de Pascal
(1892 et 1893) ainsi que celui de Burkhardt de 1893 qui reprend et complète l’ébauche
de Klein de la résolution de l’équation aux vingt-sept droites. En 1894 a lieu le Evanston
Colloquium, durant lequel Klein parle notamment des formes et des modèles des surfaces
cubiques. La même année, Taylor propose sa notation des vingt-sept droites indépendante
de toute choix initial.

En 1901 et 1902 est publiée la série de travaux de Dickson sur le groupe de l’équation
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aux vingt-sept droites. Ces mêmes années, Blythe travaille sur les modèles et les formes des
cubiques ; tous les résultats sont publiés dans un livre en 1905. Enfin, toutes les publications
postérieures sont celles de Long, Dixon, Baker et Bennett, qui reviennent ou généralisent
la notion de double-six, sans nécessairement de lien avec les surfaces cubiques.

La chronologie ainsi rétablie montre notamment que si le sujet des vingt-sept droites
s’ouvre à proprement parler en 1849, les travaux s’y rapportant sont rares avant le milieu
des années 1860. En revanche, ils se multiplient à partir de ce moment et des articles
paraissent à peu près régulièrement jusque dans la première décennie du xxe siècle. Il
convient toutefois de garder à l’esprit que cette chronologie se base sur les travaux cités
par Henderson dans son résumé historique. Elle vise ici à mettre en exergue les effets des
choix d’écriture de celui-ci, et ne se prétend absolument pas exhaustive sur le sujet —
nous pourrions ainsi placer dans la chronologie toutes les publications trouvées à l’aide du
Jahrbuch.

1.4 Sur l’écriture d’une histoire des vingt-sept droites

L’étude menée jusqu’à présent dans ce chapitre amène à quelques conclusions historio-
graphiques relatives au sujet du théorème des vingt-sept droites.

1.4.1 L’histoire de Henderson

Comme nous l’avons vu jusqu’à présent dans ce chapitre, l’histoire des vingt-sept droites
écrite par Henderson pose plusieurs problèmes : celui des références bibliographiques et
celui du choix de plusieurs thèmes distincts sur lesquels l’histoire a été écrite, ayant pour
conséquence une chronologie malmenée, et surtout, à cause de la description superficielle
de chaque article cité, une perte de compréhension des cohérences de chacun d’eux.

Ces problèmes, que j’ai déjà discutés en détail un à un, ont des conséquences non négli-
geables sur l’histoire produite par Henderson, appauvrie par son morcellement en thèmes
arbitraires et par la faible profondeur de ses explications mathématiques. Les quelques
dynamiques qui ont été mises à jour dans les sections précédentes (reprises de problèmes,
emprunts de résultats ou de méthodes) laissent imaginer une histoire des vingt-sept droites
bien plus riche, d’autant plus que Henderson n’a pas considéré un bon nombre de travaux
mathématiques sur le sujet (même entre 1849 et 1915).

Ces réserves sur une histoire devenue « officielle » ne signifient pas qu’elle est à rejeter
d’un bloc, mais bien qu’il convient de la lire avec circonspection. Par ailleurs, même les
complétions et les approfondissements notamment mathématiques (et encore superficiels)
ne prétendent palier à ses biais : si détaillées que soient les descriptions que j’ai pu faire,
elles restent inscrites dans un cadre d’une histoire à la Dickson et sont de ce fait peu
satisfaisantes.
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Le travail effectué va toutefois me servir à trouver une autre approche pour le sujet
des vingt-sept droites, en utilisant les textes étudiés comme des sondes pour confirmer
deux points que j’ai annoncé dans l’introduction générale. Le premier se rapporte aux
méthodologies des travaux historiques récents sur « l’histoire d’un théorème », consistant
à suivre pas à pas les différentes formulations d’un théorème.

1.4.2 Les formulations du théorème

Or, dans la description des articles faite supra, la formulation du théorème des vingt-
sept droites est particulièrement stable : les surfaces cubiques restent des surfaces algé-
briques d’ordre 3, les vingt-sept droites restent des droites de l’espace au sens de lieux de
points usuels, et le théorème consiste toujours en une inclusion de vingt-sept droites dans
chaque surface cubique.

Les travaux qui se rapprochent le plus de telles reformulations sont ceux de Steiner,
Schröter, R. Sturm et Cremona. En effet, il s’agit pour eux de se baser sur certaines façons
« purement géométriques » d’engendrer des surfaces cubiques et de savoir prouver l’exis-
tence des vingt-sept droites à partir de là. Si le changement de cadre reflète ici la volonté
de se restreindre à une certaine façon de faire de la géométrie, le théorème d’existence est
quant à lui inchangé.

À part dans ces travaux, les vingt-sept droites sont mobilisées sans changement de
point de vue sur leur nature (ou celle de leur cubique) ou leur existence. Deux exemples
illustrent bien cela. Le premier est celui de C. Segre, qui définit des variétés cubiques dans
un espace de dimension 4. Mais les surfaces cubiques ne sont définies qu’en se ramenant
au préalable dans une espace de dimension 3. Dès lors, il ne s’agit pas pour lui de chercher
d’où proviennent les vingt-sept droites dans l’espace de dimension 4 ou comment les y
interpréter : ce sont plutôt des objets associés de facto à une surface cubique. Le second
exemple est formé des travaux de Jordan ou de Dickson. Pour ces auteurs, il ne s’agit
pas de réinterpréter des résultats connus sur les vingt-sept droites (comme par exemple
leur existence) grâce à la théorie des groupes. Celles-ci fournissent plutôt un prétexte pour
créer des équations et des groupes à étudier, lesquels ne sont donc pas perçus comme des
substituts des vingt-sept droites.

Pour insister sur ces points, on peut comparer ces situations avec les points de vue de
la fin du xxe siècle qui ont été décrits dans l’introduction générale. Rappelons par exemple
que pour Arnaud Beauville, [Beauville 1978], il s’agit de montrer que les surfaces dites
de Del Pezzo contiennent toutes un nombre fini de droites (vues comme des images de
diviseurs exceptionnels), que ce nombre est 27 pour celles de degré 3, et que les surfaces
de Del Pezzo de degré 3 sont des surfaces cubiques.

Enfin, notons que la restriction aux textes qui ont été étudiés dans le chapitre laisse
évidemment ouverte la possibilité de passer à côté de certaines reformulations importantes
du théorème des vingt-sept droites. Mais la stabilité de la forme de l’énoncé, dans ces
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mêmes textes, met surtout en évidence que vouloir suivre uniquement des reformulations
nous ferait passer à côté de toute une masse de textes dans lesquels les vingt-sept droites
sont pourtant présentes et travaillées.

1.4.3 Le cas du thème « théorie des groupes »

Toujours en utilisant les références de Henderson comme sonde, je propose à présent
de tester le potentiel d’une autre approche, basée sur des rapprochements disciplinaires
mis en jeu autour du sujet des vingt-sept droites. La mise en évidence par Henderson d’un
thème axé sur l’approche du problème des vingt-sept droites par la théorie des groupes
constitue un premier indice de tels rapprochements.

Dans la section 1.3, nous avons vu que des travaux cités par Henderson dans ce thème
faisaient intervenir les vingt-sept droites, les fonctions hyperelliptiques ainsi que des équa-
tions (et leurs groupes) associées à ces objets. Il semble donc qu’un rapprochement entre
géométrie, analyse et algèbre ait lieu autour de l’équation aux vingt-sept droites. Une ques-
tion est toutefois de savoir si la pluralité des catégories disciplinaires que j’ai utilisées ici
spontanément reflète une pluralité également vue à l’époque, et, le cas échéant, s’il s’agit
d’une spécificité des textes étiquetés « théorie des groupes » par Henderson.

Pour répondre à cela, j’ai utilisé les classifications offertes par l’index du Catalogue of
Scientific Papers (pour les articles publiés entre 1800 et 1900) et par le Jahrbuch über die
Fortschritte der Mathematik (pour les publications postérieures à 1868). J’ai déjà décrit la
classification du Catalogue plus haut dans ce chapitre 105. J’ai donc également relevé, pour
l’ensemble des références bibliographiques du livre de Henderson, les sections du Jahrbuch
dans lesquelles elles sont classifiées. Le détail de ces relevés est donné dans l’annexe B.

Un résultat frappant est que la plupart des références apparaissant chez Henderson
dans le bloc de théorie des groupes possèdent une double (voire une triple) classification,
que ce soit dans le Catalogue ou dans le Jahrbuch, ou ont sinon la particularité d’être citées
au sein de séries d’articles éparpillés entre différentes sections disciplinaires. Précisons en
commençant par le Catalogue.

Comme écrit précédemment, la grande majorité des références bibliographiques de Hen-
derson sont classifiées uniquement dans la section de géométrie du Catalogue, et quelques-
unes parmi celles-ci apparaissent également dans d’autres sections 106. Il y a ainsi des
articles que l’on trouve en géométrie et dans la section générale : ces articles se rapportent
tous aux modèles des surfaces cubiques et sont effectivement situés dans la partie « Mo-
dèles » de la section générale. Les autres articles de la section de géométrie jouissant d’une
double classification se trouvent dans la section d’arithmétique et d’algèbre ou dans celle

105. L’usage de ces journaux de recension n’est pas dépourvu de biais en ce qui concerne les classifications
disciplinaires. Voir [Goldstein 1999, p. 198] pour le cas de la théorie des nombres dans le Jahrbuch.
106. Noter que quelques articles apparaissent à deux endroits de la section de géométrie, comme [Geiser
1869b] qui se trouve dans la partie sur les courbes algébriques d’ordre 4 et dans celle sur les configurations
remarquables.
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d’analyse, et à l’exception d’un seul 107, tous ces articles sont donnés par Henderson dans
son paragraphe sur l’approche des vingt-sept droites par la théorie des groupes. Enfin, on
remarquera que tous les articles situés uniquement dans la section d’analyse ou dans celle
d’arithmétique et d’algèbre proviennent également de ce paragraphe.

En ce qui concerne le Jahrbuch, le constat est très ressemblant. Les seules publications
qui y sont dotées de doubles classifications 108 sont issues du bloc « théorie des groupes » de
Henderson. Ces doubles classifications partagent les textes concernés soit entre géométrie
et algèbre, soit entre géométrie et analyse — en outre, l’article [Jordan 1869a], par lequel
Henderson ouvre son paragraphe sur la théorie des groupes, est situé à la fois en algèbre,
en analyse et en géométrie. De plus, les publications recensées par le Jahrbuch qui sont
uniquement dans la section d’analyse ou dans celle d’algèbre sont encore une fois celles du
bloc de théorie des groupes de Henderson 109. Ces publications-là font d’ailleurs la plupart
du temps partie de séries d’articles d’un ou de plusieurs auteurs sur un même sujet et
relevant chacun de classifications différentes 110.

Ainsi, les références que Henderson cite pour l’approche du problème des vingt-sept
droites par la théorie des groupes possèdent bien une spécificité en regard des classifications
du Catalogue et du Jahrbuch, étant situés à des carrefours disciplinaires. Il est d’ailleurs
intéressant de noter que les doubles classifications décrites précédemment ne relèvent pas
uniquement d’un contact de la géométrie et de l’algèbre, comme pourrait le laisser entendre
la seule étiquette « approche des vingt-sept droites par la théorie des groupes », mais
mettent également en jeu l’analyse en raison de l’intervention des fonctions hyperelliptiques.
Tout cela indique donc bien que certaines dynamiques de rapprochements disciplinaires sont
à l’œuvre dans les travaux que Henderson situe dans son bloc « théorie des groupes », et
qu’il s’agit d’une spécificité de ce bloc.

La suite de la thèse va s’attacher à étudier ces rapprochements disciplinaires opérés
autour des vingt-sept droites. Comme annoncé dans l’introduction générale, l’accent sera
mis sur les dynamiques existant entre théorie des groupes et géométrie ; ce qui précède
montre cependant qu’une composante analytique sera nécessairement à prendre en compte
pour comprendre ces dynamiques. Le point de départ de l’investigation est formé des

107. [Kohn 1891a].
108. Comme précédemment, je m’intéresse ici aux doubles classifications entre l’une des deux sections de
géométrie (analytique ou pure) d’une part, et les sections d’analyse et d’algèbre d’autre part. Noter que ces
sections sont relativement stables sur la période considérée. Voir l’annexe B pour les détails. Remarquer
enfin que la question de délimitations disciplinaires n’est pas exempte des choix des auteurs du Jahrbuch.
À ce sujet, voir [Goldstein 1999, p. 198] pour le cas de la théorie des nombres.
109. À l’exception d’une seule, [Brioschi 1876], qui est dans le chapitre de théorie des formes de la section
d’algèbre. Toutes les autres références classifiées en algèbre le sont soit dans le chapitre sur les équations,
soit dans celui sur la théorie des substitutions.
110. Par exemple, parmi les quatre articles de Maschke cités d’un bloc par Henderson, trois sont classifiés
en algèbre et un en géométrie. Outre ces quatre articles, Henderson cite un article de Witting et un article
de Burkhardt (tous deux en analyse) pour leur lien avec [Klein 1888], lui-même situé en analyse et en
géométrie.
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travaux de Jordan sur l’équation algébrique associée aux vingt-sept droites qui se trouvent
essentiellement dans le Traité des substitutions et des équations algébriques, [Jordan 1870b].



Chapitre 2

Les vingt-sept droites et le Traité
des substitutions et des équations
algébriques

Dans le chapitre précédent, des travaux de Camille Jordan publiés autour de 1870
ont été identifiés comme point de départ pour l’étude des rapprochements disciplinaires
entre théorie des substitutions et géométrie opérés autour du sujet des vingt-sept droites.
Il s’agit plus précisément de travaux orbitant autour du Traité des substitutions et des
équations algébriques, [Jordan 1870b] : en plus de ce Traité, le livre de Henderson citait
deux articles qui en avaient tout juste précédé la parution et qui en sont plus ou moins des
extraits, [Jordan 1869a ; Jordan 1869b]. La bibliographie de Henderson contenait également
une courte note, [Jordan 1870a], dont l’objet est le prolongement d’un résultat sur les vingt-
sept droites démontré dans le Traité.

En examinant les publications de Jordan dans les deux premiers tomes de ses Œuvres,
consacrés d’après leurs éditeurs à ce qui relève de la théorie des groupes, il s’avère qu’à part
celles qui viennent d’être listées, une seule autre mentionne les vingt-sept droites 1, [Jordan
1869c]. Cette note est encore une fois de celles qui avaient précédé le Traité, ce qui justifie
notre focalisation principale sur cet ouvrage afin d’étudier les travaux de Jordan relatifs
aux vingt-sept droites.

Comme écrit au chapitre 1, ces travaux concernent une certaine équation algébrique,
appelée équation aux vingt-sept droites par Jordan, au sujet de laquelle les recherches se
divisent en trois séries de résultats mathématiques. Dans leur ordre d’apparition dans le

1. J’ai également vérifié qu’aucun des titres des publications groupées dans les deux autres tomes des
Œuvres de Jordan (consacrés l’un à l’algèbre linéaire et multilinéaire ainsi qu’à la théorie des nombres,
l’autre à l’analyse et la mécanique) ne faisait mention des vingt-sept droites. Par ailleurs, le relevé effectué
avec le Jahrbuch et présenté au chapitre précédent suggère bien que Jordan ne publie rien sur les vingt-sept
droites après 1870. Toutefois, ce relevé ne fait pas non plus apparaître [Jordan 1869c] dont ni le titre, ni le
texte du rapport ne contiennent « vingt-sept droites ». On voit ici à nouveau les difficultés de repérage du
sujet.

85
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Traité, on trouve ainsi d’abord une étude des propriétés de résolubilité de l’équation elle-
même, puis des liens entre cette équation et celles associées respectivement aux vingt-huit
tangentes doubles des courbes quartiques planes et aux seize droites des surfaces quartiques
à conique double, et enfin un lien avec l’équation de trisection des périodes des fonctions
hyperelliptiques.

C’est sur ces trois points que porte le présent chapitre 2. Avant de les analyser tour
à tour pour mettre en lumière les rapprochements disciplinaires qui s’y manifestent, je
commencerai par deux points permettant de préciser cette analyse. Il s’agira d’abord de
présenter plus en détail la place des vingt-sept droites dans le Traité, puis de montrer
comment identifier ce que Jordan place du côté de la théorie des substitutions ou du côté
de la géométrie dans ses travaux.

2.1 Les vingt-sept droites et le Traité : l’influence de Clebsch

2.1.1 Le Traité et son Livre III

Publié en 1870, le Traité des substitutions et des équations algébriques de Jordan re-
présente l’aboutissement et la synthèse de la dizaine d’années de recherches sur les substi-
tutions et les équations qu’il a menées depuis sa thèse de 1861 3. Plaçant résolument les
groupes de substitutions au cœur des questions de résolubilité d’équations algébriques, cet
ouvrage constitue 4

un tournant majeur dans le développement de la notion de groupe et de la théorie de
Galois, marquant l’achèvement du processus de clarification des idées de Galois sur la
résolubilité des équations. [Ehrhardt 2012, p. 144]

Les quatre Livres constituant le Traité sont de proportions inégales. Le Livre premier (18
pages), intitulé « Des congruences », est consacré aux congruences de nombres et de poly-
nômes. Viennent ensuite les Livres II (231 pages) et III (131 pages), « Des substitutions »
et « Des irrationnelles », portant respectivement sur les groupes de substitutions et sur
l’étude d’équations algébriques au moyen de leur groupe. Enfin, le quatrième livre (279
pages), « De la résolution par radicaux », aborde de front la question de la classification
complète des équations résolubles par radicaux 5.

C’est dans le Livre III, divisé en quatre chapitres, que se trouvent les recherches de
Jordan relatives aux vingt-sept droites. Le chapitre I est celui des « Généralités » ; c’est

2. Une grande partie des éléments de ce chapitre a fait l’objet de l’article [Lê 2013].
3. Pour les informations de ce paragraphe, voir [Ehrhardt 2012], où Caroline Ehrhardt a étudié les

conditions de relectures et d’assimilation du mémoire de Galois sur la résolution algébrique des équations
au cours du xixe siècle. Le cas de Jordan et du milieu mathématique français est discuté au chapitre VI.

4. Au sujet du rôle du Traité dans le développement de la théorie des groupes, voir [Wussing 1969 ;
Corry 2004].

5. Voir [Brechenmacher 2011, p. 275-277] pour une description plus détaillée des quatre livres du Traité.
Voir également [Brechenmacher 2011, p. 333-347], où Frédéric Brechenmacher restitue des réseaux de textes
faisant référence à Galois à travers les travaux de Jordan du livre III.
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là que sont exposées les « méthodes de Galois », quelques premières applications de ces
méthodes, ainsi que la définition et certaines propriétés des groupes de monodromie d’une
équation 6. Les trois autres chapitres consistent en des « applications algébriques », des
« applications géométriques » et des « applications à la théorie des transcendantes » de ces
méthodes. Par l’existence de ces différentes applications suivant l’exposition de méthodes
générales, le Livre III respecte bien l’objectif annoncé par Jordan dans la préface du Traité :

Le but de cet Ouvrage est de développer les méthodes de Galois et de les constituer en
corps de doctrine, en montrant avec quelle facilité elles permettent de résoudre tous
les principaux problèmes de la théorie des équations. [Jordan 1870b, p. vii]

Comme l’ont souligné F. Brechenmacher et C. Ehrhardt 7, ces applications étaient im-
portantes en ce qu’elles donnaient une légitimité au Traité : par son usage de propriétés
préliminaires démontrées par ses contemporains, ou par ses nouvelles preuves de résultats
connus, comme ceux de Charles Hermite sur les équations modulaires ou la monodromie 8,
Jordan inscrivait son ouvrage dans des cadres collectifs de l’époque.

Le chapitre II du Livre III, consacré aux applications algébriques, s’intéresse à ce que
Jordan nomme « équations abéliennes » et « équations de Galois » — les premières sont
celles dont le groupe de Galois est commutatif 9, alors que les secondes sont celles de degré
premier, dont les racines s’expriment toutes rationnellement en fonction de deux d’entre
elles. Les vingt-sept droites d’une surface cubique n’y apparaissant pas, je ne m’attarderai
pas davantage sur ce chapitre-là.

En revanche, les vingt-sept droites font l’objet d’un des paragraphes du chapitre des
applications géométriques. Ces paragraphes sont au nombre de six, chacun étant associé à
une situation géométrique particulière :

§I Équation de M. Hesse.

§II Équations de M. Clebsch.

§III Droites situées sur les surfaces du quatrième degré à conique double.

6. Lorsque les coefficients d’une équation algébrique dépendent d’un paramètre complexe, le mouve-
ment de ce paramètre le long d’un chemin fermé est susceptible d’induire une permutation des racines de
l’équation. Le groupe de monodromie de l’équation (par rapport au paramètre) est le groupe formé des
substitutions obtenues par tous ces mouvements. Des explications plus détaillées sont données en annexe C.

7. [Brechenmacher 2011, p. 334 ; Ehrhardt 2012, p. 178].
8. Au sujet des travaux de Hermite à ce propos, voir [Goldstein 2011a].
9. On prendra toutefois garde au fait que ce que l’appellation « groupe abélien » de Jordan ne coïn-

cide pas avec la terminologie actuelle. Le groupe abélien (de taille 2n, modulo p) est défini dans [Jor-
dan 1870b, p. 171] : il s’agit de l’ensemble des substitutions (inversibles) qui transforment la fonc-
tion ϕ = x1η1 − y1ξ1 + · · · + xnηn − ynξn en un multiple d’elle-même (modulo p) en agissant sur les
variables (x1, y1, . . . , xn, yn) et (ξ1, η1, . . . , ξn, ηn). En termes et notations modernes — Jordan n’a pas de
notation standard pour ce groupe —, le groupe abélien est le produit semi-direct Sp2n(Fp) o F∗p. À noter
que dans la littérature secondaire, il est souvent écrit que la définition de Jordan du groupe abélien coïncide
avec la définition actuelle de groupe symplectique Sp2n(Fp), qui ne correspond en fait qu’aux substitutions
laissant ϕ inchangée.
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§IV Points singuliers de la surface de M. Kummer.

§V Droites situées sur les surfaces du troisième degré.

§VI Problèmes de contact.

Dans l’ordre, les situations géométriques correspondantes sont les neuf points d’inflexion
d’une courbe cubique plane, les courbes cubiques ayant un contact d’ordre 4 avec une
courbe quartique donnée, les seize droites des surfaces quartiques à conique double, les
seize points singuliers des surfaces de Kummer et les courbes de degré n − 3 qui sont
tangentes en n(n− 3)/2 points à une courbe de degré n donnée — cette dernière situation
recouvre celle des vingt-huit tangentes doubles à une courbe quartique, correspondant au
cas n = 4. Ces situations géométriques donnent chacune lieu à une équation algébrique
particulière (comme l’équation aux vingt-sept droites) dont les propriétés sont étudiées au
moyen de l’étude de son groupe.

Enfin, le chapitre IV, « Applications à la théorie des transcendantes », est divisé en
quatre paragraphes :

§I Fonctions circulaires.

§II Fonctions elliptiques.

§III Fonctions hyperelliptiques.

§IV Résolution des équations par les transcendantes.

Dans les trois premiers paragraphes, Jordan étudie des équations particulières issues de
fonctions spéciales, comme par exemple l’équation de degré n liant cosx/n à cosx pour
un x donné, ou encore les équations modulaires associées aux fonctions elliptiques. Un
autre exemple que nous avons déjà évoqué est celui dit de la trisection des périodes des
fonctions hyperelliptiques, traité dans le §III ; les vingt-sept droites apparaissent à cet
endroit, justement pour leur lien avec ce problème de trisection. Enfin, le §IV consiste à
voir dans quelle mesure les équations issues de la théorie des transcendantes peuvent être
utilisées pour résoudre d’autres équations 10.

Les endroits du Traité où apparaissent explicitement les vingt-sept droites sont donc les
chapitres des applications géométriques et des applications à la théorie des transcendantes.
Or, il est remarquable que ce sont précisément les passages pour lesquels Jordan évoque
explicitement le nom d’Alfred Clebsch dans la préface du Traité :

10. Par exemple, l’équation z3 − 3/4z+A = 0 peut être résolue à l’aide des fonctions circulaires grâce à
sa ressemblance avec l’équation donnant cosx/3 en fonction de cosx. Hermite et Kronecker avaient montré
comment résoudre l’équation générale de degré 5 grâce aux fonctions elliptiques — Hermite explicite
d’ailleurs l’analogie du cas des équations cubiques avec le cas de la fonction sinus. Voir [Goldstein 2011a ;
Gray 2000, ch. IV]. Dans le §IV du Traité, Jordan démontre quant à lui que les équations de degré supérieur
à 5 peuvent toutes être résolues à l’aide de l’équation de bissection de fonctions hyperelliptiques.
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Nous tenons également à remercier MM. Clebsch et Kronecker des précieuses indica-
tions qu’ils nous ont fournies. C’est grâce aux libérales communications de M. Clebsch
que nous avons pu aborder les problèmes géométriques du Livre III, Chapitre III,
l’étude des groupes de Steiner et la trisection des fonctions hyperelliptiques. Nous de-
vons à M. Kronecker la notion du groupe des équations de la division de ces dernières
fonctions. Nous aurions désiré tirer un plus grand parti que nous l’avons fait des tra-
vaux de cet illustre auteur sur les équations. Diverses causes nous en ont empêché [...].
[Jordan 1870b, p. viii]

Si les remerciements à Leopold Kronecker sont, dans cet extrait, immédiatement nuancés
par l’incapacité avouée de Jordan à s’adapter à ses méthodes 11, rien de tel ne se lit au
sujet de Clebsch. Ce dernier semble donc avoir réellement joué un rôle dans l’intégration
des vingt-sept droites dans le Traité des substitutions et des équations algébriques.

2.1.2 Quelques mots sur Alfred Clebsch

Rudolf Friedrich Alfred Clebsch est né en 1833 à Königsberg 12. Son parcours acadé-
mique commence en 1850 à l’université de cette ville, où il suit notamment des cours de
Otto Hesse, Friedrich Richelot et Franz Neumann (le père de son ami d’enfance Carl Neu-
mann). En 1854, il achève sa thèse de physique mathématique, préparée sous la direction
de F. Neumann.

À partir de 1854, Clebsch enseigne les mathématiques dans plusieurs lycées de Berlin,
tout en commençant à faire publier des travaux de physique mathématique et de calcul
des variations 13. Ses recherches restent principalement focalisées sur ces sujets entre 1858
et 1863, lors de son passage en tant que professeur à l’École polytechnique de Karlsruhe.
À cette époque, il commence également à s’intéresser à la géométrie des courbes et des
surfaces, en particulier avec les travaux de Cayley, Salmon et Sylvester.

En 1863, Clebsch rejoint l’université de Giessen en tant que professeur de mathéma-
tiques 14. Il y rencontre Paul Gordan, qui l’introduit à la théorie des fonctions abéliennes
et aux travaux de Riemann. Ces recherches communes se concrétisent notamment avec
l’écriture du livre Theorie der Abelschen Functionen, [Clebsch & Gordan 1866]. Entouré de

11. Cela préfigure la querelle de 1874 entre Jordan et Kronecker autour de la théorie des formes bili-
néaires. Voir [Brechenmacher 2007a].
12. Les éléments biographiques de ce paragraphe sont tirés de deux notices nécrologiques de Clebsch [C.

Neumann 1872 ; Brill, Gordan et al. 1873].
13. Les auteurs de la notice nécrologique [Brill, Gordan et al. 1873] divisent les travaux de Clebsch en

six groupes : la physique mathématique ; le calcul des variations et la théorie des équations différentielles
partielles du premier ordre ; la théorie des courbes et des surfaces ; l’étude des fonctions abéliennes et leur
application à la géométrie ; les représentations de surfaces ; la théorie des invariants. Toujours selon ces
auteurs, l’ordre de cette liste reflète grosso modo la chronologie des intérêts de Clebsch. Voir [Brill, Gordan
et al. 1873, p. 2]. Des descriptions mathématiques détaillées de chacun de ces groupes de travaux sont
faites dans la suite de cette notice nécrologique.
14. Clebsch était en concurrence notamment avec Richard Dedekind. Les circonstances de ce recrutement

sont décrites dans [Dugac 1976, p. 132]. Au sujet du passage de Clebsch à Giessen, voir [Lorey 1937, p. 71-
77].
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Alexander Brill, Ferdinand von Lindemann, Jacob Lüroth et Max Noether, Clebsch investit
le domaine des fonctions abéliennes en y introduisant des points de vue géométriques et
en montrant réciproquement comment appliquer ces fonctions transcendantes à la géomé-
trie. Ces travaux sont publiés notamment dans le mémoire [Clebsch 1864a] intitulé Ueber
die Anwendung der Abelschen Functionen in der Geometrie 15. Il en dégage notamment la
notion de genre d’une courbe algébrique, et ses recherches sur ce sujet l’amènent alors à
s’intéresser de près aux transformations birationnelles de courbes. Il en vient à un thème
de recherche dans lequel il restera engagé jusqu’à la fin de sa vie : les représentations de
surfaces, dont le premier exemple est celui de la représentation des surfaces cubiques sur
le plan, [Clebsch 1866]. À peu près en même temps, il se lance dans un autre domaine de
recherche qui deviendra majeur pour lui : la théorie des invariants 16.

Succédant à Bernhard Riemann, Clebsch est nommé professeur en 1868 à Göttingen,
où il est suivi par certains de ses élèves puis momentanément rejoint par Felix Klein 17.
L’année suivante paraît le premier volume des Mathematische Annalen, journal dont il est,
avec C. Neumann, un des deux fondateurs. Ses recherches sont alors presque toutes entières
tournées vers les représentations de surfaces et la théorie des invariants. Le 7 novembre
1872, Clebsch meurt brutalement, foudroyé par une attaque de diphtérie.

À l’âge de 39 ans, Clebsch laisse derrière lui plus de 100 publications 18 et une grande
renommée mathématique à travers de nombreux pays européens : considéré « comme un
des premiers mathématiciens allemands » de l’époque, possédant « les dons, les talents
multiples et la puissance de travail 19 », il était correspondant des académies de Berlin,
Munich, Milan, Bologne et Cambridge, membre de la London Mathematical Society et en
contact régulier avec notamment Cremona, Jordan et Cayley 20.

Revenons au sujet du Traité des substitutions et des équations algébriques. L’influence
de Clebsch sur l’écriture du chapitre des applications géométriques peut à nouveau se lire
dans une de ses notices nécrologiques :

15. Ces travaux sont en partie décrits dans [Gray 1989, p. 367-369] et dans [Houzel 2002, p. 184-186].
Voir aussi [Rowe 1989a, p. 188], où David Rowe parle de la fondation par Clebsch d’une « fledgling school
at Giessen that specialized in algebraic geometry and invariant theory ». D. Rowe ne précise pas s’il fait
référence à la notion d’école de recherche telle que définie par Karen Hunger Parshall dans [Parshall 2004].
16. Au sujet de la théorie des invariants, voir [Fisher 1966 ; Parshall 1989].
17. Clebsch était à nouveau en concurrence avec Dedekind pour ce poste à Göttingen, [Dugac 1976,

p. 133-134]. Pour quelques informations sur les premiers contacts entre Klein et Clebsch, voir [Rowe 1989a,
p. 188].
18. Une liste des publications de Clebsch est donnée dans [Brill, Gordan et al. 1873, p. 51-55]. Elle

compte 107 items, dont quatre livres dont il a été (un des) auteur(s) et deux livres qu’il a édités sur la base
de travaux de Jacobi et de Plücker. Le reste se répartit majoritairement entre des articles dans le Journal
für die reine und angewandte Mathematik (de 1856 à 1869) et les Mathematische Annalen (à partir de
1869).
19. Citation de Hesse datant de 1862, rapportée dans [Dugac 1976, p. 133]. Des commentaires du même

type et provenant d’autres mathématiciens sont retranscrits dans cette référence et dans celles qui ont été
citées précédemment. D’autres commentaires soulignent les grandes qualités pédagogiques de Clebsch.
20. [C. Neumann 1872, p. 202]. Remarquer que Cremona, Jordan et Cayley sont déjà tous apparus autour

du sujet des vingt-sept droites.
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La théorie générale des équations algébriques, comme fondée par Lagrange puis déve-
loppée par Gauss et Abel, et élevée par Galois dans sa généralité présente, a intéressé
Clebsch au plus haut point. Il n’a cependant pas mené de recherche propre dans cette
direction ; mais il a touché indirectement ces questions en ne laissant aucune occasion
passer, lorsqu’un problème algébrique ou géométrique conduisait à des équations de ca-
ractère particulier, d’attirer l’attention sur ces équations remarquables en soi. C’était
vraiment les recherches de Hesse puis de Abel qui avaient vivement attiré l’attention
de Clebsch sur ce côté algébrique des problèmes géométriques ; plus tard, les relations
multiples qu’il avait nouées avec Camille Jordan ramenèrent son attention vers tout
ce qui se rattache aux groupements remarquables des racines d’une équation. Réci-
proquement, c’est principalement à lui qu’on est redevable d’avoir mis Camille Jordan
en état de consacrer aux « équations de la géométrie » un chapitre spécial dans son
grand ouvrage 21. [Brill, Gordan et al. 1873, p. 47]

L’importance du rôle de Clebsch dans l’élaboration du chapitre des applications géo-
métriques du Traité se confirme avec un relevé des mentions de son nom ou de ses articles
dans ce chapitre. En effet, on y relève sept noms de mathématiciens : dans l’ordre d’appari-
tion, il s’agit de ceux de Hesse, Mathieu, Clebsch, Kummer, Steiner, Schläfli et Geiser. En
comptant avec multiplicité, Clebsch arrive largement en tête car son nom revient sept fois,
contre deux fois pour Kummer et une fois pour tous les autres. Au niveau des citations,
il y a six articles (et aucun livre) cités par Jordan, dont trois sont de Clebsch, [Clebsch
1864a ; Clebsch 1865 ; Clebsch 1868], les autres étant de trois auteurs différents — il s’agit
de [Kummer 1864 ; Steiner 1856b ; Geiser 1869b]. À nouveau, en prenant en compte le
nombre effectif de citations, le ratio augmente en faveur de Clebsch, puisque [Clebsch
1864a] est cité six fois, alors que tous les autres articles ne sont cités qu’une seule fois 22.

Toutefois, et de façon un peu paradoxale au constat fait plus haut, aucune de ces
mentions explicites ne concernent les vingt-sept droites. C’est donc en explorant en détail
les mathématiques que l’on pourra mettre à jour les influences que Clebsch a pu avoir sur
Jordan à ce sujet 23.

21. « Die allgemeine Theorie der algebraischen Gleichungen, wie sie durch Lagrange begründet, durch
Gauss und Abel weiter entwickelt, durch Galois zu ihrer jetzigen Allgemeinheit erhoben worden ist, hat
Clebsch in hohem Masse interessirt. Er hat freilich in dieser Richtung nicht eigentlich eigene Untersuchun-
gen angestellt, aber er hat indirect diesen Fragen genützt, indem er keine Gelegenheit vorübergehen liess,
wenn ein geometrisches oder algebraisches Problem zu Gleichungen besonderen Charakters hinleitete, auf
eben diese Gleichungen als an und für sich beachtenswerth hinzuweisen. Es waren wohl die Untersuchun-
gen von Hesse und weitherin von Abel gewesen, die Clebsch’s Interesse für diese algebraische Seite der
geometrischen Probleme rege gemacht hatten; später wurde seine Aufmerksamkeit durch die vielfachen
Beziehungen, in die er mit Camille Jordan getreten war, immer wieder auf Alles, was mit merkwürdigen
Gruppirungen von Wurzeln einer Gleichung im Zusammenhange steht, hingelenkt. Umgekehrt hat man es
ihm hauptsächlich zu verdanken, wenn Camille Jordan im Stande war, in seinem grossen Werke (Traité
des substitutions et des équations algébriques. Paris, Gauthier-Villars 1870) ein besonderes Capitel den
„Gleichungen der Geometrie“ zu widmen. » J’ai repris dans [Jordan 1881, p. 33] la traduction de la partie
de cette citation commençant à « später... ».
22. Ce relevé n’aura ici qu’une valeur indicielle. Une utilisation plus poussée pourrait être imaginée

sur le modèle de [Goldstein 2012], où C. Goldstein s’est (entre autres) basée sur les noms de personnes
mentionnées dans les Œuvres de Hermite pour en capter certains aspects collectifs.
23. Les lettres écrites par Clebsch à Jordan et conservées aux archives de l’École polytechnique ne
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2.2 Identifier théorie des substitutions et géométrie dans le
Traité

Avant d’entrer dans les textes de Jordan et d’y étudier les articulations entre théorie
des substitutions et géométrie, je commencerai ici par exposer un moyen de distinguer ce
qui relève (pour Jordan) de l’une ou de l’autre — cela aura pour but d’éviter au maxi-
mum d’appliquer a priori mes propres vues disciplinaires lors de l’étude de l’approche de
Jordan sur l’équation aux vingt-sept droites. Pour cela, je propose de repérer les objets et
techniques mathématiques que Jordan associe clairement à la théorie des substitutions ou
à la géométrie dans ses travaux sur les vingt-sept droites 24.

Cette utilisation des objets et techniques comme critères distinctifs entre théorie des
substitutions et géométrie rapproche ainsi ma démarche d’une reconnaissance de disciplines
dans le sens que Ralf Haubrich a dégagé à partir des travaux de Martin Guntau et Hubert
Laitko. Il s’agit ainsi « de caractériser une discipline mathématique par une liste d’éléments
internes comme son sujet d’étude, ses concepts et théorèmes clés, sa systématisation, son
système de preuves, les valeurs mathématiques préconisées pour l’évaluation de ses résul-
tats, etc. 25 ». Toutefois, je souligne bien que l’ambition n’est pas ici de voir si la théorie des
substitutions ou la géométrie forment des disciplines en ce sens ; il s’agit plutôt d’utiliser
les objets mathématiques en tant que moyens de repérer, dans les textes de Jordan, ce qui
relève de l’une ou de l’autre.

2.2.1 Utilisation de la note Sur les équations de la géométrie

La note « Sur les équations de la géométrie », [Jordan 1869c], résume les objectifs et
certains des résultats du chapitre des applications géométriques du Traité. Au contraire de
ce chapitre, elle ne contient pas de démonstration et ne permet donc qu’un accès limité aux
techniques mathématiques. En revanche, sa structure textuelle et son utilisation explicite
des termes « géométrique » et « théorie des substitutions » sont suffisants pour identifier
un certain nombre d’objets associés à l’un ou l’autre de ces termes.

En effet, le paragraphe introductif de cette note est le suivant :

renseignent pas sur l’élaboration du chapitre des applications géométriques.
24. Durant la même période, Jordan est également engagé dans des recherches portant sur les groupes

de mouvements de l’espace qui sont situés du côté de la géométrie. Je me cantonnerai aux textes portant
sur les vingt-sept droites, sans ainsi prétendre à exhiber tout ce qui pourrait relever de la géométrie pour
Jordan.
25. « Ralf Haubrich [...] suggested characterizing a mathematical discipline by a list of internal elements

such as its subject matter, its core concepts and theorems, its systematization, its proof system, the
mathematical values advocated in evaluating its results, etc. », [Goldstein & Schappacher 2007, p. 54]. Dans
cette référence, C. Goldstein et N. Schappacher ont montré que les activités de recherches de la première
moitié du xixe siècle liées aux Disquisitiones Arithmeticae de Gauss ne forment pas une discipline en ce
sens de « gegenstandsorientiertes System wissenschaftlicher Tätigkeiten » provenant de [Guntau & Laitko
1987]. Voir aussi [Gauthier 2007] pour le cas de la géométrie des nombres, avec une discussion portant sur
d’autres définitions possibles de discipline mathématique.
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Les problèmes géométriques fournissent un grand nombre d’équations remarquables,
dont les diverses solutions sont généralement liées entre elles par des relations géo-
métriques très-intéressantes. Ces relations permettent de construire, dans chaque cas
particulier, une fonction des racines, dont la forme algébrique reste inaltérée par toute
substitution du groupe de l’équation proposée. Cette remarque sert à déterminer ce
groupe, dont la connaissance permet réciproquement de rechercher les propriétés plus
cachées que présente l’équation, et notamment celles qui concernent sa résolution.
[Jordan 1869c, p. 656]

Les trois phrases de ce paragraphe présentent trois étapes concernant d’abord des « pro-
blèmes géométriques » donnant lieu à certaines équations ; ensuite, pour chaque problème,
une « fonction des racines » en lien avec le groupe de l’équation considérée ; enfin les
« propriétés [de] l’équation » dévoilées par l’étude de son groupe. Or, ces trois étapes se
retrouvent dans les paragraphes suivants de la même note [Jordan 1869c], et c’est cette
similarité de structure qui permet d’identifier les problèmes et les relations que Jordan
qualifie de « géométriques 26 ».

Commençons avec le paragraphe portant sur les vingt-sept droites :

Les vingt-sept droites a, b, c, d, . . . situées sur une surface du troisième degré forment
par leurs intersections mutuelles quarante-cinq triangles, abc, ade, . . . [Steiner, Mé-
moire sur les surfaces du troisième ordre (Journal de Crelle).] Les substitutions du
groupe de l’équation aux vingt-sept droites laissent invariable la somme abc+ade+. . ..
L’ordre P de cette équation est égal à 27 · 10 · 8 · 6 · 4, et ses facteurs de composition
sont 2 et 1

2P . [Jordan 1869c, p. 658]

La structure de ce paragraphe est effectivement identique à celle du paragraphe introductif.
Ainsi, le « problème géométrique » consiste ici en les « vingt-sept droites [...] situées sur
une surface du troisième degré » et les « relations géométriques » sont que ces dernières
« forment par leurs intersections mutuelles quarante-cinq triangles ». La « fonction des
racines » est « la somme abc + ade + . . . ». Enfin, les « propriétés de l’équation » sont ici
son ordre et ses facteurs de composition.

Le même parallèle peut être fait avec un autre paragraphe de [Jordan 1869c] :

M. Kummer a signalé l’existence d’une surface du quatrième degré à seize points
singuliers. Ces seize points, a, b, c, . . ., sont situés six à six sur seize plans tangents
singuliers abcdef, abghik, . . ., qui se coupent six à six en ces points singuliers. La
fonction ϕ = abcdef + abghik+ . . . reste invariable par les substitutions du groupe de
l’équation aux seize points singuliers.

26. Pour ce qui est de « algébrique », il est question dans le texte de Jordan de la « forme algébrique »
d’une certaine fonction des racines. Ici, « forme » désigne la manière dont cette fonction des racines est
présentée et l’épithète « algébrique » la qualifie au sens où les racines sont vues comme des symboles
indéterminés — ce n’est donc pas d’une « forme algébrique » au sens d’un polynôme en plusieurs variables.
Il s’agit donc ici d’une expression qui ne renvoie qu’à un aspect technique particulier et qui n’a pas
de connotation disciplinaire. En tant que telle, je ne l’utiliserai pas pour le repérage entre théorie des
substitutions et géométrie.
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Cette équation a pour ordre 16 · 15 · 8 · 3 · 2, et son groupe est formé des substitutions
(1) (où p = 2, n = 2) jointes aux substitutions

|x1, y1, x2, y2 x1 + α1, y1 + β1, x2 + α2, y2 + β2|.

En résolvant une équation auxiliaire du sixième degré appartenant au type le plus
général, on réduira le groupe de la proposée à ces dernières substitutions, et quatre
racines carrées achèveront sa résolution. [Jordan 1869c, p. 659]

La structure du paragraphe est encore une fois la même. Ici, le « problème géométrique »
consiste en les seize points singuliers de la surface de Kummer, liés par les « relations
géométriques » que sont leur appartenance six à six à seize plans tangents à la surface ; la
« fonction des racines » est la fonction ϕ qui y est décrite ; les « propriétés de l’équation »
sont son ordre et sa résolution à l’aide d’« une équation auxiliaire du sixième degré [et de]
quatre racines carrées ».

Remarquer que jusqu’à présent, nous n’avons pas assigné d’objets à la théorie des
substitutions. Pour cela, regardons un autre passage de la note [Jordan 1869c] :

[L’équation aux vingt-sept droites] se rattache très-directement aux précédentes. Car
si l’on suppose connue une des racines de l’équation aux vingt-huit tangentes doubles
d’une courbe du quatrième ordre, on a pour déterminer les autres une équation du
vingt-septième degré, ayant même groupe que l’équation aux vingt-sept droites. En se
donnant une seconde racine on a une équation du vingt-sixième degré, se décomposant
en deux facteurs du seizième et du dixième degré. Ces deux facteurs sont équivalents
entre eux ; le premier a le même groupe que l’équation aux seize droites des surfaces
du quatrième degré à conique double ; l’autre a le même groupe que l’équation du
dixième degré à laquelle se réduit celle-là.

La théorie des substitutions aurait donc permis de prévoir l’existence des liaisons
géométriques qui existent entre les problèmes des vingt-huit doubles tangentes, des
vingt-sept droites et des seize droites (voir un Mémoire de M. Geiser (Mathematische
Annalen, t. I)). [Jordan 1869c, p. 659]

On voit dans cet extrait ce qui se situe pour Jordan du côté de la théorie des substitutions :
ce sont des considérations sur des équations et leurs racines, des procédés d’adjonction de
racines (c’est-à-dire de « suppose[r] connue[s] » des racines) et des identités de groupes (de
substitutions). De plus, cela permet rétrospectivement, dans les citations précédentes, de
placer du côté de la théorie des substitutions ce qui avait rapport à ces mêmes objets. Pour
ce qui est enfin des « liaisons géométriques » évoquées par Jordan, j’ai examiné le mémoire
qu’il cite pour voir quel sont les objets et techniques mathématiques clés dont il y est
question. Ce mémoire a déjà été présenté au chapitre précédent : il s’agit de construire, par
projection, une courbe quartique à partir d’une surface cubique et de voir que dans cette
projection, les vingt-sept droites de la cubique sont envoyées sur vingt-sept des vingt-huit
des tangentes doubles de la quartique 27.

27. Une description bien plus détaillée est faite plus loin dans le présent chapitre.
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Le tableau 2.1 résume les objets et techniques qui relèvent de la théorie des substitutions
ou de la géométrie. Je vais à présent discuter davantage chacun des deux côtés, en me
concentrant sur le cas des vingt-sept droites et en me reportant à présent sur le Traité des
substitutions et des équations algébriques lui-même.

Théorie des substitutions Géométrie

– Équations algébriques
– Racines
– Fonctions de racines
– Substitutions
– Groupes (de substitutions)
– Ordre
– Facteurs de composition
– Invariabilité de fonctions
– Adjonction
– Résolution
– Décomposition en facteurs
– Identité de groupes

– Points (singuliers, doubles, de rebrous-
sement, d’inflexion)
– Droites
– Courbes
– Plans
– Surfaces
– Triangles
– Cônes
– Faisceaux de courbes ou de surfaces
– Relations d’incidence (tangence, copla-
narité, alignement, intersections particu-
lières)
– Projections

Table 2.1 – Théorie des substitutions et géométrie chez Jordan

2.2.2 Du côté géométrique

Dans la section du Traité consacrée aux vingt-sept droites, c’est le même mémoire de
Steiner que dans la note « Sur les équations de la géométrie » qui est cité pour les propriétés
de ces droites, [Steiner 1856b]. Mais alors que dans cette note, Jordan ne mentionnait que
l’existence des vingt-sept droites et des quarante-cinq triangles, il évoque également celle
des trièdres de Steiner dans le Traité :

Si deux triangles abc, a′b′c′ n’ont aucun côté commun, on peut leur en associer un
troisième a′′b′′c′′ tel, que les côtés correspondants de ces trois triangles se coupent, et
forment trois nouveaux triangles aa′a′′, bb′b′′, cc′c′′. [Jordan 1870b, p. 316]

Au sens dégagé précédent, il s’agit bien d’une propriété géométrique, les objets qui y
interviennent étant des triangles et les relations qui les lient étant des relations d’incidence
entre leurs côtés.

En utilisant de même ce tableau, il est possible de repérer d’autres propriétés géomé-
triques (que Jordan n’étiquette pas explicitement comme telles) dans la section sur les
vingt-sept droites. On y lit ainsi :

On peut déterminer de (45·32)/2 manières différentes un système de deux triangles qui
n’aient aucune droite commune ; à chaque semblable système correspond un triangle
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associé (441). Réciproquement, chaque système de trois triangles associés (trièdre de
Steiner) correspond aux trois combinaisons deux à deux des triangles qui les forment.
Le nombre total des trièdres sera donc (45 · 32)/(2 · 3). On peut d’ailleurs grouper
ces trièdres par paires (doubles trièdres) en réunissant ensemble ceux qui contiennent
les mêmes droites. Enfin les doubles trièdres peuvent être associés trois à trois, en
réunissant ensemble ceux qui n’ont aucune droite commune. [...]

On peut déterminer de (27 · 16)/2 manières différentes une paire de droites qui ne se
coupent pas. On peut d’ailleurs grouper ces paires six à six (doubles-six de Schläfli),
de sorte que les droites d’une paire rencontrent chacune une droite de chaque autre
paire du double-six. [Jordan 1870b, p. 319]

Les doubles trièdres de Steiner et les doubles-six de Schläfli relèvent bien de la géomé-
trie : ce sont des objets formés de droites ou de triangles liés par des relations d’incidence
particulières.

Tout ce qui relève de la géométrie dans la section sur les vingt-sept droites a ainsi été
présenté. On remarquera qu’il s’agit d’objets et de propriétés que Jordan attribue à des
travaux antérieurs d’autres mathématiciens 28. Ces travaux ont déjà été décrits au chapitre
précédent, et je n’y reviendrai donc pas ici. Avant de voir comment Jordan les mobilise
dans ses démonstrations, passons au côté de la théorie des substitutions.

2.2.3 Les « méthodes de Galois »

En comparaison avec le côté géométrique, le pendant de théorie des substitutions de
la section du Traité sur les vingt-sept droites est plus riche, au sens où le nombre d’objets
pouvant relever de la théorie des substitutions qui y apparaissent est bien plus important.
Les techniques qui les impliquent sont exposées en amont du Traité, dans le chapitre premier
du Livre III, présentant les « méthodes de Galois ».

La plupart des définitions et de la terminologie que l’on trouve dans ce chapitre (ad-
jonction, quantité rationnelles, groupe d’une équation, irréductibilité, adjonction, réduites)
sont celles utilisées par Galois dans son « Mémoire sur les conditions de résolubilité des
équations par radicaux » (1831), resté inédit jusqu’en 1846, année où Joseph Liouville fait
publier les Œuvres mathématiques d’Évariste Galois, [Galois 1846]. Dans ce paragraphe, je
suivrai toutefois l’exposé de Jordan en ajoutant au fur et à mesure des interprétations en
termes mathématiques actuels afin d’en faciliter la compréhension 29.

Comme Jordan, donnons-nous une équation algébrique F (x) = 0 de degré m et de
racines x1, x2, . . . , xm. La nature des coefficients de F n’est pas précisée par Jordan ; nous
noterons k un corps de définition 30 de F . Des quantités y, z, . . . sont alors dites adjointes à

28. Je rappelle que dans une note située à la fin du Traité, Jordan précise que les vingt-sept droites
avaient été découvertes par Cayley et Salmon, avant Steiner.
29. Voir [Ehrhardt 2012, p. 170-182] pour l’étude des reformulations par Jordan du mémoire de Galois

(dont celles précédant le Traité).
30. Il est parfois possible pour nous de lire Jordan en interprétant les coefficients de F comme des
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l’équation si elles sont décrétées être admissibles pour pouvoir exprimer ses racines. Jordan
appelle alors rationnelle toute quantité exprimable de façon rationnelle (c’est-à-dire avec
les quatre opérations usuelles) en fonction des coefficients de l’équation et des quantités
adjointes. Autrement dit, les quantités rationnelles sont les éléments de k(y, z, . . .).

Le théorème fondamental donné par Jordan est celui concernant l’existence du groupe
d’une équation :

THÉORÈME FONDAMENTAL : Théorème I. — Soit F (x) = 0 une équation
dont les racines x1, . . . , xm sont toutes inégales, et à laquelle on peut supposer qu’on
ait adjoint certaines quantités auxiliaires y, z, . . .. Il existera toujours entre les ra-
cines x1, . . . , xm un groupe de substitutions tel, que toute fonction des racines, dont
les substitutions de ce groupe n’altèrent pas la valeur numérique, soit rationnellement
exprimable, et réciproquement. [Jordan 1870b, p. 257]

Le groupe donné par le théorème est nommé par Jordan groupe de l’équation relatif aux
quantités adjointes, ou groupe réduit par l’adjonction de y, z, . . ., ou encore plus simplement,
dans le cas où aucune quantité n’est adjointe, groupe de l’équation. En termes actuels, le
théorème fondamental dit qu’il existe un sous-groupe, disons G, du groupe de permutations
S(x1, . . . , xm) tel que le sous-corps (k(y, z, . . .))(x1, . . . , xm) fixé par G est précisément
k(y, z, . . .). Il s’agit donc du groupe de Galois 31 de F sur k(y, z, . . .).

D’après Jordan lui-même 32, le théorème qu’il énonce et démontre ensuite lui revient
proprement (au contraire du premier). Il s’agit d’un théorème concernant l’irréductibilité
d’une équation 33 :

Théorème II. — Toute équation irréductible F (x) = 0 a son groupe transitif, et
réciproquement. [Jordan 1870b, p. 259]

La transitivité du groupe signifie que, si l’on choisit deux racines quelconques de l’équation,
il existe toujours une substitution du groupe qui envoie l’une sur l’autre — cela correspond
avec la définition actuelle d’action transitive. Profitons du moment pour reproduire la
définition que donne Jordan de groupe k fois transitif, dans le cadre des groupes d’équations.
Cette définition se lie à la définition actuelle d’action au moins k fois transitive : pour

indéterminées et donc de prendre k = Q(X1, . . . , Xm). Mais soulignons bien que la notion d’indéterminée
n’existe pas dans le Traité des substitutions, ni d’ailleurs celle de corps.
31. Dans la théorie de Galois telle qu’elle est enseignée de nos jours, on définit d’abord le groupe de Galois

d’une extension (galoisienne) de corps k′/k comme étant le groupe des automorphismes de k′ induisant
l’identité sur k. Si F ∈ k[X] est un polynôme séparable, le groupe de Galois de l’équation F (x) = 0 est
par définition de le groupe de Galois d’une extension de décomposition de F sur k. On montre alors que
tout élément de ce groupe induit une permutation des racines de F . Plus précisément, le groupe de Galois
de F s’identifie au sous-groupe du groupe des permutations des racines qui respectent toutes les relations
algébriques existant entre ces dernières.
32. [Jordan 1881, p. 29].
33. La notion d’irréductibilité coïncide avec celle que nous apprenons aujourd’hui : pour Jordan, une

équation est irréductible « lorsqu’elle n’a aucune racine commune avec aucune équation de degré moindre
et à coefficients rationnels » [Jordan 1870b, p. 254]. Sur l’importance de cette notion dans le développement
de la théorie des équations, notamment à partir des Disquisitiones Arithmeticae de Carl Friedrich Gauss,
voir [O. Neumann 2007].
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tous k-uplets de racines (ξ1, . . . , ξk) et (ξ′1, . . . , ξ
′
k), il existe une substitution du groupe de

l’équation envoyant ξi sur ξ′i pour chaque indice i.
Une autre notion est la primitivité d’un groupe, que Jordan définit à l’envers : un

groupe G est dit non primitif s’il est possible de regrouper les lettres sur lesquelles il agit
en paquets contenant tous le même nombre de lettres, et tels que toute substitution de G
envoie les éléments d’un paquet sur les éléments d’un même paquet. Une équation est dite
primitive lorsque son groupe est primitif, [Jordan 1870b, p. 34].

Jordan indique d’ailleurs dans la préface du Traité que les trois notions fondamentales
de la théorie des substitutions sont la transitivité, la primitivité et surtout la distinction
entre groupes simples et composés 34, et en attribue les paternités respectives à Augustin-
Louis Cauchy, à Carl Friedrich Gauss et Niels Henrik Abel, et à Galois. Jordan pose ainsi
les jalons d’une certaine histoire de la théorie des substitutions, mais cette histoire est à
lire avec circonspection. En effet, il existe d’une part d’autres récits historiques écrits par
des mathématiciens au xixe siècle, comme celui de Otto Hölder dans l’Encyklopädie der
mathematischen Wissenschaften, qui indique que les notions de transitivité et de primitivité
viennent de Paolo Ruffini, [Hölder 1899, p. 487]. D’autre part, les attributions de Jordan
posent aussi problème à l’historiographie actuelle, qui juge anachronique la reconnaissance
de la notion de groupe chez Gauss et Abel par exemple.

Passons maintenant à quelques théorèmes décrivant le comportement du groupe d’une
équation lorsqu’on lui adjoint certaines quantités particulières. Jordan considère d’abord
le cas où est adjointe une fonction des racines de l’équation elle-même :

Théorème V. — Soient G le groupe d’une équation F (x) = 0, ϕ1 une fonction
rationnelle quelconque de ses racines : 1o celles des substitutions de G qui n’altèrent
pas la valeur numérique de ϕ1 forment un groupe H1 ; 2o l’adjonction de la valeur ϕ1

réduira le groupe de l’équation précisément à H1. [Jordan 1870b, p. 261]

Traduit dans des termes actuels, ce théorème dit que si ϕ1 ∈ k(x1, . . . , xm), alors l’ensemble
des permutations de G qui fixent ϕ1 est un sous-groupe H1 de G tel que

Gal(k(x1, . . . , xm)/k(ϕ1)) = H1.

En outre, Jordan énonce en corollaire que l’adjonction de plusieurs fonctions des ra-
cines ϕ1, ϕ

′
1, etc., réduit le groupe de l’équation à son sous-groupe formé des substitutions

qui fixent ϕ1, ϕ′1, etc. Anticipons un peu sur la suite : dans les applications à la géométrie
et aux transcendantes, Jordan va surtout adjoindre à ces équations une ou plusieurs de
leurs racines. Dans le cas de l’adjonction d’une racine x1, le groupe H1 est donc, en termes
d’actions de groupes, le stabilisateur de x1 sous G.

34. La définition de groupe simple est la même que l’actuelle : c’est un groupe n’ayant pas de sous-groupe
distingué non trivial.
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Jordan étudie ensuite l’effet de l’adjonction à une équation des racines d’une autre
équation f(z) = 0. Il montre que si l’on adjoint à l’équation F (x) = 0 (dont le groupe
est G) toutes les racines de f(z) = 0, le groupe réduit, également appelé groupe réduit par
la résolution de f(z) = 0, est permutable aux substitutions de G, c’est-à-dire en est un
sous-groupe distingué. Un corollaire est le suivant :

Corollaire. — Si le groupe G est simple, il ne peut être réduit par la résolution
d’une équation auxiliaire sans se réduire à la seule substitution i (le groupe formé de
cette substitution étant, par définition, le seul qui soit contenu dans G et permutable à
ses substitutions) : auquel cas l’équation F (x) = 0 sera complètement résolue. [Jordan
1870b, p. 269]

Dire que l’équation F (x) = 0 est résolue par l’adjonction des racines z1, . . . , zn de f(z) = 0

signifie ainsi que toutes les racines de F s’expriment rationnellement en fonction des ra-
cines z1, . . . , zn. Cela se traduit donc par l’inclusion k(x1, . . . , xm) ⊂ k(z1, . . . , zn). Le
théorème suivant indique comment deux équations se résolvent l’une l’autre.

Théorème XIII. — Soient F (x) = 0 et f(z) = 0 deux équations dont les groupes G
et G′ contiennent respectivement N et N ′ substitutions. Si la résolution de la seconde
équation réduit le groupe de la première à un groupe H1 ne contenant plus que N/ν
substitutions, réciproquement la résolution de la première réduira le groupe de la
seconde à un groupe H ′1 ne contenant plus que N ′/ν substitutions. De plus, les deux
équations sont composées avec une même équation auxiliaire F (u) = 0 de degré ν et
dont le groupe contient ν substitutions. [Jordan 1870b, p. 269]

En guise de traduction moderne, résumons avec un diagramme ce théorème concernant ce
que nous appelons les extensions composées :

k(x1, . . . , xm, z1, . . . , zn)

k(x1, . . . , xm)

N ′/ν

k(z1, . . . , zn)

N/ν

k(u1, . . . , uν)

N ′/νN/ν

k

N ′N

ν

Un corollaire donné par Jordan —il s’agit du Corollaire I, [Jordan 1870b, p. 270] — est
que si le groupe G d’une équation F (x) = 0 est simple, celle-ci ne peut être résolue qu’au
moyen d’équations dont le groupe ait pour ordre un multiple de l’ordre de G.

La notion de résolution d’une équation par une autre mène à celle d’équations équi-
valentes : les équations F (x) = 0 et f(z) = 0 sont dites équivalentes si la résolution
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de l’une entraîne la résolution de l’autre, et réciproquement. Vu ce que nous avons écrit
précédemment, cela revient à dire que k(x1, . . . , xm) = k(z1, . . . , zn).

Contrairement aux autres notions données par Jordan, celle d’équations équivalentes
n’apparaît pas dans les écrits de Galois. Au moins depuis les Disquisitiones Arithmeticae
de Gauss, une autre notion d’équivalence existait déjà pour les formes algébriques, et no-
tamment pour les formes quadratiques : deux formes quadratiques q1 et q2 étaient dites
équivalentes si elles vérifiaient pour tous x, y l’identité q1(x, y) = q2(ax+ by, cx+ dy) quels
que soient les entiers a, b, c, d tels que ad − bc = 1. Dans ce cadre-là, un problème consis-
tait à trouver les différentes classes d’équivalence et à y distinguer une forme particulière
représentant cette classe 35. L’idée classificatoire se retrouve chez Jordan qui propose de
« déterminer toutes les équations irréductibles équivalentes à une équation donnée », et
définit de cette façon des classes d’équations équivalentes, [Jordan 1870b, p. 271-272].

Enfin, la notion de réduite d’une équation est très souvent utilisée par Jordan, mais
n’est pas définie dans le Traité 36. Si une équation F (x) = 0 est donnée, une réduite de
cette équation est une équation irréductible sur le corps k telle que l’adjonction d’une de
ses racines a pour effet d’abaisser le groupe G de F (x) = 0. Ainsi, si le groupe G est réduit
à un groupe H, le degré de la réduite est égal 37 à l’indice de H dans G, et comme l’écrit
Jean Dieudonné,

[le] problème classique de la recherche des « réduites » d’une équation 38 [...] revient
évidemment à la recherche des sous-groupes de [son] groupe, et les réduites de plus petit
degré, objet principal de ces recherches, correspondent aux sous-groupes maximaux.
[Jordan Œuvres 1, p. xxiii]

Cette remarque s’applique bien à l’étude par Jordan de l’équation aux vingt-sept droites,
puisque, comme nous allons le voir à présent, une grande partie de cette étude consiste en
la recherche de réduites de cette équation.

35. Voir [Goldstein & Schappacher 2007, p. 8-13] pour les formes quadratiques dans les Disquisitiones
Arithemticae, et [Goldstein 2007] pour les travaux de Charles Hermite dans la lignée de ceux de Gauss.
36. Dans son Cours d’algèbre supérieure, Joseph-Alfred Serret indique à plusieurs reprises, en men-

tionnant Joseph-Louis Lagrange, que les termes « réduite » et « résolvante » sont synonymes : voir par
exemple [Serret 1854, p. 202, 235]. En revanche, dans le Traité des substitutions, Jordan n’emploie jamais
le terme « résolvante ». Cela traduit peut-être la volonté de ce dernier de se détacher des méthodes de
Lagrange, dont il évoque les limites dès le deuxième paragraphe de la préface du Traité.
37. Si f(x) = 0 est la réduite en question et si k′ en est un corps de rupture (ce qui correspond à

l’adjonction d’une des racines de f), le degré de f est égal au degré de l’extension k′/k, donc à l’indice
de H dans G, puisque G = Gal(F/k) et H = Gal(F/k′).
38. La recherche de formations de réduites, ou résolvantes, d’une équation avait été initiée autour de 1770

par Lagrange, Alexandre-Théophile Vandermonde et Edward Waring. Le but était d’étudier la résolubilité
des équations algébriques en introduisant ces équations auxiliaires particulières. Voir par exemple [O.
Neumann 2007].
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2.3 L’étude par Jordan de l’équation aux vingt-sept droites :
emprunts géométriques

Ayant éclairci ce qui relève de la géométrie ou de la théorie des substitutions pour
Jordan, nous en venons maintenant à l’analyse de son étude de l’équation aux vingt-sept
droites. Le chapitre des applications géométriques du Traité commence par la description
d’un procédé général des équations associées aux situations issues de la géométrie :

L’un des problèmes les plus fréquents de la géométrie analytique est de déterminer
quels sont les points, ou bien les lignes ou surfaces d’une espèce donnée, qui satisfont
à certaines conditions. Lorsque le nombre des solutions est limité, les coordonnées du
points cherché (ou les paramètres que renferme l’équation des lignes ou surfaces cher-
chées) sont déterminées par un système d’équations algébriques A,B, . . . en nombre
égal à celui des inconnues x, y, . . .. Éliminons toutes les inconnues, sauf une seule,
x : on sait que le degré de l’équation finale X indiquera le nombre des solutions du
problème : et si les racines de cette équation sont inégales, soit x0 l’une d’elles : on
aura les valeurs correspondantes de y, . . . exprimées en fonction rationnelle de x0, en
substituant x0 à la place de x dans les équations A,B, . . ., et en cherchant le système
des solutions communes à ces équations. [Jordan 1870b, p. 301]

Ce procédé n’est explicitement mis en œuvre dans aucune des six situations géométriques
du Traité, ni dans les publications qui reprennent ces travaux. Il est tout au plus adapté au
cas des vingt-sept droites dans [Jordan 1869b], mais toujours sans application effective :

Étant donnés [...] l’équation d’une surface du troisième degré et les équations d’une
droite arbitraire, exprimons que la droite est contenue toute entière dans la surface.
Nous obtiendrons des équations de condition qui permettront d’exprimer rationnelle-
ment trois des paramètres de la droite en fonction du quatrième, qui sera déterminé
par une équation du vingt-septième degré, dont chaque racine correspondra à l’une
des droites. [Jordan 1869b, p. 147]

Pour fixer les idées, voyons comment appliquer plus précisément ce qui est ici décrit par
Jordan.

On considère une surface cubique d’équation F (x, y, z, w) = 0, où F est un polynôme
homogène du troisième degré. Une droite quelconque de l’espace étant donnée, on peut
toujours choisir des coordonnées x, y, z, w de l’espace telles que les équations de cette
droite soient  x = αz + βw

y = γz + δw,

où α, β, γ, δ sont donc les paramètres de la droite 39. Cette droite est donc incluse dans
la surface cubique si et seulement si F (αz + βw, γz + δw, z, w) = 0 pour tous z, w. Or,

39. Pour voir qu’une droite de l’espace dépend de quatre paramètres indépendants, on peut aussi rai-
sonner comme suit. Si x = (x0 : x1 : x2 : x3) et y = (y0 : y1 : y2 : y3) sont deux points de l’espace,
notons pij = xiyj − xjyi pour les six couples (i, j) tels que 0 6 i < j 6 3. On vérifie alors que si x′, y′
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puisque F est un polynôme homogène de degré 3, cette dernière équation peut se mettre
sous la forme

f3(α, β, γ, δ)z3 + f2(α, β, γ, δ)z2w + f1(α, β, γ, δ)zw2 + f0(α, β, γ, δ)w3 = 0,

où chaque fi est un polynôme de degré 3 en α, β, γ, δ. L’inclusion de la droite équivaut
donc au système 

f3(α, β, γ, δ) = 0

f2(α, β, γ, δ) = 0

f1(α, β, γ, δ) = 0

f0(α, β, γ, δ) = 0.

L’équation aux vingt-sept droites est l’équation en α (par exemple) obtenue en éliminant
(β, γ, δ) parmi ces quatre dernières 40. À chaque solution α correspond rationnellement un
triplet (β, γ, δ), et donc une des vingt-sept droites de la surface. L’équation aux vingt-sept
droites est donc une équation algébrique en une inconnue, de degré 27, et donc chaque
racine correspond à une des vingt-sept droites.

2.3.1 D’un problème et de relations géométriques à une fonction de
racines et son groupe

Comme vu précédemment, le premier point de la méthode de Jordan consiste à utiliser
des « relations géométriques » entre les vingt-sept droites. Il cite ainsi le mémoire de Steiner
sur les surfaces cubiques, [Steiner 1856b], pour rappeler que :

Toute surface du troisième degré contient vingt-sept droites ;

L’une quelconque d’entre elles, a, en rencontre dix autres, se coupant elles-mêmes
deux à deux, et formant ainsi avec a cinq triangles. Le nombre total des triangles ainsi
formés sur la surface par les vingt-sept droites est de quarante-cinq ;

Si deux triangles abc, a′b′c′ n’ont aucun côté commun, on peut leur en associer un
troisième a′′b′′c′′ tel, que les côtés correspondants de ces trois triangles se coupent, et
forment trois nouveaux triangles aa′a′′, bb′b′′, cc′c′′. [Jordan 1870b, p. 316]

Jordan note les vingt-sept droites a, b, c, d, e, f , g, h, i, k, l, m, n, p, q, r, s, t, u, m′, n′,
p′, q′, r′, s′, t′, u′ et écrit la liste des quarante-cinq triangles contenant les droites trois à

sont deux points quelconques de la droite (xy), alors il existe un scalaire λ tel que pour tout (i, j), on
a x′iy′j−x′jy′i = λpij . Ainsi, (p01 : p02 : p03 : p12 : p13 : p23) caractérise la droite (xy) ; ce sont les coordonnées
plückériennes de cette droite. On vérifie en outre qu’on a toujours la relation p01p23− p02p13 + p03p12 = 0.
Compte tenu de l’homogénéité des pij et de cette relation, il y a ainsi bien 4 paramètres indépendants pour
une droite de l’espace.
40. Dans les citations précédentes, Jordan ne fait pas référence à un procédé d’élimination en particulier

et laisse entendre que l’équation finale est la même quelles que soient les inconnues que l’on décide d’éli-
miner. Pourtant, des choix différents pourraient a priori donner des équations résultantes différentes. Je
remercie Michel Serfati de m’avoir fait remarquer ce point.
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trois :

abc, ade, afg, ahi, akl, bmn, bpq, brs, btu, cm′n′, cp′q′, cr′s′,

ct′u′, dmm′, dpp′, drr′, dtt′, enn′, eqq′, ess′, euu′, fmq′, fpn′, fst′,

fur′, gnp′, gqm′, gru′, gts′, hms′, hrn′, hqt′, hup′, inr′, ism′, itq′,

ipu′, kmu′, ktn′, kqr′, ksp′, lnt′, lum′, lrq′, lps′.

Le point suivant pour Jordan est de créer, grâce à ces relations, une « fonction des
racines » de l’équation aux vingt-sept droites. Pour cela, Jordan « convien[t] de désigner
par a, b, c, . . . celles des racines de cette équation qui correspondent respectivement aux
droites a, b, c, . . . », [Jordan 1869b, p. 148]. Cet abus de notation n’est pas d’ailleurs spéci-
fique au cas des vingt-sept droites. Ainsi, dans sa description générale de la méthode des
« Applications géométriques », Jordan écrit :

Nous conviendrons de désigner par x0, x1, . . . ceux des points, lignes ou surfaces cher-
chés qui correspondent respectivement aux racines x0, x1, . . .. Cette locution sera com-
mode, et n’offre aucun danger de confusion, les deux choses ainsi désignées par le même
nom étant de nature absolument différente. [Jordan 1870b, p. 301]

Le double emploi de notation est ici intéressant en ce qu’il indique qu’un transfert de la
géométrie vers la théorie des substitutions est effectué. Mais le fait que les objets racines
et droites soient « de nature absolument différente » montre bien qu’il ne s’agit pas pour
autant d’un amalgame pour Jordan. En particulier, il s’agira dans la suite tout le temps
de substitutions de racines, et pas de substitutions de droites.

La fonction des racines créée est la suivante :

ϕ = abc+ ade+ · · ·+ lps′,

où chacun des termes qui apparaît est le produit de trois racines de l’équation aux vingt-sept
droites qui correspondent aux quarante-cinq triangles que forment les vingt-sept droites.

C’est ensuite le groupe de l’équation aux vingt-sept droites et le groupe de ϕ qui sont
mis en relation — par définition, le groupe de ϕ est le groupe formé des substitutions des
racines a, b, c, . . . qui laissent ϕ invariante. Jordan commence par montrer que le groupe G
de la fonction ϕ contient le groupe de l’équation aux vingt-sept droites.

En effet, le fait que les droites a, b, c forment un triangle s’exprime, selon Jordan, par
un système de « relations analytiques [...] entre les racines 41 » :

ψ(a, b, c) = 0, χ(a, b, c) = 0, . . .

41. [Jordan 1869b, p. 148]. Les relations en question doivent exprimer que les droites a, b et c sont
coplanaires. Par exemple, si a (resp. b) est donnée comme intersection de deux plans A et B (resp. C et D)
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Si maintenant S est une substitution du groupe de l’équation aux vingt-sept droites et
si a′, b′ et c′ sont les racines qu’elle fait succéder à a, b, c, alors, puisque ψ, χ, . . . sont
rationnelles en a, b, c, on a

ψ(a′, b′, c′) = 0, χ(a′, b′, c′) = 0, . . .

Cela prouve que a′, b′ et c′ forment un triangle, et donc que le terme a′b′c′ apparaît dans
ϕ. Ainsi, la substitution S échange entre eux les quarante-cinq termes de ϕ, et appartient
dont au groupe G.

L’inclusion réciproque est plus problématique :

Réciproquement, si l’on admet que toutes les relations géométriques existant entre
les vingt-sept droites peuvent se déduire de celles qui précèdent, ce qui est au moins
fort probable, [le groupe de l’équation aux vingt-sept droites] contiendra toutes les
substitutions qui n’altèrent pas ϕ. [Jordan 1869b, p. 148]

Ici non plus, le problème n’est pas spécifique aux vingt-sept droites, puisque Jordan écrit
de façon générale :

Réciproquement, si l’on était certain de connaître toutes les relations géométriques
que présente la question proposée (ou du moins celles dont les autres dérivent), le
groupe de l’équation X contiendrait toutes les substitutions du groupe de ϕ. Mais
une semblable certitude est difficile à obtenir, malgré le soin apporté par d’habiles
géomètres à l’étude de ces problèmes. Il ne serait donc pas impossible que les équations
auxquelles ces problèmes donnent naissance eussent parfois une forme plus particulière
encore que celle que nous allons trouver, en nous appuyant sur les résultats obtenus
par nos prédécesseurs. [Jordan 1870b, p. 301]

Ces précautions étant dites, Jordan admet les inclusions réciproques, et ne revient pas sur
le sujet.

Dans toutes les sources primaires que j’ai pu consulter, je n’ai trouvé aucun commen-
taire sur ces inclusions réciproques problématiques. Dans son livre sur l’histoire de l’al-
gèbre, Bartel Leendert van der Waerden mentionne cette lacune dans le cas des vingt-sept
droites et propose une démonstration pour y remédier, [Van der Waerden 1985, p. 128].
Cette démonstration se base sur un certain nombre de propriétés prouvées par Jordan et

d’équations Ax+A′y +A′′z +A′′′w = 0, etc., alors la coplanarité de a et b se traduit par l’équation∣∣∣∣∣∣∣∣∣∣
A A′ A′′ A′′′

B B′ B′′ B′′′

C C′ C′′ C′′′

D D′ D′′ D′′′

∣∣∣∣∣∣∣∣∣∣
= 0.

Or, les coordonnées de la droite a sont justement des quotients de A, A′,. . . , B′′′ (voir par exemple [Salmon
1882, p. 24]). La coplanarité de deux droites se traduit donc par une équation rationnelle en les coordonnées
de ces droites. Enfin, pour chaque droite, trois de ses coordonnées s’expriment rationnellement en fonction
de la quatrième, qui est solution de l’équation X.
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par Geiser, que nous verrons apparaître plus loin dans ce chapitre. Ainsi, van der Waerden
commence par déterminer l’ordre du groupe de l’équation aux vingt-huit tangentes doubles
d’une courbe quartique. Il en déduit ensuite, grâce aux travaux de Geiser, que l’ordre du
groupe de l’équation aux vingt-sept droites est 51 840. Jordan ayant montré que l’ordre
du groupe de ϕ est égal à ce nombre, il y a bien égalité entre le groupe de ϕ et le groupe
de l’équation aux vingt-sept droites. Dans la suite du chapitre, nous verrons que Jordan
connaissait effectivement les travaux de Geiser et qu’il les mobilise dans le Traité pour un
autre point. Du point de vue de van der Waerden, les mathématiques de Jordan deviennent
ainsi ici davantage dépendantes de celles de Geiser.

On voit en tout cas dans ce problème d’égalité de groupes l’importance des relations
géométriques pour l’étude de l’équation aux vingt-sept droites (et même des autres équa-
tions du chapitre des applications géométriques). Par le biais de la double notation entre
droites et racines, ces relations sont encodées dans la fonction ϕ, dont le groupe devient
alors le centre d’attention. C’est par l’intermédiaire de cette fonction ϕ que se fait donc la
traduction de l’information géométrique en termes de théorie des substitutions et qui va
permettre à Jordan de déterminer les caractéristiques principales du groupe de l’équation
aux vingt-sept droites, supposé être égal à celui de ϕ.

2.3.2 Groupe, ordre et facteurs de composition de l’équation aux vingt-
sept droites

Jordan commence par déterminer l’ordre du groupe G de l’équation aux vingt-sept
droites — qui est donc supposé être égal au groupe de la fonction ϕ. Il constate d’abord
qu’il y a au plus 27 possibilités pour l’image de a par une substitution quelconque 42

de G. Ensuite, comme les substitutions de G laissent ϕ invariante, celles qui ne déplacent
pas a doivent nécessairement permuter entre eux les cinq termes de ϕ qui contiennent a,
à savoir abc, ade, afg, ahi, akl. Elles sont donc susceptibles d’envoyer b sur b, c, d, e, f ,
g, h ou i, ce qui donne au plus 10 choix. Jordan continue ainsi : les substitutions de G qui
fixent a et b fixent nécessairement c et sont susceptibles d’envoyer d sur d, e, f , g, h ou i, ce
qui donne au plus 8 choix. Par le même type d’argument, il montre que les substitutions qui
fixent a, b et d fixent nécessairement e et permutent entre elles les racines m, p, r, t ; il y a
donc au plus 24 choix pour ces substitutions. Enfin, Jordan remarque que les substitutions
qui fixent a, b, d, m, p, r et t fixent en fait toutes les racines. Il déduit de tout cela que
l’ordre de G est au plus 27 · 10 · 8 · 24.

Réciproquement, Jordan montre que l’ordre de G est au moins égal à ce nombre en
exhibant six substitutions particulières qui permettent de réaliser chacune des substitutions

42. L’irréductibilité de l’équation aux vingt-sept droites n’étant à ce stade pas démontrée, on ne peut
ici que majorer le nombre des racines qui peuvent succéder à a.
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décrites précédemment :

A = (amu)(cnt)(gq′r′)(is′p′)(u′ld)(m′ek)

B = (bhk)(cil)(pt′r′)(ns′u′)(p′tr)(n′su)

C = (dhk)(eil)(m′s′u′)(pus)(n′r′t′)(qtr)

D = (ghk)(fil)(n′u′s′)(mtr)(m′t′r′)(nus)

E = (fhk)(gil)(p′r′t′)(ptr)(q′s′u′)(qsu)

F = (hk)(il)(r′t′)(s′u′)(rt)(su).

Il précise sans le prouver que ces substitutions appartiennent bien à G. Regardons 43 par
exemple le cas de A : notant 1, 2, . . . , 45 les termes de ϕ dans l’ordre où ils apparaissent,
A induit la permutation sur {1, . . . , 45} définie par(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

6 38 22 30 14 9 7 8 1 18 34 26 42 21 37 28 13 39 40 41 5 25 23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

24 3 36 19 44 11 33 31 32 4 29 20 12 45 43 10 27 35 17 2 16 15

)
.

En effet, A envoie la racine a sur m, la racine b sur elle-même et la racine c sur n, de sorte
que le produit abc est envoyé sur bmn ; les autres vérifications se font de même. Les termes
de ϕ étant donc permutés entre eux, la substitution A est bien un élément de G.

Toujours sans en donner les preuves, Jordan affirme que, combinées entre elles, les
substitutions A, B, C, D et E permettent d’envoyer a sur n’importe quelle autre racine ;
que B, C, D et E fixent a et peuvent envoyer b sur n’importe quelle des racines b, c, d, e,
f , g, h ou i ; que C, D et E fixent a et b, et permettent d’envoyer d sur n’importe quelle
des racines d, e, f , g, h, i, k, l ; que D et E fixent a, b et d, et permettent d’envoyer m
et p sur deux quelconques racines parmi m, p, r, t ; enfin, que F permute r et t tout en
fixant a, b, d, m, p — j’ai vérifié ces points un à un : par exemple, a peut être envoyé sur b
par la substitution BA2D2BE2DA ; b peut être envoyé sur c par BD2EB2 ; d peut être
envoyé sur e par C2ED2C ; (m, p) peut être envoyé sur (p, t) par D2ED.

Ces différents points montrent que G contient au moins 27 · 10 · 8 · 12 · 2 substitutions.
Finalement, le groupe G est de cardinal 27·10·8·12·2, et bien que Jordan ne le souligne pas,
sa démonstration montre bien entendu que G est dérivé (c’est-à-dire, en termes actuels,
engendré par) des substitutions A, B, C, D, E et F . Jordan poursuit en notant H le groupe
dérivé de A, B, C, D et E. La démonstration précédente lui prouve que H est d’ordre au
moins 27 · 10 · 8 · 12 ; il montre ensuite que H est d’ordre exactement ce nombre, qu’il est

43. Cette vérification, et celles que j’effectue dans la suite de cette section, ne sont pas données dans le
Traité.
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permutable à toutes les substitutions de G et que c’est un groupe simple. Voici comment
il procède.

En ce qui concerne l’ordre de H, Jordan commence par remarquer que chaque substi-
tution de G « équivaut à un certain déplacement opéré entre les termes de ϕ », [Jordan
1870b, p. 318]. Les déplacements, ou substitutions, ainsi obtenus forment un groupe G1

dont les éléments correspondent un à un à ceux de G. Il y a dans G1 un groupe partiel S1

formé des substitutions résultant d’un nombre pair de transpositions entre les termes de ϕ.
Ce groupe partiel S1 est permutable aux substitutions de G1 et il lui correspond un groupe
partiel S dans G, permutable à toutes les substitutions de celui-ci. Jordan affirme ensuite
que les substitutions A, B, C, D et E équivalent toutes à un nombre pair de transpositions.
En effet, on peut vérifier par exemple, à partir de l’écriture de A donnée plus haut, que A
se décompose de la façon suivante :

A = (1 6 9)(2 38 43)(3 22 25)(4 30 33)(5 14 21)(10 18 39)(11 34 29)(12 26 36)

(13 42 17)(15 37 45)(16 28 44)(19 40 27)(20 41 35),

ce qui montre que A est effectivement une permutation paire. Jordan en déduit que H
est contenu dans S . Mais F n’est pas dans S car elle équivaut à un nombre impair de
transpositions, ce qui donne la conclusion : S contient au plus la moitié des substitutions
de G et contient H qui en contient exactement la moitié ; par conséquent H = S et en
particulier leurs ordres sont égaux à la moitié de l’ordre de G.

Résumons ces derniers arguments avec un point de vue actuel. L’action de G sur les
quarante-cinq termes de ϕ donne un isomorphisme

Φ : G ⊂ S27
∼−→ G1 ⊂ S45.

Le sous-groupe S1 = G1 ∩ A45 est distingué dans G1 car A45 l’est dans S45. Le sous-
groupe S = Φ−1(S1) est donc distingué dans G. On vérifie que Φ(A),Φ(B), . . . ,Φ(E)

appartiennent à S1, ce qui implique que H, engendré par A, . . . , E, est inclus dans S .
De plus, comme Φ(F ) 6∈ S1, on a F 6∈ S et donc (G : S ) > 2, ce qui donne par
conséquent Card S 6 (CardG)/2. Mais puisque

Card S > CardH > 28 · 10 · 8 · 12 =
CardG

2
,

il vient enfin Card S = CardH = (CardG)/2 et donc S = H.

Jordan détermine ensuite les facteurs de composition de G. Par construction de H,
ceux-ci sont 2 ainsi que les facteurs de composition de H. Jordan montre alors que le
groupe H est simple. En ce qui concerne ce point, seules les idées de la démonstration
de Jordan seront indiquées ici. Dans le Traité, Jordan renvoie en fait à des paragraphes
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antérieurs où une situation analogue est traitée ; dans l’article [Jordan 1869b], la preuve
est donnée intégralement. L’idée est la suivante : si I est un groupe (différent de {1})
contenu dans H et permutable à toutes ses substitutions, Jordan montre successivement
que I contient

1o une substitution qui fixe a,

2o une substitution qui fixe a et b,

3o une substitution qui fixe a, b et d,

4o la substitution E,

5o les substitutions A, B, C, D et E.

Donnons en termes modernes les grandes lignes de la preuve du point 1o , celles des autres
points étant du même type. Soit S ∈ I \ {1} qui envoie a sur, par exemple, b. Si parmi
les substitutions C, D, E, il y en a une, disons T , qui ne commute pas avec S, alors I
contient S−1 · T−1ST 6= 1 qui envoie a sur lui-même : c’est ce qui est demandé. Sinon, S
permute entre elles les racines a, b, c d’une part et les racines m, n d’autre part. Donc, si S
ne fixe aucune racine, elle permute circulairement a, b, c d’une part et m, n d’autre part.
En particulier, S2 6= 1 et S2 fixe m et n. Or, il existe Σ ∈ H telle que Sm = a. Alors I
contient Σ−1S2Σ qui fixe a.

Comme H est dérivé de cinq substitutions A, B, C, D, E, le point 5o implique que I
est égal à H et donc que H est simple. À l’issue des indications de cette preuve, Jordan
précise 44 :

Nous nous bornons à indiquer ce procédé direct de démonstration, la proposition à
établir devant se retrouver plus loin (504). [Jordan 1870b, p. 319]

Le numéro 504 du Traité est celui qui conclut son travail sur les équations liées aux fonctions
hyperelliptiques. Jordan y montre d’une part que le groupe de l’équation de la trisection
des périodes de ces fonctions est égal au groupe abélien, et d’autre part qu’il est identique,
après adjonction d’une racine carrée, à celui de l’équation aux vingt-sept droites. Écrit avec
des notations actuelles, le groupe de l’équation de la trisection est le groupe Sp4(F3)oF∗3 ;
après adjonction d’une racine carrée, il se réduit à Sp4(F3), qui est donc le groupe de
l’équation aux vingt-sept droites. Or, Jordan a également montré lors de son étude générale
du groupe abélien que le groupe PSp4(F3) = Sp4(F3)/{±I4} est simple 45, et ce dernier
est justement le groupe H dont il est question ici.

Résumons : pour le moment, Jordan a montré que le groupe G de la fonction ϕ est
d’ordre 27 · 10 · 8 · 24 (= 51 840), qu’il possède un sous-groupe H d’indice 2 qui est simple,

44. Coquille dans le Traité, où le numéro auquel Jordan renvoie est 502.
45. [Jordan 1870b, p. 176].
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et donc que les facteurs de composition de G sont 2 et (CardG)/2. Il a aussi exhibé des
substitutions particulières qui engendrent G. Tout ce travail s’est basé exclusivement sur
l’étude du groupe de la fonction ϕ. En particulier, il n’y a eu aucune intervention d’objets
ou de relations géométriques : la fonction ϕ a donc ici réalisé son rôle de traduction et a
permis à Jordan de déployer ses techniques de théorie des substitutions.

2.3.3 Réduites géométriques

Presque tout reste du paragraphe sur l’équation aux vingt-sept droites est consacré à
la recherche de réduites de cette équation, ce qui correspond aux numéros 445 à 452 du
Traité. Citons intégralement le 445 :

L’équation aux vingt-sept droites a plusieurs réduites remarquables, signalées par di-
vers géomètres.

1o Prenons, par exemple, pour inconnue de la question le plan du triangle formé par
trois droites qui se coupent ; ces triangles étant au nombre de quarante-cinq, on aura
une équation du quarante-cinquième degré, équivalente à la proposée.

2o On peut déterminer de (45 · 32)/2 manières différentes un système de deux tri-
angles qui n’aient aucune droite commune ; à chaque semblable système correspond
un triangle associé (441). Réciproquement, chaque système de trois triangles asso-
ciés (trièdre de Steiner) correspond aux trois combinaisons deux à deux des triangles
qui les forment. Le nombre total des trièdres sera donc (45 · 32)/(2 · 3). On peut
d’ailleurs grouper ces trièdres par paires (doubles trièdres) en réunissant ensemble
ceux qui contiennent les mêmes droites. Enfin les doubles trièdres peuvent être as-
sociés trois à trois, en réunissant ensemble ceux qui n’ont aucune droite commune.
Prenant pour inconnue ce système de trois doubles trièdres, on aura une équation de
degré (45 · 32)/(2 · 3 · 2 · 3) = 40, et équivalente à la proposée.

3o On peut déterminer de (27 · 16)/2 manières différentes une paire de droites qui ne
se coupent pas. On peut d’ailleurs grouper ces paires six à six (doubles-six de Schlä-
fli), de sorte que les droites d’une paire rencontrent chacune une droite de chaque
autre paire du double-six. Les doubles-six dépendent donc d’une équation du de-
gré (27 · 16)/(2 · 6) = 36, qui sera encore équivalente à la proposée.

Aucune réduite d’un degré inférieur au vingt-septième n’ayant été rencontrée jusqu’ici,
on était fondé à penser qu’il est impossible de ramener la résolution de l’équation aux
vingt-sept droites à celles d’une équation d’un degré inférieur. Nous allons en effet
prouver cette proposition. [Jordan 1870b, p. 319]

Les 1o , 2o et 3o de cet extrait consistent chacun en la présentation par Jordan d’une
équation équivalente à celle aux vingt-sept droites. À chaque fois, le schéma de raisonne-
ment est le même : Jordan considère des groupements particuliers des vingt-sept droites,
les dénombre et en déduit immédiatement à la fois l’existence d’une équation associée et
son équivalence avec l’équation aux vingt-sept droites. Dans la suite du Traité, Jordan ne
revient à aucun moment sur ces trois points 1o , 2o , 3o , que ce soit pour des explications,
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des compléments de démonstration ou d’autres commentaires ; c’est aussi le seul endroit
du Traité où l’on trouve ce genre de raisonnement.

Comme écrit précédemment, les groupements particuliers des vingt-sept droites — à
savoir : les triangles, les systèmes de trois doubles trièdres et les doubles-six — relèvent
bien de la géométrie, au sens mis en avant à la section 2.2. Le schéma de preuve de Jordan
consiste donc à déduire certaines propriétés de l’équation aux vingt-sept droites directe-
ment à partir de l’existence de certains objets géométriques : il n’y a pas d’intervention
d’objets comme des fonctions de racines, des substitutions et leurs groupes, des procédés
d’adjonction, etc.

En leur attribuant une paternité (Steiner ou Schläfli), Jordan souligne que les objets
géométriques qu’il utilise avaient été présentés dans des travaux antérieurs (que nous avons
décrits au chapitre 1) : les systèmes de trois doubles trièdres ont été vus dans [Steiner
1856b] et les doubles-six dans [Schläfli 1858]. Par ailleurs, Jordan écrit ici que les réduites
correspondantes ont été « signalées par divers géomètres ». Or, ni Steiner ni Schläfli ne
faisaient mention d’une quelconque équation qui pourrait avoir rapport avec l’équation
aux vingt-sept droites. Il semble donc que c’est Jordan lui-même qui traduit l’existence
des différents groupements obtenus à partir des vingt-sept droites en réduites de degré
correspondant au nombre d’objets de ces groupements.

Ce transfert de la connaissance géométrique vers la théorie des substitutions est différent
de celui rencontré autour des fonctions ϕ. Si cette connaissance géométrique consiste ici
aussi en des relations d’incidence particulières, ces dernières sont directement incarnées
en équations que j’appellerai ainsi « réduites géométriques » ; il n’y a intervention ni de
fonction de racines ni de groupe de substitutions.

L’idée d’incarnation directe d’objets géométriques en équations équivalentes se lit en-
core dans la dernière parie de la citation de Jordan : « Aucune réduite d’une degré inférieur
au vingt-septième n’ayant été rencontrée jusqu’ici [...] ». Encore une fois, Jordan semble
se baser sur le fait qu’aucune configuration formée à partir des vingt-sept droites et com-
portant moins de vingt-sept objets n’a été trouvée au moment où il écrit. Mais il propose
alors (à partir du numéro 446) une démonstration dans laquelle, comme nous allons le voir
à présent, il n’y a plus de trace de géométrie.

2.3.4 Il n’existe pas de réduite de degré inférieur à 27

Pour montrer que l’équation aux vingt-sept droites ne possède pas de réduite de degré
strictement inférieur à 27, Jordan commence par faire remarquer que si un tel abaisse-
ment avait lieu, il aurait également lieu après avoir adjoint la racine carrée réduisant 46

46. Rappelons en effet que l’indice de H dans G est 2. Donc, si K désigne un corps de décomposition
de l’équation aux vingt-sept droites, et si k′ désigne la sous-extension de K/k telle que Gal(K/k′) = H,
on a [k′ : k] = 2. C’est justement dire qu’il existe un élément δ de degré 2 sur k (la « racine carrée ») tel
que k′ = k(δ).
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le groupe G à H. Il suppose que cette adjonction est faite et cherche alors quels sont les
degrés possibles pour l’équation réduite.

Jordan note E27 l’équation aux vingt-sept droites et Ed une équation équivalente à E27,
de degré d minimal parmi celles-ci. Il montre par l’absurde que Ed est irréductible et
primitive : si Ed n’était pas irréductible, la résolution d’un de ses facteurs (de degré inférieur
à d) abaisserait le groupe de E27. Mais comme H, groupe de E27, est simple, la résolution
d’un tel facteur entraînerait la résolution complète de E27 d’après le Corollaire qui
a été rappelé à la section 2.2.3. Comme réciproquement, toutes les racines de Ed, donc
celles de ses facteurs irréductibles, sont des fonctions rationnelles de celles de E27, cela
implique que E27 est équivalente à un facteur de Ed, ce qui contredit la minimalité de d. Si
d’autre part l’équation Ed n’était pas primitive, ses racines se regrouperaient en systèmes
« dépendant d’une équation dont le degré divise d », [Jordan 1870b, p. 320]. La résolution
de cette équation abaisserait 47 le groupe de E27 et donc entraînerait comme supra la
résolution de E27, contredisant à nouveau la minimalité de d.

Jordan note ensuite Gd l’ordre de Ed, c’est-à-dire l’ordre de son groupe. Puisque cette
dernière et E27 sont équivalentes, Gd est égal à l’ordre de E27, qui est Ω = 27 · 10 · 8 · 6 · 2.
En outre, Gd est divisible par d et divise 48 1 · 2 . . . d. Jordan en conclut que si d < 27,
alors d est l’un des nombres 24, 20, 18, 16, 15, 12, 10 et 9. Il écarte ensuite ces différentes
possibilités au fur et à mesure, au cours de longs développements. À titre d’exemple, je ne
retranscrirai ici que la preuve de l’impossibilité du cas d = 24. Cette preuve s’adapte en
effet aux cas d = 18 et d = 12, et est représentative des méthodes déployées dans les autres
cas. La démonstration de Jordan devenant ici très elliptique, je choisis d’intervenir ligne
par ligne pour donner des compléments et des explications en termes modernes. J’introduis
également une numérotation afin d’en rendre la lecture plus aisée.

1. Jordan suppose l’existence d’une réduite E24 de degré 24. « Adjoignons à l’équation E24

une de ses racines, x : l’équation E23 qui détermine les vingt-trois racines restantes a
son groupe G23 formé des substitutions qui laissent x immobile, et son ordre est égal
à Ω/24, nombre divisible par les nombres premiers 49 2, 3, [5]. »

Par correspondance de Galois, le groupe G23 de E23 est effectivement le stabilisa-
teur StabG24(x) de x sous G24. De plus, comme E24 est irréductible, son groupe G24 est
transitif d’après le Théorème II rappelé en section 2.2.3. Par conséquent, l’orbite G24 ·x

47. Il s’agit d’un théorème général sur la résolution des équations non primitives. Voir par exemple [Jor-
dan 1881, p. 31].
48. Le fait que Gd divise d! vient de ce que Gal(Ed/k) est un sous-groupe de Sd. Le fait que Gd soit

divisible par d s’explique de la façon suivante : si on note x1, . . . , xd les racines de Ed, alors Gd est égal
au degré [k(x1, . . . , xd) : k]. Mais [k(x1, . . . , xd) : k] = [k(x1, . . . , xd) : k(x1)][k(x1) : k], et comme Ed est
irréductible, k(x1) ' k[X]/(Ed) est de degré d sur k.
49. Coquille dans le Traité, où il est écrit « 2, 3, 4 ».
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est de cardinal maximal, c’est-à-dire 24. Ainsi,

#G23 = # StabG24(x) =
#G24

#G24 · x
=

Ω

24
.

Le nombre Ω/24 est bien divisible par 2, 3 et 5 ; ce sont d’ailleurs ses seuls facteurs
premiers.

2. « Les équations irréductibles dont [E23] est le produit ont donc leur ordre divisible par
ces trois nombres premiers, à l’exclusion de tous les autres (397). »

Le théorème donné au numéro 397 du Traité dit en effet que si E est une équation
irréductible et primitive de degré n et E une équation de degré n − 1 obtenue en
adjoignant à E une de ses racines, tout nombre premier qui divise l’ordre de E divise
l’ordre de chacune de ses équations partielles (c’est-à-dire de ses facteurs). Appliqué
ici, cela entraîne que l’ordre de chacun des facteurs irréductibles de E23 est divisible
par 2, 3 et 5. Réciproquement, tout diviseur de l’ordre d’une équation partielle divise
l’ordre de l’équation car le groupe de la première est un sous-groupe de celui de la
seconde. Ici, 2, 3 et 5 sont les seuls diviseurs premiers de Ω/24, ce qui permet à Jordan
d’exclure les nombres premiers autres que 2, 3 et 5 des diviseurs des ordres des équations
partielles.

3. « Donc chacune de ces équations est du degré 5 au moins ; en outre, aucune d’elles n’a
pour degré 7, 8 ou 9, car son ordre ne pourrait être divisible par 5 sans l’être par 7

(398) ».

Le théorème du numéro 398 du Traité énonce que si une équation irréductible E
de degré n a son ordre divisible par un nombre premier p supérieur à n/2, son groupe
sera n−p+1 fois transitif. Dans la situation présente, supposons par exemple qu’un fac-
teur irréductible soit de degré 8 et notons-en x1, . . . , x8 les racines. Par le théorème 398
appliqué avec n = 8 et p = 5, son groupe Γ est 3 fois transitif. Notons StabΓ(x1, x2)

le sous-groupe de Γ définit par {g ∈ Γ, gx1 = x1 et gx2 = x2}. Ce groupe s’interprète
comme le stabilisateur de x2 sous StabΓ(x1), donc

# StabΓ(x1, x2) =
# StabΓ(x1)

# StabΓ(x1) · x2
.

Mais StabΓ(x1) · x2 est de cardinal 7 car, comme G est 3 fois donc 2 fois transitif, on
peut envoyer (x1, x2) sur n’importe quel couple (x1, ξ) avec ξ ∈ {x2, . . . , x8}. Donc

# StabΓ(x1, x2) =
1

7
# StabΓ(x1) =

1

7
· #Γ

8
,

la dernière égalité provenant comme au point 1 de la transitivité de Γ. De cela suit
que #Γ est divisible par 7.
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4. « Enfin, aucune d’elles n’a son degré divisible par un nombre premier autre que 2, 3, 5,
car ce nombre premier diviserait son ordre. »

En effet, comme le degré d’une équation irréductible divise son ordre (voir la note 48),
tout diviseur premier du degré divise également l’ordre de l’équation.

5. « D’après cela, les seules hypothèses admissibles pour les degrés de ces facteurs irréduc-
tibles sont les suivantes : 18 et 5 ; 12, 6 et 5 ; 6, 6, 6, et 5. »

On énumère les possibilités : on cherche des degrés sous la forme 2α3β5γ , leur somme
doit être égale à 23. Parmi les nombres de la forme annoncée, ceux qui sont inférieurs à
23 sont 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18 et 20. On exclut déjà 1, 2, 3, 4, 8 et 9 vu
le point 3. Faire la liste des partitions de 23 avec les nombres de la liste restants donne
ce qui est énoncé par Jordan.

6. Jordan montre que la première des hypothèses précédentes est impossible, les mêmes
raisonnements impliquant alors que les autres le sont tout autant : « Supposons que E23

soit le produit de deux facteurs E18 et E5 ayant respectivement pour racines y1, . . . , y18

et x1, . . . , x5. L’ordre du groupe partiel Γ(µ) formé par les substitutions de G24 qui
laissent immobiles x et xµ sera Ω/(24 ·5) et celui du groupe partiel ∆(ν) formé par celles
des substitutions qui laissent immobiles x et yν sera Ω/(24 · 18). »

Il est bon de commencer par rappeler que si F est un facteur (rationnel) d’une
équation E, alors tout élément du groupe de Galois de E induit une permutation des
racines de F — cette propriété apparaît de façon un peu cachée au numéro 357 du
Traité. Ici, les racines x1, . . . , x5 sont donc permutées entre elles, de même que les
racines y1, . . . , y18. Comme E5 est irréductible, l’action induite est transitive et on en
déduit comme au point 3 que

#Γ(µ) =
# StabG24(x)

# StabG24(x) · xµ
=

Ω/24

5
.

De même pour #∆(ν).

7. « Soit maintenant S une substitution de G24, qui remplace x par xµ, et soient z une autre
racine quelconque de E24, u la racine que S lui fait succéder. Le groupe formé par les
substitutions qui laissent xµ et u immobiles est le transformé par S de celui dont les sub-
stitutions laissent x et z immobiles ; il contiendra donc Ω/(24 · 5) ou Ω/(24 · 18) substi-
tutions, suivant que z sera l’une des racines x1, . . . , x5 ou l’une des racines y1, . . . , y18. »

Par définition, le transformé de Stab(x, z) par S est le groupe S · Stab(x, z) · S−1,
voir [Jordan 1870b, p. 24] ; remarquer que Jordan note la composition de deux substitu-
tions dans l’ordre inverse de celui qui est habituel de nos jours. Les assertions de Jordan
dont il est question ici ne posent pas de difficulté.
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8. « Or l’équation E5 ayant son ordre divisible par 3, son groupe est trois fois transi-
tif (398) ; donc le groupe formé par celles des substitutions de G23 qui laissent immobiles
deux quelconques de ses racines xµ et xµ′ , a pour ordre Ω/(24 · 5 · 4). »

La démonstration est la même qu’au point 3, où a d’ailleurs été rappelé le théorème
du no 398.

9. « Le groupe formé par celles des substitutions de G24 qui jouissent de cette propriété,
contenant celui-là, a pour ordre un multiple de ce nombre ; donc il ne peut avoir pour
ordre Ω/(24 · 18) ; donc les cinq racines telles, que le groupe partiel formé par celles
des substitutions de G24 qui laissent immobiles l’une d’elles en même temps que xµ ait
pour ordre Ω/(24 · 5), sont x, x1, . . . , xµ−1, xµ+1, . . . Mais S les fait succéder aux cinq
racines x1, . . . , x5, qui jouissent de la même propriété par rapport à x. Donc S permute
exclusivement entre elles les six racines x, x1, . . . , x5 ».

D’après le point 6, on a # Stab(xµ, x) = Ω/(24 · 5). Ensuite, d’après le point 7,

# Stab(xµ, xµ′) =

 Ω/(24 · 5) si S−1xµ′ ∈ {x1, . . . , x5}

Ω/(24 · 18) si S−1xµ′ ∈ {y1, . . . , y18}.

Vu le début de ce point 9, le second cas est exclu, ce qui implique simultanément que
l’on a # Stab(xµ, xµ′) = Ω/(24 · 5) et S−1xµ′ ∈ {x1, . . . , x5}. Ce dernier fait, joint à
l’égalité Sx = xµ, montre alors que S permute entre elles x, x1, . . . , xµ. Par conséquent,
on a nécessairement S−1yν ∈ {y1, . . . , y18} pour tout ν et donc # Stab(xµ, yν) = Ω/(24 ·
18), ce qui finit de prouver le point 9.

10. « D’où l’on [déduit] comme au no 396, que E24 n’est pas primitive, ce qui est contraire
au numéro précédent. »

Donnons les grandes lignes de la preuve du no 396, qui s’adapte telle quelle à la
situation présente. Si une substitution de G24 envoie une des racines x, x1, . . . , x5 sur
une autre de cet ensemble, alors elle permute ces six racines exclusivement entre elles.
Soit y ∈ {y1, . . . , y18} et soit U ∈ G24 telle que Ux = y. Nécessairement, les six ra-
cines y = Ux, η1 = Ux1, . . . , η5 = Ux5 sont toutes différentes de x, x1, . . . , x5 et toute
substitution envoyant une des racines du premier ensemble sur une racine du second
ensemble envoie toutes les racines du premier ensemble sur celles du second. On obtient
de même un troisième ensemble de six racines η′, η′1, . . . , η′5. Cette partition des racines
de E24 en trois ensembles montre que E24 n’est pas primitive.

Jordan a ainsi prouvé que l’équation aux vingt-sept droites ne possède pas de réduite
de degré d = 24. Avec le même genre de techniques, il montre que les autres possibilités
pour d mènent toutes à des contradictions.



2.3. EMPRUNTS GÉOMÉTRIQUES 115

2.3.5 Conclusion partielle

Les travaux de Jordan sur l’équation aux vingt-sept droites portent donc les traces de
transferts opérés depuis ce que Jordan perçoit comme de la géométrie vers ce qui relève
de la théorie des substitutions. Si ces transferts concernent toutes les relations d’incidence
particulières entre les vingt-sept droites, ils sont exprimés de différentes manières dans les
travaux de Jordan.

La traduction de telles relations consistant en la création de la fonction ϕ peut se
voir comme un encodage de l’information géométrique en termes de racines 50. Ce procédé,
commun à toutes les situations du chapitre des applications géométriques du Traité, permet
à Jordan d’étudier le groupe de l’équation aux vingt-sept droites via le groupe de ϕ, et
d’en trouver l’ordre, les facteurs de compositions, des générateurs, etc. Ce sont ensuite ces
éléments qui sont utilisés pour montrer qu’il n’existe pas de réduite de degré inférieur à 27.

La déduction immédiate de réduites à partir des triangles, systèmes de trois doubles
trièdres et doubles-six montre un transfert de la connaissance géométrique effectué d’une
manière différente. Au contraire des fonctions ϕ, la présence de ces réduites dans le Traité
est tout à fait spécifique au paragraphe sur les vingt-sept droites, et le schéma de raisonne-
ment sous-jacent (qui n’est d’ailleurs pas justifié) s’écarte du type de démonstrations que
l’on trouve ailleurs dans le Traité. Autrement dit, ces réduites géométriques ne s’accordent
pas avec le reste de l’ouvrage de Jordan, et la question de comprendre leur présence dans
le Traité reste ouverte. Cela étant dit, je vais pour le moment continuer à suivre le fil de
la description des travaux de Jordan sur les vingt-sept droites.

On remarquera encore ici un trait commun aux transferts géométriques réalisés avec
les fonctions ϕ ou les réduites géométriques : l’impossibilité d’épuiser, par des méthodes
géométriques, la connaissance des relations géométriques d’une configuration donnée. Cette
impossibilité s’exprimait dans le cas de ϕ par le problème de l’inclusion réciproque entre
son groupe et celui de l’équation aux vingt-sept droites. Dans le cas des réduites, elle
donnait à Jordan le pressentiment qu’il n’existait pas de réduite de degré inférieur à 27, ce
qui a alors été montré par la théorie des substitutions.

Cela met ainsi en avant des limites de la géométrie pour répondre à des questions
« purement négatives », comme l’écrit Jules Hoüel dans sa revue bibliographique du Traité :

Plusieurs des résultats que nous venons d’énumérer ont attiré l’attention de divers
géomètres, qui les ont démontrés par d’autres méthodes. [...] Nous ferons pourtant
remarquer qu’aucune des propositions purement négatives, telles que l’impossibilité
d’abaisser l’équation aux 27 droites [...], n’a été retrouvée jusqu’à présent. Cela ne
doit pas surprendre ; car on ne voit guère comment on pourrait arriver à des résultats
de cette nature sans recourir à la théorie des substitutions. [Hoüel 1871, p. 165]

50. Dans la section VII de ses Disquisitiones Arithmeticae, Gauss opère également une sorte d’encodage
consistant à indexer de façon ad hoc les racines de l’unité de façon à construire des résolvantes de l’équation
cyclotomique (voir [O. Neumann 2007]). Ce type d’encodage semble différer de celui de Jordan, qui ne
cherche pas à créer de résolvantes à partir de ϕ, mais à mettre la focale sur le groupe de cette dernière.
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Pour poursuivre cette discussion sur les rapports entre théorie des substitutions et géomé-
trie, je vais à présent reprendre la description des recherches de Jordan sur l’équation aux
vingt-sept droites.

2.4 « Conjectures algébriques » et « vérifications géométri-
ques », ou Jordan vs. Geiser

Dans le dernier numéro du paragraphe sur l’équation aux vingt-sept droites, Jordan
énonce un lien entre cette équation et celle associée aux seize droites des surfaces quar-
tiques à conique double. Comme nous l’avons vu plus haut, ce lien avait déjà été annoncé
dans [Jordan 1869c], en même temps qu’un autre lien, entre l’équation aux vingt-sept
droites et l’équation aux vingt-huit tangentes doubles : il s’agissait de réduire les uns aux
autres les groupes de ces équations par adjonctions successives de racines.

Plus précisément, Jordan avait énoncé que si l’on adjoint à l’équation aux vingt-huit
tangentes doubles une de ses racines, on obtient une équation de degré 27 ayant le même
groupe que l’équation aux vingt-sept droites ; puis que si l’on adjoint à cette dernière une
de ses racines, l’équation de degré 26 obtenue se décompose en une équation de degré 10

et une autre de degré 16, ayant même groupe que l’équation aux seize droites. À la suite
de l’énoncé de ce résultat, Jordan avait ajouté :

La théorie des substitutions aurait donc permis de prévoir l’existence des liaisons
géométriques qui existent entre les problèmes des vingt-huit tangentes doubles, des
vingt-sept droites et des seize droites (voir un Mémoire de M. Geiser (Mathematische
Annalen, t. I)). [Jordan 1869c, p. 659]

Le mémoire cité est [Geiser 1869b], que j’ai déjà rapidement présenté au chapitre précédent.
Consacré aux vingt-huit tangentes doubles et aux vingt-sept droites, les seize droites n’y
sont évoquées à aucun moment : Jordan semble donc le citer pour celle des « liaisons
géométriques » relatives aux tangentes doubles et aux droites des cubiques.

La même référence est en effet donnée dans le Traité, au cours du §VI des « Applications
géométriques » :

Ainsi se retrouve entre le problème des vingt-sept droites et celui des doubles tangentes,
le lien remarquable signalé par M. Geiser (Mathematische Annalen, t. Ier). [Jordan
1870b, p. 330]

Jordan n’évoque Geiser à aucun autre endroit du Traité, et en particulier pas dans le §III
sur les seize droites des surfaces quartiques. Il l’associe en revanche à ces droites dans la
notice sur ses travaux qu’il rédige quelques années plus tard, destinée à sa candidature à
l’Académie des Sciences :

[L’équation aux vingt-sept droites] est intimement liée à l’équation des seize droites.
Ce dernier résultat, que la théorie m’avait fait prévoir, a été vérifié par M. Geiser.
[Jordan 1881, p. 32]
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Ces propos indiquent donc l’existence de recherches de Geiser sur le sujet des vingt-sept
droites et des seize droites. Or, un examen des travaux publiés de ce dernier 51 révèle une
article de 1869, intitulé Ueber die Flächen vierten Grades, welche eine Doppelcurve zweiten
Grades haben, et débutant comme suit :

La relation vue dans le mémoire « Ueber die Doppeltangenten einer ebenen Curve
vierten Grades » [Geiser 1869b] entre les droites des surfaces du troisième degré et les
tangentes doubles des courbes planes du quatrième degré a incité Monsieur Camille
Jordan à effectuer des recherches algébriques (ces recherches ont depuis été publiées
dans les « Comptes rendus » du 15 mars 1869, [Jordan 1869c]), lesquelles, comme ce
dernier l’a brièvement partagé avec l’auteur, font voir un rapport entre les droites d’une
surface générale du troisième degré et les droites d’une surface du quatrième degré
avec courbe plane double du second degré. En effet, les considérations géométriques
suivantes confirment la conjecture annoncée par Monsieur Jordan 52. [Geiser 1869c,
p. 249]

Tous ces commentaires témoignent donc d’un va-et-vient entre Jordan et Geiser, dont la
chronologie serait la suivante : les travaux de Geiser sur le lien entre les vingt-huit tangentes
et les vingt-sept droites ont inspiré ceux de Jordan sur ce sujet ; ensuite, les recherches de
ce dernier sur le lien entre les vingt-sept droites et les seize droites ont été communiquées
à Geiser, qui a alors produit ses recherches sur ce lien-là.

Les citations précédentes manifestent aussi une distinction disciplinaire accompagnant
ce va-et-vient, distinction faite par les acteurs eux-mêmes : d’un côté, les travaux « al-
gébriques » de Jordan, relevant de la théorie des substitutions, et de l’autre les « consi-
dérations géométriques » de Geiser. En outre, un vocabulaire assez particulier accentue
cette séparation, puisqu’il est question de « prévoir [par la théorie des substitutions] l’exis-
tence de liaisons géométriques » qui sont ensuite « vérifiées » par la géométrie, ou même de
« conjectures [issues des] recherches algébriques » de Jordan, qui sont « confirmées » par
des « considérations géométriques » de Geiser 53.

Afin de pouvoir discuter cette séparation disciplinaire ainsi que l’emploi des termes par-
ticuliers qui y sont reliés, nous allons à présent entrer dans les mathématiques elles-mêmes
de Jordan et de Geiser, relatives aux liens entre vingt-sept droites, vingt-huit tangentes et

51. Une liste de ces travaux se trouve dans [Kollross 1934, p. 526-528].
52. « Die in dem Aufsatze: „Ueber die Doppeltangenten einer ebenen Curve vierten Grades“ (Mathema-

tische Annalen Bd. 1, pag. 128 etc.) nachgewiesene Beziehung zwischen den Geraden der Fläche dritten
Grades und die Doppeltangenten der Curve vierten Grades haben Herrn Camille Jordan zu algebraischen
Untersuchungen veranlasst ([d]ie erwähnten Untersuchungen sind unterdessen in den „Comptes rendus“
vom 15. März 1869 bekannt gemacht worden), die, wie er dem Verfasser brieflich mittheilte, einen Zu-
sammenhang erkennen lassen zwischen den Geraden einer allgemeiner Fläche dritten Grades und den
Geraden einer Fläche vierten Grades, welche eine ebene Doppelpunktscurve zweiten Grades hat. In der
That bestätigen die nachfolgenden geometrischen Betrachtungen die von Hernn Jordan ausgesprochene
Vermuthung. »
53. À la fin de [Geiser 1869c], Geiser emploie d’ailleurs à nouveau le même vocabulaire : « [... dieser

Aufsatz], dessen Grundgedanke in der Bestätigung der von Herrn Jordan ausgesprochene Vermuthung
liegt. » [Geiser 1869c, p. 257].
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seize droites 54. Je suivrai à cette fin la chronologie décrite supra.

2.4.1 Le lien de Geiser entre les vingt-sept droites et les vingt-huit tan-
gentes doubles

À l’époque où l’article sur les vingt-huit tangentes doubles et les vingt-sept droites a
été publié, [Geiser 1869b], Geiser était privat-docent au Polytechnicum de Zurich, sur le
point d’y être nommé professeur extraordinaire 55.

Né en Suisse, Carl Friedrich Geiser (1843-1934) était le petit-neveu de Jacob Steiner.
Il avait été formé à l’université de Berlin entre 1861 et 1863, où il avait été grandement
influencé par son grand-oncle, par Karl Weierstrass et par Leopold Kronecker. Il était alors
revenu en Suisse et avait passé son habilitation en 1863, avant de devenir privat-docent
au Polytechnicum. C’est auprès de Schläfli que Geiser prépara ensuite sa thèse de 1866,
intitulée Beiträge zur synthetische Geometrie. Il fut nommé professeur extraordinaire en
1869 et obtint la chaire de géométrie en 1873, toujours au Polytechninum de Zurich. Geiser
resta toute sa carrière dans cet établissement, dont il fut par ailleurs le recteur de 1881 à
1887 et de 1891 à 1895. D’après la nécrologie écrite par Louis Kollross, l’investissement de
Geiser en tant que professeur et directeur « contribua à ériger [l’ETH] en un établissement
international de premier rang », [Kollross 1934, p. 526]. Il prit sa retraite en 1913, après
une cinquantaine d’années passées dans cette institution.

La liste des travaux de Geiser donnée dans cette même nécrologie comporte 25 publi-
cations dans des périodiques (entre 1866 et 1907) dont la plupart traitent de courbes ou
de surfaces algébriques, à l’image de ceux en jeu dans le présent chapitre, [Geiser 1869b ;
Geiser 1869c]. La liste comprend en outre trois éditions de cours de manuscrits de Steiner,
dont les Vorlesungen über die synthetische Geometrie, éditées avec Schröter ; trois cours
dont Geiser lui-même est l’auteur, portant d’après leur titre sur la « géométrie synthé-
tique », la « géométrie analytique » et la « mécanique analytique » ; enfin, dix nécrologies
et autres discours — l’un d’eux est le discours d’ouverture du premier Congrès international
de mathématiques (1897), qui s’était tenu à Zurich et que Geiser avait présidé.

Si l’article sur les tangentes doubles et les vingt-sept droites est donc à compter plutôt
parmi les premières publications de Geiser, il représente selon son nécrologue Arnold Emch
une de ses « contributions les plus remarquables » [Emch 1938, p. 288]. Cet article est divisé
en huit sections numérotées en chiffres romains. Les trois premières sections établissent le
lien entre les vingt-huit tangentes doubles des courbes quartiques et les vingt-sept droites

54. Je précise ici que je n’ai trouvé aucune lettre entre Jordan et Geiser. Le dossier épistolaire de Jordan
aux archives de l’École polytechnique ne contient rien de Geiser, et les archives de l’ETH (institution dans
laquelle Geiser a passé la majorité de sa carrière, cf. infra) m’ont indiqué qu’il n’y avait pas de lettre de
Jordan dans le dossier de Geiser.
55. Le Polytechnicum changea de nom en 1911 pour devenir l’Eidgenössische Technische Hochschule, ou

ETH. Les quelques informations biographiques sur Geiser de ce paragraphe sont tirées de plusieurs de ses
notices nécrologiques, [Fehr 1933 ; Kollross 1934 ; Emch 1938].
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Figure 2.1 – Camille Jordan (1838-1922) et Carl Friedrich Geiser (1843-1934).
L’image de Geiser m’a été fournie par la Mathematische Gesellschaft de Hamburg.

des surfaces cubiques. Dans les cinq dernières sections, Geiser déduit à l’aide de ce lien des
propriétés des vingt-huit tangentes doubles à partir de propriétés des vingt-sept droites.

Avant d’en commencer la description, j’insère encore ici quelques résultats de géomé-
trie qui seront utiles pour comprendre la suite, car ils sont couramment utilisés de façon
implicite par Geiser 56 :

1. L’intersection d’une surface algébrique de degré n avec un plan est une courbe (algé-
brique plane) de degré n, au moins lorsque la surface et le plan sont définis sur C. Ce
sera toujours supposé être le cas dans la suite de ces rappels, et cela est implicitement
supposé chez Geiser.

2. Deux courbes algébriques planes de degrés m et n et sans composante commune se
coupent en mn points : c’est un des théorèmes de Bezout 57.

3. Étant donnés les n2 points d’intersection de deux courbes planes de degré n, il existe
une infinité de courbes de degré n passant par ces points d’intersection. La famille
formée de toutes ces courbes est appelée un faisceau de courbes, et les points d’inter-
section communs sont appelés les points-base du faisceau.

4. Une équation d’une courbe de degré n contient en tout (n+ 1)(n+ 2)/2 coefficients,
donc (n+ 1)(n+ 2)/2− 1 = n(n+ 3)/2 coefficients indépendants. Par conséquent,
par n(n+ 3)/2 points en position générale dans le plan 58 passe une et une seule

56. On peut trouver ces rappels dans [Salmon 1865] ou [Reye 1882] par exemple.
57. Voir [Alfonsi 2008].
58. Cela signifie qu’il n’existe pas de courbe de degré n′ < n contenant n′(n′ + 3)/2 + 1 de ces points.
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courbe algébrique de degré n. Par exemple, 9 (resp. 14) points en position générale
définissent une unique courbe cubique (resp. quartique) 59.

5. On peut définir un faisceau de courbes de degré n comme étant l’ensemble (infini)
des courbes de degré n passant par r = n(n+3)/2−1 points donnés a priori, pourvu
que ces r points soient en position convenable. Les r points sont les points-base du
faisceau. Par exemple, on peut définir un faisceau de courbes quartiques à partir
de 13 points-base (et alors toutes les quartiques du faisceau passent nécessairement
par 3 autres points fixes).

6. De façon analogue, une équation de surface cubique contient 20 coefficients, donc 19

coefficients indépendants. Par conséquent, par 19 points de l’espace en position géné-
rale passe une unique surface cubique ; par 18 points passent une infinité de surfaces
cubiques : c’est un faisceau de surfaces cubiques, et les 18 points sont les points-base
du faisceau.

Enfin, je souligne que dans ce qui suit, des figures que j’ai tracées ont été ajoutées ça et
là pour aider le lecteur avec des objets qui ne lui sont peut-être pas familiers. Si l’article
de Geiser sur les courbes quartiques et les surfaces cubiques est totalement exempt de
figures, la préface du manuel Einleitung in die synthetische Geometrie montre que Geiser
voulait développer la « capacité d’intuition spatiale 60 » de ses étudiants. La présence de
nombreuses figures dans ce manuel (il y en a 101 pour les 181 pages du livre) montre ainsi
les vertus pédagogiques de celles-ci aux yeux de Geiser 61.

Commençons maintenant la description détaillée de l’article de Geiser en question, [Gei-
ser 1869b]. Dans la section I de cet article, Geiser montre comment construire une courbe
quartique et ses vingt-huit tangente doubles à partir d’une surface cubique et ses vingt-sept
droites.

Pour cela, Geiser commence par considérer une surface cubique F3 sans singularité,
ainsi qu’un point p de l’espace. Il énonce que le cône de sommet p tangent à la surface 62

est de degré 6, et que si p appartient à la surface cubique, ce qui est supposé être le cas
dans la suite, ce cône se compose du plan E tangent à la surface en p et d’un cône K4 de

59. Cela peut sembler contradictoire avec le point précédent : c’est le paradoxe de Cramer. Il s’explique
par le fait que (par exemple pour les cubiques) les 9 points d’intersection de courbes cubiques ne sont pas
en position générale, justement parce qu’ils sont définis par une intersection particulière.
60. « Es galt zunächst, unter möglichst geringen Vorassetzungen das räumliche Anschauungsvermögen

der Zuhörer auszubilden. » [Geiser 1869a, p. iii].
61. Aucune des figures de ce livre ne concerne les surfaces cubiques ou les courbes quartiques, sujets qui

n’y sont pas traités. À propos des figures en géométrie, surtout dans la première moitié du xixe siècle,
voir [Lorenat 2015b].
62. Par définition, le cône de sommet p tangent à la surface cubique est l’ensemble des points p′ de

l’espace tels que la droite pp′ soit tangente à la surface. Cayley et Salmon l’avaient déjà utilisé en 1849
dans [Cayley 1849] pour établir l’existence des vingt-sept droites sur les surfaces cubiques. Se reporter à la
fin de cette section 2.4.1, où le calcul mené permet de voir dans un cas particulier que le degré d’un cône
tangent à une surface de degré n est n(n− 1).
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degré 4. Geiser prend alors une droite g de la surface cubique : le plan e contenant p et g
coupe la surface cubique en une courbe de degré 3 contenant nécessairement la droite g,
donc composée de la droite g et d’une conique. Les points d’intersection de cette conique
avec g sont notés r et s ; le plan e est tangent à la surface cubique en chacun de ces points,
puisque ce sont des points doubles de la courbe intersection de e et de F3. Le plan e est par
conséquent un plan tangent double au cône K4, les arêtes de contact étant les droites pr
et ps. Geiser obtient ainsi 27 plans tangents doubles e à K4 ; il leur ajoute le plan E qui
est également doublement tangent à K4, les arêtes de contact étant dans ce cas les deux
tangentes principales 63 t1, t2 à la surface cubique en p.

Geiser procède alors à la construction de la courbe quartique (se reporter en parallèle
à la figure 2.2). Il considère un plan quelconque E de l’espace. Ce plan coupe le cône K4

selon une courbe quartique (plane) C4 dont les vingt-huit tangentes doubles sont obtenues
comme suit. Pour chaque plan e comme précédemment, l’intersection de e avec E est une
droite g′ qui est tangente double à la quartique, les points de contact étant les points
d’intersection r′ et s′ de E avec pr et ps. Cela donne vingt-sept tangentes doubles. La
dernière est l’intersection γ′ des plans E et E, les points de contact t′1, t′2 étant les points
d’intersection de E avec les tangentes principales t1, t2.

p

g0
g

E

r0
r

s0
s

C4

e

1

Figure 2.2 – Construction de la quartique C4. Les deux quartiques sont des sections
du cône K4. La droite g de la surface cubique se projette sur une tangente double g′
de la quartique C4.

Pour récapituler, on obtient une courbe quartique C4 en intersectant le cône K4 avec
un plan quelconque E. Parmi les vingt-huit tangentes doubles à C4, vingt-sept sont les
projections (de centre p) sur E des droites de F3 et la vingt-huitième est l’intersection de E
et du plan tangent à F3 en p.

63. Les tangentes principales (« Haupttangenten ») à une surface en un point p sont les deux droites
tangentes à cette surface en p avec un contact d’ordre au moins 3. [Salmon 1882, p. 244] les nomme
« inflexional tangents ».
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Geiser établit encore une propriété de la configuration géométrique qu’il vient de
construire : il prouve ainsi que le plan E rencontre la surface cubique en une courbe cubique
C3 qui est tangente à la courbe quartique C4 en six points. Il montre en outre que ces six
points ainsi que t′1 et t′2 sont situés sur une même conique C2. Bien qu’il ne le dise pas, cette
propriété lui permet de préparer la construction réciproque qui fait l’objet de la section II.

Geiser commence en effet, dans cette section II, par démontrer une sorte de réciproque
à cette propriété, dont l’énoncé est le suivant. Étant donnée une courbe quartique plane
C4, on fait passer une conique quelconque C2 par les deux points de contact t′1, t′2 de cette
courbe avec une de ses tangentes doubles, notée γ′. Cette conique coupe la quartique en
six autres points b1, . . . , b6. Alors il existe une courbe cubique C3 qui est tangente à la
quartique en ces six points 64 (voir la figure 2.3).

�0
t01 t02

b1 b2

b3 b4

C2

C3

C4

1

Figure 2.3 – Construction de la conique C2 et de la cubique C3. Les points b5 et b6
sont des points complexes et n’apparaissent donc pas sur cette figure.

Voici la démonstration donnée par Geiser de cette propriété. On définit un faisceau de
quartiques avec la courbe C4 et la courbe C2, comptée avec multiplicité 2 : les points-base
de ce faisceau sont t′1, t′2, b1, . . . , b6, chacun étant compté avec multiplicité 2. On définit
ensuite une courbe cubique C3 assujettie à passer par b1, b2, b3 (comptés avec multiplicité
2) et par b4, b5, b6 (comptés avec multiplicité 1), puis on définit la courbe C ′′4 comme étant
la réunion de C3 et de γ′. Par construction, C ′′4 passe par t′1, t′2, b1, b2, b3 avec multiplicité
2 et par b4, b5, b6 avec multiplicité 1. Or, ce sont là les 13 points-base du faisceau ; par
conséquent, C ′′4 fait partie du faisceau, et en particulier, elle contient b4, b5, b6 avec multi-
plicité 2. Comme enfin ces trois points ne sont pas sur γ′, ils sont sur C3. Donc C3 contient

64. Ce théorème est une sorte de réciproque à la propriété de la fin de la section I. En outre, Geiser fait
référence à [Hesse 1855a], où le même théorème est énoncé et démontré.



2.4. JORDAN VS. GEISER 123

b1, . . . , b6 avec multiplicité 2 à chaque fois : c’est dire que C3 est tangente à C4 en ces six
points.

Geiser utilise ensuite le résultat ainsi démontré pour prouver « que réciproquement,
toute courbe plane C4 de degré 4 peut être mise en relation avec une surface du troisième
degré de la façon qui [a été] expliquée [dans la section I] 65. » Partant d’une courbe C4 incluse
dans un plan E, il utilise ce résultat, obtenant ainsi une courbe cubique C3. Il considère
un point p situé hors de E ainsi que le plan E contenant p et la tangente double γ′. Dans
ce plan E, il construit une courbe cubique C ′3 ayant p comme point double, avec pt′1, pt′2
comme tangentes en ce point, et passant par les trois points d’intersection de γ′ et de C3

— tout est fait pour reconstruire la surface cubique au vu de ce qui a été fait dans la
section I : l’intersection de celle-ci avec E doit être C3, l’intersection avec E doit être une
courbe cubique avec un point double en p (puisque E est tangent à la surface en p), etc. 66.
On pourra se reporter à la figure 2.4 pour visualiser la situation à ce stade de la preuve.
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Figure 2.4 – La cubique C ′3, en gras, est dans le plan E défini par p et par γ′. Le
troisième point d’intersection de γ′ et de C3 n’apparaît pas sur la figure.

65. « Dass umgekehrt jede beliebige ebene Curve vierten Grades C4 zu eine Fläche dritten Grades in die
eben auseinandergesetzte Beziehung gebracht werden kann. » [Geiser 1869b, p. 130].
66. L’existence de C′3 n’est pas justifiée par Geiser. Ce dernier laisse implicite le fait qu’imposer les

tangentes pt′1, pt′2 en p compte pour 2× 2 conditions ponctuelles : il y a donc bien 9 conditions ponctuelles
en tout.
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Geiser définit alors un faisceau de surfaces cubiques contenant 67 C3, C ′3, b1, b2 et b3.
Il justifie cette existence par le fait que « ces éléments comptent pour 18 points », [Geiser
1869b, p. 132]. En effet, la cubique C3 compte pour 9 points et la cubique C ′3 compte
pour 6 points car elle est assujettie à passer par les trois points de γ′ ∩ C3. Il y a donc 18

points, ce qui permet de définir un faisceau.
Ce faisceau de surfaces cubiques donne lieu à un faisceau de cônes de degré 4 à 16 arêtes-

base (les arêtes pt′1, pt′2, pb1, . . . , pb6 toutes comptées deux fois), chacun de ces cônes étant
le cône de sommet p tangent à une surface cubique du premier faisceau. Les intersections de
ces cônes avec le plan E forment à leur tour un faisceau de courbes quartiques à seize points-
base t′1,t′2, b1, . . . , b6 (tous comptés deux fois). Puisque la quartique C4 du départ contient
tous ces points-base, elle fait partie du faisceau. Geiser en déduit qu’il lui correspond une
surface cubique du premier faisceau. Cette surface est celle qui était cherchée, et Geiser
conclut :

Une courbe plane quelconque de degré quatre peut toujours être conçue comme l’in-
tersection du plan la contenant avec le cône tangent à une surface du troisième degré
en un point de cette surface 68. [Geiser 1869b, p. 132]

Cet énoncé conclut la section II et finit donc d’établir le lien entre surfaces cubiques et
courbes quartiques.

Dans la section III, Geiser propose de montrer ce dernier théorème de façon « analy-
tique 69 ». Il choisit dans le plan U de la quartique C4 des coordonnées (projectives) x, y, z
telles que l’axe des z soit une des tangentes doubles à la quartique et les autres axes passent
par les points de contact de cette tangente double avec la quartique. Il énonce alors que
l’équation de la courbe est de la forme 70

z · ϕ3(x, y, z)− x2y2 = 0,

où ϕ3 est une fonction homogène de degré 3. Geiser considère un point p situé hors du
plan U et forme les plans X,Y, Z contenant p et les axes des x, y, z respectivement. Les
coordonnées de l’espace choisies sont x, y, z, u, et Geiser affirme que la surface d’équation

F3 = ϕ3(x, y, z) + 4uxy + 4u2z = 0

67. La cubique cherchée fait nécessairement partie de ce faisceau, puisque d’après ce qui a été vu par
Geiser en section I, elle doit contenir C3, C′3, b1, b2 et b3.
68. « Eine beliebige Curve vierten Grades in der Ebene kann stets aufgefasst werden als der Durschnitt

des Tangentenkegels, welcher von einem Punkte einer Fläche dritten Grades aus an diese Fläche geht, mit
der Ebene der Curve. »
69. « Auch analytisch ergibt sich dieser Satz leicht », [Geiser 1869b, p. 132]. Geiser ne donne pas de

raison à ce choix de présenter une preuve alternative.
70. En effet, il suffit de traduire les conditions sur les points de contact de la tangente double : par

exemple, dire que le point de coordonnées (1 : 0 : 0) appartient à la courbe signifie que l’équation de celle-
ci ne contient pas de terme en x4 ; dire que ce même point est point de contact d’une tangente implique
qu’il n’y a pas de terme en y3x, etc.



2.4. JORDAN VS. GEISER 125

est telle que l’intersection de son cône tangent en p par le plan U est exactement la courbe
quartique du départ.

Complétons Geiser en vérifiant ce dernier point. Pour cela, suivons la démarche utilisée
dans le livre A Treatise on the Analytic Geometry of Three Dimensions de Salmon, [Sal-
mon 1865, p. 212], pour trouver le degré d’un cône tangent à une surface. Soit q 6= p

un point de coordonnées x, y, z, u. Il appartient au cône tangent si et seulement si la
droite pq est tangente à F3. Comme les points de la droite pq sont les points de coor-
données (µx, µy, µz, λ + µu) avec (λ : µ) quelconque, cette droite est tangente à F3 si et
seulement si l’équation

F3(µx, µy, µz, λ+ µu) = 0

possède une racine double en (λ : µ). Or cette équation s’écrit

(ϕ3(x, y, z) + 4xyu+ 4zu2)µ3 + 4(xy + zu)µ2λ+ 4zµλ2 = 0.

Elle possède une solution double si et seulement si son discriminant est nul, c’est-à-dire si
et seulement si

(xy + uz)2 − z(ϕ3(x, y, z) + 4xyu+ zu2) = 0.

Cette dernière équation est celle du cône ; son intersection avec le plan U s’obtient en y
substituant u = 0, ce qui conduit à

x2y2 − zϕ3(x, y, z) = 0,

qui est bien l’équation de la quartique C4.

Les sections restantes (de IV à VIII) présentent chacune une application du lien entre les
vingt-sept droites et les vingt-huit tangentes doubles. Comme écrit au chapitre précédent,
il s’agit pour Geiser de déduire des propriétés (déjà connues) concernant les vingt-huit
tangentes doubles à partir de propriétés (également connues) des vingt-sept droites :

En conséquence de l’aperçu précis que l’on a sur les positions mutuelles des 27 droites
d’une surface du troisième degré, les conclusions que l’on peut tirer de ce théorème [le
lien entre les deux configurations via la projection] sont nombreuses. Celles-ci devront
plus tard être exposées aux mathématiciens dans une présentation détaillée, et être
mises en rapport avec les résultats de la théorie des tangentes doubles d’une courbe du
quatrième degré que l’on doit à Aronhold, Clebsch, Hesse, Roch, Salmon et Steiner.

Pour expliquer cela, nous ne donnerons ici que quelques exemples, qui conduisent pour
la plupart à des résultats connus 71. [Geiser 1869b, p. 133]

71. « Im Folge der genauen Einsicht, welche man in die gegenseitige Lage der 27 Geraden einer Flä-
che dritten Grades hat, sind die Folgerungen, welche man aus diesem Satze ziehen kann, sehr zahlreich.
Dieselben sollen späterhin in einer umfassenderen Darstellung den Mathematikern vorgelegt, und mit den
Resultaten aus der Theorie der Doppeltangenten einer Curve vierten Grades in Zusammenhang gebracht
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À titre d’exemple, je propose de présenter les énoncés et les résultats des sections IV et V.
Ainsi, dans la section IV, Geiser rappelle d’abord que les vingt-sept droites d’une surface

cubique sont incluses six à six dans un même hyperboloïde. Il en déduit alors que les vingt-
huit tangentes doubles à une courbe quartique peuvent se grouper par groupes de six,
qui sont tangentes à une même conique. Sans donner de référence, Geiser précise que ce
résultat avait déjà vu par Aronhold et Hesse.

Pour ce qui est de la section V, Geiser considère une surface cubique F3, un point p
de cette surface et trois droites g1, g2, g3 de la surface formant un triangle. Il rappelle que
les plans contenant p et gi coupent la surface F3 en la droite gi et une conique Ki, et
note comme il l’a fait précédemment ri, si les points d’intersection de gi et Ki. Puisque
tous les points ri, si appartiennent à la fois à la polaire F2 de p par rapport à F3 et au
plan du triangle g1g2g3, ils sont tous situés sur une même conique K. En outre, comme
les tangentes principales t1, t2 sont contenues dans F2, elles intersectent nécessairement la
conique K.

Geiser applique ensuite son résultat de la section I : les trois droites g1, g2, g3 se pro-
jettent en trois tangentes doubles g′1, g′2, g′3 à la quartique C4 dont les points de contact
sont les projections r′, s′ des points r, s. De plus, les droites t1, t2 deviennent les points
de contact t′1, t′2 d’une autre tangente double γ′. Enfin, la conique K se projette sur une
conique K ′ du plan de la courbe C4, de sorte que les 8 points de contact r′, s′, t′1, s′1 appar-
tiennent à cette conique K ′.

Pour résumer le résultat du V, les vingt-huit tangentes doubles d’une courbe quartique
se regroupent 4 par 4 de sorte que les 8 points de contact correspondants sont situés sur une
même conique. Plus précisément, si on se donne une tangente double γ′, elle se regroupe
avec chaque triplet de tangentes doubles correspondant à un des 45 triplets de droites de
la surface cubique formant un triangle ; de plus, il y a alors 28 · 45/4 = 315 tels groupes de
quatre. Encore une fois, Geiser indique que ce résultat se trouvait déjà dans des travaux
de Hesse, Salmon et Steiner, mais ne cite rien précisément.

L’article de Geiser sur le lien entre les vingt-huit tangentes doubles et les vingt-sept
droites ayant été décrit en détail, passons à présent aux recherches de Jordan qui y corres-
pondent.

2.4.2 Les « recherches algébriques » de Jordan sur le lien entre les vingt-
huit tangentes doubles et les vingt-sept droites

Dans le Traité des substitutions et des équations algébriques, le lien entre les vingt-huit
tangentes et les vingt-sept droites est prouvé dans le §VI du chapitre des applications
géométriques, consacré au problème des courbes d’ordre n− 3 qui sont tangentes en n(n−

werden, welche man der Herren Aronhold, Clebsch, Hesse, Roch, Salmon und Steiner verdankt. Hier mö-
gen nur zur Erläuterung einige Beispiele angeführt werden, die zum grössten Theil auf bekannte Resultate
führen. »
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3)/2 points à une courbe C donnée de degré n (le cas n = 4 correspondant aux tangentes
doubles à une courbe quartique donnée).

Jordan commence par citer le mémoire Ueber die Anwendung der Ablschen Functionen
in der Geometrie, [Clebsch 1864a], pour rappeler que

La détermination des courbes de l’ordre n− 3 qui touchent en n(n− 3)/2 points une
courbe donnée C d’ordre n dépend d’une équation de degré 22p−1 − 2p−1, en posant
pour abréger p = (n− 1)(n− 2)/2. Les racines de cette équation étant représentés par
le symbole (x1y1 . . . xpyp), où x1, y1, . . . , xp, yp sont des indices variables chacun de 0

à 1, et satisfaisant à la condition

x1y1 + · · ·+ xpyp ≡ 1 mod 2,

on aura le théorème suivant [...] :

Soit µ un entier quelconque tel, que µ
n− 3

2
soit entier : les points de contact de C avec

les µ courbes correspondantes aux µ racines (x′1y
′
1 . . . x

′
py
′
p), . . . , (x

(µ)
1 y

(µ)
1 . . . x

(µ)
p y

(µ)
p )

seront sur une même courbe du degré 72 µ, lorsque les 2p congruences contenues dans
les formules suivantes :

x′ρ + · · ·+ x(µ)ρ ≡ y′ρ + · · ·+ y(µ)ρ ≡ 0 mod 2

sont satisfaites à la fois. [Jordan 1870b, p. 329]

Ces relations géométriques étant rappelées, Jordan suit alors sa méthode générale en in-
troduisant une fonction ϕµ adéquate : elle est obtenue en sommant tous les produits de µ
racines satisfaisant aux conditions x′ρ + · · · + x

(µ)
ρ ≡ y′ρ + · · · + y

(µ)
ρ ≡ 0 du théorème cité

précédemment.
Jordan passe ensuite au cas particulier où n = 4, pour lequel « on aura l’équation aux

vingt-huit tangentes doubles de courbes du quatrième ordre », [Jordan 1870b, p. 330]. Il
utilise µ = 4, de sorte que la fonction des racines est (avec une notation actuelle)

ϕ4 =
∑

xρ+x′ρ+x′′ρ+x′′′ρ ≡ 0

yρ+y′ρ+y′′ρ+y′′′ρ ≡ 0

∀ρ∈{1,2,3}

(x1y1 . . . y3)(x′1y
′
1 . . . y

′
3)(x′′1y

′′
1 . . . y

′′
3)(x′′′1 y

′′′
1 . . . y′′′3 )

= (110000)(000011)(000111)(110100) + (110000)(000011)(001011)(111000) + · · ·

Il regarde ensuite l’effet de l’adjonction à l’équation aux vingt-huit tangentes doubles
de l’une de ses racines, (110000) : les racines restantes sont déterminées par une équation
de degré 27 dont le groupe H est formé des substitutions de G qui fixent (110000). Ainsi, H
laisse invariante la fonction ϕ′4 formée des termes de ϕ4 qui contiennent (110000) en fac-
teur 73. Une nouvelle fonction ψ invariable par H est obtenue en omettant ce facteur ; elle

72. Erreur dans le Traité, où il est écrit « du degré (n− 3)/2 ».
73. En effet, si σ ∈ H, alors σ envoie un terme de ϕ4 sur un terme de ϕ4 puisque σ ∈ G. Comme de
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est formée de la somme des produits de trois racines (x1 . . . y3), (x′1 . . . y
′
3), (x′′1 . . . y

′′
3) telles

que 74

x1 + x′1 + x′′1 + 1 ≡ y1 + y′1 + y′′1 + 1 ≡ x2 + x′2 + x′′2 ≡ · · · ≡ y3 + y′3 + y′′3 ≡ 0 mod 2.

Jordan écrit alors :

Cela posé, il est aisé de voir que ψ contient quarante-cinq termes et ne diffère que par
la notation de la fonction ϕ du no 441 [celle des vingt-sept droites]. [Jordan 1870b,
p. 330]

Cette vérification, omise par Jordan, n’est en effet pas difficile à faire. En cherchant tous les
symboles de racines vérifiant les congruences précédentes, on obtient alors une fonction ψ
de la forme

ψ = (000011)(000111)(110100) + (000011)(001011)(111000) + · · · ,

qui correspond effectivement à la fonction ϕ associée aux vingt-sept droites,

ϕ = abc+ ade+ · · ·

Jordan déduit de cette identité entre ϕ et ψ que le groupe de « l’équation aux vingt-sept
tangentes doubles » est contenu dans celui de l’équation aux vingt-sept droites 75.

Pour montrer l’égalité des deux groupes, Jordan montre que leurs ordres sont égaux.
Or, Jordan a étudié dans le Traité ce qu’il appelle les « groupes de Steiner », dont le groupe
des vingt-huit tangentes doubles est un cas particulier. Le cardinal de ce dernier est 76

R3(R3 − 1) 24 · 1 · 2 · 3 · 4 · 5,

où R3 = 22·3−1 − 23−1 = 28. L’ordre du groupe des vingt-sept tangentes doubles est
donc 77 R3(R3 − 1) 24 · 1 · 2 · 3 · 4 · 5/28, qui est égal à l’ordre du groupe de l’équation aux
vingt-sept droites, à savoir 27 · 10 · 8 · 6 · 4. Finalement, Jordan a montré qu’en adjoignant
à l’équation aux tangentes doubles une de ses racines, les vingt-sept racines restantes

plus σ fixe la racine (110000), elle envoie un terme de ϕ4 qui contient (110000) sur un terme de ϕ4 qui
contient (110000). Donc σ laisse ϕ′4 invariante.
74. Prendre (x′′′1 y

′′′
1 x
′′′
2 y
′′′
2 x
′′′
3 y
′′′
3 ) = (110000) dans les conditions données précédemment.

75. Le groupe de « l’équation aux vingt-sept tangentes doubles », [Jordan 1870b, p. 330], est le groupe
de l’équation aux vingt-huit tangentes doubles, réduit par adjonction d’une de ses racines. C’est donc le
groupe H, ou plutôt le groupe H̃ obtenu en restreignant les substitutions de H à l’ensemble des racines
exceptée (110000). Ce groupe est inclus dans le groupe de ψ par construction et le groupe de ψ est le même
que celui de ϕ qui est le groupe des vingt-sept droites.
76. Voir [Jordan 1870b, p. 330]. Jordan montre par ailleurs que ces groupes de Steiner sont des groupes

« abéliens », ce qui prouve que le groupe des vingt-huit tangentes doubles est isomorphe au groupe sym-
plectique Sp6(F2).
77. Cela découle de la transitivité du groupe aux vingt-huit tangentes doubles. Petite coquille dans le

Traité, où il est écrit (R3 − 1) 24 · 1 · 2 · 3 · 4 · 5/28.
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dépendent d’une équation de degré 27 ayant le même groupe que l’équation aux vingt-sept
droites.

Jordan conclut alors par ces mots, déjà rapportés précédemment :

Ainsi se retrouve entre le problème des vingt-sept droites et celui de doubles tangentes,
le lien remarquable signalé par M. Geiser (Mathematische Annalen, t. Ier). [Jordan
1870b, p. 330]

Ce lien entre les équations aux vingt-sept droites et aux vingt-huit tangentes doubles 78

trouve encore une application dans le Traité, puisqu’il permet à Jordan de montrer que
l’équation aux vingt-huit tangentes doubles n’a pas de réduite de degré strictement inférieur
à 28.

Petit bilan À l’issue de cette description de l’approche de Jordan, on pourra commen-
cer par constater que le cloisonnement disciplinaire mettant Jordan d’un côté et Geiser de
l’autre se confirme. En effet, à part dans les rappels qui précèdent la création de la fonc-
tion ϕ associée aux vingt-huit tangentes doubles — mais cela n’est d’ailleurs pas propre
au lien entre ces tangentes et les vingt-sept droites —, l’approche de Jordan est basée
uniquement sur des considérations de racines d’équations, sur des procédés d’adjonction
et sur des identités de groupes. En outre, conformément à ce qui a été vu dans l’étude
de l’équation aux vingt-sept droites, ce sont bien toujours des racines et des groupes de
substitutions de racines qui sont en jeu dans le Traité. Pour ce qui est du lien de Geiser
entre courbes quartiques et surfaces cubiques, nous pouvons le résumer comme étant une
projection sur un plan du contour apparent de la cubique et de ses droites.

Les recherches de Jordan permettant, selon lui-même, de « retrouver » celles de Gei-
ser, on aurait pu penser trouver dans les premières des traces de transferts explicites des
secondes. Mais cela n’est pas le cas. En effet, il n’y a dans le Traité aucune traduction de
morceaux de preuve de Geiser. Par exemple, chez Geiser, il y a une des vingt-huit tan-
gentes qui a un statut particulier par rapport aux autres car elle n’est pas obtenue comme
projection d’une des vingt-sept droites, mais Jordan ne fait pas de rapprochement avec
son adjonction d’une racine à l’équation aux vingt-huit tangentes. Il ne met pas en non
plus en évidence le fait que l’identité entre la fonction ψ qu’il obtient et la fonction ϕ

associée aux vingt-sept droites traduit une identité de relations géométriques, à savoir que
les vingt-sept tangentes doubles restantes se répartissent trois par trois de la même façon
que les vingt-sept droites se répartissent trois par trois en triangles — ce qui est un résultat
contenu dans la section V de Geiser.

L’absence de transfert effectif des travaux de Geiser dans ceux de Jordan montre donc
un certain hiatus entre théorie des substitutions et géométrie. Pour affiner cette analyse,

78. Traduit en termes de groupes symplectiques, (voir la fin de la section 2.3.2 et la note 76), on obtient
ainsi une injection entre groupes symplectiques Sp4(F3) ↪→ Sp6(F2). Dieudonné indique quant à lui que
« les liens connus entre le problème des 28 tangentes et celui des 27 droites apparaissent [...] comme reflétant
l’isomorphisme exceptionnel entre PU+

4 (F4) et PSp4(F3) », [Jordan Œuvres 1, p. xxiii].
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passons au cas du lien entre les vingt-sept droites et les seize droites, pour lequel c’est
maintenant Jordan qui précède chronologiquement Geiser.

2.4.3 La « conjecture » de Jordan sur la relation entre les vingt-sept
droites et les seize droites

Le problème des seize droites des surfaces quartiques à conique double est traité dans
le §III des « Applications géométriques » du Traité. Avant de voir comment Jordan les relie
aux vingt-sept droites des surfaces cubiques, regardons brièvement ce qu’il fait de l’équation
aux seize droites. Seul ce qui est utile pour comprendre le lien avec les vingt-sept droites
sera expliqué ici.

Jordan réfère un article de Clebsch sur les surfaces quartiques à conique double, [Clebsch
1868], pour l’exposé des propriétés qui suivent. Une telle surface contient seize droites, et
il existe cinq cônes, auxquels chacune des seize droites est tangente. Pour chaque cône, les
seize droites se répartissent en huit couples de la façon suivante : il y a exactement quatre
plans tangents au cône qui coupent la surface quartique en deux coniques dégénérées en
paires de droites, qui forment lesdits couples. Les droites peuvent se noter 1, 2, . . . , 16, et
ce qui vient d’être dit se résume sur le tableau suivant :

I 2, 6; 3, 7; 4, 8; 5, 9; 1, 16; 10, 15; 11, 14; 12, 13

II 1, 6; 3, 10; 4, 11; 5, 12; 2, 16; 7, 15; 8, 14; 9, 13

III 1, 7; 2, 10; 4, 13; 5, 14; 3, 16; 6, 15; 8, 12; 9, 11

IV 1, 8; 2, 11; 3, 13; 5, 15; 4, 16; 6, 14; 7, 12; 9, 10

V 1, 9; 2, 12; 3, 14; 4, 15; 5, 16; 6, 13; 7, 11; 8, 10

où sur une ligne sont écrites (par couples correspondant chacun à une conique dégénérée)
les droites correspondantes à un des cinq cônes, et, toujours sur une ligne donnée, les
droites d’un même plan tangent sont écrites à quatre cases d’intervalle. Par exemple, pour
le cône I, les droites 2, 6, 1 et 16 sont dans un même plan tangent.

Suivant son mode opératoire, Jordan introduit une fonction ϕ qui est la somme de tous
les produits de racines correspondant au tableau précédent (j’ajoute l’indice 16 à ϕ pour
la distinguer de la fonction correspondante dans le cas des vingt-sept droites) 79 :

ϕ16 = 2 · 6 + 3 · 7 + 4 · 8 + 5 · 9 + · · ·+ 5 · 16 + 6 · 13 + 7 · 11 + 8 · 10,

et Jordan montre que le groupe de l’équation X aux seize droites est inclus dans le
groupe G16 des substitutions de {1, 2, . . . , 16} qui laissent ϕ16 invariante. Comme dans

79. Dans l’expression de ϕ16, « 2 » par exemple est à lire comme étant le symbole de la racine de
l’équation aux seize droites correspondant à la droite numérotée 2.



2.4. JORDAN VS. GEISER 131

les autres cas, il ne fait aucune remarque sur l’inclusion réciproque.
Jordan introduit dix « fonctions partielles a1, b1, . . . , a5, b5 », formées des quatre termes

des lignes des deux blocs du tableau précédent. Par exemple,

a1 = 2 · 6 + 3 · 7 + 4 · 8 + 5 · 9 et b1 = 1 · 16 + 10 · 15 + 11 · 14 + 12 · 13.

Il note Y l’équation de degré 10 dont dépendent ces quantités. Jordan introduit également
les substitutions

A = (2, 1)(10, 7)(11, 8)(12, 9) A1 = (6, 7)(14, 12)(13, 11)(3, 2)

A2 = (7, 8)(10, 11)(4, 3)(14, 15) A3 = (8, 9)(11, 12)(13, 14)(5, 4)

B = (9, 16)(4, 10)(2, 13)(3, 11)(5, 1)(6, 12)(7, 14)(8, 15)

B1 = (12, 16)(4, 7)(1, 13)(3, 8)(5, 2)(6, 9)(19, 14)(11, 15)

B2 = (14, 16)(4, 6)(1, 11)(2, 8)(5, 3)(7, 9)(10, 12)(13, 15)

B3 = (15, 16)(3, 6)(1, 10)(2, 7)(5, 4)(8, 9)(11, 12)(13, 14)

ainsi que

A = (a1 a2)(b1 b2), A1 = (a2 a3)(b2 b3), A2 = (a3 a4)(b3 b4), A3 = (a4 a5)(b4 b5)

B = (a1 b1)(a5 b5), B1 = (a2 b2)(a5 b5), B2 = (a3 b3)(a5 b5), B3 = (a4 b4)(a5 b5)

dont il montre qu’elles engendrent respectivement le groupe de X et le groupe de Y . Enfin,
il montre que ces deux groupes sont de même ordre 16 · 5 · 4 · 3 · 2.

Passons maintenant au lien entre les seize droites et les vingt-sept droites. Comme on
l’a déjà vu, il est énoncé sans démonstration au dernier numéro de la section sur les surfaces
cubiques :

Supposons que l’on s’adjoigne une des racines de l’équation aux vingt-sept droites, telle
que a. Il restera une équation de degré 26, dont le groupe est dérivé des substitutions B,
C, D, E, F . Ce groupe n’étant pas transitif, l’équation se décompose en deux facteurs
rationnels, du seizième et du dixième degré. On voit sans peine que ces équations
partielles ont les mêmes groupes que les équations X et Y du §III. [Jordan 1870b,
p. 329]

Je propose d’en reconstruire ici une démonstration calquée sur la démarche déployée par
Jordan pour le lien entre l’équation aux vingt-huit tangentes doubles et celle aux vingt-
sept droites. Cette reconstruction aura pour but de montrer que ce théorème admet une
preuve qui ne dépend pas des travaux de Geiser, au contraire de celle proposée par van
der Waerden pour l’inclusion réciproque du groupe de ϕ dans groupe de l’équation aux
vingt-sept droites (cf. supra). Par ailleurs, si je m’autoriserai à utiliser quelques symboles



132 CHAPITRE 2

et termes anachroniques, je prendrai garde à ne pas mélanger le vocabulaire de la théorie
des substitutions et de la géométrie. Ce cloisonnement, que j’ai déjà souligné à plusieurs
reprises, me semble en effet important à respecter pour maintenir la tension existant entre
théorie des substitutions et géométrie. Cependant, et justement pour marquer cette tension
et montrer ce que Jordan ne dirait probablement pas, je profiterai de cette reconstruction
pour proposer ça et là, en notes de bas de pages, des interprétations géométriques au sens
donné précédemment.

Notons ainsi E26 l’équation obtenue à partir de l’équation aux vingt-sept droites par
adjonction de sa racine a. Son groupe G26 est formé des substitutions de G, groupe de
l’équation aux vingt-sept droites, qui fixent 80 a. Il contient donc le groupe 〈B,C,D,E, F 〉
engendré par B, C, D, E et F , puisque ces dernières fixent toutes a. Or #G26 = #G/27

car G agit transitivement, et vu ce qui a été fait en 2.3.2, #〈B,C,D,E, F 〉 > 10 · 8 · 12 · 2.
Cette dernière borne étant égale à #G/27, on en déduit l’égalité G26 = 〈B,C,D,E, F 〉
annoncée par Jordan.

Pour voir que G26 n’est pas transitif, on peut par exemple chercher quelles sont les
orbites de son action sur les vingt-six racines b, c, . . . , u′. Grâce aux expressions de B,
C, D, E et F , on obtient aisément deux orbites, formées respectivement de 10 et de 16

éléments 81 :

ω10 = {b, c, d, e, f, g, h, i, k, l} et ω16 = {m,n, p, q, r, s, t, u,m′, n′, p′, q′, r′, s′, t′, u′}.

Cela montre que G26 n’est pas transitif. En outre, si l’on pose

E10 =
∏
ξ∈ω10

(x− ξ) et E16 =
∏
ξ∈ω16

(x− ξ),

alors on a E26 = E10E16, et chacun des facteurs E10 et E16, étant invariant sous l’action
de G26, est bien rationnel. Il reste à voir pourquoi ces facteurs ont mêmes groupes que les
équations X et Y issues des seize droites.

En s’inspirant de ce que Jordan fait pour les vingt-huit tangentes doubles, introduisons

ϕ′ = mn+ pq + rs+ tu+ · · ·+ nt′ + um′ + rq′ + ps′,

dont les quatre premiers termes correspondent aux paires de racines de ω16 qui forment
avec b un terme dans la fonction ϕ associée aux vingt-sept droites 82, les quatre suivants
aux paires de racines de ω16 associées à c dans ϕ, etc. — on peut par exemple utiliser la

80. Géométriquement, le groupe G peut s’interpréter comme un groupe de transformations permutant
les vingt-sept droites entre elles et conservant leurs relations d’incidence. Le groupe G26 en est alors le
sous-groupe qui laisse fixe la droite a.
81. Géométriquement, ces orbitent correspondent respectivement aux droites incidentes à a et à celles

qui ne lui sont pas incidentes.
82. Géométriquement, il s’agit des paires de droites de ω16 qui sont incidentes à b.
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liste des termes de ϕ donnée à la section 2.3.1 afin de trouver tous les termes de ϕ′. Le
groupe de ϕ′ contient alors le groupe de E16. En effet, tout élément σ du groupe de E16

provient d’une substitution σ̃ appartenant au groupe de E26 ; autrement dit, σ̃ coïncide
avec σ sur {m,n, . . . , u′} et induit une certaine permutation de {b, c, . . . , l}. Regardons par
exemple l’image demn par σ. Comme σ̃ est dans le groupe de E26, le produit σ̃(b)σ(m)σ(n)

apparaît 83 dans ϕ. Or, puisque σ̃(b) ∈ {b, c, . . . , l}, le produit σ(m)σ(n) est un terme ϕ′,
par construction même de celle-ci. D’où l’inclusion annoncée.

On remarque alors que les fonctions ϕ′ et ϕ16 sont identiques à la notation près, la
correspondance de la notation des racines étant donnée par le tableau suivant :

2, 6; 3, 7; 4, 8; 5, 9; 1, 16; 10, 15; 11, 14; 12, 13

m,n q, p s, r u, t n′,m′ q′, p′ s′, r′ u′, t′

1, 6; 3, 10; 4, 11; 5, 12; 2, 16; 7, 15; 8, 14; 9, 13

n′, n q, q′ s, s′ u, u′ m,m′ p, p′ r, r′ t, t′

1, 7; 2, 10; 4, 13; 5, 14; 3, 16; 6, 15; 8, 12; 9, 11

n′, p m, q′ s, t′ u, r′ q,m′ n, p′ r, u′ t, s′

1, 8; 2, 11; 3, 13; 5, 15; 4, 16; 6, 14; 7, 12; 9, 10

n′, r m, s′ q, t′ u, p′ s,m′ n, r′ p, n′ t, q′

1, 9; 2, 12; 3, 14; 4, 15; 5, 16; 6, 13; 7, 11; 8, 10

n′, t m, u′ q, r′ s, p′ u,m′ n, t′ p, s′ r, q′.

Par conséquent, ϕ16 et ϕ′ ont même groupe et donc le groupe de E16 est inclus dans le
groupe de ϕ16. De même, en introduisant

ϕ′′ = bc+ de+ fg + hi+ kl,

on montre que le groupe de E10 est inclus dans le groupe de ϕ10 = a1b1 + · · · + a5b5, la

83. Géométriquement, les droites σ̃(b), σ(m) et σ(n) forment un triangle.
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correspondance des notations étant cette fois donnée par

a1 b1 a2 b2 a3 b3 a4 b4 a5 b5

b c d e f g h i k l.

Pour montrer que toutes ces inclusions sont en fait des égalités, on va montrer que toutes
les substitutions des groupes de ϕ10 et de ϕ16 se retrouvent dans les groupes de E10 et E16

respectivement.
Pour le groupe de E10 par exemple : le groupe de ϕ10 est engendré par les substi-

tutions A ,A1, . . . ,B3 décrites précédemment. Prenons A = (a1 a2)(b1 b2), et définis-
sons en conséquence Ã = (b d)(c e). On vérifie facilement que cette substitution Ã

(sur {b, c, . . . , l}) provient de la substitution BC2B ∈ G26. De même, on peut voir que la
substitution B̃ = (b c)(k l), correspondant à B, provient de BE2DB2DE2. Avec des véri-
fications similaires, on voit que le groupe 〈Ã , . . . , B̃3〉 est contenu dans le groupe de E10.
Mais 〈Ã , . . . , B̃3〉 est clairement isomorphe à 〈A , . . . ,B3〉 qui est le groupe de ϕ10.

Finalement, le groupe de E10 est égal au groupe de ϕ10, qui est égal au groupe de
l’équation Y . On montre de même que le groupe de E16 est égal au groupe de l’équation
aux seize droites X, ce qui achève la reconstruction de la preuve de Jordan.

2.4.4 Les « considérations géométriques » de Geiser sur le lien entre les
vingt-sept droites et les seize droites

L’article de Geiser sur les surfaces quartiques à conique double, [Geiser 1869c], est
divisé en cinq sections numérotées en chiffres romains. Il début par une courte introduction,
essentiellement constituée de ce qui a été cité plus haut, où est entre autres annoncée les
« considérations géométriques » permettant de voir le lien entre les seize droites et les
vingt-sept droites. La fin de l’introduction annonce en outre que ce lien est établi de deux
manières différentes, ce qui correspond respectivement aux sections I et II, et aux sections
III et IV. Dans la dernière section, Geiser expose quelques propriétés supplémentaires dans
le cas où la conique double de la quartique est le « cercle imaginaire à l’infini ». N’étant
pas en rapport avec le lien entre les vingt-sept droites et les seize droites, je ne parlerai
pas de ces propriétés supplémentaires. D’ailleurs, Geiser lui-même rappelle à la fin de son
article que celui-ci consiste surtout en la « confirmation de la conjecture » de Jordan 84.

Première démonstration : représentations de surfaces sur un plan

La première démonstration de Geiser utilise la théorie des représentations de surfaces
sur un plan, et plus particulièrement les représentations des surfaces cubiques et des sur-
faces quartiques à conique double. Avant d’entrer dans les détails de la démarche de Geiser,

84. Voir la note 53.
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expliquons brièvement en quoi consiste cette théorie, en prenant pour exemple la représen-
tation des surfaces cubiques sur un plan.

Dans un mémoire intitulé Die Geometrie auf den Flächen dritter Ordnung, [Clebsch
1866], Clebsch avait montré le résultat suivant :

À chaque point du plan correspond en général un point de la surface et réciproque-
ment ; sont exceptés seulement six points du plan, auxquels ne correspondent pas des
points de la surface, mais des droites 85. [Clebsch 1866, p. 361]

La correspondance dont parle Clebsch est justement la représentation de la surface sur un
plan. En termes plus actuels, il s’agit donc d’une application birationnelle entre le plan
(projectif) et la surface cubique 86. Pour expliquer cela, voyons comment Clebsch avait
construit cette représentation.

Rappelons d’abord qu’une gerbe de plans est l’ensemble des plans de l’espace pas-
sant par un point donné, appelé le sommet de la gerbe. Comme Clebsch, notons a = 0

une équation de plan, étant sous-entendu que a est une forme linéaire non nulle en les
quatre coordonnées homogènes de l’espace x1, x2, x3, x4 — l’équation du plan s’écrit donc
aussi a1x1 +a2x2 +a3x3 +a4x4 = 0. Maintenant, si p est un point de l’espace donné comme
l’intersection de trois plans a = 0, b = 0 et c = 0, alors les plans de la gerbe de somme p sont
les plans ayant une équation de la forme χa+ λb+ µc = 0, avec (χ : λ : µ) ∈ E = P2(C)

quelconque. Si on se donne trois gerbes de plans, définies respectivement par a = b = c = 0,
a′ = b′ = c′ = 0 et a′′ = b′′ = c′′ = 0, on dit qu’elles sont projectives entre elles lorsqu’on
associe (arbitrairement) un à un les plans qui les définissent. Autrement dit, on fixe une
paramétrisation

Λ = (χ : λ : µ) ∈ E 7→ (χa+ λb+ µc : χa′ + λb′ + µc′ : χa′′ + λb′′ + µc′′)

qui décrit simultanément les trois gerbes.
Revenons à la représentation des cubiques. Renvoyant à [Schröter 1863], Clebsch se

basait sur le fait qu’une surface cubique F3 peut être décrite comme le lieu d’intersection

85. « Jedem Punkt der Ebene entspricht also im Allgemeinen ein Punkt der Fläche und umgekehrt;
ausgenommen sind davon nur sechs Punkten der Ebene, denen nicht Punkte der Fläche entsprechen,
sondern Gerade [sic] ».
86. Considérons une surface cubique F3 et une application

f :
P2(C) −→ F3

(x1 : x2 : x3) 7−→ (f1(x1 : x2 : x3) : f2(x1 : x2 : x3) : f3(x1 : x2 : x3) : f4(x1 : x2 : x3).)

On dit que c’est une application rationnelle s’il elle est définie partout sauf éventuellement un sous-ensemble
« pas trop gros » deP2(C) et si les fi sont rationnelles en les coordonnées xi ; on note alors f : P2(C) 99K F3.
S’il existe g : F3 99K P2(C) qui est l’application réciproque de f (sur les bons ensembles de définition), on
dit que f est une application birationnelle. La représentation de la surface cubique sur le plan peut être
interprétée comme un éclatement du plan projectif en six points en position générale : l’ensemble « pas
trop gros » enlevé à P2(C) consiste en ces six points, et celui enlevé à F3 consiste en six droites. Voir par
exemple [Hartshorne 1977, p. 401].
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de trois gerbes projectives de plans. Avec les notations précédentes, un point x de coor-
données (x1 : x2 : x3 : x4) appartient à l’intersection de trois gerbes projectives s’il existe
un (unique) Λ tel que x1, . . . , x4 sont les solutions du système 87

(SΛ)


χa + λb + µc = 0

χa′ + λb′ + µc′ = 0

χa′′ + λb′′ + µc′′ = 0.

Cela permet ainsi de définir une application x ∈ F3 7→ Λ = (χ : λ : µ) ∈ E, rationnelle
car χ, λ, µ s’expriment rationnellement en fonction des xi (et des coefficients de a, . . . , c′′).

Réciproquement, Clebsch avait procédé comme suit. On se donne un Λ et on considère
le système (SΛ), d’inconnue x1, . . . , x4, et dont on note f1(χ, λ, µ), . . . , f4(χ, λ, µ) les dé-
terminants de taille 3× 3 extraits. Si les fi(χ, λ, µ) sont non tous nuls, alors le système est
de rang 3 et on peut utiliser les formules de Cramer pour le résoudre : il existe un facteur ρ
tel que

(∗)



ρx1 = f1(χ, λ, µ)

ρx2 = f2(χ, λ, µ)

ρx3 = f3(χ, λ, µ)

ρx4 = f4(χ, λ, µ).

Cela donne ainsi une application Λ 7→ x = (f1(Λ) : · · · : f4(Λ)) ∈ F3, définie partout sauf
en les Λ qui annulent simultanément les fi. Cette application est rationnelle en Λ et est,
par construction, réciproquement de celle construite supra.

Clebsch avait encore montré que les points Λ ∈ E qui annulent simultanément les fi
sont au nombre de six, sont situés en position générale, c’est-à-dire qu’ils ne sont pas situés
sur une même conique et qu’ils sont trois à trois non alignés. Ces points sont les points
exceptionnels de la représentation. Il avait en outre fait remarquer que, pour ces points
exceptionnels, le système (SΛ) définissait non pas un point, mais une droite de l’espace 88,
et donc contenue dans la surface F3.

Le but de Clebsch avait été d’utiliser cette représentation d’une surface cubique sur
un plan pour étudier ce qu’il appelait la « géométrie sur la surface », c’est-à-dire l’étude
de courbes tracées sur cette surface, avec leur points remarquables, leurs intersections,

87. Le système a bien pour inconnues x1, . . . , x4 qui n’apparaissent pas dans la notation adoptée ici. Par
exemple, la première ligne peut également s’écrire

χ(a1x1 + a2x2 + a3x3 + a4x4) + λ(b1x1 + b2x2 + b3x3 + b4x4) + µ(c1x1 + c2x2 + c3x3 + c4x4) = 0.

88. Cela découle du fait que le rang du système est alors 2. En effet, il est strictement inférieur à 3
puisque tous les déterminants 3 × 3 extraits son nuls. S’il était de rang 1, il y aurait tout un plan inclus
dans la surface cubique, hypothèse qu’on écarte en supposant cette dernière lisse.
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etc. Le principe était de voir comment se transformaient les courbes du plan projectif par
l’application birationnelle de la représentation. Plus précisément, Clebsch avait montré
que si une courbe plane de degré n passe par les points fondamentaux avec des multipli-
cités α1, . . . , α6, alors son image est une courbe de l’espace (incluse dans la cubique) de
degré N = 3n− (α1 + · · ·+ α6).

Revenons à l’article de Geiser sur les surfaces quartiques à conique double, [Geiser
1869c]. En citant le mémoire de Clebsch sur la géométrie des surfaces cubiques, [Clebsch
1866], Geiser résume dans la section I les résultats que nous venons de présenter :

1. En général, à chaque point de F3 correspond un unique point de E, et réciproquement.

2. Dans E, il y a six points σ1, . . . , σ6 en position générale 89 tels qu’à chacun d’eux
correspond une droite contenue dans la cubique F3.

3. À une courbe Cn incluse dans E et passant α1 fois par σ1, α2 fois par σ2, etc.,
correspond une courbe gauche CN de degré N = 3n−(α1 + · · ·+α6), incluse dans F3,
et rencontrant α1 fois la droite correspondant à σ1, α2 fois la droite correspondant
à σ2, etc.

En citant ensuite l’article de Clebsch sur les surfaces quartiques que nous avons déjà ren-
contré, [Clebsch 1868], Geiser donne de façon analogue les propriétés caractéristiques de la
représentation d’une surface quartique à conique double F4 sur un plan E :

1. En général, à chaque point de la surface F4 correspond un unique point de E, et
réciproquement.

2. À chaque point de la conique double C2 de la quartique correspond un couple de
points de E.

3. Dans E, il y a cinq points s1, . . . , s5 en position générale 90 tels qu’à chacun d’eux
correspond une droite contenue dans la quartique F4.

4. À une courbe Cn incluse dans E et passant a1 fois par s1, a2 fois par s2, etc.,
correspond une courbe gauche CN de degré N = 3n−(a1 + · · ·+a5), incluse dans F4,
et rencontrant a1 fois la droite correspondant à s1, a2 fois la droite correspondant
à s2, etc.

Ces propriétés ayant été rappelées, Geiser indique ensuite comment il est possible d’as-
socier une surface cubique à une surface quartique à conique double. Il s’agit d’abord de
représenter la quartique sur un plan E avec cinq points fondamentaux s1, . . . , s5. Ces cinq

89. Je traduis ainsi l’expression « In E liegen sechs ausgezeichnete, ihrer Lage nach von einander unab-
hängige Punkte σ1, . . . , σ6 ».
90. Ici, cela signifie que les points si sont trois à trois non alignés.
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points, plus un sixième, permettent alors de définir une surface cubique par représentation.
Afin de mettre en correspondance les droites de ces surfaces, Geiser détaille, dans la section
II de [Geiser 1869c], leur provenance dans chacune des deux représentations 91. Ainsi, les
vingt-sept droites de la surface cubique consistent en :

1. les six droites γ1, . . . , γ6 correspondant aux points σ1, . . . , σ6,

2. les quinze droites λµν correspondant aux droites σµσν ,

3. les six droites Γ1, . . . ,Γ6 correspondant aux coniques passant par cinq des six points
fondamentaux σ1, . . . , σ6 (notées avec la convention que Γk correspond à la conique
passant par les points autres que σk) ;

tandis que les seize droites des surfaces quartiques à conique double consistent en :

1. les cinq droites g1, . . . , g5 correspondant aux points s1, . . . , s5,

2. les dix droites lmn correspondant aux droites smsn,

3. la droite G6 correspondant à la conique passant par les cinq points s1, . . . , s5.

Cela permet à Geiser d’associer ces droites entre elles comme ceci :

g1, . . . , g5 ; l12, . . . , l45 ; G6

γ1, . . . , γ5 ; λ12, . . . , λ45 ; Γ6

et d’énoncer le résultat suivant : il est possible d’associer aux seize droites du F4, seize des
vingt-sept droites du F3, dès lors que ces seize-là sont les seize restantes quand, parmi les
vingt-sept, on en sélectionne une puis on l’élimine ainsi que les dix qui lui sont incidentes
(par exemple γ6 et λ16, . . . , λ56,Γ1, . . . ,Γ5). Geiser fait encore remarquer que les relations
d’incidence entre les seize droites issues d’une surface ou de l’autre sont les mêmes 92.

Enfin, dans le dernier paragraphe du II, Geiser prouve que la conique double de la
surface quartique devient, par la transformation issues des deux représentations, une courbe
quartique gauche incluse dans la surface cubique.

91. Par exemple, pour les surfaces cubiques, il y a déjà les six droites correspondant à chaque σi vu la
propriété 1 de la représentation. La propriété 3 permet de trouver les autres, qui sont des CN avec N = 1 :
il s’agit donc de trouver des courbes Cn qui correspondent à un C1. Il y en a quinze qui correspondent
à n = 1 et pour lesquelles deux des α valent 1 et les autres 0 : ce sont les droites joignant les σi deux à
deux. Il y en a six qui correspondent à n = 2 et pour lesquelles tous les α valent 1, sauf un qui est nul : ce
sont les coniques passant par cinq des σi sauf un. On obtient ainsi les vingt-sept droites.
92. Une interprétation (que Geiser ne fait pas) est que le groupe de l’équation aux seize droites est

identique à celui de l’équation de degré 16 obtenue en adjoignant une de ses racines à l’équation aux
vingt-sept droites. Voir également la note 99.
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Figure 2.5 – Les représentations des surfaces F3 et F4 sur le même plan E, en faisant
coïncider les points-base.

Seconde démonstration : généralisation du principe des rayons réciproques

Geiser passe ensuite, dans la section III, à la seconde démonstration du lien entre les
droites des surfaces cubiques et des surfaces quartiques à conique double est présentée par
Geiser comme

[une] application d’une correspondance du second degré, qui est une généralisation du
principe des rayons réciproques 93. [Geiser 1869c, p. 252]

Les idées de cette correspondance sont exposées dans la section III : étant donnés une
surface quadrique F2 et un point P , on associe à tout point p de l’espace le point p′ défini
comme étant le quatrième harmonique 94 à p, s1 et s2, où ces derniers points s1 et s2 sont
les points d’intersection de la droite Pp avec F2 (voir la figure 2.6).

Geiser indique que l’application ainsi définie est en général univoque et réciproque
(« eindeutig und reciprok »), avec deux cas exceptionnels : au point P lui-même est associé
le plan polaire 95 E de P par rapport à F2, et à un point p de la conique C2 intersection

93. « [eine] Anwendung einer geometrischen Verwandtschaft zweiten Grades, welche eine Verallgemeine-
rung des Princips der reciproken Radien ist ». Geiser indique en référence [Geiser 1866]. Quant au principe
des rayons réciproques, en voici l’idée (telle qu’elle est exposée dans [Geiser 1869a]) : dans un plan sont
donnés un cercle K de centre M et un point p. On note P la polaire de p par rapport à K, c’est-à-dire la
droite joignant les deux points de contact des deux tangentes à K menées par p. Il s’agit alors d’associer
à p le point p′ défini comme étant l’intersection des droites P et Mp. Le principe permet donc de définir
une transformation du plan ; sa « généralisation » présentée par Geiser consiste à se placer dans l’espace
et à remplacer le cercle par une surface quadrique.
94. Étant donnés quatre points alignés p′, p, s1, s2, leur rapport anharmonique, ou birapport, est la quan-

tité définie par p′p/p′s1 : s2p/s2s1. Lorsque ce birapport est égal à −1, on dit que p′, p, s1, s2 forment une
division harmonique ; p′ est alors le quatrième harmonique à p, s1 et s2.
95. Le plan polaire de P par rapport à F2 est le plan contenant la conique formée de tous les points M

de F2 tels que la droite PM est tangente à F2. Avec des équations : si F2 est donné par l’annulation d’une
forme quadratique q(x, y, z, w) = 0, alors le plan polaire de P par rapport à F2 a pour équation B(P,X) = 0,
où l’on a noté B la forme polaire de q et X = (x, y, z, w).



140 CHAPITRE 2

de E et F2 est associée la droite pP .

P

p

p0
s1

s2

E

F2

C2

1

Figure 2.6 – Généralisation du principe des rayons réciproques.

Sont ensuite énoncées les règles de correspondance des courbes et des surfaces par cette
transformation. Ainsi, à une courbe gauche Cn qui rencontre a fois C2 et passe b fois par P ,
correspondent :

1. le plan E compté b fois,

2. un système de a arêtes du cône K2 de sommet P et de base C2,

3. une courbe gauche C ′2n−(a+b) qui rencontre C2 en 2n− (a+ 2b) points et passe n− a
fois par P .

Et à une surface Fn contenant a fois le point P et contenant b fois la conique C2 corres-
pondent :

1. le plan E compté a fois,

2. le cône K2 compté b fois,

3. une surface F ′2n−(a+2b) qui contient (n − 2b) fois le point P et n − (a + b) fois la
conique C2.

Dans la section IV, Geiser applique ensuite cette transformation au problème des sur-
faces quartiques à conique double. Il considère donc une telle surface F4, note E le plan
contenant la conique double C2 et considère un point P situé sur F4 mais pas sur C2. Le
cône K2 de sommet P et de base C2 définit, avec le plan E compté double, un faisceau de
quadriques. Geiser considère alors une des quadriques de ce faisceau (différente de C2 et
de E) qu’il note F2 et qui va servir à la correspondance décrite précédemment. Les règles
de transformation indiquent alors qu’à la surface F4 correspondent 96 :

1. le plan E compté une fois,

96. Il suffit d’appliquer la règle de transformation des surfaces avec n = 4, a = 1 et b = 2, ce qui traduit
que la surface quartique contient P et C2 comme conique double.
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2. le cône K2 compté deux fois,

3. une surface cubique F ′3 contenant C2 une fois mais ne contenant pas P ;

Et à une surface cubique quelconque F ′3 contenant une fois C2 mais ne contenant pas P
correspondent 97 :

1. le cône K2 compté une fois,

2. une surface quartique F4 avec C2 comme conique double.

Cette transformation permet ainsi d’associer un point de F ′3 à un point de F4, et ré-
ciproquement, à quelques cas exceptionnels près. Par exemple, à P correspond, sur F ′3,
l’intersection de E avec F ′3, c’est-à-dire la conique C2 et une droite γ6. Geiser obtient ainsi
une application de F4 sur F ′3.

Enfin, Geiser s’occupe des droites des surfaces. En concordance avec ses notations an-
térieures, il note γ1, . . . , γ5 ; λ12, . . . , λ45 ; Γ6 les droites de la surface cubique F ′3 qui ne
rencontrent pas γ6. Ces droites rencontrent nécessairement C2, donc leur image par la cor-
respondance est à chaque fois une droite 98 de la surface F4. Celles-ci sont notées g1, . . . , g5 ;
l12, . . . , l45 ; G6 et Geiser indique à nouveau que les relations d’incidence de ces seize droites
sont les mêmes que pour les seize droites du F ′3 auxquelles elles correspondent 99.

En conclusion, Geiser fait une remarque comparative entre les deux correspondances
entre surfaces cubiques et surfaces quartiques à conique double qu’il a présentées : pour
lui, les deux coïncident, mais

la seconde est une représentation plus directe, car elle met tout simplement F4 et F ′3
en perspective par rapport à P . Cette seconde [correspondance] est ainsi préférable
pour déduire les propriétés du F4 à partir de celles du F ′3 100. [Geiser 1869c, p. 255]

À titre de suggestion, Geiser indique que la seconde transformation serait ainsi utile pour
étudier la réalité des éléments de la surface quartique, en se basant sur les résultats connus
concernant les surfaces cubiques — pour ces résultats, Geiser renvoie aux travaux de R.
Sturm et de Cremona qui ont déjà été décrits au chapitre précédent, [Sturm 1867 ; Cremona
1868].

97. Le résultat qui suit s’obtient en appliquant la règle de transformation avec n = 3, a = 0 et b = 1.
98. Geiser ne justifie pas ces affirmations. Pour la première, on remarquer que si γ est une des droites

considérées, son point d’intersection avec E est inclus dans E ∩ F ′3 = C2 ∪ γ6 ; mais comme γ et γ6 sont
disjointes, ce point d’intersection appartient nécessairement à C2. Pour déterminer ensuite l’image de γ
sur F4, il suffit d’appliquer la règle de transformation des courbes en prenant n = 1, a = 1 et b = 0
(remarquer que γ ne contient pas le point P car F ′3 ne le contient pas).
99. À nouveau, cette remarque sur la concordance des relations d’incidence peut s’interpréter au niveau

des groupes de Galois.
100. « Die zweite derselben eine directere ist, indem durch sie F4 und F ′3 in Bezug auf P geradezu perspec-
tivisch aufeinander bezogen sind. Diese zweite wird darum vorzugsweise geeignet sein, die Eigenschaften
der F4 aus denen der F ′3 abzuleiten. »
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Bilan Des conclusions analogues à celles de la situation des vingt-huit tangentes peuvent
être tirées ici. Le premier point concerne la démarcation disciplinaire entre Jordan et Gei-
ser : comme précédemment, le premier ne parle que de racines, d’adjonction et de groupes,
tandis que le second met avant des transformations de l’espace — sans d’ailleurs parler de
groupes de transformations — et recherche comment elles agissent sur les droites de l’une
ou l’autre des surfaces.

On constate de plus qu’il n’y a pas non plus de transfert effectif opéré depuis l’approche
de Jordan vers celle de Geiser. À nouveau, l’adjonction d’une racine n’a pas été interprétée
comme la sélection d’une droite particulière. Par ailleurs, Geiser a bien mis en évidence
le fait que parmi les vingt-sept droites d’une surface cubique, on peut en mettre seize
en rapport avec les seize droites des surfaces quartiques à conique double lorsque ce sont
les seize qui ne sont pas incidentes à une droite donnée. Mais il n’a pas relié cela à la
factorisation de l’équation aux vingt-sept droites après adjonction d’une de ses racines.
Enfin, et malgré le soin qu’il a apporté à vérifier par deux fois que les relations d’incidence
entre les seize droites des surfaces quartiques et celles des surfaces cubiques sont identiques,
Geiser n’a pas proposé d’interprétation en terme d’égalité de groupes.

Il est intéressant de noter que dans son Programme d’Erlangen écrit trois ans après
l’article de Geiser, Felix Klein évoque entre autres la « géométrie des rayons réciproques »
et la « géométrie des transformations rationnelles 101 », et il est possible pour nous de voir
que les deux démonstrations de Geiser sur le lien entre les seize droites et les vingt-sept
droites se rapportent respectivement à l’une et à l’autre. Mais Klein précise aussi que
la théorie des transformations rationnelles n’est, au moment où il écrit, pas encore assez
développée pour qu’il puisse donner davantage que des « principes » d’une géométrie des
transformations rationnelles 102. En particulier, aucun lien n’est fait entre cette géométrie
et celle des rayons réciproques.

Que ce soit par les représentations de surfaces sur un plan ou par sa généralisation du
principe des rayons réciproques, Geiser a lié les surfaces cubiques et les surfaces quartiques
à conique double par des transformations de l’espace. Ces transformations envoient les
seize droites des quartiques sur seize des droites des surfaces cubiques de la façon que nous
avons déjà décrite : parmi les vingt-sept droites d’une cubique, 16 droites qui ne sont pas
incidentes à une droite donnée peuvent être mises en correspondance avec les seize droites
d’une surface quartique à conique double, et cette correspondance conserve les relations
d’incidence.

101. Respectivement : « Die Geometrie der reciproken Radien » et « eine Geometrie der rationalen Um-
formungen », [Klein 1872, p. 20 et p. 29], traduits en « la géométrie des rayons vecteurs réciproques » et
« une géométrie des transformations rationnelles » dans [Klein 1974, p. 18 et p. 27].
102. « Dans l’espace, toute la théorie ne fait encore que naître. On ne connaît jusqu’ici qu’un petit nombre
de transformations rationnelles, et on les utilise pour attacher par représentation des surfaces inconnues à
des surfaces connues. » [Klein 1974, p. 28].
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2.4.5 Un hiatus

J’étais resté, avant de commencer la description mathématique des preuves de Jordan
et de Geiser, à une double constatation. Les propos de ces derniers montraient d’une part
qu’ils concevaient leurs approches comme bien distinctes au niveau disciplinaires, celle de
Jordan relevant de la théorie des substitutions, celle de Geiser relevant de la géométrie.
Ils annonçaient également un va-et-vient entre leurs travaux, entretenu par des relations
d’inspiration, de prévision et de confirmation.

J’ai déjà souligné la nette démarcation des objets et techniques utilisées de part et
d’autre. Ainsi, chez Jordan, les objets qui sont au cœur du lien entre les différentes confi-
gurations de droites sont les équations algébriques qui y sont associées, et le moyen de
passer de l’une à l’autre consiste en des adjonctions de racines et en des identités de
groupes. Chez Geiser, les objets sont les droites elles-mêmes ; elles sont mises en corres-
pondance via diverses transformations de l’espace (projections, applications birationnelles,
inversions). Remarquons aussi que chacun des deux articles de Geiser proposaient diffé-
rentes preuves, relevant plutôt de la géométrie analytique ou de la géométrie synthétique,
mais qu’elles n’étaient pas présentées comme concurrentes 103. La démarcation à l’œuvre
ici concerne donc bien la théorie des substitutions et la géométrie. Comme nous l’avons vu,
cette dernière ne se résume pas à des exclusivités mutuelles d’objets et de techniques, puis-
qu’aucune sorte de transfert heuristique, aucune traduction entre théorie des substitutions
et géométrie ne sont apparues.

Tout cela montre ainsi une certaine distance entre théorie des substitutions et géo-
métrie, distance accentuée par les champs lexicaux de la prévision et de la confirmation
relevés dans les commentaires de Jordan et Geiser. Rappelons en effet que Jordan lui-même
écrivait que « la théorie des substitutions aurait permis de prévoir l’existence [des] relations
géométriques » et que le lien entre les équations aux vingt-sept droites et aux seize droites
avait été « vérifié » par Geiser. Ce dernier évoquait quant à lui la « conjecture » de Jordan
qu’il allait « confirmer ».

N’ayant pas connaissance de lettres qui auraient été échangées à ce sujet entre Jordan
et Geiser, il est difficile de trancher avec certitude sur cet emploi du terme « conjecture ».
Une explication possible serait qu’il réfère simplement au fait que Jordan n’a pas publié de
démonstration de son lien entre les vingt-sept droites et les seize droites. La reconstruction
que j’ai proposée précédemment et qui suit pas à pas le cas des vingt-huit tangentes suggère
toutefois que Jordan avait probablement eu une preuve de ce lien.

Ajouté à tous les autres commentaires de Jordan et de Geiser, ce mot « conjecture »
souligne plutôt un véritable hiatus existant, à cette époque, entre théorie des substitutions

103. [Geiser 1869b] est classé dans la rubrique « Nouvelle géométrie synthétique » du Jahrbuch, mais
contient une preuve que Geiser lui-même désignait comme « analytique ». L’autre article [Geiser 1869c]
est classé dans deux rubriques de géométrie du Jahrbuch : celle de « Nouvelle géométrie synthétique »
et celle des « Correspondances, transformations univoques, représentations » qui appartient à la section
« Géométrie analytique ». Sur les géométries analytique et synthétique, voir [Lorenat 2015b].



144 CHAPITRE 2

et géométrie. Il s’agit ainsi bel et bien de deux disciplines distinctes, entre lesquelles des
liens sont pressentis par Jordan et Geiser 104 mais ne sont pas réalisés dans les preuves
mathématiques elles-mêmes : les objets et techniques de l’une ne peuvent agir avec ceux de
l’autre. Vu sous cet angle, la théorie des substitutions ne peut que suggérer des résultats
géométriques (ici des liens entre trois configurations de droites), résultats devant alors être
formulés et démontrés dans la géométrie.

En effet, un autre trait caractéristique de la situation est qu’il n’existe pas ici de for-
mulation des liens entre les trois configurations de droites qui soit commune à la théorie
des substitutions et la géométrie. Il s’agit en effet pour Jordan d’égalités de groupes après
adjonctions successives et pour Geiser de transformations de l’espace envoyant droites sur
droites : il n’y a à aucun moment de recherche d’énoncé unique, ce qui participe d’autant
plus au hiatus entre théorie des substitutions et géométrie. Par cette remarque, ces liens
ne rejoignent pas la série de théorèmes du xixe siècle dont les mathématiciens ont cherché
et trouvé des preuves différentes et indépendantes, comme par exemple la loi de récipro-
cité quadratique, la transcendance de e ou celle de π, ou encore la théorème de clôture de
Poncelet 105. Pour ces exemples, il s’agissait en effet d’un énoncé commun et de plusieurs
démonstrations, éventuellement hiérarchisées entre elles par les mathématiciens selon leur
simplicité, leur efficacité, leur rigueur, leur potentialité de généralisation, etc., ou encore
vues dans leur multiplicité disciplinaire comme autant d’indices de l’existence d’une unité
mathématique 106.

En outre, ni Jordan ni Geiser ne semblent rechercher de dictionnaire entre leurs deux
approches. Les rapprochements disciplinaires (incomplets) en jeu ici forment donc une
situation différente de celle (plus tardive) du programme d’André Weil consistant à partir
des analogies entre théories des corps de nombres algébriques, corps de fonctions sur C et
des corps de fonctions sur des corps finis, puis de chercher à traduire les résultats de l’une
dans le langage de l’autre afin de profiter d’un enrichissement mutuel 107.

Continuons à présent à suivre les travaux de Jordan sur les vingt-sept droites avec le
lien entre celles-ci et les fonctions hyperelliptiques, qui va nous aider à éclairer ces rapports
complexes entre théorie des substitutions et géométrie.

2.5 Les vingt-sept droites et les fonctions hyperelliptiques

Comme présenté plus haut, les fonctions hyperelliptiques font l’objet de la troisième
section du chapitre des « Applications à la théorie des transcendantes » du Traité, les

104. Cette idée se retrouve dans l’usage du conditionnel passé dans : « La théorie des substitutions aurait
donc permis de prévoir l’existence des liaisons géométriques », [Jordan 1869c, p. 659].
105. Voir respectivement [Lemmermeyer 2000], [Ozhigova 2001, p. 201] et [Bos et al. 1987 ; Friedelmeyer
2007].
106. Voir [Goldstein 2011b] pour les points de vue de Charles Hermite sur ce sujet.
107. [Weil 1979].
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deux premières étant consacrées aux fonctions circulaires et elliptiques. La section des hy-
perelliptiques est divisée en deux parties ; la première concerne la division des fonctions
hyperelliptiques par un nombre quelconque n et la seconde est dévolue au cas particu-
lier n = 3, c’est-à-dire au cas de la trisection. Cette seconde partie fait également l’objet
de la note intitulée « Sur la trisection des fonctions abéliennes et sur les vingt-sept droites
des surfaces du troisième ordre », [Jordan 1869a], qui ne diffère du Traité essentiellement
que par ses notations, ses références internes et son paragraphe introductif que voici :

Tous les géomètres 108 connaissent le fait de l’abaissement des équations modulaires
pour les transformations des degrés 5, 7 et 11, et les importantes conséquences qu’en
a déduites M. Hermite. MM. Clebsch et Gordan ont signalé un abaissement analogue
pour les équations des périodes dont dépend la bissection des fonctions abéliennes.
Nous venons d’obtenir un résultat du même genre pour l’équation qui donne la trisec-
tion dans les fonctions à quatre périodes. [Jordan 1869a, p. 865]

Jordan se situe donc dans une certaine lignée de travaux relatifs aux équations issues de
la théorie des transcendantes. En guise d’introduction au cas hyperelliptique, présentons
brièvement les cas circulaire et elliptique, ce qui permettra en même temps d’éclaircir le
sens du début de la citation précédente.

Commençons par considérer la fonction circulaire cosinus. Cette fonction peut être vue
comme la réciproque de l’intégrale

u = −
∫ x

1

dx√
1− x2

.

Le cosinus est en outre susceptible d’être prolongé en une fonction définie sur l’ensemble
des nombres complexes. Il possède enfin une période, 2π.

Soit maintenant un entier n et un nombre complexe quelconque u : on sait que cos
u

n
est solution d’une équation de degré n dont les coefficients font intervenir rationnellement
la quantité cosu. Cette équation est l’équation de division du cosinus, et ses racines sont
tous les

cos
u+ 2pπ

n
, avec 0 6 p 6 n− 1.

Dans le cas particulier où u est égal à 0 (ou à un multiple entier de la période 2π), la
racine cos 0 devient rationnelle. Les racines restantes dépendent donc d’une équation de
degré n− 1 appelée équation de division des périodes.

Le cas elliptique consiste à partir d’une intégrale dans laquelle le radicande est un
polynôme de degré 3 ou 4. On considère ainsi une intégrale de la forme

u =

∫ x

0

dx√
(1− x2)(1− k2x2)

,

108. Ici, le terme « géomètres » signifie « mathématiciens » au sens large.
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où le paramètre k ∈ ]0, 1[ est appelé lemodule. Il s’agit d’une intégrale elliptique. La fonction
elliptique associée est sa fonction réciproque, c’est-à-dire la fonction λ définie par 109

u =

∫ x

0

dx√
(1− x2)(1− k2x2)

⇐⇒ λ(u) = x.

Ainsi présentée, cette fonction λ n’est a priori définie que sur un intervalle réel, mais il
est possible de l’étendre en une fonction définie sur l’ensemble des nombres complexes sauf
quelques points 110. Les fonctions elliptiques ont la particularité d’avoir deux périodes :
il existe deux complexes ω et ω′ (les périodes) tels que pour tous entiers p, q et tout
complexe u, on a λ(u+ pω + qω) = λ(u).

Alors, de façon similaire au cas des fonctions circulaires, la quantité λ(u/n) est solution
d’une équation de degré n2 à coefficients rationnels en λ(u), λ′(u) et k. Cette équation est
l’équation de division des fonctions elliptiques ; ses racines sont tous les

λ

(
u+ pω + qω′

n

)
, avec 0 6 p, q 6 n− 1.

Dans le cas particulier où u est égal à 0 (ou à une combinaison linéaire à coefficients entiers
des périodes), la racine λ(0) devient rationnelle, et il reste une équation de degré n2 − 1

appelée équation de division des périodes des fonctions elliptiques.

D’autres équations spéciales existent pour les fonctions elliptiques, issues du problème
de la transformation 111. Ce problème consiste à trouver, étant donné un module k, une
fonction rationnelle y = U(x)/V (x), un module ` et une constante M appelée le multipli-
cateur, tels que

dy√
(1− y2)(1− `2y2)

=
1

M

dx√
(1− x2)(1− k2x2)

.

En prenant U et V premiers entre eux de degrés respectifs n et n − 1, la transformation
est dite d’ordre n. Alors ` (resp. M) est lié à k par une équation de degré n + 1 appelée
équation modulaire (resp. équation du multiplicateur). Le résultat évoqué par Jordan dans
la citation précédente est que dans les cas n = 5, 7 ou 11, l’équation modulaire possède
une réduite de degré 5, 7 ou 11 respectivement. Énoncé par Galois, ce résultat avait fait
l’objet de recherches notamment de la part de Betti et de Hermite. Dans le cas où n = 5,
ce dernier avait en outre montré comment, grâce à l’équation modulaire, il était possible
de résoudre l’équation générale du cinquième degré via les fonctions elliptiques.

109. Si l’on fait tendre k vers 0, alors l’intégrale devient la fonction arcsin, et son inverse est la fonc-
tion circulaire bien connue sin. En ce sens, les fonctions elliptiques sont des généralisations des fonctions
circulaires.
110. Plus précisément, une fonction elliptique est une fonction (doublement périodique, cf. infra) méro-
morphe sur C, ayant un pôle en chaque point d’un réseau de C. Pour les détails techniques concernant
l’inversion et l’extension du domaine de définition, voir [Houzel 2002, p. 96-99].
111. Voir [Gray 2000, ch. IV ; Goldstein & Schappacher 2007 ; Goldstein 2011a].
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Revenons à Jordan et au cas hyperelliptique, qui consiste essentiellement à partir d’in-
tégrales ayant au dénominateur le radical d’un polynôme de degré supérieur à 5. L’équation
particulière qui nous intéresse ici est encore une équation de division de périodes — et pas
un analogue des équations modulaires.

Dans ce qui suit, j’expliquerai les recherches de Jordan sur ce sujet en donnant suffi-
samment de détails pour comprendre les principales étapes, mais j’omettrai certains points
très techniques. On trouvera toutefois l’explication complète des travaux de Jordan sur les
fonctions hyperelliptiques en annexe C.

2.5.1 Fonctions hyperelliptiques et équations de division

Avec Jordan, considérons un polynôme du sixième degré

∆2(x) = (x−m0)(x−m1) . . . (x−m5) = x6 + ax5 + · · ·+ f.

Les intégrales hyperelliptiques associées à ce polynôme sont des intégrales de la forme

Φ0(x) =

∫ x

0

µ+ νx

∆(x)
dx et Φ1(x) =

∫ x

0

µ′ + ν ′x
∆(x)

dx,

où µ, ν, µ′, ν ′ sont des constantes.

Dans deux mémoires cités par Jordan dans le Traité, Carl Gustav Jacob Jacobi avait
remarqué que les intégrales hyperelliptiques ne pouvaient pas être inversées en tant que
telles, au contraire du cas elliptique, [Jacobi 1832 ; Jacobi 1835]. En revanche, il avait
montré qu’en définissant

u =

∫ x

0

µ+ νx

∆(x)
dx+

∫ y

0

µ+ νy

∆(y)
dy et v =

∫ x

0

µ′ + ν ′x
∆(x)

dx+

∫ y

0

µ′ + ν ′y
∆(y)

dy,

ces nouvelles fonctions u et v des deux variables x et y peuvent être inversées 112. Les
fonctions hyperelliptiques sont les fonctions inverses : ce sont donc des fonctions de deux
variables complexes, notées λ0(u, v) et λ1(u, v), vérifiant l’équivalence u = Φ0(x) + Φ0(y)

v = Φ1(x) + Φ1(y)
⇐⇒

 x = λ0(u, v)

y = λ1(u, v).

Jacobi avait aussi montré, dans ces mêmes mémoires, que les fonctions hyperellip-
tiques possèdent chacune 4 périodes par variable, c’est-à-dire qu’il existe des nombres

112. Voir [Houzel 2002, p. 158-160] pour le détail des travaux de Jacobi sur ce point.
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complexes P1, . . . , P4, Q1, . . . , Q4 tels que pour tous u et v et tous entiers p1, q1, p2, q2, λ0(u+ p1P1 + q1P2 + p2P3 + q2P4, v + p1Q1 + q1Q2 + p2Q3 + q2Q4) = λ0(u, v)

λ1(u+ p1P1 + q1P2 + p2P3 + q2P4, v + p1Q1 + q1Q2 + p2Q3 + q2Q4) = λ1(u, v).

Tout comme dans le cas elliptique, il existe un problème de division, consistant ici à
déterminer les valeurs de λ0(u/n, v/n) et λ1(u/n, v/n) en fonction de λ0(u, v) et λ1(u, v).
C’est encore Jacobi qui avait vu que ce problème pouvait se résoudre à l’aide de deux
équations en deux inconnues à coefficients rationnels en les quantités λi(u, v) et ∆(λi(u, v)),
la première inconnue correspondant à λ0(u/n, v/n) et la seconde à λ1(u/n, v/n).

L’équation de division des fonctions hyperelliptiques est l’équation résultant de l’éli-
mination d’une inconnue dans le système de ces deux équations. Dans le Traité, Jordan
prouve 113 que ses racines sont toutes de la forme

g

[
λ0

(
u+ p1P1 + q1P2 + p2P3 + q2P4

n
,
v + p1Q1 + q1Q2 + p2Q3 + q2Q4

n

)
,

λ1

(
u+ p1P1 + q1P2 + p2P3 + q2P4

n
,
v + p1Q1 + q1Q2 + p2Q3 + q2Q4

n

)]
où g est une fonction symétrique et rationnelle de deux variables fixée et où p1, q1, p2, q2

sont des entiers quelconques. À cause de la périodicité de λ0 et λ1, l’équation de divi-
sion possède donc exactement n4 racines, correspondant aux différentes valeurs modulo n
que peuvent prendre les coefficients p1, . . . , q2. L’équation de division par n des fonctions
hyperelliptiques est ainsi de degré n4.

Dans le cas particulier où les nombres complexes u et v sont nuls (ou sont des combi-
naisons linéaires à coefficients entiers des périodes), les racines sont toutes données par la
formule

g

[
λ0

(
p1P1 + q1P2 + p2P3 + q2P4

n
,
p1Q1 + q1Q2 + p2Q3 + q2Q4

n

)
,

λ1

(
p1P1 + q1P2 + p2P3 + q2P4

n
,
p1Q1 + q1Q2 + p2Q3 + q2Q4

n

)]
,

que Jordan note (p1q1p2q2). Parmi elles, la racine (0000) est rationnelle : l’équation de
degré n4 − 1 dont dépendent les racines restantes est l’équation de division des périodes
des fonctions hyperelliptiques.

113. Jacobi avait conjecturé que l’équation résultante était de degré n4, et Hermite l’avait prouvé en 1843,
en donnant les mêmes formules que celles fournies ici par Jordan. Voir [Houzel 2002, p. 162].
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2.5.2 Groupes de monodromie et groupe algébrique de l’équation de
division

Dans le but de déterminer le groupe de l’équation de division, Jordan recourt à l’étude
de ses groupes de monodromie. L’idée à la base de la notion de groupe de monodromie
est que si l’on a une équation dont les coefficients dépendent d’un paramètre complexe z,
alors ses racines peuvent être permutées lorsqu’on fait varier z le long d’un chemin fermé
— les premières recherches sur ce sujet avaient été présentées par Victor Puiseux dans
deux article, [Puiseux 1850 ; Puiseux 1851].

En suivant Puiseux, regardons l’exemple de l’équation u2 − z = 0, où u est l’inconnue
et z le paramètre. Si l’on pose z = reit, les deux racines de l’équation sont

u1(reit) =
√
reit/2 et u2(reit) = −√reit/2.

Faisons décrire à z un cercle complet autour de 0, dans le sens trigonométrique ; autrement
dit, faisons varier t de 0 à 2π dans les formules précédentes. Lorsque t = 0, on a

u1(rei0) =
√
r et u2(rei0) = −√r,

alors que quand t = 2π, on a

u1(re2iπ) = −√r et u2(re2iπ) =
√
r.

Les deux racines ont donc été échangées après que z a décrit le cercle un cercle. Si l’on
faisait faire à z un tour supplémentaire, alors il y aurait un nouvel échange, qui équivaudrait
donc à laisser u1 et u2 invariantes par un chemin consistant en deux tours autour de 0.

Plus généralement, lorsque z parcourt un chemin fermé, les racines de l’équation f(u, z)

sont permutées entre elles. Une fonction de z qui reprend les mêmes valeurs à chaque fois
que z reprend la même valeur est appelée fonction monodrome de z — dans l’exemple
précédent, on peut voir que la fonction u1 + u2 est monodrome. Cette notion permet à
Jordan d’énoncer :

Théorème. — Soit f(u, z) = 0 une équation dont les coefficients contiennent un para-
mètre indéterminé z. On peut déterminer entre les racines de cette équation un groupe
de substitutions H tel, que toute fonction rationnelle des racines et de z monodrome
par rapport à z soit invariable par les substitutions de H (indépendamment de toute
valeur particulière donnée à z), et réciproquement. [Jordan 1870b, p. 277]

Le groupe H ainsi défini est le groupe de monodromie 114 de l’équation f(u, z) par rapport
à z. Dans la démonstration de ce théorème, Jordan montre en particulier que le groupe de

114. Le groupe de monodromie d’une équation avait déjà été introduit par Hermite en 1851, suite aux
travaux de Puiseux. Mais le terme « monodromie » semble être apparu avec Jordan. Voir [Goldstein 2011a,
p. 255-256].
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monodromie est formé des permutations de racines provenant de toutes les lois de variations
possibles de z.

Par exemple, pour l’équation u2−z = 0, il est aisé de voir que le groupe de monodromie
par rapport à z est formé de l’identité et de la transposition correspondant à l’échange des
racines u1 et u2 : en termes modernes, les lacets entourant 0 avec un indice pair induisent
l’identité tandis que ceux avec indice impair induisent la transposition. La fonction u1 +

u2 est monodrome par rapport à z et est effectivement invariante par la transposition
échangeant u1 et u2.

Dans le Traité, Jordan montre un résultat permettant de relier groupes de monodromie
et groupe algébrique d’une équation : le groupe de monodromie de f(u, z) par rapport
à z est (en termes modernes) un sous-groupe distingué du groupe algébrique de l’équa-
tion f(u, z) = 0, où le paramètre z est considéré comme une quantité adjointe. Dans
l’exemple de u2− z, il y a même égalité entre groupe de monodromie et groupe algébrique.

Enfin, Jordan précise que si une équation contient plusieurs paramètres, on peut définir
mutatis mutandis le groupe de monodromie par rapport à tous ces paramètres, étant en-
tendu qu’il faille alors considérer des mouvements au terme desquels chacun d’eux reprend
sa place initiale.

Revenons aux cas de l’équation de la division des fonctions hyperelliptiques. Pour ap-
pliquer les techniques de monodromie, Jordan présente les périodes de ces fonctions en
termes d’« intégrales élémentaires » : les périodes P1, . . . , Q4 sont données par 115

P1 = A0 −A1 ; Q1 = B0 −B1

P2 = A1 −A2 ; Q2 = B1 −B2

P3 = A3 −A4 ; Q3 = B3 −B4

P4 = A4 −A5 ; Q4 = B4 −B5,

où les Ai et les Bi sont les intégrales élémentaires, c’est-à-dire les valeurs respectives des
intégrales ∫

µ+ νx

∆(x)
dx et

∫
µ′ + ν ′x

∆(x)
dx

calculées le long du chemin élémentaire 116 Ci relatif à mi (rappelons que les mi sont les
racines du polynôme ∆2).

Jordan va calculer le groupe de monodromie de l’équation de division par rapport aux
mi. L’idée est que la variation des mi entraîne des modification des chemins Ci, donc
des intégrales élémentaires, et donc des périodes 117. Par exemple, Jordan considère le

115. Ces expressions des périodes avaient déjà été données dans [Puiseux 1850].
116. En termes modernes, il s’agit d’un lacet entourant mi avec indice 1.
117. Jordan utilise une méthode similaire dans son paragraphe sur les fonctions elliptiques. Il y écrit qu’il
s’agit d’une « méthode élégante, due à M. E. Mathieu », [Jordan 1870b, p. 338]. Aucune référence précise
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mouvement consistant à laisser m1, . . . ,m6 immobiles tout en faisant décrire à m0 un lacet
autour de m1 (voir la figure suivante). Jordan montre alors que suite à ce mouvement, les

O

m0

m1

C0 C1

D01

1

(a) Le mouvement D01

C0

C1 C2
C3

C4

C5

m0

H0

H1

m1

m3

m2

m4

m5

1

(b) Modification des chemins C0 et C1

Figure 2.7 – À gauche, D01 est le mouvement effectué par m0 autour de m1. À
droite, les chemins en pointillés représentent les déformations subies par les chemins
élémentaires C0 et C1 suite au mouvement D01. Voir [Jordan 1870b, p. 358].

toutes les périodes Pi sont inchangées, sauf P2 qui devient P1 + 2P2, et de même pour les
périodes Qi. Une racine de l’équation de division

g

[
λ0

(
p1P1 + q1P2 + p2P3 + q2P4

n
,
p1Q1 + q1Q2 + p2Q3 + q2Q4

n

)
,

λ1

(
p1P1 + q1P2 + p2P3 + q2P4

n
,
p1Q1 + q1Q2 + p2Q3 + q2Q4

n

)]
est alors changée en

g

[
λ0

(
p1P1 + q1(2P1 + P2) + p2P3 + q2P4

n
,
p1Q1 + q1(2Q1 +Q2) + p2Q3 + q2Q4

n

)
,

λ1

(
p1P1 + q1(2P1 + P2) + p2P3 + q2P4

n
,
p1Q1 + q1(2Q1 +Q2) + p2Q3 + q2Q4

n

)]
,

c’est-à-dire en

g

[
λ0

(
(p1 + 2q1)P1 + q1P2 + p2P3 + q2P4

n
,
(p1 + 2q1)Q1 + q1Q2 + p2Q3 + q2Q4

n

)
,

λ1

(
(p1 + 2q1)P1 + q1P2 + p2P3 + q2P4

n
,
(p1 + 2q1)Q1 + q1Q2 + p2Q3 + q2Q4

n

)]
.

Avec la notation de Jordan décrite précédemment, la racine (p1q1p2q2) est donc changée

n’est donnée, mais il s’agit probablement de [Mathieu 1867]. Dans ce mémoire sur les fonctions elliptiques,
Mathieu utilise effectivement des techniques similaires en tout point à ce que fait Jordan. On retrouve
aussi le même type de dessins explicatifs. Voir en particulier [Mathieu 1867, p. 283-284] et comparer les
figures de [Mathieu 1867, p. 283] et [Jordan 1870b, p. 339].
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en (p1 + 2q1, q1p2q2). Autrement dit, le déplacement de m0 décrit plus haut induit la
substitution que Jordan note

S1 = |p1, q1, p2, q2 p1 + 2q1, q1, p2, q2|.

Avec des considérations de ce type, Jordan parvient à déterminer le groupe de mo-
nodromie de l’équation de division des périodes par rapport aux mi, son groupe de mo-
nodromie par rapport aux coefficients a, . . . , f de ∆2 et son groupe de monodromie par
rapport aux quantités λ0(u, v), λ1(u, v), ∆(λ0(u, v)) et ∆(λ1(u, v)). Par exemple, lorsque n
est un nombre premier impair, le premier de ces groupes est, en notation actuelle, le
groupe Sp4(Fn). Grâce aux liens existant entre groupes de monodromie et groupe algé-
brique d’une équation, Jordan en déduit que le groupe algébrique de l’équation de division
des périodes est le « groupe abélien », c’est-à-dire en adoptant une notation actuelle, le
groupe G = Sp4(Fn) o F∗n.

2.5.3 Lien avec les vingt-sept droites

Le lien avec les vingt-sept droites est établi dans le cas de la trisection des périodes,
correspondant à n = 3. L’équation de trisection des périodes, notée dorénavant E, est
degré 34 − 1 = 40 ; son groupe est le groupe abélien G = Sp4(F3) o F∗3 qui a pour
ordre 2Ω2 = 2(34 − 1)33(32 − 1)3. Jordan va montrer que cette équation possède une
réduite de degré 27 ayant le même groupe que l’équation aux vingt-sept droites.

Pour cela, il commence par considérer le sous-groupe H1 de G engendré par la substi-
tution

|p1, q1, p2, q2 p2, q2, p1, q1|

ainsi que les substitutions de la forme

|p1, q1, p2, q2 a′1p1 + c′1q1, b
′
1p1 + d′1q1, a

′′
2p2 + c′′2q2, b

′′
2p2 + d′′2q2|

avec a′1, . . . , d′′2 entiers modulo 3.

Jordan montre que ce groupe H1 est d’ordre 2ω = (32 − 1)2(32 − 3)2, et en déduit
qu’« une fonction ϕ1 des racines de E, invariable par les substitutions de H1, dépendra
d’une équation E de degré 2Ω2/(2ω) = 45 », [Jordan 1870b, p. 365] 118.

Jordan introduit ensuite le groupe F formé des substitutions

AαBβCγDδ = |p1, q1, p2, q2 p1 + α, q1 + β, p2 + γ, q2 + δ|

118. En termes actuels, la fonction ϕ1 est un élément primitif de KH1/k, où j’ai noté k le corps de
définition de E et K un corps de décomposition de cette équation. La fonction ϕ1 dépend bien d’une
équation de degré 45 puisque l’on a [KH1 : k] = (G : H1) = 45.
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et appelle « décompositions » de F , des 119 couples de sous-groupes de F de cardinal 32 et
qui, à eux deux, engendrent F . Par exemple, les sous-groupes P1 = 〈A,B〉 et P ′1 = 〈C,D〉,
engendrés respectivement par A,B et par C,D, forment une telle décomposition.

À chaque racine de l’équation E correspond alors une décomposition de F . En effet, les
racines de E sont les fonctions ϕs obtenues à partir de ϕ1 par action des substitutions s de
G, celles de H1 laissant par définition ϕ1 invariable 120. Par ailleurs, les substitutions s de
G agissent sur la décomposition {P1, P

′
1} de F par conjugaison (les conjugués Ps = sP1s

−1

et P ′s = sP ′1s
−1 forment encore une décomposition de F ), les substitutions de H1 laissant

{P1, P
′
1} inchangée.

Pour résumer cela en termes actuels, on a une application

{racines de E } −→ {décompositions de F}

ϕs 7−→ {Ps, P ′s}

qui est compatible à l’action de G/H1 sur les racines de E d’une part et sur les décompo-
sitions de F d’autre part. De plus, Jordan montre que la correspondance ainsi définie est
biunivoque.

Comme il y a 45 racines de E , il y a 45 décompositions de F , dont Jordan établit
la liste (sans expliquer comment il a procédé). Cette liste est présentée dans un tableau
reproduit en partie ci-dessous :

A,B ; C,D A,BD2 ; CA,D A,BD ; CA2, D

AD,B ;CB,D AD,BD2 ;CAB,D AD,BD ;CA2B,D

AD2, B ;CB,D AD,BD2 ;CAB,D AD,BD ;CA2B,D

· · · ; · · · · · · ; · · · · · · ; · · ·

Jordan note ensuite de façon correspondante 1, 2, . . . , 45 les racines de l’équation E :

1, 2, 3

4, 5, 6

· · · · · · · · ·

43, 44, 45,

et regarde ensuite comment le groupe abélien G agit sur les racines en regardant comment
il agit sur les décompositions. Jordan prend l’exemple de la substitution

L1 = |p1, q1, p2, q1 p1 + q1, q1, p2, q2|.
119. Il y a une condition technique supplémentaire, que j’explique dans l’annexe C.
120. Autrement dit, il y a autant de racines ϕs que de représentants de classes de G/H1.
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Cette substitution transforme A, B, C, D en A, AB, C et D respectivement, donc laisse
inchangés P1 = 〈A,B〉 et P ′1 = 〈C,D〉. Par conséquent, elle fixe la racine 1.

Jordan traite un autre exemple en regardant en quelle racine est transformée la racine 4

par L1. Cette substitution transforme la décomposition 〈AD,B〉, 〈CB,D〉 en la décom-
position 〈AD,AB〉, 〈CAB,D〉. Écrite telle quelle, cette dernière n’apparaît pas dans le
tableau des quarante-cinq décompositions, mais Jordan indique qu’elle est « évidemment
identique » à la décomposition 〈AD,BD2〉, 〈CAB,D〉. Cela montre ainsi que L1 remplace
la racine 4 par la racine 5. Jordan écrit ensuite :

Continuant ainsi, on peut écrire sans difficulté les déplacements opérés entre les ra-
cines 1, 2, . . . , 45 par la substitution |p1, q1, p2, q2 p1, 2q1, p2, 2q2| et par les autres
substitutions L1, L2, M1, M2, N1,2 dont G est dérivé. [Jordan 1870b, p. 368]

Autrement dit, Jordan regarde comment sont substituées entre elles les racines 1, . . . , 45

par ces six substitutions (qui sont, en termes plus actuels, des générateurs de G). Il affirme
alors que chacune de ces six substitutions permute entre elles les vingt-sept expressions
suivantes :

(1, 37, 34, 41, 45), (1, 39, 36, 40, 44), (1, 38, 42, 43, 35),

(10, 37, 7, 21, 32), (11, 37, 4, 25, 30), (15, 34, 3, 24, 33),

(2, 34, 12, 29, 22), (16, 20, 27, 45, 5), (26, 9, 14, 45, 23),

(19, 41, 13, 6, 31), (17, 41, 18, 28, 8), (15, 44, 6, 21, 27),

(26, 8, 44, 25, 12), (17, 36, 3, 23, 32), (2, 36, 13, 30, 20),

(7, 40, 16, 29, 18), (19, 40, 4, 33, 14), (10, 39, 9, 22, 31),

(11, 39, 5, 24, 28), (2, 35, 28, 21, 14), (16, 31, 35, 25, 3),

(19, 42, 12, 5, 32), (15, 42, 18, 30, 9), (7, 43, 26, 24, 13),

(17, 43, 4, 22, 27), (10, 38, 20, 33, 8), (11, 38, 23, 29, 6),

où chaque symbole (α, β, γ, δ, ε) désigne une fonction des racines de E invariable par les
substitutions qui permutent exclusivement entre elles les racines α, β, γ, δ, ε, mais variable
par toute autre substitution. Jordan note ensuite a, b, c, d, e, f , g, h, i, k, l, m, n, p, q, r,
s, t, u, m′, n′, p′, q′, r′, s′, t′, u′ ces vingt-sept fonctions et X l’équation du vingt-septième
degré dont elles dépendent.

Remarquant que chacune des racines 1, 2, . . . , 45 apparaît dans exactement trois des
fonctions a, b, . . . , u′ (par exemple, 1 apparaît dans a, b et c ; 37 apparaît dans a, d et e),
Jordan forme les produits trois à trois correspondant et note ϕ leur somme. Il observe alors
que

ϕ = abc+ ade+ · · ·+ lps′

est identique à la fonction ϕ qu’il avait introduite lors de l’étude de l’équation aux vingt-
sept droites.
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La dernière étape de Jordan consiste à montrer que le groupe de l’équation X est égal
au groupe des substitutions qui laissent ϕ invariante. Pour cela, il procède en deux temps.

D’abord, Jordan écrit que si S est une substitution quelconque du groupe abélien G,
si α est une des racines 1, . . . , 45 et si β est la racine sur laquelle est envoyée α par S, alors S
remplace une des expressions a, b, . . . , u′ qui contient α par une autre qui contient 121 β ;
par conséquent, la substitution S permute entre eux les termes de ϕ. Jordan indique alors
que toute fonction de a, b, . . . , u′ invariable par les substitutions fixant ϕ est nécessairement
invariable par les substitutions de G et est donc rationnelle 122. Cela signifie exactement
que le groupe de l’équation X est contenu dans celui de ϕ.

Jordan traite l’inclusion réciproque par un argument de cardinalité : si l’équation X

est supposée résolue, le groupe G se réduit aux substitutions qui fixent a, b, . . . , u′. Ces
substitutions fixent donc chaque terme abc, . . . , ls′p de ϕ et laissent ainsi invariable chaque
racine 1, 2, . . . , 45, puisque ces dernières sont les racines communes à chaque terme de ϕ.
Ainsi, les substitutions du groupe réduit de G par résolution de X transforment chaque
décomposition de F en elle-même. Jordan en déduit alors (sans faire les calculs) que ce
groupe réduit est égal aux substitutions qui « multiplient tous les indices par un même
facteur constant ±1 », [Jordan 1870b, p. 369]. Cela lui permet de voir que le groupe de X
a pour ordre Ω2 (la moitié de l’ordre de G), qui est également l’ordre du groupe de ϕ.
Jordan conclut :

L’équation X a donc le même groupe que l’équation aux vingt-sept droites des surfaces
du troisième ordre. [Jordan 1870b, p. 369]

Pour résumer, Jordan a construit deux réduites E et X de l’équation de trisection des
périodes des fonctions hyperelliptiques, de degrés respectifs 45 et 27. L’équation X a le
même groupe que l’équation aux vingt-sept droites, et le groupe de la trisection s’y ramène
par adjonction d’une racine carrée.

2.5.4 Bilan : analyse, théorie des substitutions, géométrie

Dans les recherches qui ont été décrites dans cette section, on peut commencer par
remarquer que Jordan s’inscrit bien dans une série de travaux relatifs aux fonctions ellip-
tiques et hyperelliptiques, et ce à plusieurs niveaux. Comme on l’a vu, il met explicitement
en écho son résultat sur l’abaissement de l’équation de la trisection des périodes avec ceux,
que « [t]ous les géomètres connaissent », concernant l’abaissement des équations modu-
laires relatives aux fonctions elliptiques. Ce faisant, Jordan entend continuer une tradition
de recherches commencée près de quarante ans auparavant. En outre, il s’appuie dans ses

121. Par exemple, le terme abc est envoyé sur le terme S(a)S(b)S(c). Or, abc apparaît parmi les termes
de ϕ car a, b et c ont la racine 1 en commun. Donc S(a), S(b) et S(c) ont la racine S(1) en commun, et
par conséquent, le produit S(a)S(b)S(c) apparaît dans ϕ.
122. En effet, puisque G est contenu dans le groupe Γ de ϕ, on a k(a, . . . , u′)Γ ⊂ k(a, . . . , u′)G. ensuite,
toute fonction des racines de X invariable sous G est rationnelle car k(a, . . . , u′) ⊂ KH1 = KG = k.
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preuves sur de nombreux résultats connus (comme ceux de Jacobi) et utilise des objets et
des techniques empruntées à ses contemporains, tels Hermite, Puiseux et Mathieu 123.

Si l’on examine les étapes de la démonstration de Jordan du lien entre fonctions hy-
perelliptiques et vingt-sept droites, on peut constater que ces utilisations lui permettent
d’expliciter la structure abélienne du groupe (algébrique) de l’équation de trisection. Dès
lors que cette structure a été mise à jour, Jordan se replie sur ses techniques usuelles de
théorie des substitutions : considérations de groupes, de fonctions de racines invariables
par des sous-groupes ou création ad hoc de telles fonctions, utilisation de générateurs, etc.

En particulier, il n’y a à aucun moment intervention d’objets géométriques dans ces
preuves de Jordan, au sens dégagé à la section 2.2 — auquel échappe l’utilisation de (dessins
de) chemins d’intégration. La seule occurrence des vingt-sept droites apparaît tout à la fin,
dans la remarque de conclusion : « [l’]équation [de trisection] a donc le même groupe que
l’équation aux vingt-sept droites ». Alors que Jordan ne discute pas ce résultat dans le
Traité, plusieurs commentaires de lui-même et d’autre mathématiciens, rapportés ailleurs,
soulignent leur étonnement à ce sujet.

2.5.5 Une « énigme à expliquer »

Comme l’a remarqué F. Brechenmacher, ce lien entre l’équation aux vingt-sept droites
et celle de trisection des périodes des fonctions hyperelliptiques a fait partie des résultats
du Traité ayant circulé dès la parution de cet ouvrage — et même avant, à travers la
note consacré à ce sujet, [Jordan 1869a] —, contribuant à son succès immédiat auprès de
certains mathématiciens, [Brechenmacher 2011, p. 341]. Citons ainsi Sylvester, qui place
ce résultat parmi les plus importants de l’année 1869 :

Je devrais ajouter à cette liste d’événements mémorables, qui doivent à tout ja-
mais faire ressortir 1869 des annales de la science, [...] la merveilleuse réalisation du
Dr. Christian Wiener en planches stéréométriques des 27 droites sur une surface cu-
bique de Salmon-Cayley d’une part, et d’autre part la surprenante découverte de
M. Camille Jordan (élève de Hermite, et élève à la hauteur de son maître) de l’appli-
cation de ces 27 droites à la trisection des fonctions abéliennes 124. [Sylvester 1866-69,
p. 155]

123. Comme précédemment, nous pouvons dire que ces objets et techniques relèvent de l’analyse pour
Jordan.
124. « I ought to tack on to this list of memorabilia, which must for ever make 1869 stand out in the Fasti
of science, Capt. Andrew Noble’s mechanical invention for measuring up to the millionth part of a second
the rate of motion of a shot inside a cannon and Dr. Christian Wiener’s wonderful realization in stereoscopic
drawings of the Salmon-Cayley 27 lines on a cubic surface on the one hand, and on the other (Hermite’s
pupil, pupil worthy of his master) M. Camille Jourdan’s [sic] surprising discovery of their application to the
trisection of Abelian functions. » Les premiers éléments de la liste d’événements mémorables de Sylvester
sont « Janssen’s and Lockyer’s hydrogenous solar chromosphere, Tyndall’s indefinitely attenuated cometary
matter, and the still more impalpable and shadowy product of cerebration embodied in diptychs with their
quasi chemical composition and parallels stretching between and connecting, as it were, with forces of
affinity the atomic elements of the associated geminate molecules ». C’est en tant que « théories ayant leur
origine dans l’observation » que Sylvester mentionne ces trois premiers éléments. L’article duquel est tiré
la citation n’a pas de rapport avec les surfaces cubiques ou les vingt-sept droites. Il s’agit d’un article de
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Sylvester ne précise pas pourquoi il considère le lien entre les vingt-sept droites et les
fonctions hyperelliptiques comme un résultat remarquable. Il est en tout cas certain que
les vingt-sept droites elles-mêmes sont un sujet de vif intérêt pour Sylvester, comme le
montre l’envolée lyrique qui suit l’extrait précédent :

Avec probablement la même bonne raison qu’Archimède a fait graver le cylindre, le
cône et la sphère sur sa pierre tombale, nos compatriotes distingués pourraient laisser
des instructions testamentaires pour que l’eikosiheptagramme cubique soit gravé sur
la leur. Esprit de l’Univers ! où allons-nous, et quand, où et comment tout cela finira-
t-il 125 ? [Sylvester 1866-69, p. 155]

Un autre commentaire permet de voir un avis également enthousiaste sur le lien entre
les vingt-sept droites et les fonctions hyperelliptiques. C’est celui de Luigi Cremona, qui
écrit à Jordan le 19 décembre 1869 :

Monsieur,

J’ai reçu hier [...] la première partie de votre Traité des substitutions et des équa-
tions algébriques, que vous avez eu la bonté de me destiner en cadeau. Je vous prie
maintenant d’agréer mes sincères et vifs remerciements.

Je n’ai pu jusqu’ici que tailler les pages mais les seuls titres des §§ ont suffi pour me
donner l’idée du plaisir et de l’instruction que je pourrai tirer de la lecture de votre
ouvrage : lecture que je commencerai sans délai.

Entre autres, il y a une question qui excite au plus haut degré ma curiosité : celle
du rapprochement de la recherche des 27 droites d’une surface cubique (qui ont été
découvertes par MM. Cayley et Salmon, avant Steiner) avec la trisection des fonctions
hyperelliptiques. Surtout du point de vue géométrique, il y a là une véritable énigme
à expliquer 126. [...]

Ce à quoi Jordan répond :

Monsieur,

Je vous remercie de l’appréciation bienveillante que vous avez bien voulu faire de la
première partie de mon ouvrage, et de la rectification que vous me signalez au sujet

mathématiques dans lequel Sylvester exprime de façon insistante son point vue consistant à considérer les
mathématiques comme une science d’observation. Mais au contraire d’autres exemples, il n’est pas clair
qu’il associe les résultats relatifs aux vingt-sept droites à des observations. Les points de vue de Hermite
sur cette question de l’importance de l’observation en mathématiques sont étudiés dans [Goldstein 2011b].
Par ailleurs, présenter Jordan comme élève d’Hermite est un peu curieux, compte tenu de leurs relations
parfois tendues. Voir [Brechenmacher 2007a, p. 229].
125. « Surely with as good reason as had Archimedes to have the cylinder, cone, and sphere engraved on his
tombstone might our distinguished countrymen leave testamentary directions for the cubic eikosiheptagram
to be engraved on theirs. Spirit of the Universe! whither are we drifting, and when, where, and how is all
this to end? » Au sujet du style particulier de Sylvester, voir [Parshall 2006].
126. Extrait d’une lettre de Cremona à Jordan datée du 19 décembre 1869, conservée aux Archives
de l’École polytechnique (réf. VI2A2(1855) 9). Je suis redevable à Giorgio Israel de m’avoir envoyé une
transcription de la réponse qui suit, datée du 10 janvier 1870. Ces lettres ont été éditées par Simonetta Di
Sieno et Paola Testi Saltini, et seront publiées sous la direction de G. Israel dans un ouvrage contenant la
correspondance de Cremona.
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de l’invention des 27 droites des surfaces du 3e ordre. Je ne manquerai pas de faire
cette rectification dans ma préface.

La démonstration définitive d’une liaison entre cette question des 27 droites et la
division des fonctions abéliennes me semble une question bien intéressante, mais trop
difficile pour moi, qui ne possède assez ni les théories géométriques, ni celles des
fonctions abéliennes. L’intérêt que vous paraissez prendre à ce sujet m’a cependant
décidé à faire un premier pas dans cette voie, en cherchant quelle est la fonction des
27 droites qui satisfait à une équation du 40e degré, analogue à celle de la trisection
des fonctions abéliennes.

J’avais d’abord pensé qu’il fallait prendre pour nouvelle inconnue un terne de trièdres
conjugués ; mais l’équation du 40e degré ainsi obtenue n’est pas celle que l’on cherche,
quoique présentant avec elle des traits de ressemblance assez remarquables. [...]

Cet échange a ensuite donné lieu à une courte note aux Comptes Rendus intitulée « Sur une
nouvelle combinaison des vingt-sept droites d’une surface du troisième ordre », débutant
comme suit :

Dans une précédente Communication (Comptes Rendus, 12 avril 1869), nous avons
montré que l’équation [...] dont dépend la trisection des périodes dans les fonctions
abéliennes à quatre périodes, a deux réduites [...] respectivement analogues à l’équation
aux 45 triangles et à celle aux 27 droites des surfaces du troisième ordre. Pour faciliter
la comparaison ultérieure de ces deux problèmes, en apparence si différents, il peut
être utile de rechercher réciproquement quelle est la combinaison des 27 droites (ou
des 45 triangles) qui, prise pour inconnue, dépendra d’une équation analogue à celle
qui donne la division d’une fonction abélienne. [Jordan 1870a, p. 326]

À la suite de la remarque adressée par Cremona à Jordan, le lien entre les vingt-
sept droites et la trisection des fonctions hyperelliptique donne ainsi lieu à de nouveaux
travaux : pour expliquer cette « énigme », pour « faciliter la comparaison ultérieure de ces
deux problèmes », pour en trouver une « démonstration définitive », Jordan se propose de
chercher un nouvel objet géométrique, créé à partir des vingt-sept droites et donnant lieu
à une équation analogue à celle de la trisection.

Ainsi, dans la note que nous venons de citer, [Jordan 1870a], la solution consiste à
d’abord partir d’une fonction f symétrique en deux des racines de l’équation E de la
trisection des périodes. Comme cette dernière est de degré 80, la fonction f dépend d’une
équation de degré 40, qui est donc une réduite de E. En exhibant ensuite un sous-groupe
d’indice 40 du groupe de l’équation de trisection formé de substitutions qui fixent f , Jordan
parvient à montrer que f est une fonction symétrique en les neuf fonctions 127 1, 2, 3, 10,
11, 18, 19, 26 et 27.

Jordan introduit ensuite de nouveaux objets : désignant par la même notation 1, . . . , 45

les quarante-cinq triangles associés aux vingt-sept droites, il considère l’ennéaèdre formé

127. Je rappelle que ces fonctions sont des racines de la réduite E de degré 45 qui avaient été notées par
Jordan 1, . . . , 45.
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des triangles 1, 2, 3, 10, 11, 18, 19, 26 et 27. Formé à partir des vingt-sept droites grâce
à des relations d’incidence particulières, un tel ennéaèdre est donc un objet géométrique,
au sens que j’ai dégagé au début de ce chapitre. Jordan met ensuite en avant les relations
d’incidences suivantes : les neuf triangles de l’ennéaèdre n’ont aucune droite commune et
si on se donne deux quelconques d’entre eux, le triangle qui forme avec eux un trièdre
de Steiner fait également partie de l’ennéaèdre. Jordan montre ensuite qu’il existe exac-
tement 40 ennéaèdres, c’est-à-dire 40 systèmes de neuf triangles possédant les propriétés
d’incidence précédentes. Il parle alors de le « réduite du quarantième degré qui a pour
racines nos ennéaèdres », [Jordan 1870a, p. 328], sans expliquer clairement pourquoi elle
est équivalente à l’équation aux vingt-sept droites.

Cette équivalence semble ainsi provenir de l’existence même des ennéaèdres, systèmes
de neuf triangles ayant des relations d’incidence particulières. Cela rappelle la manière dont
Jordan avait présenté les réduites géométriques de l’équation aux vingt-sept droites, asso-
ciées aux triangles, aux systèmes de doubles trièdres et aux doubles-six — cette proximité
se lit d’ailleurs également dans la fin de l’extrait de lettre de Jordan à Cremona supra, où
Jordan écrit qu’il avait d’abord pensé à considérer les trièdres conjugués 128. Mais on voit
dans le cas présent que la recherche de ce nouvel objet constitue pour Jordan la bonne
réponse à apporter au problème, la manière d’y apporter une « démonstration définitive » :
il s’agit ainsi de fournir un objet géométrique pour éclairer un lien qui a été dévoilé par la
théorie des substitutions.

2.6 Conclusion

Théorie des substitutions et géométrie entretiennent des liens complexes dans le Traité
des substitutions et des équations algébriques de Jordan. Avec des situations comme les
vingt-sept droites, les vingt-huit tangentes doubles ou les seize droites, la géométrie fournit
à Jordan des équations particulières qui sont étudiées via leur groupe, par la théorie des
substitutions.

Dans ces recherches, les relations d’incidence jouent un rôle primordial, d’abord parce
qu’elles donnent lieu à ces fonctions ϕ qui sont à la base des travaux sur les équations
associées aux diverses situations géométriques. En ramenant l’étude des groupes de ces
équations à celle des groupes des fonctions ϕ, Jordan a cependant mis en exergue l’im-
possibilité de connaître de façon exhaustive les relations géométriques d’une situation. En
commentant par ailleurs le besoin d’une démonstration par la théorie des substitutions de
l’inexistence d’une réduite de degré inférieur à 27 pressentie par la géométrie, Houël situe
cette impossibilité dans une opposition entre géométrie et théorie des substitutions : ce n’est
qu’au moyen de cette dernière qu’il est possible de résoudre des « questions négatives ».

128. À la fin de [Jordan 1870a], Jordan précise que les ennaèdres et les systèmes de trièdres conjugués
dépendent d’équations qui n’ont pas le même groupe.
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Dans le même temps, la théorie des substitutions permet à Jordan d’établir des liens
entre les vingt-sept droites, les vingt-huit tangentes doubles et les seize droites d’une part,
entre les vingt-sept droites et les fonctions hyperelliptiques d’autre part. Mais des limites
apparaissent vite car c’est la géométrie qui est appelée pour « confirmer » un lien ou
« faciliter » la compréhension de la théorie des substitutions. En particulier, par le recours
aux ennéaèdres résulte une « réduite géométrique », comme celles que nous avons relevées
dans le Traité.

Comme je l’ai écrit plus haut, cette insistance mise sur des objets géométriques comme
les triangles, les doubles-six ou les ennéaèdres pour en déduire immédiatement des réduites
s’accorde peu avec les autres méthodes déployées par Jordan dans le Traité. Afin de pouvoir
mieux les appréhender, nous allons prendre un peu de recul et situer le Traité dans un
corpus plus large.



Chapitre 3

Le corpus des équations de la
géométrie

Afin de pouvoir mieux expliquer la présence chez Jordan de ce que j’ai appelé les
« réduites géométriques », je vais à présent chercher d’autres travaux que ceux de Jordan
sur ce sujet, considérant un corpus défini par ce qui est appelé à l’époque les « équations
de la géométrie ». Le chapitre est tourné entièrement vers ce corpus. Je commencerai ainsi
par décrire des difficultés de sa construction, liées à des caractéristiques des équations de
la géométrie elles-mêmes. Je présenterai ensuite en détail à la fois les textes du corpus
obtenu et leurs auteurs, en insistant sur les relations qu’ils entretiennent entre eux et sur le
statut des équations de la géométrie pour chacun d’eux 1. Enfin, je dégagerai des éléments
permettant de voir que le corpus se présente comme un terrain rencontre de deux cultures,
l’une liée principalement aux travaux de Galois en théorie des équations, l’autre associée
aux configurations géométriques telles que les vingt-sept droites.

3.1 Une étiquette et un corpus

Pour construire un corpus d’étude de ces équations associées aux configurations géo-
métriques comme les vingt-sept droites, une idée consiste à utiliser les outils de recension
de travaux mathématiques que sont l’Encyklopädie der mathematischen Wissenschaften,
le Jahrbuch über die Fortschritte der Mathematik, le Catalogue of Scientific Papers et le
Répertoire bibliographique des sciences mathématiques.

Dans l’Encyklopädie d’abord, il existe une section du chapitre sur la théorie de Galois et
ses applications, [Hölder 1899], intitulée « Geometrische Gleichungen ». Cette section fait
entre autres référence aux travaux de Jordan sur les équations aux vingt-sept droites, aux
vingt-huit tangentes doubles et aux seize droites que nous avons discutés dans le chapitre
précédent : elle se présente donc comme un point de départ possible pour la délimitation

1. Une partie de ces recherches a fait l’objet d’une publication, [Lê 2014].
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d’un corpus d’étude. Remarquons d’ailleurs que son titre semble faire écho à celui de
la note « Sur les équations de la géométrie » de Jordan que nous avons déjà utilisée 2,
dans laquelle Jordan annonçait les méthodes et la plupart des résultats du chapitre des
applications géométriques du Traité des substitutions et des équations algébriques.

Le Répertoire bibliographique contient lui aussi une rubrique faisant explicitement ré-
férence aux équations étudiées dans le chapitre des applications géométriques de Jordan.
En effet, sa section sur la théorie de Galois et la théorie des équations comporte une sous-
section appelée « Application de la théorie à des équations particulières : équations des
points d’inflexion d’une cubique ; des 27 droites d’une surface du troisième ordre ; équa-
tions modulaires, etc. » (référence A4d).

En revanche, ni le Jahrbuch ni le Catalogue ne possèdent d’entrée renvoyant à des
équations liées aux vingt-sept droites ou d’autres configurations géométriques. Si cette
absence les disqualifie en tant que moyens de repérage, elle suggère cependant deux idées. La
première concerne les lieux institutionnels. On sait en effet que l’Encyklopädie est attachée
à Göttingen alors que le Jahrbuch se rapproche plutôt de Berlin 3. Cela peut donc indiquer
que les équations de la géométrie forment un sujet reconnu par les mathématiciens de
Göttingen, et pas par ceux de Berlin. La seconde idée est d’ordre chronologique : alors
que la classification du Jahrbuch reste très stable depuis la création du périodique en
1868 jusqu’en 1905, en particulier pour la section d’algèbre 4, celles du Répertoire et de
l’Encyklopädie datent de la toute fin du xixe siècle — respectivement, de 1889 et d’autour
de 1895 5. Que les équations de la géométrie sont l’objet de rubriques uniquement dans ces
derniers est donc peut-être le signe qu’il s’agit d’un sujet qui ne devient identifié en tant
que tel qu’à partir de la fin des années 1880.

Ce sont donc l’Encyklopädie et le Répertoire qui seront utilisés dans la suite. Au
contraire du Répertoire, l’Encyklopädie ne se résume pas à une liste de références ; je vais
commencer par examiner son contenu pour voir comment les équations de la géométrie y
sont appréhendées.

3.1.1 Les équations de la géométrie dans l’Encyklopädie

Le chapitre « Galois’sche Theorie mit Anwendungen » de l’Encyklopädie a été écrit
par Otto Hölder (1859-1937). Ce dernier avait commencé ses études au Polytechnikum de
Stuttgart. Il avait ensuite continué son apprentissage des mathématiques à Berlin avec
notamment Karl Weierstrass, puis à Tübingen avec Paul du Bois-Raymond, auprès de qui

2. Le titre de la section de l’Encyklopädie se traduirait en français plutôt par « Équations géométriques »,
mais comme cette section se réfère en grande partie à Jordan, je garderai l’expression « équations de la
géométrie » de ce dernier.

3. Au sujet de la création de l’Encyklopädie et de son homologue française, voir [Tobies 1994 ; Gispert
1999]. Pour le Jahrbuch, voir [Siegmund-Schultze 1993].

4. Voir [Corry 2007].
5. Pour le Répertoire, voir la référence [Nabonnand & Rollet 2002] déjà citée.
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il prépara sa thèse de doctorat, soutenue en 1882 6. D’après J. Gray, le centre d’intérêt
de Hölder glissa de la théorie des fonctions vers des questions d’ordre algébrique en 1886,
après qu’il eut suivi à Göttingen les cours de Felix Klein sur la théorie de Galois 7. Hölder
obtint la chaire de mathématiques laissée vacante par Sophus Lie à Leipzig en 1899, année
dont est daté son chapitre de l’Encyklopädie.

Ce chapitre est divisé en 29 sections qui se rapportent à des notions comme le groupe
d’une équation ou l’adjonction d’irrationalités, à des résultats tels que la non résolubilité
par radicaux des équations de degré supérieur à 4, ou encore à des équations particulières
comme les équations d’Abel, de Sylow, les équations cyclotomiques ou celles de division
des fonctions elliptiques (voir la table 3.1).

La section sur les équations de la géométrie est la dernière du chapitre. Elle débute de
la façon suivante 8 :

La courbe générale du troisième ordre possède neuf points d’inflexion ; sur chaque
droite joignant deux points d’inflexion se trouve toujours un troisième point d’in-
flexion. La détermination des points d’inflexion dépend d’une équation du neuvième
degré f(λ) = 0, où l’on choisira λ de sorte qu’il s’exprime rationnellement en fonction
des deux coordonnées d’un point d’inflexion et que réciproquement, ces coordonnées
s’expriment toutes deux en fonction de λ. Aux neuf points d’inflexion correspondent
les neuf racines λ1, λ2, λ3, . . . , λ9. [Hölder 1899, p. 518-519]

Hölder explique ensuite comment montrer que cette équation f(λ) = 0 est résoluble par
radicaux, puis fait référence à des travaux de Otto Hesse concernant ce résultat, [Hesse
1847]. Après cela, il mentionne « d’autres équations de la géométrie dont les groupes ont
été étudiés », en précisant que la liste n’est pas exhaustive : « l’équation aux vingt-huit
tangentes doubles d’une courbe plane du quatrième ordre », « l’équation aux vingt-sept
droites d’une surface du troisième ordre », « l’équation aux seize droites d’une surface du
quatrième ordre à conique double » et « l’équation aux seize points singuliers de la surface
de Kummer 9 ». Hölder énonce que ces équations ne sont pas résolubles par radicaux et
indique qu’il existe des liens entre les groupes des équations aux vingt-huit tangentes, aux
vingt-sept droites et aux seize droites. Cela clôt la section « Geometrische Gleichungen »
et donc le chapitre sur la théorie de Galois de l’Encyklopädie.

6. Voir [Van der Waerden 1939 ; Gray 1994].
7. [Gray 1994, p. 59]. Voir également [Ehrhardt 2012, p. 196-201] pour une discussion au sujet d’un

article de Hölder de 1895 ayant « marqué le développement de la théorie de Galois ». Par ailleurs, voir [Ni-
cholson 1993] pour la contribution de Hölder à la constitution de la notion de groupe quotient.

8. « Die allgemeine Kurve dritter Ordnung besitzt neun Wendepunkte ; dabei liegt auf der Verbin-
dungslinie von je zwei Wendepunkten immer ein dritter Wendepunkt. Die Bestimmung der Wendepunkte
hängt ab von einer Gleichung 9. Grades f(λ) = 0, wobei man λ so wählen wird, dass sich λ in den beiden
Koordinaten eines Wendepunktes rational ausdrücken lässt und dass umgekehrt diese Koordinatent sich
beide in λ ausdrücken lassen. Den neun Wendepunkten entsprechen die neun Wurzeln λ1, λ2, λ3, . . . , λ9. »

9. « Von anderen geometrischen Gleichungen, deren Gruppen studiert worden sind, mögen nur genannt
werden die Gleichungen : 1) der 28 Doppeltangenten einer ebenen Kurve 4. Ordnung, 2) der 27 Geraden
einer Fläche 3. Ordnung, 3) der 16 Geraden einer Fläche 4. Ordnung mit Doppelkegelschnitt, 4) der 16
Knotenpunkte der Kummer ’schen Fläche. » [Hölder 1899, p. 519].
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GALOIS’SCHE THEORIE MIT ANWENDUNGEN

Inhaltsübersicht

1. Einleitung

2. Definition der Gruppe einer Glei-
chung

3. Weitere Eigenschaften der Gruppe

4. Wirkliche Herstellung der Gruppe

5. Monodromiegruppe

6. Transitivität und Primitivität

7. Adjunktion einer natürlichen Irra-
tionalität

8. Cyklische Gleichungen

9. Reine Gleichungen

10. Zerlegung des Gleichungsproblems
durch Resolventenbildung

11. Adjunktion einer accessorischen Ir-
rationalität

12. Adjunktion eines Radikals

13. Begriff der Auflösung

14. Kriterium der Auflösbarkeit

15. Behandlung nichtauflösbarer Glei-
chungen

16. Allgemeine Gleichungen

17. Gleichungen den ersten vier Grade

18. Nichtauflösbarkeit der allgemeinen
Gleichungen höherer Grade

19. Gleichungen mit regulärer Gruppe

20. Gleichungen mit commutativer
Gruppe

21. Abel ’sche Gleichungen

22. Kreisteilungsgleichungen

23. Teilungs- und Transformationsglei-
chungen der elliptischen Funktionen

24. Reduktion von Gleichungen auf
Normalformen

25. Irreducible von Primzahlgrad

26. Sylow ’sche Gleichungen

27. Casus irreducibilis der kubischen
Gleichung

28. Konstruktionen mit Zirkel und Li-
neal

29. Geometrische Gleichungen

Table 3.1 – Reproduction de la table des matières du chapitre consacré à la théorie
de Galois et ses applications de l’Encyklopädie, [Hölder 1899].
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Au contraire de celle associée aux neuf points d’inflexion, les équations aux vingt-sept
droites, aux vingt-huit tangentes doubles, etc., ne sont pas définies par Hölder. À la lecture
seule de l’Encyklopädie, il est possible de comprendre ce à quoi elles réfèrent par analogie
avec le cas des points d’inflexion. En effet, trois caractéristiques de l’équation aux neuf
points peuvent être dégagées de la citation précédente : son degré est 9, ce qui correspond
au nombre des points d’inflexion ; ses racines sont des paramètres (abscisses ou ordonnées)
définissant ces points ; enfin, des relations d’incidence (d’alignement) existent entre ces
derniers. Si les deux premières caractéristiques servent à comprendre mathématiquement
ce qu’est l’équation aux neuf points, ce n’est pas le cas de la troisième, qui est mobilisée
par Hölder pour montrer sa résolubilité par radicaux. Pour transposer le cas des neuf
points à d’autres situations géométriques, on pourrait donc remplacer de façon ad hoc
valeur du degré et paramètres des objets géométriques correspondant aux racines. Mais
cela n’indique pas quels seraient les paramètres à choisir, ni même comment on pourrait
former effectivement l’équation.

Le besoin de recourir à une analogie pour comprendre les autres équations que celle
associée aux points d’inflexion peut passer pour banal dans un extrait de l’Encyklopädie.
Mais il révèle surtout le fait que ces équations sont à comprendre au cas par cas ; en
particulier, il n’existe pas de définition mathématique de l’expression « équations de la
géométrie » dans l’Encyklopädie.

Cette lacune octroie à la famille d’équations désignées comme telles un statut différent
des autres familles d’équations auxquelles sont dévolues les différentes sections du chapitre
« Théorie de Galois et applications » de Hölder. Par exemple, les « équations d’Abel » sont
définies par une certaine propriété portant sur leurs racines :

Théorème : On suppose que les racines d’une équation sont toutes exprimables ration-
nellement en fonction de l’une d’elles x1. Si deux racines quelconques sont représen-
tées par θ(x1) et θ1(x1), on suppose que l’on a toujours θ1(θ(x1)) = θ(θ1(x1)). Alors
l’équation est résoluble. [...] Les équations [de ce] théorème s’appellent « équations
d’Abel 10 ». [Hölder 1899, p. 506]

Le nom « équation d’Abel » est donc clairement défini et désigne toute équation dont les
racines vérifient la propriété décrite dans cet extrait.

Regardons encore l’exemple des équations cyclotomiques :

Soit p un nombre premier. Les racines p-ièmes de l’unité vérifient l’équation xp − 1 = 0.
Si l’on enlève du membre de gauche le facteur rationnel x − 1, il reste alors l’équa-
tion xp−1 + xp−2 + · · · + x2 + x + 1 = 0. [...] Comme les racines p-ièmes de l’unité
sont représentés géométriquement par p points équidistants d’un cercle, la division

10. « Satz: Die Wurzeln einer Gleichung seien alle in einer von ihnen x1 rational ausdrückbar. Falls irgend
zwei Wurzeln durch θ(x1) und θ1(x1) dargestellt sind, so sei immer θ1(θ(x1)) = θ(θ1(x1)). Die Gleichung
ist dann auflösbar. [...] Die Gleichungen [dieses] Satz[es] heissen „Abel ’sche Gleichungen“. »
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du cercle en p parties égales dépend de ces équations ; c’est pourquoi on les appelle
équations cyclotomiques 11. [Hölder 1899, p. 508]

Ici, l’appellation « équations cyclotomiques » renvoie à des équations écrites explicitement
comme des polynômes développés et égalés à zéro (ce qui n’était pas le cas pour les équa-
tions d’Abel), et se double d’une explication étymologique — remarquer le passage du
singulier au pluriel dans la citation, qui indique l’existence d’une équation cyclotomique
par nombre premier p.

À l’inverse des équations cyclotomiques ou d’Abel, celles désignées par l’expression
« équations de la géométrie » ne sont pas bien définies mathématiquement dans l’Encyklo-
pädie, que ce soit par une écriture explicite ou une propriété quelconque. Cette expression
n’est donc pas un terme mathématique précis, mais plutôt une étiquette regroupant un
certain nombre d’exemples, comme l’équation aux neuf points d’inflexion ou l’équation
aux vingt-sept droites, mais aussi celles dont l’existence n’était que suggérée par Hölder 12.

Ainsi, pour localiser des équations de la géométrie qui ne sont pas explicitement listées
par Hölder, je suis pour l’instant réduit à essayer d’en repérer en procédant par analogie
avec l’équation aux vingt-sept droites, aux neuf points, etc., ou en cherchant l’expression
« équations de la géométrie » elle-même — nous verrons néanmoins que ce recours à des
analogies catégorise des façons de faire qui sont elles bien repérables 13.

3.1.2 Repérer les équations de la géométrie

Or, l’expression « équations de la géométrie » n’apparaît explicitement que dans une
seule des références citées par l’Encyklopädie et le Répertoire bibliographique. Elle apparaît
en effet uniquement dans le titre « Sur les équations de la géométrie » de la note de
Jordan que nous avons déjà discutée, [Jordan 1869c]. Mais l’appellation « équations de la
géométrie » n’est pas non plus définie dans cette note, et comme dans l’Encyklopädie, on y
trouve « l’équation aux vingt-sept droites », « l’équation aux vingt-huit tangentes doubles
d’une courbe du quatrième ordre », et d’autres expressions similaires d’équations associées
à diverses situations géométriques.

Si l’on regarde le chapitre du Traité des substitutions et des équations algébriques consa-
cré aux applications géométriques, un procédé général de formation des équations qui y
sont traitées peut être lu en introduction :

L’un des problèmes les plus fréquents de la géométrie analytique est de déterminer
quels sont les points, ou bien les lignes ou surfaces d’une espèce donnée, qui satisfont

11. « Es sei p eine Primzahl. Die pten Einheitwurzeln genügen der Gleichung xp−1. Nimmt man aus der
linken Seite den rationalen Faktor x− 1 heraus, so bleibt die Gleichung xp−1 + xp−2 + · · ·+ x2 + x+ 1 = 0
übrig. [...] Da die pten Einheitwurzeln durch p äquidistante Punkte eines Kreises geometrisch repräsentiert
werden, so hängt von diesen Gleichungen die Teilung des Kreises in p gleiche Teile ab, man nennt sie
deshalb Kreisteilungsgleichungen. »
12. Voir la citation de la note 9.
13. C’est ce phénomène que j’essaierai de décrire en utilisant l’expression « système culturel ».
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à certaines conditions. Lorsque le nombre des solutions est limité, les coordonnées
du point cherché (ou les paramètres que renferme l’équation des lignes ou des sur-
faces cherchées) sont déterminées par un système d’équations algébriques A,B, . . . en
nombre égal à celui des inconnues x, y, . . . Éliminons toutes les inconnues, sauf une
seule, x : on sait que le degré de l’équation finale X indiquera le nombre des solutions
du problème : et si les racines de cette équation sont inégales, soit x0 l’une d’elles : on
aura les valeurs correspondantes de y0, . . . exprimées en fonction rationnelle de x0, en
substituant x0 à la place de x dans les équations A,B, . . ., et en cherchant le système
des solutions communes à ces équations.

Les points, lignes ou surfaces cherchés sont donc déterminés lorsqu’on a résolu l’équa-
tionX, et correspondent respectivement à ses diverses racines x0, x1, . . . [Jordan 1870b,
p. 301]

Ce procédé général (c’est-à-dire qui ne dépend pas de la situation géométrique) peut être
interprété comme une définition des « équations de la géométrie ». Une équation de la
géométrie serait ainsi une équation algébrique (en une inconnue) associée à une situation
géométrique donnée, de degré égal au nombre d’objets de la situation et dont les racines
s’expriment rationnellement en fonction des paramètres de ces objets, et réciproquement
— cela s’accorde avec les caractéristiques de l’équation aux neuf points d’inflexion vues
dans l’Encyklopädie.

Pourtant, si ces explications peuvent aider le lecteur d’aujourd’hui à comprendre ce
que peuvent être les équations de la géométrie, elles restent néanmoins inefficaces pour en
dégager un critère de repérage : déjà dans les textes discutés jusqu’à présent, [Hölder 1899 ;
Jordan 1869c], apparaissent des expressions comme « l’équation aux vingt-sept droites »,
qui ne sont accompagnées ni d’un procédé de formation, ni de précisions sur le ou les
paramètres censés définir les objets géométriques impliqués.

En outre, nous verrons dans un moment que, comme chez Jordan, les équations as-
sociées à des situations géométriques et qui interviennent dans les textes recensés par
l’Encyklopädie et le Répertoire ne sont jamais écrites sous forme d’un polynôme développé
ou factorisé, comme ce peut être le cas par exemple pour l’équation cyclotomique.

Je suis finalement contraint d’utiliser ma propre compréhension de ces équations, forgée
rétrospectivement à partir de la lecture de toutes les références données par l’Encyklopädie
et le Répertoire. Dans ce qui suit, l’étiquette « équations de la géométrie » regroupera toute
équation algébrique en une inconnue se rapportant à la détermination des objets d’une
configuration géométrique, ou liée a priori à une telle configuration, même syntaxiquement,
comme dans l’expression « équation aux vingt-sept droites 14 ».

Remarquons que cette description exclut certains types d’équations qui peuvent aussi
être associées à des situations géométriques, mais de façon différente. Il s’agit d’une part
des équations algébriques en plusieurs inconnues définissant des lieux géométriques, comme

14. Ces subtilités de désignations et de déterminations seront au cœur du chapitre suivant, en tant que
caractéristiques particulières des équations de la géométrie.
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par exemple xy = 0 qui représente, dans un plan, la réunion des deux droites d’équations
respectives x = 0 et y = 0. Seront d’autre part exclues les équations (homogènes) dont les
(rapports de) racines sont interprétées géométriquement a posteriori, comme c’est en par-
ticulier le cas pour dans l’interprétation géométrique de la théorie des formes. Un exemple
simple est l’équation x2

1−x2
2 = 0 dont les solutions en (x1 : x2) définissent deux points (1 : 1)

et (1 : −1) sur une droite projective 15. Notons que le choix d’exclure ce qui se rattache
à la théorie des formes est cohérent avec le fait que ni l’Encyklopädie ni le Répertoire bi-
bliographique ne pointent vers des textes qui y sont principalement rattachés — rappelons
que dans ces deux sources, les équations de la géométrie se trouvent dans les sections de
théorie de Galois, et pas à la théorie des formes ou des invariants.

3.1.3 Formation du corpus

Inspiré des méthodes utilisées dans les thèses de Frédéric Brechenmacher et Jenny Bou-
card, [Brechenmacher 2006 ; Boucard 2011], le procédé de formation du corpus d’étude est
le suivant : parmi toutes les références données par l’Encyklopädie et le Répertoire, je sélec-
tionne celles qui comportent au moins une occurrence d’équation de la géométrie 16 ; pour
chacun des textes obtenus, je liste ensuite les références données explicitement par citation
et comme précédemment, je ne garde que celles dans lesquelles apparaît une équation de la
géométrie au moins. Le corpus est alors formé par tous les textes obtenus de cette manière.

Je précise que lorsqu’un texte long était clairement cité pour un passage particulier
(c’est par exemple le cas pour les chapitres de livres), je n’ai tenu compte que de ce passage.
Ainsi, l’Encyklopädie cite le Lehrbuch der Algebra de Heinrich Weber pour son chapitre
sur les neuf points d’inflexion qui fait donc partie du corpus, mais pas le chapitre mitoyen
consacré aux vingt-huit tangentes doubles 17. Un autre exemple est le Cours d’algèbre
supérieure de Joseph-Alfred Serret, qui contient un chapitre sur les neuf points d’inflexion,
mais qui est cité par un des textes du corpus (de Felix Klein) pour un résultat sans aucun
rapport avec ce chapitre. Jamais cité pour son chapitre sur l’équation aux neuf points,
l’ouvrage de Serret ne fera donc pas partie du corpus.

Ce corpus ne prétend de toute façon à aucune exhaustivité : j’ai par ailleurs trouvé de
façon tout à fait fortuite des équations de la géométrie dans des articles non référencés par
l’Encyklopädie ou le Répertoire. Je souligne toutefois qu’aucun des textes trouvés au hasard
n’induisent de contradiction avec les résultats que je présenterai dans la suite. Cela étant

15. Des exemples plus compliqués (et issus du corpus qui sera décrit dans un instant) d’équations de
lieux et d’interprétation géométrique de théorie des formes peuvent se trouver par exemple en [Clebsch
1868, p. 179] et [Maschke 1889, p. 330] respectivement.
16. Il existe des références de l’Encyklopädie qui ne comportent aucune mention d’équations de la géo-

métrie. Par exemple, pour les vingt-sept droites des surfaces cubiques, Hölder cite [Cayley 1849] et [Jordan
1870b]. L’article de Cayley en question est celui ordinairement désigné comme la première publication au
sujet de l’existence des vingt-sept droites ; l’équation aux vingt-sept droites n’y apparaît pas. Par ailleurs, le
Répertoire comporte des références concernant les équations modulaires, et dans lesquelles il n’y a aucune
équation de la géométrie.
17. Ce chapitre de Weber sera discuté et pris en compte au chapitre 5 de cette thèse.
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dit, je reviendrai plus tard sur le Cours d’algèbre de Serret, en tant que manuel célèbre
ayant largement circulé et participé à la formation des mathématiciens dans la seconde
moitié du xixe siècle.

J’obtiens ainsi un ensemble de 19 textes pour 11 auteurs, dont les dates de publication
s’étendent de 1847 à 1896, avec une forte concentration entre 1868 et 1872. De ces 19
textes, 14 ont été trouvés directement par l’Encyklopädie, 5 proviennent du Répertoire
(dont 2 font déjà partie des 14 précédentes) et 2 sont obtenus par l’étape d’extension par
citation — cette faible augmentation peut s’expliquer en partie par la forte inter-textualité
existant entre les textes du corpus, cf. infra. Signalons enfin que l’Encyklopädie contient
une référence interne, puisqu’elle pointe vers un passage d’une autre section (no 24) du
chapitre de théorie de Galois, concernant l’équation de trisection des périodes des fonctions
hyperelliptiques ; j’ai pris en considération cette référence interne, et 4 des textes du corpus
sont des références données à cet endroit.

Chronologiquement, le corpus est formé des textes suivants. Pour ce qui est de ceux
publiés avant 1868, le premier texte est un article de Otto Hesse sur certaines équations al-
gébriques de degré 9 et l’équation aux neuf points d’inflexion, [Hesse 1847]. Viennent ensuite
deux articles de Ernst Eduard Kummer sur des surfaces quartiques particulières (contenant
des familles de coniques et possédant seize points singuliers, respectivement), [Kummer
1863 ; Kummer 1864].

Pour la période 1868-1872, les textes consistent en un article d’Alfred Clebsch sur les
surfaces quartiques à conique double, [Clebsch 1868] ; le chapitre des applications géo-
métriques et la section sur les fonctions hyperelliptiques du Traité des substitutions et
des équations algébriques de Camille Jordan, [Jordan 1870b], avec les courtes publications
qui en avaient précédé la parution, [Jordan 1869a ; Jordan 1869b ; Jordan 1869c ; Jordan
1869d], ainsi qu’une note postérieure, [Jordan 1870a] 18 ; un article de Felix Klein, [Klein
1870], prolongement de sa thèse consacrée à la théorie des complexes de droites ; un article
de Clebsch sur une interprétation géométrique de la théorie de l’équation du cinquième
degré, [Clebsch 1871b] ; un autre article de Klein, cette fois sur une façon de représen-
ter géométriquement les résolvantes d’équations algébriques, [Klein 1871b] ; un article de
Sophus Lie, [Lie 1872], reprenant et développant sa thèse.

Pour finir, les textes du corpus d’après 1872 sont un article de Max Noether 19 sur
l’équation du huitième degré et la théorie des courbes quartiques, [Noether 1879] ; le cha-
pitre du Substitutionentheorie und ihre Anwendungen auf die Algebra de Eugen Netto,
consacré aux équations algébriques dont les racines sont liées trois par trois, [Netto 1882] ;
un article de Klein sur la résolution de l’équation aux vingt-sept droites par les fonctions
hyperelliptiques, [Klein 1888], et un article de Heinrich Maschke se rapportant à ce même

18. Toutes ces publications de Jordan ont déjà été vues et commentées dans le chapitre précédent, à
l’exception de [Jordan 1869d] qui concerne l’équation aux seize points singuliers de la surface de Kummer.
19. Dans toute la suite de la thèse, je référerai à Max Noether par son nom patronymique seul, sa fille

Emmy n’apparaissant à aucun moment.
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sujet, [Maschke 1889] ; un chapitre du second volume du Lehrbuch der Algebra de Heinrich
Weber, dévolu aux neuf points d’inflexion des courbes cubiques, [Weber 1896].

3.1.4 Les auteurs

Commençons par situer les auteurs du corpus les uns par rapport aux autres, en exami-
nant les relations qu’ils entretiennent entre eux. Ces relations, mathématiques, institution-
nelles ou personnelles, sont nombreuses et intriquées. Pour tenter de présenter les choses
avec clarté, je vais partir des liens existant entre Hesse, Clebsch, Klein et Noether, en sui-
vant la chronologie de leurs rencontres, et j’ajouterai ensuite les autres auteurs. Les liens
entre toutes ces personnes sont schématisées à la fin de cette sous-section en figure 3.2, et
on trouvera en table 3.2 leurs années de naissance et de mort.

Ernst Kummer 1810-1893

Otto Hesse 1811-1874

Alfred Clebsch 1833-1872

Camille Jordan 1838-1922

Sophus Lie 1842-1899

Heinrich Weber 1842-1913

Max Noether 1844-1921

Eugen Netto 1848-1919

Felix Klein 1849-1925

Heinrich Maschke 1853-1908

Table 3.2 – Années de naissance et de décès des auteurs du corpus.

Hesse fut docent puis professeur extraordinaire à l’université de sa ville natale König-
sberg de 1840 à 1855. Il passa ensuite un an à Halle puis fut nommé professeur ordinaire
à Heidelberg. Il y resta jusqu’en 1868, date à laquelle il partit pour Munich, où il mou-
rut en 1874. Hesse enseigna ainsi la géométrie analytique à Clebsch (à Königsberg, de
1850 à 1854), ainsi qu’à Weber et à Noether (à Heidelberg, respectivement en 1860 et
1867-1868 20). Ce dernier et Klein écrivirent par ailleurs chacun une notice nécrologique
de Hesse en 1875, [Klein 1875 ; Noether 1875]. Plus tard, Noether fit également partie
des éditeurs des Gesammelte Werke de Hesse — publiées en 1897, [Hesse Œuvres] — avec
Walther von Dyck, Sigmund Gundelfinger et Jacob Lüroth.

Gundelfinger, Lüroth et Noether s’étaient rencontrés dans les années 1860 à Giessen.
Clebsch y était professeur depuis 1863, et avec Paul Gordan, il avait commencé à fédérer
autour de lui plusieurs mathématiciens :

20. Voir [Brill, Gordan et al. 1873 ; Hesse Œuvres, p. 719 ; Schappacher & Volkert 2005].
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[À Giessen] s’était alors rassemblé autour de Clebsch et de Gordan un cercle de jeunes
mathématiciens qui avaient été vivement stimulés intellectuellement par leurs relations
personnelles étroites avec ces deux docents commodes et spirituels, durant les cours
et les séminaires, au cours de promenades et autour du café. Outre les tout premiers
élèves Güßfeld et Brill de Clebsch à Gießen, Lüroth, Gundelfinger, Korndörfer, et
Noether à partir de 1868, ont appartenu à ce cercle de composition changeante 21.
[Brill 1923, p. 213]

En 1868, Clebsch reçut le poste de professeur laissé vacant par Riemann à Göttingen, et il
y fut suivi par un certain nombre de ses élèves de Giessen.

Cette même année, Klein soutint sa thèse qu’il avait préparée auprès de Julius Plücker.
Alors que ce dernier mourut peu après (toujours en 1868), Klein entreprit l’édition post-
hume d’un de ses livres et fut amené pour cela à rencontrer Clebsch 22 à Göttingen en 1869.
Des années plus tard, Klein se rappela avoir beaucoup apprécié l’atmosphère stimulante
qui régnait autour de Clebsch 23 ; réciproquement, ce dernier fut tout aussi enthousiaste
lorsque Klein revint à Göttingen un peu plus tard, comme il l’écrivit à Jordan :

Dr. Klein, qui est maintenant entièrement ici [à Göttingen], m’a beaucoup parlé de
l’agréable moment qu’il a passé à Paris. Il est comme toujours très zélé [...] ; je suis
heureux d’avoir gagné ici un collègue si actif et aimable 24.

En 1872, Clebsch mourut subitement et Brill, Gordan, Klein, Lüroth, Noether, ainsi que
Aldoph Mayer et Karl von der Mühll écrivirent une longue nécrologie en son honneur, [Brill,
Gordan et al. 1873] — ils s’y présentent comme « ses amis et anciens élèves ». Comme écrit
précédemment, Hesse mourut deux ans plus tard, et Klein ainsi que Noether publièrent
chacun une nécrologie de celui-ci.

Il existe ainsi un groupe de mathématiciens, dont font partie Klein et Noether, qui se
sont progressivement groupés autour de Clebsch et qui se sont occupés d’affaires relatives
à la mémoire des disparus Clebsch et Hesse 25. Dans les nécrologies ainsi écrites, la filiation

21. « [In Gießen] hatte sich in jener Zeit um Clebsch und Gordan ein Kreis von jungen Mathematikern ge-
schart, die in engem persönlichem Verkehr mit den zwei umgänglichen geistvollen Dozenten in Vorlesungen
und Seminaren, auf Spaziergängen und beim Kaffee lebhafte Anregung zu wissenschaftlicher Betätigung
empfingen. Außer den frühesten Schülern von Clebsch in Gießen, Güßfeld und Brill, gehörten zu diesem
Kreis in wechselnder Zusammensetzung Lüroth, Gundelfinger, Korndörfer und seit 1868 Noether. » Au
sujet des mathématiques orales et informelles, voir [Rowe 2004] pour le cas de Göttingen entre 1895 et
1920.
22. Clebsch écrivit plus tard une notice nécrologique de Plücker, [Clebsch 1872b].
23. [Klein Œuvres 1, p. 50]. Cette référence pointe vers les commentaires que Klein lui-même inclut dans

ses Gesammelte mathematische Abhandlungen, éditées en 1921. Noter qu’à cette époque, Klein avait alors
réussi à construire le « grand Göttingen », érigeant en héros les professeurs du passé de cette université,
comme Gauss, Riemann ou Clebsch. Voir [Rowe 1989a].
24. « Dr. Klein, der jetzt ganz hier ist, hat mir viel von der angenehmen Zeit erzählt, welche er in Paris

erlebt hat. Er ist, wie immer, sehr fleissig [...]; ich bin froh hier einen so regsamen und liebenswürdigen
Collegen gewonnen zu haben. » Extrait d’une lettre de Clebsch à Jordan datée du 5 mars 1871 à Göttingen.
Cette lettre est conservée aux archives de l’École polytechnique sous la référence VI2A2(1855) 15.
25. En partie du moins : il n’y a jamais eu d’édition des œuvres complètes de Clebsch.
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(a) Otto Hesse (1811-1874) (b) Alfred Clebsch (1833-1872)

(c) Max Noether (1844-1921) (d) Felix Klein (1849-1925)

Figure 3.1 – Portraits de Otto Hesse, Alfred Clebsch, Felix Klein et Max Noether. Les
images de Hesse et de Clebsch m’ont été fournies par la Mathematische Gesellschaft
de Hamburg.
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mathématique entre ces derniers est plusieurs fois mise en avant, et est doublée d’une
relation amicale forte :

Hesse eût à partir de 1843/44 des auditeurs comme Kirchhoff, Aronhold et Durège, à
partir de 1849/50 Lipschitz, C. Neumann, Schroeter, à partir de l’été 1850 son succes-
seur intellectuel Alfred Clebsch, qui s’est toujours revendiqué être un véritable élève
de Hesse. Non seulement Hesse resta un ami fidèle de Clebsch jusqu’à la disparition
prématurée de ce dernier, mais il le reconnut également avec volonté et fierté pour sa
grande valeur 26. [Hesse Œuvres, p. 716]

Hesse et Clebsch sont aussi présentés comme deux grands mathématiciens dont sont dé-
plorées les morts rapprochées :

En l’espace de deux ans, la science algébraico-géométrique allemande a perdu ses deux
plus grands représentants : le maître Otto Hesse a maintenant suivi son élève Alfred
Clebsch, disparu de façon si prématurée. Dans cette série, nous pouvons encore donner
le nom du troisième géomètre analytique qui, avec les synthétistes Möbius et Steiner,
était en Allemagne à la pointe de cette science en plein développement et a donné avec
ceux-ci un contenu fondamental à la géométrie, et qui a été arraché il y a six ans à une
activité géométrique nouvellement entamée : Julius Plücker (1801-1868) 27. [Noether
1875, p. 77]

Dans ce dernier extrait, Noether présente donc une trinité de « géomètres analytiques »
(Hesse, Clebsch, Plücker) disparus en quelques années. Avec cela, il marque un change-
ment de génération : c’est une double génération, incarnée par Hesse et Clebsch (ainsi que
Plücker), qui disparaît et qui laisse place à celle de leurs élèves, dont Klein et Noether.

En ce qui concerne plus spécifiquement les équations de la géométrie, il est intéressant
de noter que les auteurs de la notice nécrologique de Clebsch soulignent que l’intérêt de ce
dernier pour ce sujet venait justement de Hesse : « C’était vraiment les recherches de Hesse
puis de Abel qui avaient vivement attiré l’attention de Clebsch sur ce côté algébrique des
problèmes géométriques 28 ».

26. Extrait d’une note biographique de Hesse insérée dans ses œuvres complètes et rédigée par les éditeurs
de ces œuvres : Walther von Dyck, Sigmund Gundelfinger, Jacob Lüroth et Max Noether. « Zudem hatte
Hesse von 1843/44 an Hörer wie Kirchhoff, Aronhold und Durège, von 1849/50 an Lipschitz, C. Neumann,
Schroeter, von Sommer 1850 an den ihm in Richtung und geistiger Nachfolge nächstverwandten Alfred
Clebsch, der sich immer als eigentlicher Schüler Hesse’s bekannt hat, und dem Hesse nicht nur bis zu
dessen frühem Tode ein treuer Freud blieb, sondern den er auch willig und stolz in seiner Bedeutung
anerkannte. »
27. « Innerhalb zweier Jahre hat die deutsche algebraisch-geometrische Wissenschaft ihre beiden grössten

Vertreter verloren: seinem so früh dahingeschiedenen Schüler Alfred Clebsch ist der Altmeister Otto Hesse
jetzt nachgefolgt. Wir können in dieser Reihe noch den dritten analytischen Geometer anführen, der in
Deutschland mit den Synthetikern Möbius und Steiner schon an der Spitze der aufstrebenden Wissenschaft
stand und mit ihnen vereint der Geometrie einen wesentlichen Gehalt gab, den vor sechs Jahren einer wieder
neu aufgenommenen geometrischen Thätigkeit eintrissenen Julius Plücker (1801-1868). »
28. « Es waren wohl die Untersuchungen von Hesse und weitherin von Abel gewesen, die Clebsch’s

Interesse für diese algebraische Seite der geometrischen Probleme rege gemacht hatten », [Brill, Gordan
et al. 1873, p. 47].
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La suite de cette notice nécrologique de Clebsch fait entrer Jordan en scène :

[P]lus tard, les relations multiples qu’il avait nouées avec Camille Jordan ramenèrent
son attention vers tout ce qui se rattache aux groupements remarquables des racines
d’une équation. Réciproquement, c’est principalement à lui qu’on est redevable d’avoir
mis Camille Jordan en état de consacrer aux « équations de la géométrie » un chapitre
spécial dans son grand ouvrage 29. [Brill, Gordan et al. 1873, p. 47]

Comme j’ai déjà eu l’occasion de le souligner, ce passage a été repris par Jordan lui-
même dans sa notice de candidature à l’Académie des sciences, [Jordan 1881, p. 33], et
la préface du Traité des substitutions et des équations algébriques mentionne également
l’influence qu’a eue Clebsch sur l’élaboration du chapitre des applications géométriques.
Jordan semble donc endosser pleinement ce lien avec Clebsch.

La relation entre Clebsch et Jordan est aussi présentée comme amicale par C. Neumann
dans la notice nécrologique de son ami d’enfance Clebsch :

Clebsch n’a pas manqué de reconnaissance [...], en particulier à l’étranger. Il était
membre correspondant des académies de Berlin et Münich, de Milan et Bologne ainsi
que de Cambridge ; il était un des rares membres de la London Mathematical So-
ciety. Mais il ne s’est pas tenu, avec ses pairs, qu’à une relation superficielle liée à ces
honneurs ; une amitié sincère l’a lié avec ses collègues. On doit ainsi indiquer les re-
lations qu’il avait nouées avec par exemple (en passant sous silence un grand nombre
d’allemands) avec Cremona à Milan, avec Camille Jordan à Paris et avec Cayley à
Cambridge 30. [C. Neumann 1872, p. 559]

Remarquer d’ailleurs que Clebsch n’avait pas développé de sentiments hostiles à l’égard
des français (ou au moins de Jordan) après la guerre de 1870, comme le montre cet extrait
d’une lettre qu’il écrit à Jordan le 5 mars 1871 :

Très cher ami !

J’espère que vous permettez que je vous appelle encore comme cela, et que vous
bannissez le conflit du royaume de la science. Quels moments et quels événements
avons-nous vécu ! Dieu merci, la paix nous rend enfin aux occupations gaies et [illisible]

29. « [S]päter wurde seine Aufmerksamkeit durch die vielfachen Beziehungen, in die er mit Camille
Jordan getreten war, immer wieder auf Alles, was mit merkwürdigen Gruppirungen von Wurzeln einer
Gleichung im Zusammenhange steht, hingelenkt. Umgekehrt hat man es ihm hauptsächlich zu verdanken,
wenn Camille Jordan im Stande war, in seinem grossen Werke (Traité des substitutions et des équations
algébriques. Paris, Gauthier-Villars 1870) ein besonderes Capitel den „Gleichungen der Geometrie“ zu
widmen. » La traduction est celle de [Jordan 1881, p. 33].
30. « An Anerkennung in Nähe und Ferne, namentlich auch im Auslande, hat es Clebsch nicht gefehlt. Er

war correspondirentes Mitglied der Akademien in Berlin und München, in Mailand und Bologna, sowie in
Cambridge; er war eines der wenigen Mitglieder der London Mathematical Society. Aber nicht nur in der
äusserlichen Beziehung solcher Ehrenbezeugungen hat er zu seinen Fachgenossen gestanden; aufrichtige
Freundschaft hat ihn mit den Gleichstrebenden verbunden. Denn so muss man die Beziehung nennen,
die ihn (um von der grossen Anzahl der Einheimischen zu schweigen) z.B. mit Cremona in Mailand, mit
Camille Jordan in Paris, mit Cayley in Cambridge verband. »
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de la science, et nous permet de travailler à l’alliance des peuples plutôt qu’à leur
séparation 31.

Jordan avait aussi connu personnellement Klein et Lie juste avant le début de cette
guerre. Ces deux mathématiciens avaient effectué un voyage à Paris au début de l’année
1870 et avaient entre autres rencontré l’auteur du tout nouveau Traité. Ainsi Klein se
souvint-il en 1921 : « Camille Jordan m’avait fait grande impression ; son Traité des substi-
tutions et des équations algébriques qui avait tout juste été publié nous [Lie et Klein] était
apparu comme un livre à sept sceaux 32. » Klein et Lie s’étaient quant à eux rencontrés un
peu auparavant à Berlin et s’étaient liés d’amitié, partageant en particulier une aversion
pour l’ambiance des cours et séminaires de Weierstrass et de Kummer qu’ils jugeaient trop
formelle. En fait, à peine cinq jours après sa rencontre avec Klein, Lie avait envoyé deux
mémoires mathématiques à Clebsch. Ce dernier avait avoué qu’il n’était pas suffisamment
qualifié pour les juger, mais l’avait encouragé à entrer en contact avec Klein 33.

Netto avait lui aussi suivi les cours de Weierstrass, Kronecker et Kummer de 1866 à
1870 — aucune des sources que j’ai utilisées ne permet cependant de dire si Netto a été
en contact avec Klein et Lie à ce moment 34. Plus tard, Netto a participé au projet de
l’Encyklopädie, en écrivant le chapitre de combinatoire, ce qui le rapproche donc de la
sphère de Klein.

Notons que deux autres des mathématiciens du corpus ne s’inscrivent pas dans le cli-
vage usuellement présenté opposant Klein et les Berlinois 35. D’une part, Weber fut un
collaborateur étroit du réseau kleinéen mais aussi un héritier de certains points de vue de
Kronecker sur l’algèbre et la théorie des nombres 36. D’autre part, Maschke fut formé au
milieu des années 1870 sous l’égide du célèbre triumvirat berlinois, dont la personne de
Kummer « semble avoir eu l’influence la plus durable sur son développement mathéma-
tique 37 » ; mais en 1880 il soutint sa thèse à Göttingen et revint y travailler avec Klein en
1887. Avec Oskar Bolza, il suivit cette année-là des cours de Klein portant sur les équations

31. « Theuerster Freund! Hoffentlich erlauben Sie mir noch immer Sie so zu nennen, und verbannen den
Widerstreit der Nationen aus dem Reiche der Wissenschaft. Welche Zeiten und Dinge haben wir erlebt!
Gott sei Dank, dass endlich der Friede uns wieder den [?] und heitern Beschäftigungen der Wissenschaft
hingiebt, und es gestattet, an der Verbindung der Völker, statt an ihrer Trennung zu arbeiten. » Extrait
d’une lettre de Clebsch à Jordan datée du 5 mars 1871 à Göttingen, conservée aux archives de l’École
polytechnique sous la référence VI2A2(1855) 15.
32. « Einen großen Eindruck machte mir Camille Jordan, dessen traité des substitutions et des équations

algébriques [sic] eben erschienen war und uns ein Buch mit sieben Siegeln erschien. » [Klein Œuvres 1,
p. 51]. Remarquer que la désignation « livre à sept sceaux » était, au xixe siècle, également utilisée pour
les Disquisitiones Arithmeticae de Gauss.
33. Sur les premiers pas de Klein et de Lie, voir [Tobies 1981 ; Rowe 1989b ; Stubhaug 2005].
34. D’après [Lorey 1937, p. 85], aucune notice nécrologique de Netto n’a été écrite. On trouvera toutefois

quelques informations sur lui dans cette référence.
35. Voir par exemple [Rowe 1989a ; Rowe 1998 ; Gray & Rowe 2000].
36. [Schappacher & Volkert 2005]. Pour les points de vue de Kronecker, voir par exemple [Edwards 1989].
37. « [Maschke] went for three year to Berlin, attracted by the famous triad Weierstrass, Kummer,

and Kronecker, of whom Kummer seems to have had the most lasting influence upon his mathematical
development. » [Bolza 1908, p. 85].
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algébriques, mais participa aussi au séminaire de Göttingen et à des séances de travail chez
Klein lui-même 38. Après cette année passée avec Klein, Maschke aboutit notamment à
des travaux dont fait partie son article du corpus. Son retour à Berlin fut ensuite déce-
vant en raison de l’atmosphère qu’il ne jugeait pas propice au travail mathématique 39.
Comme indiqué au chapitre 1, Maschke émigra aux États-Unis un peu plus tard (en 1892)
et s’impliqua alors dans le développement de l’université de Chicago.

Pour résumer, on peut distinguer trois générations (au vu des années de naissance) pour
les auteurs du corpus : celle de Hesse et Kummer, celle de Jordan et Clebsch, et celle de
Klein, Netto et Maschke. Ces générations coïncident avec les générations mathématiques,
au sens des filiations entre professeurs et élèves. D’ailleurs, s’ils se situent entre la deuxième
et la troisième génération en termes d’âge, Lie, Noether et Weber peuvent être placés dans
la troisième génération mathématique, celle des collègues de Klein. Il existe en outre deux
nœuds dans le réseau de personnes : Clebsch et Klein.

Certains des liens de filiation mathématique se doublent de sentiments d’amitié ou
de fierté, comme on l’a vu surtout chez Hesse, Clebsch et Klein, et semblent parfois se
renforcer par une opposition à Berlin. Assumés par les auteurs eux-mêmes ou revendiqués
par leurs proches, ces sentiments participent à la construction d’un groupe social resserré,
ce qui laisse préfigurer des circulations intenses d’idées mathématiques dans notre corpus
des équations de la géométrie.

3.2 Les textes du corpus

Avant de décrire le contenu mathématique des textes du corpus, examinons de plus
près les liens qu’entretiennent entre eux ces textes, surtout au niveau des citations 40. Pour
s’en faire une première idée, on trouvera en figure 3.3 le graphe des citations entre les
textes du corpus, où les flèches pleines représentent une citation explicite. Les deux flèches
en pointillés partant de [Lie 1872] signifient que Lie donne dans son texte une référence
qui est manifestement erronée et qui devrait être très probablement soit [Kummer 1863],
soit [Clebsch 1868] (sans qu’il soit possible de trancher, voir infra la citation de Lie). Je
souligne que tout comme pour la création du corpus, seules les citations explicites ont
été prises en compte. En outre, par souci de clarté, une seule case a été représentée pour
le Traité des substitutions et des équations algébriques et les petites publications qui en

38. [Parshall & Rowe 1994, p. 199].
39. Voir [Parshall & Rowe 1994, p. 202], et en particulier l’extrait de lettre écrite de Maschke à Klein

qui y est cité : « everyone here [in Berlin] works in isolation and can hardly be moved to talk about
his [research]. » Notons toutefois que des échos inverses existent. Par exemple, C. Goldstein m’a indiqué
qu’Axel Thue décrivait au contraire de façon très positive l’ambiance à Berlin à la fin du xixe siècle. Certains
mathématiciens semblent donc forcer le trait selon leurs propres inclinaisons mathématiques, polarisant
ainsi la situation entre Berlin et Göttingen.
40. Sur les réseaux de textes, les liens de citation et leur utilisation en histoire des mathématiques,

voir [Goldstein 1999].
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Figure 3.2 – Liens entre les auteurs du corpus des équations de la géométrie

sont plus ou moins des extraits — je préciserai dans la description qui suit quels sont les
morceaux du Traité ou lesquelles de ces publications sont citées suivant les cas.

Hesse 1847

Kummer 1863

Kummer 1864

Clebsch 1868

Clebsch 1871

Jordan 1870, Traité

Jordan 1870a

Klein 1870

Klein 1871

Lie 1872

Klein 1888

Noether 1879

Netto 1882Weber 1896

Maschke 1889

1

Figure 3.3 – Citations entre les textes du corpus.

Je me contenterai d’utiliser ce graphe pour brosser ici une image encore grossière du
corpus. Il indique déjà que la répartition des auteurs par affinité (telle que décrite précé-
demment) ne se retrouve pas tout à fait ici : par exemple, alors que Kummer qui était
plutôt isolé du groupe centré autour de Clebsch et Klein, ses textes se trouvent ici cités
justement par ces mathématiciens-là.

Le graphe montre aussi un corpus assez resserré et cohérent au niveau des citations. On
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y devine un nœud, le Traité de Jordan, et trois sous-réseaux de textes. Ces sous-réseaux sont
formés (outre le Traité qu’ils contiennent tous) respectivement de [Hesse 1847 ; Noether
1879 ; Netto 1882 ; Weber 1896], de [Kummer 1863 ; Kummer 1864 ; Clebsch 1868 ; Klein
1870 ; Clebsch 1871b ; Klein 1871b ; Lie 1872] et de [Klein 1888 ; Maschke 1889]. À première
vue, la note [Jordan 1870a] est quant à elle liée seulement au Traité.

Les citations qui lient tous ces textes ont plusieurs statuts : les descriptions dans les
paragraphes qui suivent montreront surtout des citations d’attribution de premiers tra-
vaux, sans transfert mathématique, mais aussi des citations concernant des résultats ou
méthodes reprises comme bases de travail et quelques-unes associées à des résultats ma-
thématiques retrouvés de différentes façons. Noter enfin que les citations ne concernent pas
systématiquement des équations de la géométrie. Par exemple, [Klein 1871b] cite [Kummer
1864] pour des résultats géométriques sur une surface quartique, mais par pour l’équation
de la géométrie apparaissant dans l’article de Kummer.

Je vais à présent commencer la description des textes du corpus un à un, dans l’ordre
chronologique. Je n’adopterai donc pas un découpage basé sur l’existence des trois sous-
réseaux évoqués plus haut, mais reviendrai après coup sur ces sous-réseaux en discutant
justement de leur signification vis-à-vis des équations de la géométrie. Certains aspects
techniques des démonstrations ne seront analysés qu’au chapitre suivant, le but ici étant
surtout d’introduire les textes en présentant leurs objectifs, la façon dont les équations de
la géométrie y apparaissent et leurs liens aux autres textes du corpus.

3.2.1 L’article de Hesse, 1847

Dans son article du corpus, [Hesse 1847], Hesse propose de montrer la résolubilité
algébrique de toute équation X du neuvième degré dont les racines x1, . . . , x9 sont liées
trois par trois par des relations rationnelles et symétriques avec la propriété que si une
telle relation est xµ = θ(xχ, xλ), alors on a aussi xλ = θ(xµ, xχ) et xχ = θ(xλ, xµ). Dès
l’introduction, Hesse place ce résultat dans la lignée des travaux d’Abel sur la résolution
d’équations algébriques particulières et rappelle une conjecture qu’Abel avait donnée dans
un mémoire de 1830, [Abel 1830] : si une équation irréductible de degré premier possède la
propriété que parmi trois quelconques de ses racines, l’une est toujours fonction rationnelle
des deux autres, alors cette équation est résoluble par radicaux. Pour Hesse, les résultats de
son article montrent que l’hypothèse d’Abel de primalité du degré n’est pas nécessaire 41.

Remarquer que cette mention d’Abel ainsi que la formulation même de la propriété
définissant les équations étudiées ici par Hesse renvoient à des travaux de théorie des
équations du premier tiers du xixe siècle que j’ai déjà évoqués, concernant les équations
d’Abel, de Galois 42 ou cyclotomiques.

41. « An diesen noch nicht bewiesenen Satz will ich einige Bemerkungen anschliessen, indem ich die
Bestimmung aufhebe, dass die Zahl, welche den Grad der Gleichung angiebt, eine Primzahl sein müsse. »
[Hesse 1847, p. 193].
42. Je rappelle qu’à cette époque, une équation de Galois est une équation de degré premier, dont toutes
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Hesse indique dans une note de bas de page que l’étude de ces équations de degré 9 lui
ont été suggérées par Carl Gustav Jacob Jacobi après que ce dernier lut ses travaux sur
les courbes cubiques :

J’extrais le passage suivant d’une lettre datée de janvier 1844 et écrite à Rome par le
professeur Jacobi à qui j’avais communiqué les premiers résultats de mes recherches sur
les points d’inflexion. « Vous pourrez également probablement résoudre le problème
général suivant : résoudre une équation du neuvième degré lorsqu’une fonction ration-
nelle et symétrique F (x, x′) de deux racines quelconques x, x′ donne toujours une
troisième racine x′′ de sorte que si F (x, x′) = x′′, alors F (x′, x′′) = x et F (x′′, x) = x′.
Car c’est le cas ici pour les équations des points d’inflexion des courbes du troisième
ordre. Ainsi serait révélée une nouvelle classe d’équations algébriques résolubles, to-
talement différentes de celles auxquelles Abel a appliqué les méthodes de Gauss. »
J’ai entrepris la présente recherche sur les équations du neuvième degré suite à cette
suggestion 43. [Hesse 1847, p. 202]

Les recherches mentionnées dans cette citation sont probablement celles qui avaient été
publiées dans deux articles conjoints de 1844, [Hesse 1844a ; Hesse 1844b], où Hesse prouvait
notamment que les points d’inflexion d’une courbe d’ordre n sont les intersections de cette
courbe avec une autre de degré 3(n − 2) — cette courbe sera appelée plus tard la courbe
hessienne de la première courbe 44. Dans le cas particulier où n = 3, il en déduisait le fait
que toute courbe cubique possède neuf points d’inflexion. Toujours dans ces articles de
1844, Hesse avait également prouvé que les douze droites contenant les points d’inflexion 45

forment en tout quatre triangles contenant chacun les neuf points d’inflexion.
Revenons à l’article de Hesse du corpus. Pour étudier les équations qui en sont l’objet 46,

les racines s’expriment rationnellement en fonction de deux fixées d’entre elles.
43. « Aus einem vom Januar 1844 aus Rom datirten Schreiben des Herrn Professor Jacobi, dem ich die

ersten Resultate meiner Untersuchung über die Wendepunkte mitgetheilt hatte, hebe ich folgende Stelle
heraus. „Sie werden wahrscheinlich auch das allgemeine Problem lösen können: eine Gleichung neunten Gra-
des aufzulösen, wenn eine gegebene rationale symmetrische Function F (x, x′) je zweier Wurzeln x, x′ immer
wieder eine dritte Wurzel giebt, in der Art, dass wenn F (x, x′) = x′′, auch F (x′, x′′) = x, F (x′′, x) = x′

ist. Denn dieses ist hier bei den Gleichungen der Wendepunkte der Curven dritter Ordnung der Fall. Es
würde sich so eine neue Classe von auflösbaren algebraischen Gleichungen eröffnen, welche von denen, auf
die Abel die Gauss’sche Methode ausgedehnt hat, total verschieden sind.“ Auf diese Andeutung hin habe
ich die vorliegende Untersuchung der Gleichung neunten Grades unternommen. »
44. Rappelons que si une courbe a pour équation (en coordonnées homogènes) f(x1, x2, x3) = 0, sa

courbe hessienne est la courbe d’équation H(x1, x2, x3) = 0, où H = det

(
∂2f

∂xi∂xj

)
16i,j63

. Les points

d’inflexion de la courbe f = 0 sont alors les points d’intersection de la courbe avec sa courbe hessienne.
D’après le chapitre de l’Encyklopädie sur les courbes cubiques et quartiques, le nom de « courbe hessienne »
serait dû à Cremona, [Kohn 1908, p. 469].
45. L’alignement trois par trois des points d’inflexion était déjà connu. L’article de l’Encyklopädie sur les

courbes cubiques et quartiques, [Kohn 1908], indique que ce résultat avait été prouvé déjà par Jean-Paul
de Gua de Malves et par Colin Maclaurin au début du xviiie siècle.
46. Pour être tout à fait précis, je souligne qu’avant d’étudier les équations décrites dans le titre de son

article, Hesse consacre un peu de place à d’autres équations de degré 9, ayant la propriété que trois de
leurs racines sont liées par une relation de la forme x3 = θ(x1, x2), mais où l’action de remplacer x2 par
une autre racine ne change pas la valeur de θ(x1, x2) — les équations décrites dans le titre correspondent
au cas où cette action donne plusieurs valeurs de θ(x1, x2). Je me contenterai dorénavant de regarder les
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Hesse commence par montrer que leurs neuf racines peuvent se grouper trois par trois,
formant ainsi 12 triplets de racines qu’il qualifie de « conjuguées » — les racines d’un
triplet sont des racines xχ, xλ, xµ qui sont liées par des relations θ, c’est-à-dire que l’on
a xµ = θ(xχ, xλ), xλ = θ(xµ, xχ) et xχ = θ(xλ, xµ). Les douze triplets sont représentés par
Hesse dans un tableau :

x1x2x3 x4x5x6 x7x8x9

x2x4x7 x3x5x8 x1x6x9

x5x7x1 x6x8x2 x4x9x3

x8x1x4 x9x2x5 x7x3x6.

À partir de ces triplets de racines, Hesse construit ensuite des équations auxiliaires de
degrés respectifs 3 et 4 dont il montre que ce sont des résolvantes des équations de degré
9 considérées. Cela lui permet de conclure quant à la résolubilité par radicaux de ces
équations de degré 9.

Hesse se tourne alors vers l’équation aux points d’inflexion. Il définit celle-ci comme
étant le résultat de l’élimination d’une variable entre l’équation de la courbe cubique et
celle de sa hessienne. Pour montrer que l’équation ainsi obtenue est bien du type de celles
qu’il a étudiées en amont, Hesse fait référence à un article de Jean-Victor Poncelet, [Pon-
celet 1832], pour rappeler que les neuf points d’inflexion sont alignés trois par trois. Cette
propriété géométrique lui permet de prouver que les racines de l’équation aux neuf points
d’inflexion vérifient la propriété décrite dans le titre de l’article : trois racines sont liées par
des relations θ lorsque les points qu’elles représentent sont alignés. Finalement, puisque
l’équation aux points d’inflexion appartient à la classe d’équations étudiées par Hesse, elle
est résoluble par radicaux, et ce résultat conclut l’article de Hesse.

3.2.2 Deux articles de Kummer sur les surfaces quartiques, 1863-1864

Les deux références de Kummer qui apparaissent dans le corpus sont datées de 1863
et 1864. Ces années correspondent aux débuts de ce qui a été appelé « troisième période »
de Kummer, placée sous le signe de la géométrie 47. Au vu de ses Collected papers, les
premiers travaux géométriques de Kummer ont été publiés en 1862 et 1863 (certains sont
datés de 1860) ; ce sont des recherches sur les systèmes de rayons issus de la théorie des
surfaces caustiques 48, mais aussi sur des modèles concrets de tels systèmes et de surfaces

équations du titre, qui occupent bien plus de place dans l’article et qui sont celles liées aux neuf points
d’inflexion des cubiques.
47. Voir [Lampe 1892-93] et André Weil dans la préface de [Kummer Œuvres, vol. 2]. Les première et

deuxième périodes correspondent respectivement à la théorie des fonctions et à la théorie des nombres.
D’après Emil Lampe, Kummer avait trouvé ses idées de base sur la géométrie à partir des Disquisitiones
generales circa superficies curvas de Gauss, [Gauss 1828].
48. En lien avec l’optique géométrique, la théorie des caustiques consiste à étudier les enveloppes de

rayons réfléchis ou réfractés par des surfaces données. Les enveloppes obtenues sont les surfaces caustiques,
ou Brennflächen en allemand.
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particulières 49. On pourra noter qu’à cette époque, Kummer était très intéressé par le
traité de géométrie à trois dimensions de George Salmon, qu’il étudiait « avec diligence et
plaisir 50 ».

Les articles de Kummer du corpus sont consacrés à des surfaces quartiques particulières :
certaines contenant des coniques et d’autres ayant seize points singuliers — ces dernières
ont été appelées « surfaces de Kummer » peu de temps après. À l’instar des autres articles
de géométrie des Collected Papers de Kummer, ceux du corpus ne visent pas un résultat
particulier et sont plutôt des collections (plus ou moins cohérentes) de résultats comme
l’étude de l’existence de singularités, celle des relations d’incidence existant entre divers
éléments associés à la surface ou d’intersections particulières entre de tels éléments, ou
encore la discussion de divers cas particuliers de surfaces. Un exemple typique est le suivant.
Dans l’article sur les surfaces quartiques contenant des coniques, [Kummer 1863], Kummer
prouve que si une surface quartique contient une section conique avec multiplicité 2 et
exactement deux autres points doubles tels que la droite qui les joint ne rencontre pas la
conique, alors tout plan contenant ces points doubles intersecte la surface quartique en
deux coniques.

Vers la fin de ce même article, Kummer démontre qu’une surface quartique contenant
une conique double est intersectée par tout plan tangent double en une paire de coniques.
Il considère ensuite la forme générale de l’équation d’une telle surface, qui est φ2 = 4p2ψ,
où φ, ψ sont des formes quadratiques et p est une forme linéaire 51. Cette équation est alors
équivalente à (φ+2λp2)2 = 4p2(ψ+λφ+λ2p2) pour tout paramètre λ. Kummer en déduit
que si ψ + λφ + λ2p2 = 0 est l’équation d’un cône, alors tout plan tangent à ce cône est
tangent à la surface quartique en deux points de contact et l’intersecte en deux coniques
supplémentaires. Il poursuit :

La condition, aisément développable, que ψ+λφ+λ2p2 = 0 représente un cône conduit
à une équation du cinquième degré pour la constante λ, dont les cinq racines donnent
cinq cônes 52. [Kummer 1863, p. 335]

Cette équation du cinquième degré en λ est la seule équation de la géométrie qui apparaît
dans l’article de Kummer de 1863. Elle est donc prise en considération dans le but de
trouver le nombre de cônes cherchés. La fin de l’article consiste ensuite en une discussion
des racines de cette équation : par exemple, Kummer indique que si l’équation a des racines
imaginaires, alors les plans tangents correspondants sont également imaginaires.

L’autre article de Kummer présent dans le corpus, [Kummer 1864], débute avec la
preuve de l’existence de surfaces quartiques ayant seize points singuliers et la preuve que

49. Au sujet de modèles mathématiques, de Klein et de la surface dite de Kummer, voir [Rowe 2013].
50. Voir une lettre datée de juillet 1862 de Kummer à Kronecker, [Kummer Œuvres, vol. 1, p. 100].
51. L’intersection de la surface avec le plan d’équation p = 0 a donc pour équation φ2 = 0, ce qui

représente une conique double (dans le plan p = 0).
52. « Die leicht zu entwickelnde Bedingung, dass φ+ λφ+ λ2p2 = 0 eine Kegelfläche darstelle, führt auf

eine Gleichung fünften Grades für die Constante λ, deren fünf Wurzeln fünf Kegelflächen geben ».
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ce nombre est le nombre maximal de singularités que peut avoir une surface quartique 53.
Kummer démontre aussi que les seize points singuliers sont coplanaires six à six 54, qu’il y
a 16 tels plans (dit plans tangents singuliers) et que ces seize plans se coupent six à six en
chacun des points singuliers. Un paragraphe est également consacré à la description d’un
modèle en fil de fer d’une surface avec seize singularités.

Kummer indique ensuite comment relier ces surfaces à la théorie des caustiques et
montre le résultat suivant 55 :

Le système de de rayons complet d’ordre 12 et de classe 28 qui a pour surface caustique
une surface générale du quatrième ordre consiste, lorsque cette caustique possède seize
points singuliers, d’abord en 16 systèmes de rayons, chacun ne consistant qu’en l’en-
semble des droites d’un plan ; deuxièmement de quatre systèmes de rayons d’ordre 2 et
de classe 2 ; et troisièmement en un système de rayons d’ordre 4 et classe 4. [Kummer
1864, p. 258]

Kummer explique alors que si le plan contenant les douze rayons des quatre systèmes de
classe 2 et du système de classe 4 est un plan tangent à la surface, alors les 12 rayons
coïncident deux à deux. Les six rayons ainsi obtenus deviennent des droites tangentes à la
surface qui se rencontrent toutes en un autre point de la surface. Il en déduit immédiate-
ment :

L’équation de degré 6 avec laquelle sont déterminées, sur la surface du quatrième ordre
la plus générale, les six tangentes ayant un point de contact commun et touchant
la surface en un autre point se scinde, pour la surface avec seize points singuliers,
en quatre facteurs de degré 1 et un facteur de degré 2 qui peuvent être exprimés
rationnellement avec les coordonnées du point de contact commun 56. [Kummer 1864,
p. 259]

Il s’agit de l’unique équation de la géométrie dans l’article de Kummer. Cette équation n’est
donc pas au cœur de la recherche. Elle apparaît plutôt comme une remarque incidente,
suivant des propriétés géométriques : l’équation se scinde en quatre facteurs de degré 1 et
un facteur de degré 2 parce que les six droites se groupent en quatre « systèmes » d’une
droites et un « système » de deux droites. Le rôle secondaire de l’équation de la géométrie

53. Ces singularités sont des points coniques (ou points nœuds), c’est-à-dire si F = 0 est l’équation de
la surface, alors la différentielle première de F s’annule en ces points, mais sa différentielle seconde est une
forme non dégénérée.
54. Plus précisément, les seize points singuliers sont situés six à six sur une même conique.
55. « Das vollständige Strahlensystem 12ter Ordnung und 28ter Klasse, welches eine allgemeine Fläche

vierten Grades zur Brennfläche hat, besteht, wenn diese Brennfläche vierten Grades 16 singuläre Punkte
hat, erstens aus 16 Strahlensystemen, deren jedes nur aus allen in einer Ebene liegenden graden Linien
besteht, zweitens aus vier Strahlensystemen zweiter Ordnung und zweiter Klasse, und drittens aus einem
Strahlensysteme vierter Ordnung und vierter Klasse. »
56. « Die Gleichung sechsten Grades, durch welche auf der allgemeinsten Fläche vierten Grades die

sechs Tangenten bestimmt werden, die einen Berührungspunkt gemein haben, und die Fläche außerdem
jede noch einmal berühren, zerfällt für die Flächen vierten Grades mit 16 singulären Puntken in vier
Faktoren ersten Grades und einen Faktor zweiten Grades, welche durch die Coordinaten des gemeinsamen
Berührungspunktes rational ausgedrückt werden. »



3.2. LES TEXTES DU CORPUS 183

dans cet article est d’ailleurs attesté par une lettre que Kummer écrit à Kronecker 57 :
Kummer y commente de façon détaillée le résultat concernant les systèmes de rayons mais
ne mentionne ni l’équation algébrique correspondante, ni a fortiori sa factorisation.

3.2.3 Clebsch et les surfaces quartiques à conique double, 1868

Le premier article du corpus écrit par Clebsch est consacré à des surfaces quartiques
particulières, celles contenant une conique double, [Clebsch 1868]. D’après les auteurs de la
notice nécrologique de Clebsch, cet article appartient au groupe de travaux concernant la
théorie des représentations de surfaces 58. De tels travaux avaient commencé en 1865 avec
une publication dans laquelle Clebsch avait prouvé la possibilité de représenter une surface
cubique sur un plan. Après cela, il avait traité d’autres exemples : la surface dite de Steiner,
les surfaces cubiques réglées et enfin les surfaces quartiques à conique doubles, qui sont
l’objet de l’article de Clebsch en jeu dans ce paragraphe 59. Un des principaux objectifs
principaux de la théorie des représentations de surfaces était l’étude de la « géométrie des
surfaces 60 », c’est-à-dire la recherche et l’étude de points et courbes particuliers inclus dans
les surfaces.

Afin d’établir les représentations des surfaces particulières qui viennent d’être énumé-
rées, Clebsch s’appuyait sur des travaux déjà existants sur ces surfaces ; dans le cas des
surfaces quartiques à conique double, la référence principale est l’article de Kummer qui
a été décrit plus haut, [Kummer 1863]. Dans le premier paragraphe de l’article, Clebsch
définit les surfaces quartiques qu’il est sur le point d’étudier, donne les formules de sa
représentation sur un plan et affirme qu’il existe exactement 16 droites sur ces surfaces.

C’est justement l’équation aux seize droites des surfaces quartiques à conique double
qui apparaît principalement dans l’article. Bien que la place qui lui est accordée soit quanti-
tativement modeste, cette équation apparaît dès la conclusion du second paragraphe, après
plusieurs résultats concernant les possibles groupements des seize droites. Cette équation
de la géométrie semble ainsi être davantage un objet d’intérêt en lui-même, et explicite-
ment relié aux groupements de droites. L’équation fait l’objet de deux autres paragraphes,
l’un consacré à la preuve que le nombre de droites dans la surface est bien 16, l’autre à un
raffinement de son processus de résolution.

La première apparition de l’équation aux seize droite survient donc à la fin du deuxième
paragraphe. Juste avant cela, Clebsch étudie les relations d’incidence existant entre les seize
droites et représente ces relations dans différents tableaux, le quatrième et dernier de ces

57. [Kummer Œuvres, vol. 1, p. 101].
58. [Brill, Gordan et al. 1873, p. 30-37]. Les autres groupes de travaux décrits dans cette notice sont

associés respectivement à la physique mathématique, au calcul des variations, aux courbes et surfaces
algébriques, à l’application des fonctions abéliennes à la géométrie et à la théorie des invariants.
59. Les représentations de surfaces cubiques et quartiques à conique double, utilisées par Geiser, ont été

décrites au chapitre précédent.
60. [Brill, Gordan et al. 1873, p. 33].
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tableaux étant le suivant :

2, 6; 3, 7; 4, 8; 5, 9. 1, 16; 10, 15; 11, 14; 12, 13.

1, 6; 3, 10; 4, 11; 5, 12. 2, 16; 7, 15; 8, 14; 9, 13.

1, 7; 2, 10; 4, 13; 5, 14. 3, 16; 6, 15; 8, 12; 9, 11.

1, 8; 2, 11; 3, 13; 5, 15. 4, 16; 6, 14; 7, 12; 9, 10.

1, 9; 2, 12; 3, 14; 4, 15. 5, 16; 6, 13; 7, 11; 8, 10.

Les entrées de ce tableau sont des couples de droites (parmi les seize) soumis aux règles
suivantes. Deux droites forment un couple si et seulement si elles sont sécantes (par exemple,
les droites notées 2 et 6 sont sécantes). À chaque couple en correspondent trois autres dont
les droites ne coupent pas celles du premier couple (ainsi, les couples (3, 7), (4, 8) et (5, 9)

sont associés à (2, 6) car les droites 3, 7, . . . , 9 ne rencontrent pas 2 et 6). On obtient ainsi
des quadruplets de couples, qui peuvent à leur tour être associés deux par deux (sur une
ligne du tableau) de sorte que deux quadruplets associés contiennent chacun des seize
droites.

Juste après ce tableau, Clebsch écrit :

Ce tableau est important surtout parce qu’il apprend que l’équation du seizième degré
dont dépendent les seize droites de la surface se résout à l’aide d’une équation du
cinquième degré. Cette équation, qui délivre les cinq couples de groupes (IV.), n’est
autre que celle à l’aide de laquelle Monsieur Kummer a obtenu les cinq cônes du second
ordre dont les arêtes touchent doublement la surface en question, [Kummer 1863] 61.
[Clebsch 1868, p. 145]

Ce résultat, que Clebsch n’explique pas autrement que par le fait qu’il se déduit du tableau
lui-même, termine le paragraphe concernant les groupements de droites et Clebsch n’évoque
à nouveau l’équation aux seize droites que bien plus loin dans son article.

Comme écrit précédemment, l’apparition suivante de l’équation aux seize droites est
liée à la preuve que 16 est bien le nombre de droites sur la surface. Pour cela, Clebsch
cherche des équations de lieux géométriques entre lesquels faire une élimination conduit à
l’équation des droites de la surface, et il montre que le résultat de cette élimination est bien
de degré 16. Dans ces calculs, Clebsch se base en particulier sur des résultats de l’article
de Kummer plusieurs fois cité, [Kummer 1863], comme celui donnant la forme générale de
l’équation d’une surface quartique à conique double. Il explique ensuite comment l’équation
aux seize droites peut être résolue :

61. « Diese Tafel ist vorzugsweise von Wichtigkeit, weil sie lehrt, dass die Gleichung sechzehnten Grades,
von welcher die sechzehn Geraden der Oberfläche abhängen, mit Hülfe einer Gleichung fünften Grades gelöst
wird. Diese Gleichung, welche die fünf Paare von Gruppen (IV.) liefert, ist keine andere, als diejenige mit
deren Hülfe Herr Kummer die fünf Kegel zweiter Ordnung erhalten hat, deren Seiten die fragliche Fläche
doppelt berühren (Sitzung der Berl. Acad. vom 16. Juli 1863). »
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1. Recherche d’une racine de l’équation de degré 5 dont dépendent les cinq cônes.

2. Résolution d’une équation quadratique [par laquelle] se déduisent les deux fa-
milles de coniques.

3. Résolution complète de deux équations biquadratiques [...] qui donnent les 2.4

couples de droites des deux familles de coniques.

4. Résolution de huit équations quadratiques donnant les droites seules des huit
couples 62. [Clebsch 1868, p. 172-173]

Ces étapes font à chaque fois référence à des morceaux du raisonnement que Clebsch a
mené pour trouver les équations conduisant à l’équation aux seize droites 63. À chacune
de ces étapes intervient une équation de la géométrie, comme « l’équation de degré 5 dont
dépendent les cinq cônes », etc.

Clebsch revient encore une fois sur l’équation aux seize droites dans un paragraphe
où il propose un raffinement du procédé de résolution de celle-ci. Essentiellement, Clebsch
montre qu’en résolvant complètement l’équation des cinq cônes, seules quatre équations
quadratiques supplémentaires sont nécessaires pour résoudre l’équation aux seize droites.

3.2.4 Le Traité des substitutions et des équations algébriques, 1870

Le Traité des substitutions et des équations algébriques de Jordan a déjà été présenté
en détail au chapitre précédent, de même que la note concernant les ennéaèdres, [Jordan
1870a]. Rappelons que le chapitre des applications géométriques est divisé en six para-
graphes, dévolus à autant de situations géométriques. Je vais ici décrire les paragraphes I,
II et IV, qui sont ceux qui ne sont pas liés aux vingt-sept droites des surfaces cubiques et
qui ne sont donc pas apparus au dernier chapitre — pour mémoire, les paragraphes III,
V et VI sont consacrés respectivement aux seize droites des surfaces quartiques à conique
double, aux vingt-sept droites des surfaces cubiques et à des problèmes de contact qui
incluent les vingt-huit tangentes doubles des courbes quartiques.

Neuf points d’inflexion

Ce premier paragraphe des applications géométriques du Traité est intitulé « Équation
de M. Hesse » et concerne les neuf points d’inflexion des courbes cubiques. Pour étudier

62. « 1. Aufsuchung einer Wurzel der Gleichung fünften Grades, von welcher die fünf Kegel abhängen.
2. Auflösung einer quadratischen Gleichung [...]. Durch diese quadratische Gleichung werden die beiden
Kegelschnittschaaren [...] ermittelt. 3. Vollständige Auflösung zweier biquadratischen Gleichungen [...],
welche die 2.4 Geradenpaare der beiden Kegelschnittschaaren liefern. 4. Auflösung der acht quadratischen
Gleichungen, welche die einzelnen Geraden der acht Paare geben. »
63. Il est possible de lire ces étapes tout en regardant rétrospectivement le tableau des relations d’inci-

dence reproduit précédemment. La recherche d’une racine de l’équation des cônes correspond à la sélection
d’une des lignes du tableau ; la résolution de l’équation quadratique des familles de coniques correspond à
la séparation des deux groupes de quadruplets de couples d’une ligne ; les équations biquadratiques per-
mettent de trouver séparément les couples de ces quadruplets ; enfin, chaque tel couple est séparé en ses
droites par une équation quadratique.
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l’équation correspondante, Jordan se base sur les relations d’alignement des points d’in-
flexion pour créer une fonction ϕ :

On sait que les neuf points d’inflexion d’une courbe du troisième degré sont situés
trois à trois sur douze droites, qui s’y coupent quatre à quatre. Désignons ces points,
ou les racines de l’équation X dont ils dépendent, par le symbole (xy), chacun des
indices étant variable de 0 à 2 (mod 3) : et représentons par (xy)(x′y′)(x′′y′′) la droite
qui passe par les points (xy), (x′y′), (x′′y′′) ; il est aisé de voir que les douze droites
correspondent aux douze termes de l’expression

ϕ = (00)(01)(02) + (10)(11)(12) + · · ·+ (02)(20)(11)

formée par les produits tels que (xy)(x′y′)(x′′y′′) qui satisfont aux relations

x+ x′ + x′′ ≡ y + y′ + y′′ ≡ 0 mod 3.

[Jordan 1870b, p. 302]

Remarquer que Jordan ne donne ici aucune référence, que ce soit pour les résultats d’inci-
dence des points d’inflexion ou pour l’utilisation de la notation (xy). Comme le paragraphe
en question est intitulé « Équation de M. Hesse » et que la préface du Traité mentionne les
« célèbres Mémoires de M. Hesse sur les points d’inflexion courbes du troisième ordre », [Jor-
dan 1870b, p. vi], on peut raisonnablement penser que Jordan vise les travaux de Hesse
que nous avons décrit précédemment, [Hesse 1844a ; Hesse 1844b ; Hesse 1847]. En ce qui
concerne la notation (xy) et la condition d’alignement exprimée grâce à elle, on peut les
trouver dans un mémoire de Clebsch, [Clebsch 1864b], consacré à l’utilisation des fonctions
elliptiques en géométrie 64.

Après avoir introduit la fonction ϕ, Jordan en étudie le groupe 65 — forme des substi-
tutions, cardinal, sous-groupes distingués — et en déduit que l’équation aux neuf points
d’inflexion est résoluble par radicaux.

Ce résultat ne conclut pas le §I, car Jordan énonce ensuite :

Théorème. — Si une équation du neuvième degré est irréductible, et telle, que deux
quelconques de ses racines, a et b, étant données, on puisse en déduire une troisième c,

64. Dans ce mémoire, Clebsch montre que toute courbe cubique (lisse) peut être paramétrée par une
fonction elliptique sn (notation de Jacobi). Il montre en particulier que trois points M1,M2,M3 de cette
courbe, de paramètres respectifs u1, u2, u3, sont alignés si et seulement si sn(u1 + u2 + u3) = 0. Dans le
cas où M1 = M2 = M3, il s’agit d’un point d’inflexion, et l’unique paramètre u1 vérifie alors sn(3u1) = 0.
Cette dernière condition équivaut à dire que u1 est de la forme u1 = pω+qω′

3
, où p, q sont des entiers

et ω, ω′ sont les périodes de la fonction sn. Clebsch retrouve ainsi autant de points d’inflexion que de
couples (p, q) d’entiers modulo 3. Tout cela coïncide donc avec ce qui est présenté par Jordan. Avec un
point de vue actuel, il s’agit de réaliser une loi de groupe sur une cubique par les fonctions elliptiques, les
points d’inflexion étant les éléments d’ordre 3 de ce groupe. Au sujet de la loi de groupe sur les cubiques,
voir [Schappacher 1991], dans lequel l’article de Clebsch décrit ici n’apparaît d’ailleurs pas.
65. En termes actuels, il montre que c’est le groupe affine GA2(F3).
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liée à a et b par les relations suivantes :

c = ψ(a, b), b = ψ(b, a), a = ψ(b, c)

(où ψ désigne une fonction rationnelle, symétrique par rapport aux deux variables
qu’elle contient), le groupe de cette équation sera contenu dans [le groupe de la fonc-
tion ϕ]. [Jordan 1870b, p. 304]

Les équations dont il s’agit ici ne sont pas géométriques. Au contraire, la façon qu’a Jordan
de présenter les choses donne plutôt l’impression qu’il désincarne géométriquement l’équa-
tion aux neuf points pour énoncer ce théorème. Vu sous cet angle, la démarche est inversée
par rapport à Hesse qui avait d’abord étudié l’équation non géométrique avant de montrer
que l’équation aux neuf points en était une réalisation.

Jordan propose enfin une sorte de généralisation du théorème précédent, toujours sans
lien avec une quelconque configuration géométrique. Il considère en effet les équations du
huitième degré telles que si trois de leurs racines a, b, c sont données, il en existe une
quatrième d telle que

d = ψ(a, b, c), c = ψ(d, a, b), b = ψ(c, d, a), a = ψ(b, c, d),

où ψ est à nouveau une fonction rationnelle et symétrique. Jordan indique alors que ces
équations « ont été considérées par M. Mathieu [et] se traitent exactement par les mêmes
principes [que ce qui précède dans le Traité] », [Jordan 1870b]. Encore une fois, Jordan
ne donne pas de référence ; il s’agit très probablement d’un mémoire de 1861 dans lequel
ces équations sont étudiées parmi d’autres, [Mathieu 1861], et qui est d’ailleurs cité dans
l’article de Noether de notre corpus.

« Équations de M. Clebsch »

Le deuxième paragraphe des applications géométriques s’appelle « Équations de M.
Clebsch ». En guise d’ouverture, Jordan cite le mémoire de Clebsch sur l’application des
fonctions abéliennes à la géométrie, [Clebsch 1864a], pour énoncer : « Le problème de
déterminer une courbe du troisième ordre dont les points d’intersection avec une courbe
donnée C du quatrième ordre coïncident quatre à quatre conduit à une équation X du
degré 46 », [Jordan 1870b, p. 305] — je souligne que dans le mémoire cité, Clebsch montre
qu’il existe 46 courbes du troisième ordre solutions de ce problème, mais il ne parle à aucun
moment d’équation algébrique associée.

Jordan procède ensuite comme pour les neuf points d’inflexion : il introduit une notation
adéquate des racines de cette équation de degré 46 et s’en sert pour créer une fonction ϕ,
en s’aidant de relations de congruences. Il consacre ensuite plusieurs pages à la recherche
de l’ordre du groupe de ϕ, de ses facteurs de composition, etc.

Dans la fin du paragraphe II, Jordan énumère un certain nombre d’autres équations
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de la géométrie associées à d’autres problèmes traités par Clebsch dans le mémoire cité
précédemment, comme par exemple l’« équation du degré 320 qui détermine les courbes
du cinquième ordre dont les points d’intersection avec une courbe donnée du sixième ordre
coïncident trois à trois », [Jordan 1870b, p. 308]. Sans détailler les calculs, Jordan indique
que toutes les équations énumérées se traitent comme ce qu’il a fait plus haut, et donne la
forme des substitutions de leur groupe.

Seize points singuliers

Les seize points singuliers de la surface de Kummer font l’objet du quatrième paragraphe
des applications géométriques du Traité ; ce chapitre est reproduit presque tel quel dans
un des articles de Jordan du corpus, [Jordan 1869d]. Jordan y cite le mémoire de Kummer
sur ce sujet et décrit supra, [Kummer 1864].

Là encore, le mode opératoire consiste à utiliser des relations d’incidence pour créer
une fonction ϕ en conséquence. Ces relations sont, dans cette situation, que les seize points
singuliers de la surface de Kummer sont situés six à six sur seize plans, et que réciproque-
ment ces seize plans s’intersectent six à six en chacun des seize points singuliers. Après
investigation du groupe de la fonction ϕ, le résultat auquel aboutit Jordan est que l’équa-
tion aux seize points singuliers se résout par la résolution d’une équation générale de degré
6 puis par l’adjonction de quatre racines carrées.

Jordan conclut son paragraphe par une généralisation : il indique ainsi que les équations
de degré 22n dont le groupe a la même structure que celui de l’équation aux seize points se
résolvent par une équation de degré 22n−1 − 2n et par 2n équations du second degré. Ces
équations de degré 22n ne sont pas géométriques, comme c’était le cas pour les équations
que Jordan avait présenté après l’équation aux neuf points d’inflexion.

3.2.5 Théorie des complexes linéaires : Klein, 1870

L’article de Klein de 1870 qui est présent dans notre corpus est la première publication
de celui-ci, [Klein 1870]. Il s’agit d’un travail reprenant et approfondissant des éléments de
sa thèse qu’il avait faite auprès de Plücker et qu’il avait présentée en 1868, [Klein 1868].
Dans ses Gesammelte mathematische Abhandlungen, Klein indique que les différences entre
sa thèse et cet article sont des conséquences de l’atmosphère qui régnait à l’époque à
Göttingen :

En comparaison avec la thèse, on reconnaîtra l’influence stimulante que l’environne-
ment de Göttingen a eue sur moi. Je choisis cette expression quelque peu vague car à
côté de Clebsch lui-même, les étudiants, en nombre alors encore faible, qui s’étaient
réunis autour de lui avaient eu la plus grande influence sur moi 66. [Klein Œuvres 1,

66. « Beim Vergleich mit der Dissertation wird man den anregenden Einfluß erkennen, den die Göttinger
Umgebung auf mich ausgeübt hat. Ich wähle diesen etwas unbestimmten Ausdruck, weil neben Clebsch
selbst die vorab noch kleine Zahl von Spezialschülern, die er um sich versammelt hatte, regsten Einflußauf
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p. 50]

Le thème de l’article en question ici est l’étude de complexes linéaires de degré 2,
c’est-à-dire d’ensembles de droites de l’espace vérifiant certaines conditions. Ces complexes
linéaires avaient commencé à être étudiés un peu auparavant (en 1865) par Plücker, auprès
de qui Klein avait préparé sa thèse 67. L’idée principale de ces travaux est qu’une droite
de l’espace peut être décrite par six coordonnées homogènes satisfaisant une équation
quadratique homogène 68 ; un complexe linéaire de degré 2 est l’ensemble de toutes les
droites dont les coordonnées vérifient une équation quadratique homogène supplémentaire.
Dans cette publication de Klein, une attention particulière est portée sur le lien entre
les complexes linéaires et la surface quartique de Kummer. Les équations de la géométrie
apparaissent de façon répétée en fin de petits paragraphes et ne sont pas les objets centraux
de recherche. Regardons cette structure-type sur un exemple.

Klein note a1, a2, . . . , a6 les six coordonnées homogènes des droites de l’espace. Il montre
que l’on peut supposer que l’identité quadratique les liant est

∑
a2
i = 0, qui est invariante

si l’on change de signe les ai. Klein en conclut que les droites de l’espace peuvent être
groupées 32 par 32 : étant donné un sextuplet a1, . . . , a6, les 32 droites d’un groupe sont
celles de coordonnées ±a1, . . . ,±a6. Il indique ensuite que chaque groupe de 32 droites se
sépare en deux groupes de 16 selon la parité de coordonnées affectées d’un signe négatif 69.
Enfin, si l’une des droites d’un groupe de 16 est donnée, Klein démontre que les droites de
l’autre groupe de 16 se séparent en deux groupes : celles qui sont les polaires conjuguées à
la droite donnée par rapport aux six complexes fondamentaux, resp. par rapport aux dix
surfaces fondamentales 70. Il écrit alors immédiatement :

L’équation du 32e degré par laquelle est déterminée un tel système de droites n’exige,
après que les six complexes fondamentaux ont été trouvés par une équation du 6e

degré, que la résolution d’équations du second degré 71. [Klein 1870, p. 210]

Ce résultat n’est ni expliqué, ni commenté, ni même utilisé dans la suite : il s’agit juste
d’une remarque couronnant un petit paragraphe. D’autres exemples de telles propriétés

mich gewann. » J’ai déjà donné cette référence lors de la description des liens entre les auteurs du corpus.
Je rappelle que ce commentaire de Klein provient de ses œuvres complètes, dont le premier volume est
paru en 1921, et qu’à cette époque, Klein avait bâti l’idéologie de Göttingen décrite dans [Rowe 1989a].
67. [Rowe 1989b, p. 212-217].
68. J’ai expliqué ce point mathématique au chapitre précédent. La droite passant par deux points x, y

de coordonnées respectives (x0 : x1 : x2 : x3) et (y0 : y1 : y2 : y3) est caractérisée par les six coordon-
nées pij = xiyj − xjyi avec i < j. Ces six quantités sont reliées par la relation p01p23−p02p13 +p12p03 = 0.
69. Ces coordonnées étant des nombres complexes, on ne peut pas parler de nombres positifs ou négatifs,

alors que l’on peut parler de leur signe par rapport à un sextuplet de référence. Klein n’indique pas comment
gérer le cas de coordonnées nulles.
70. Les six complexes fondamentaux sont les ensembles de droites définis chacun comme étant le lieux

d’annulation d’une des six coordonnées. Les dix surfaces fondamentales sont les ensembles de droites définis
par des équations du type a2

1 + a2
2 + a2

3 = 0.
71. « Die Gleichung 32ten Grades, durch welche ein deratiges System von geraden Linien [...] bestimmt

wird, verlangt, nachdem die sechs Fundamentalcomplexe durch eine Gleichung des 6ten Grades gefunden
worden sind, nur noch die Auflösung von Gleichungen des zweiten Grades. »
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de résolution d’équations suivant des groupements géométriques sont éparpillées dans l’ar-
ticle. En particulier, Klein retrouve avec ce genre de raisonnement un résultat que Jordan
avait démontré dans son article sur l’équation aux seize points singuliers de la surface de
Kummer, [Jordan 1869d], à savoir que cette équation dépend d’une équation de degré 6 et
d’équations quadratiques supplémentaires.

Tous ces résultats de résolubilité d’équations de la géométrie suivant des résultats d’exis-
tence de groupements particuliers de droites sont une des différences entre l’article en ques-
tion ici et la thèse de Klein : cette dernière ne contient aucune équation de la géométrie. On
peut donc voir ces résultats comme des artéfacts de la stimulation de Göttingen évoquée
dans la première citation de ce paragraphe ; mais ils font également penser à l’équation de
la géométrie présentée dans l’article de Kummer de 1864, correspondant justement à des
systèmes de rayons en liaison avec les surfaces quartiques.

3.2.6 Interprétation géométrique de l’équation du cinquième degré :
Clebsch, 1871.

Le texte de Clebsch de 1871 du corpus, [Clebsch 1871b], n’est pas une référence directe
de l’Encyklopädie, mais est cité par Klein dans un article de la même année, [Klein 1871b].
Le but de Clebsch dans ce mémoire est de donner une interprétation géométrique à la
théorie de l’équation générale du cinquième degré 72 :

L’objet du présent article se trouve principalement dans les différentes formes qu’une
équation du cinquième degré peut prendre par une transformation supérieure. [...]
On obtient ainsi [...] un aperçu géométrique complet des relations existant entre les
équations de degré 5 et leurs résolvantes, et en particulier des relations avec la forme
de Jerrard et l’équation modulaire 73. [Clebsch 1871b, p. 284-285]

Comme l’attestent ses références dans la suite de l’article, Clebsch vise ici deux approches de
l’équation du cinquième degré, datant des années 1850. La première est celle de Hermite 74,
qui consistait à se baser sur la forme dite de Jerrard de x5 − x − a = 0 pour la résoudre
grâce aux fonctions elliptiques, et en particulier l’équation modulaire de degré 6. La seconde
est celle de Kronecker 75, utilisant d’une autre façon la théorie des fonctions elliptiques de
sorte à ramener la résolution de l’équation du cinquième degré à celle d’une équation
pure x5 −A = 0.

72. Sur cette équation générale de degré 5, voir le chapitre VII de [Houzel 2002] et le chapitre IV de [Gray
2000].
73. « Der vorliegende Aufsatz hat vorzugsweise die verschiedenen Formen zum Gegenstande, welche einer

Gleichungen 5ten Grades durch höhere Transformation gegeben werden können. [...] So erhält man [...] eine
vollständige geometrische Uebersicht über die Zusammenhänge, welche zwischen den Gleichungen 5ten und
ihren Resolventen bestehen, insbesondere über den Zusammenhang mit der Jerrard’schen Form und der
Modulargleichung. »
74. Voir [Goldstein 2011a].
75. Voir [Petri & Schappacher 2004].
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Noter que ces travaux de Hermite et de Kronecker faisaient partie d’une série de re-
cherches liées à celles de Galois au sujet des équations modulaires, et dont les historiens
sus-cités ont montré qu’ils ont constitué une des voies par lesquelles les recherches de Galois
ont été retravaillées dans les années 1850-1860.

L’interprétation géométrique de Clebsch de la théorie de la quintique consiste à consi-
dérer les coefficients des différentes transformations de l’équation comme des coordonnées
de l’espace. Par exemple, une transformation quadratique ξ = y1+y2λ+y3λ2

x1+x2λ+x3λ2 supposée agir
sur une équation algébrique f(λ) = 0 est représentée comme la droite du plan reliant les
points de coordonnées homogènes x1, x2, x3 et y1, y2, y3. Un des points principaux de la
méthode de Clebsch est de trouver des transformations qui annulent des invariants asso-
ciés à l’équation. Cela lui permet ensuite d’appliquer à l’équation transformée des résultats
(connus) énonçant des propriétés de résolution, vraies lorsque lesdits invariants sont nuls 76.
Par exemple, lorsque un certain invariant C de l’équation du cinquième degré est nul, il
est possible de la ramener avec uniquement des procédés rationnels à la forme dite de Jer-
rard ξ5 − ξ − a = 0 ; il s’agit alors pour Clebsch de voir comment trouver géométriquement
(au sens de son interprétation) une transformation annulant cet invariant C.

Clebsch interprète aussi la transformation de Tschirnhaus 77 ξ = aλ4+bλ3+cλ2+dλ+e.
Pour que l’équation transformée soit de la forme ξ5+Aξ+B = 0, Clebsch montre que les co-
efficients a, b, . . . , e doivent satisfaire trois conditions Φ(a, b, c, d, e) = 0, Ψ(a, b, c, d, e) = 0

et X(a, b, c, d, e) = 0, où Φ, Ψ et X sont des polynômes homogènes de degrés respectifs 1, 2

et 3. L’identité linéaire Φ(a, b, c, d, e) = 0 permet à Clebsch d’interpréter a, . . . , e comme
des coordonnées pentaédriques de l’espace, c’est-à-dire qu’elle permet d’exprimer une des
cinq quantités a, . . . , e en fonction des autres ; il n’en reste alors que 4, vues comme autant
de coordonnées homogènes de l’espace. L’égalité Ψ = 0 devient par ce biais l’équation d’une
surface quadrique et X = 0 celle d’une surface cubique. Ainsi, pour déterminer une trans-
formation de Tschirnhaus convenable, il faut trouver un point sur la courbe (d’ordre 6) qui
est l’intersection de ces surfaces.

Des équations de la géométrie apparaissent incidemment, en tant que moyens de contrô-
ler les irrationalités impliquées dans le processus de trouver un point sur la courbe d’ordre 6.
En effet, puisqu’une transformation de Tschirnhaus n’implique pas de radical supérieur au
quatrième, le processus géométrique doit faire de même. Clebsch résume sa méthode comme
suit :

76. L’exemple simple de l’équation du second degré (qui n’est pas traité par Clebsch) peut éclairer cela :
le discriminant bien connu ∆ = a2

1 − a0a2 de l’équation a0x
2 + 2a1x + a2 = 0 en est un invariant, et

son annulation signifie que l’équation possède une racine double. Ce type de recherches liant théorie des
invariants et équations algébriques faisait aussi partie du programme de Hermite, voir [Goldstein 2011a,
p. 248-249].
77. George Birch Jerrard avait montré que pour l’équation générale du cinquième degré donnée, il est

possible de trouver une telle transformation qui donne à l’équation la forme x5 − x − a = 0. Un point
clé était que la détermination des coefficients de la transformation n’implique que des racines carrées et
cubiques des coefficients de l’équation de départ.
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On a juste à déterminer n’importe quel point de la courbe gauche d’ordre six, ce qui se
fait en intersectant une génératrice de la surface Ψ = 0 avec [la surface cubique X = 0].
Pour cela, une équation quadratique et une équation cubique doivent être résolues :
d’abord pour trouver une génératrice de la surface du second ordre ; ensuite pour
déterminer l’intersection de cette génératrice avec la surface [cubique] 78. [Clebsch
1871b, p. 341]

D’autres passages de l’article de Clebsch contiennent des équations de la géométrie. Par
exemple, Clebsch interprète encore la méthode de Kronecker de résolution de la quintique.
Dans ce cas, l’interprétation géométrique identifie l’équation modulaire associée à la trans-
formation d’ordre 5 des fonctions elliptiques à l’équation de degré 6 qui « sépare » six
tangentes doubles à une certaine courbe. Notons d’ailleurs que l’équation aux vingt-sept
droites (de la surface X = 0) intervient également au cours des calculs menés par Clebsch.

3.2.7 Représentation géométrique des résolvantes, Klein, 1871

J’en viens maintenant au deuxième article de Klein du corpus, [Klein 1871b]. Dans l’in-
troduction de cet article, Klein met en avant le côté intuitif des équations de la géométrie :

La théorie générale des équations algébriques est illustrée de la plus belle des façons
par un certain nombre d’exemples géométriques particuliers ; je pense seulement (voir
Camille Jordan, Traité des substitutions, p. 301 etc.) au problème des points d’in-
flexion des courbes du troisième ordre, aux vingt-huit tangentes doubles des courbes
du quatrième ordre, aux vingt-sept droites sur les surfaces du troisième degré, etc.,
mais aussi à la cyclotomie 79.

Le grand avantage de ces exemples est qu’ils présentent de façon intuitive les idées abs-
traites en elles-mêmes si particulières de la théorie des substitutions. Il se rapportent
la plupart du temps à des équations de caractère très particulier, entre les racines
desquelles ont lieu des groupements particuliers, laissant ainsi voir comment de telles
équations peuvent se comporter 80. [Klein 1871b, p. 346]

78. «Man hat dann nur einen beliebigen Punkt der Raumcurve 6ten Ordnung zu ermitteln, was geschieht,
indem man eine Erzeugende der Fläche Ψ = 0 mit der Diagonalfläche schneidet. Dazu ist eine quadratische
und eine cubische Gleichung zu lösen ; erstere, um eine Erzeugende der Fläche 2ten Ordnung zu finden; die
andere, um die Durchschnitte derselben mit der Diagonalfläche zu bestimment. »
79. Ce passage est le seul endroit du corpus où est mentionnée la cyclotomie. Comme pressenti par les

différences de définition avec les équations de la géométrie, il semble donc bien que l’équation cyclotomique
ne fasse pas partie de cette famille, même si elle en est ici rapprochée par Klein.
80. « Die allgemeine Theorie der algebraischen Gleichungen wird in schönster Weise durch eine Anzahl

besonderer geometrischer Beispiele illustrirt; ich erinnere nur (Vergl. Camille Jordan. Traité des Substitu-
tions. 1, p. 301 ff.) an das Problem der Wendepunkte der Curven 3ter Ordnung, an die 28 Doppeltangenten
der Curven 4ter Ordnung, an die 27 Linien auf den Flächen 3ten Grades etc., dann aber namentlich auch
an die Kreistheilung. Der hohe Nutzen dieser Beispiele liegt darin, daß sie die an und für sich so eigenartig
abstrakten Vorstellungen der Substitutionstheorie in anschaulicher Weise dem Auge vorführen. Sie bezie-
hen sich zumeist auf Gleichungen von sehr partikulärem Character, zwischen deren Wurzeln besondere
Gruppierungen statthaben, und lassen also übersehen, wieso derartige besondere Gleichungen auftreten
können. »
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Klein annonce alors vouloir concevoir toute équation algébrique comme une équation de
la géométrie en incarnant les racines d’une équation générale en des objets géométriques
et en remplaçant les substitutions des racines par des transformations de l’espace. Avec la
citation précédente, cette articulation entre algèbre et géométrie révèle un thème kleinien
par excellence : mettre la géométrie en avant pour son côté intuitif et souligner l’importance
des groupes de transformations.

À la fin de l’introduction, Klein révèle que Clebsch et Lie ont tous deux aidé à la forma-
tion des idées de l’article. Le premier par les « considérations géométriques » qu’il a utili-
sées dans son mémoire où il a interprété géométriquement théorie de la quintique, [Clebsch
1871b], et qu’il « eut la gentillesse de partager avec [Klein] lors de conversations person-
nelles récurrentes 81 » ; le second à cause des recherches communes sur les transformations
linéaires d’objets géométriques publiées dans un article de 1871, [Klein & Lie 1871] 82.

Dans la première partie de son article, Klein donne des explications plus précises sur
son principe général de représentation géométrique. Ainsi, si une équation algébrique est
générale et de degré n, un élément de l’espace prend en général n! positions différentes
lorsque les n! transformations correspondant aux n! substitutions agissent sur lui. Selon
Klein, ce système de n! éléments de l’espace est l’image de la résolvante de Galois de
l’équation. De plus, Klein fait remarquer qu’il y a des éléments particuliers de l’espace tels
que certains des n! éléments transformés coïncident. Dans ce cas, « la résolvante de Galois
devient une puissance d’une expression qui est appelée résolvante particulière 83 ».

Dans la deuxième partie de l’article, Klein relie la théorie des équations avec la théorie
des covariants : les groupes de n! éléments obtenus en général sont des covariants du système
formé des n éléments donnés correspondant aux n racines 84.

La troisième partie s’occupe brièvement d’équations particulières comme l’équation aux
neuf points d’inflexion, mais aussi l’équation cyclotomique. Klein met à nouveau en valeur
l’importance des transformations de l’espace :

Comme image géométrique pour l’équation du 9e degré, nous ne considérons pas la
courbe du troisième ordre qui contient les points d’inflexion, mais plutôt les points
d’inflexion eux-mêmes et les cycles-transformations par lesquels ils sont permutés entre
eux 85. [Klein 1871b, p. 354]

81. « Die nächste Veranlassung zu den hiermit angedeuteten Dingen sind mir die geometrische Betrach-
tungen gewesen, die Herr Clebsch in dem vorstehenden Aufsatze behufs Discussion der Gleichungen 5ten

Grades angewandt hat, und welche mir derselbe in wiederholten persönlichen Unterhaltungen mitzutheilen
die Güte hatte. » [Klein 1871b, p. 347].
82. Ces travaux sont discutés dans [Rowe 1989b ; Hawkins 2000].
83. « Die Galoissche Resolvente wird dann eine Potenz eines Ausdrucks, der als eine besondere Resolvente

bezeichnet wird. » [Klein 1871b, p. 348].
84. Cela signifie que si une transformation linéaire agit sur les n éléments donnés, alors les groupes de n!

éléments associés se transforment entre eux pas la même transformation linéaire.
85. « Als geometrisches Bild für die Gleichung 9ten Grades betrachten wir nun nicht die Curve 3ter

Ordnung, welche die Wendepunkte besitzt, sondern die Wendepunkte selbst und den Transformationscyclus,
durch welche diese untereinander vertauscht werden. »



194 CHAPITRE 3

Enfin, dans la quatrième et dernière partie, Klein en vient à l’équation générale de
degré 6. Il applique sa théorie des complexes linéaires en référant à son article sur le sujet
(qui fait partie du corpus), [Klein 1870]. Les substitutions des racines correspondent aux
transformations des coordonnées de droites (de l’espace) et des résolvantes sont trouvées
directement grâce à des propriétés géométriques. Par exemple, Klein trouve 15 paires de
directrices, chacune étant associée à une paire de complexes fondamentaux, et il en déduit
immédiatement 86 :

Les 15 paires de directrices sont l’image d’une résolvante de degré 15.

Les 15 paires de directrices forment les arêtes de 15 tétraèdres (au sens où l’on peut,
de 15 façons différentes, diviser six éléments en 3 groupes de 2).

Ces 15 tétraèdres représentent une deuxième résolvante de degré 15.

De ces 15 tétraèdres, on peut maintenant en choisir cinq qui ont pour arêtes les 30

directrices, et ceci de 6 façons.

Ces groupes de cinq tétraèdres représentent une résolvante de degré 6. [Klein 1871b,
p. 357]

À la toute fin de l’article, Klein explique encore très rapidement (et très vaguement)
comment, dans sa représentation géométrique, on peut trouver une transformation ra-
tionnelle d’une équation générale de degré 6 qui fait s’annuler un invariant prescrit. En
particulier, il fait référence au mémoire de Clebsch sur l’interprétation géométrique de la
théorie de l’équation du cinquième degré, [Clebsch 1871b], où ce type de transformations
était au cœur des préoccupations. S’inspirant de ces recherches de Clebsch, l’idée de Klein
est d’abord de voir qu’on peut faire correspondre, aux six complexes associés aux racines
de l’équation du sixième degré, six points d’un plan quelconque de l’espace. Il s’agit ensuite
de constater que les propriétés d’invariants de l’équation se retrouvent dans les proprié-
tés d’invariants de ces six points. Enfin, Klein indique qu’il est possible de choisir le plan
qui définit ces points de sorte à contrôler leurs propriétés d’invariants, et donc celles de
l’équation du sixième degré.

3.2.8 Commentaires de Lie, 1872

L’article de Lie auquel fait référence l’Encyklopädie est une version augmentée et tra-
duite en allemand de sa thèse de doctorat 87. Il s’agit d’un article assez long (plus de

86. « Die 15 Directricenpaaren sind das Bild einer Resolvente 15ten Grades. Die 15 Directricenpaaren
bilden nun die Kanten von 15 Tetraedern (dem entsprechend, dass man 6 Elemente auf 15 Weisen in 3
Gruppen von 2 theilen kann). Diese 15 Tetraedern stellen eine zweite Resolvente 15ten Grades dar. Aus
den 15 Tetraedern nun kann man auf 6 Weisen solche 5 aussuchen, die zusammen alle 30 Directricen zu
Kanten haben. Diese Gruppen von 5 Tetraedern repräsentieren eine Resolvente des 6ten Grades. »
87. [Engel 1900, p. 36]. Voir [Hawkins 2000] pour une histoire de la constitution de la théorie des groupes

de Lie.



3.2. LES TEXTES DU CORPUS 195

cent pages) mais l’Encyklopädie pointe un passage précis où apparaissent des commen-
taires concernant des équations de la géométrie. Ces commentaires sont situés à la fin de
l’article, alors que Lie s’apprête à étudier certaines surfaces quartiques.

Parmi les surfaces du quatrième ordre, j’en considérerai ici deux, étudiées en premier
par M. Kummer : celle avec seize points nœuds, f4, et celle avec une conique double, F4.
Chacune de ces surfaces donnent lieu à une équation du seizième degré ; l’une par ses
points nœuds, l’autre par les droites qu’elle contient. Cette dernière a conduit M.
Clebsch à une équation du cinquième degré déjà considérée par M. Kummer (Journal
de Borchardt vol. 67 88). D’un autre côté, M. Jordan a trouvé que la première se ramène
à une équation du sixième degré [Jordan 1869d]. Les bases géométriques de cela se
trouvent dans les recherches de M. Klein relatives à cette surface [Klein 1870] 89. [Lie
1872, p. 250-251]

Cette citation ne contient aucun fait mathématique nouveau, mais il est intéressant de voir
que Lie réfère à tout ce qui concerne les surfaces quartiques dans le corpus. Lie est ainsi
familier non seulement avec les recherches géométriques concernant les surfaces quartiques,
mais aussi avec les équations de la géométrie correspondantes. La fin de l’article ne men-
tionne plus d’équations de la géométrie, et les résultats rappelés par Lie ne sont pas non
plus utilisés.

Si Lie ne propose donc ici aucun développement sur les équations de la géométrie, ses
commentaires mettent en valeur le fait que ces équations font partie de ses connaissances
mathématiques.

3.2.9 Équation du huitième degré et vingt-huit tangentes doubles : Noe-
ther, 1879

L’article de Noether présent dans le corpus, [Noether 1879], porte sur l’équation générale
du huitième degré et ses liens avec la théorie des courbes du quatrième ordre 90. Noether
annonce dès le début comment les deux sont liées :

Dès que l’on adjoint à une courbe du quatrième ordre une racine de d’équation du 36e

degré qui détermine les 36 faisceaux de courbes de contact du troisième ordre, l’équa-

88. Ce volume ne contient aucun article écrit par Kummer, et ceux écrits par Clebsch n’ont rien à
voir avec des surfaces quartiques à conique double. Lie fait probablement référence à [Kummer 1863] ou
à [Clebsch 1868].
89. « Unter den Flächen vierter Ordnung, giebt es zwei, zuerst von Herrn Kummer untersuchte, welche

ich hier betrachten will: die mit 16 Knotenpunkten, f4, und die mit einem Doppelkegelschnitt, F4. Beide
Flächen geben Anlass zu einer Gleichung sechzehnten Grades; die eine durch ihre Knotenpunkte, die andere
durch die auf ihr gelegenen geraden Linien. Die letzere führte Herr Clebsch auf eine schon von Herrn Kum-
mer aufgestellte Gleichung fünften Grades zurück. (Borchardt’s Journal Bd. 67.) Andererseits fand Herr
Jordan, dass die erstere Gleichung auf eine solche vom sechsten Grade zurückkommt (Borchardt’s Journal
Bd. 70). Es fand dies seine geometrische Begründung in den auf diese Fläche bezüglichen Untersuchungen
des Herrn Klein (Math. Ann. Bd. 2). »
90. Dans sa notice nécrologique de Noether, Brill n’évoque cet article que pour dire qu’il ne concerne

« aucune question fondamentalement importante », [Brill 1923, p. 223]. Dans cette notice, Brill met surtout
en avant les travaux de géométrie algébrique de Noether ainsi que ses écrits d’ordre biographique.
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tion pour les 28 tangentes doubles se réduit à une équation générale du huitième degré.
Dans la suite sont exposées de nouvelles propriétés géométriques de la courbe qui sont
liées aux recherches sur les équations du 8e degré 91. [Noether 1879, p. 89]

Noether précise également que de telles recherches sur l’équation de degré 8 ont déjà
été faites mais avec d’autres points de vue, en particulier par l’équation modulaire de
degré 8 pour laquelle il cite des mémoires de Enrico Betti, Leopold Kronecker et Charles
Hermite, [Betti 1853 ; Kronecker 1858a ; Hermite 1859]. Pour Noether, la résolvante de
degré 7 de cette dernière possède la propriété « essentielle » que ses racines s’associent
en sept triplets (il appelle cette propriété Tripeleigenschaft), mais il déplore que cette
propriété n’a pas été clairement utilisée, en particulier dans le Traité de Jordan. Noether
veut justement trouver dans la théorie des courbes quartiques des objets à ordonner sept
par sept pour faire le parallèle avec la Tripeleigenschaft.

Dans une grande première moitié de l’article, Noether manipule des fonctions créées
à partir de huit grandeurs et prenant des nombres de valeurs particuliers, correspondant
ainsi à des résolvantes de l’équation générale du huitième degré. Par ce moyen, il en vient
à montrer que pour l’équation générale de degré 8, il existe une résolvante de degré 30

réduisant le groupe de l’équation à un groupe d’ordre 92 8 · 168.

Dans un second temps, Noether passe aux courbes quartiques. En accord avec ce qu’il a
fait précédemment, il met ainsi à jour 30 systèmes formés de sept coniques associées à une
courbe quartique : ces trente systèmes correspondent alors à la résolvante de degré 30 de
l’équation du huitième degré. C’est dans la dernière section de l’article qu’apparaissent des
équations de la géométrie, en tant que résolvantes de l’équation aux vingt-huit tangentes
doubles :

Pour déterminer les tangentes doubles de la courbe du quatrième ordre à l’aide des
systèmes mis ici en évidence, on devra d’abord rechercher une quelconque des 36

familles de première espèce de courbes de contact du troisième ordre [...], puis un
des 30 Tripelsysteme de 7 coniques qui sont associés à la famille trouvée ; ensuite
les coniques isolées de ce système très spécial elles-mêmes. Enfin, on détermine les
tangentes doubles elles-mêmes par 3 équations quadratiques 93. [Noether 1879, p. 109]

91. « Sobald man bei einer Curve vierter Ordnung eine Wurzel der Gleichung 36ten Grades adjungirt,
welche die 36 Schaaren von Berühungscurven dritter Ordnung bestimmt, so reducirt sich die Gleichung für
die 28 Doppeltangenten auf eine allgemeine Gleichung vom achten Grade. Es sollen nun im Folgenden neue
geometrische Eigenschaften der Curve dargelegt werden, die sich an die Untersuchung der Gleichungen vom
8ten Grade knüpfen. »
92. Les recherches de Noether se lient ainsi à celles de Klein sur l’équation du septième degré et la

quartique portant son nom, dont le groupe d’automorphismes est le groupe simple d’ordre 168. Voir [Gray
2000, ch. 5] et [de Saint-Gervais 2010, ch. 5] pour une présentation mathématique de ces travaux.
93. « Um nun mit Hülfe der hier nachgewiesenen Systeme die Doppeltangenten der Curve vierter Ord-

nung zu bestimment, wird man zunächst irgend eine der 36 Schaaren von Berührungscurven dritter Ord-
nung erster Art, (0), aufzusuchen haben, sodann eines der 30 Tripelsysteme von 7 Kegelschnitten, welche
der gefundenen Schaar zugeordnet sind; weiter die einzelnen Kegelschnitte dieses sehr speciellen Systems Σ
selbst. Endlich bestimmt man die Doppeltangenten selbst durch 3 quadratische Gleichungen. »
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Les équations de la géométrie se présentent donc ici dans un processus de résolution de
l’équation aux vingt-huit tangentes doubles, elle-même reliée à l’équation générale du hui-
tième degré.

Les références aux mémoires de Betti, Hermite et Kronecker cités précédemment ins-
crivent le texte de Noether dans un contexte pointant vers les lectures des travaux de Galois
autour des équations modulaires, comme c’était également le cas du texte de Clebsch de
1871.

3.2.10 Le Substitutionentheorie de Netto, 1882

Le livre Substitutionentheorie und ihre Anwendungen auf die Algebra a été publié en
1882, [Netto 1882]. Il s’agit d’un ouvrage ayant connu un certain succès après sa sortie,
et présentant une théorie de Galois inspirée des points de vue de Kronecker ; le Traité
des substitutions de Jordan, s’il est cité dans son introduction, « ne joue qu’un rôle utili-
taire », [Ehrhardt 2012, p. 213-221].

C’est pour une partie de son douzième chapitre, intitulé « Équations pour lesquelles
existent des relations rationnelles entre trois racines 94 », que le livre de Netto est pris en
compte dans le corpus. Ce chapitre se trouve dans la section des applications de la théorie
des substitutions aux équations algébriques : il est entouré par des chapitres consacrés
aux équations de degré 2, 3 et 4, aux équations cyclotomiques et abéliennes, ainsi qu’à la
résolubilité algébrique des équations en général. Plusieurs exemples forment le corps de ce
douzième chapitre : les équations de Galois, les équations binomiales 95 et les Tripelglei-
chungen, qui sont la raison pour laquelle le livre de Netto est cité par l’Encyklopädie.

Netto renvoie au mémoire de Noether de notre corpus, [Noether 1879], lorsqu’il définit
les Tripelgleichungen :

Nous disons d’une équation qu’elle possède un Tripelcharakter, ou bien nous l’appe-
lons une Tripelgleichung (cf. [Noether 1879]), quand ses racines peuvent s’arranger en
triplets xα, xβ , xγ de sorte que deux éléments [quelconques] d’un triplet déterminent
de façon univoque le troisième élément par une relation rationnelle 96. [Netto 1882,
p. 220]

Netto étudie le groupe de telles équations ; notamment dans le cas où elles sont irré-
ductibles et de degré 9, il montre qu’elles sont résolubles algébriquement. À la toute fin du
chapitre, Netto fait le lien avec les équations étudiées par Hesse dans son article concer-
nant l’équation aux neuf points d’inflexion, [Hesse 1847]. Il indique ensuite, en référant
à [Hesse 1844a ; Hesse 1847 ; Salmon 1850], que les points d’inflexion d’une courbe cubique

94. « Gleichungen, bei denen rationale Beziehungen zwischen drei Wurzeln herrschen », [Netto 1882,
p. 216].
95. Les équations binomiales sont les équations de la forme xn −A = 0.
96. «Wir sagen von einer Gleichung, sie besitze Tripelcharakter, oder wir nennen sie kurz Tripelgleichung

(Noether: Math. Ann XV, p. 89) wenn ihre Wurzeln zu Tripeln xα, xβ , xγ derart angeordnet werden können,
dass zwei Elemente eines Tripels durch eine rationale Beziehung eindeutig das dritte Element bestimmen ».
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sont alignés trois à trois selon douze droites, et en conclut sans démonstration que « les
abscisses ou les ordonnées des neuf points d’inflexion sont donc les racines d’une équation
du neuvième degré avec Tripelcharakter, et l’équation est résoluble algébriquement 97 ».

L’équation aux neuf points d’inflexion occupe ici une place extrêmement réduite : à
peine quelques lignes sur la vingtaine de pages du chapitre. C’est avant tout la classe
d’équations que Hesse avait étudiée qui est mise en avant, et pas son représentant donnée
par la situation géométrique des neuf points d’inflexion.

3.2.11 Retour par Klein sur les vingt-sept droites et les fonctions hy-
perelliptiques, 1888

Le dernier article de Klein du corpus, [Klein 1888], est un extrait d’une lettre écrite
à Jordan. Klein y propose de revenir sur une méthode de résolution de l’équation aux
vingt-sept droites par les fonctions hyperelliptiques :

Lors de mon dernier séjour à Paris, je vous ai raconté que je venais de résoudre affirma-
tivement une questions que vous m’aviez autrefois posée à plusieurs reprises. L’équa-
tion des 27 droites d’une surface cubique et la trisection des fonctions hyperelliptiques
du premier ordre ayant même groupe, il s’agissait de réduire, s’il était possible, le
premier problème au second. J’ai donné là-dessus déjà quelques développements dans
une séance de la Société mathématique de France (13 avril 1887). Permettez-moi d’y
revenir aujourd’hui, et d’exposer mes raisonnements de manière plus complète. Sans
doute, les explications que je vais donner paraîtront encore un peu vagues, comme
je n’écris pas les formules détaillées, mais j’espère pourtant qu’elles pourront avoir
quelque intérêt. [Klein 1888, p. 169]

Klein explique qu’il souhaite transposer sa méthode de résolution de l’équation du cin-
quième degré par les fonctions elliptiques (et l’icosaèdre 98) au cas de l’équation aux vingt-
sept droites. Comme lui, je resterai ici très allusif dans la description de cette démarche 99.

Klein commence par rappeler les deux points principaux de sa méthode de résolution de
l’équation générale du cinquième degré. Il s’agit d’abord de considérer la « forme normale »
(ou « icosaédrique ») de l’équation modulaire associée à la transformation du cinquième

97. « Die Abscissen oder die Ordinaten der neun Inflexionspunkte sind demnach die Wurzeln einer
Gleichung neunten Grades mit Tripelcharakter, und die Gleichung ist algebraisch lösbar », [Netto 1882,
p. 235]. L’expression « équation avec Tripelcharakter » est synonyme de Tripelgleichung, cf. [Netto 1882,
p. 220].
98. Ces travaux ont culminé avec la publication du livre Vorlesungen über das Ikosaeder und die Au-

flösung der Gleichungen vom fünften Grade, [Klein 1884]. Pour des explications à ce sujet, voir [Gray
2000] ; un point de vue plus actuel est donné dans [Serre 1979-80]. Par ailleurs, soulignons que dans [Klein
1884], Klein avait en fait évacué au maximum les fonctions elliptiques, écartant par là-même les travaux
de Hermite sur le sujet. Voir [Goldstein 2011a].
99. Les quelques pages de l’article de Klein esquissent une méthode qui a ensuite été complètement mise

en œuvre dans trois articles — très techniques — de Heinrich Burkhardt, [Burkhardt 1890 ; Burkhardt
1891 ; Burkhardt 1893]. Voir [Hunt 1994] pour des explications mathématiques plus détaillées.
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ordre des fonctions elliptiques. Pour cela, Klein pose

ρz1 = e
iπτ
5 ϑ1(τ, 5τ) et ρz2 = e

iπτ
5 ϑ1(2τ, 5τ),

où ϑ1 est une fonction thêta elliptique, τ le quotient de ses périodes et ρ un coefficient
indéterminé. Lorsque les substitutions du groupe de l’équation modulaire d’ordre 5 agissent
sur τ , le quotient z1 : z2 est transformé par substitutions linéaires. Or, le quotient z1 : z2

dépend de « l’équation icosaédrique »

H(z1, z2)3

1728f(z1, z2)5
= u,

où f,H sont deux covariants de z1, z2 (sous les substitutions du groupe de l’équation
modulaire) et u une quantité s’exprimant en fonction de diverses quantités associées à la
fonction θ1. Cette équation est la « forme normale » de l’équation de transformation des
fonctions elliptiques.

La seconde partie de la méthode consiste à lier l’équation générale de degré 5 à cette
équation icosaédrique. Pour cela, le point clé de Klein est que le groupe de cette équation,
après adjonction d’un élément de degré 2, est isomorphe au groupe de l’icosaèdre 100. Il
interprète z1 : z2 comme des coordonnées du plan 101, puis f(z1, z2) et H(z1, z2) comme
des covariants associés à des points remarquables de l’icosaèdre. Des manipulations assez
complexes permettent alors de lier l’équation quintique à la forme icosaédrique.

Après avoir rappelé ces étapes, Klein écrit :

Ceci étant bien conçu, pour venir au but que je me suis proposé ici, j’aurai à faire
des considérations tout à fait analogues sur les fonctions hyperelliptiques (du premier
ordre) et les équations du vingt-septième degré. [Klein 1888, p. 171]

La première étape de l’analogie consiste à trouver une forme normale de l’équation de
transformation du troisième ordre des fonctions hyperelliptiques. Klein indique que cela a
été fait dans les travaux d’un de ses élèves, Alexander Witting 102, en partant des fonctions

ρzαβ = e
iπ
3 ϑ(ατ11 + βτ12, ατ21 + βτ22; 3τ11, 3τ12, 3τ22),

avec α, β = 0, 1 et ϑ est une fonction thêta hyperelliptique. Ici, comme dans le cas des
fonctions elliptiques, le quadruplet des zαβ est transformé par substitutions linéaires lorsque
le groupe de l’équation de transformation des fonctions hyperelliptiques agit sur les τij . Il
existe alors également une forme normale pour cette équation.

100. C’est-à-dire, le groupe des transformations de l’espace laissant un icosaèdre régulier invariant. Ces
groupes sont isomorphes à PSL2(F5), ou encore au groupe alterné A5.
101. Par projection depuis son sommet, l’icosaèdre peut être mis en correspondance biunivoque avec le
plan complexe complété par ∞, c’est-à-dire P1(C).
102. [Witting 1887b]. Klein mentionne aussi des travaux de Maschke, encore en cours de réalisation.
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Il s’agit alors de relier l’équation aux vingt-sept droites à cette forme normale. Comme
précédemment, Klein donne les grandes lignes d’une méthode « géométrique », se basant
sur l’interprétation des zαβ comme des coordonnées projectives de l’espace projectif.

Je n’entrerai pas davantage dans les détails, mais on pourra remarquer que l’interpré-
tation géométrique de Klein n’a aucun rapport avec les droites des surfaces cubiques. Il
s’occupe en effet plus généralement des équations ayant le même groupe :

Considérons maintenant l’équation du vingt-septième degré des droites d’une surface
cubique. Comme vous l’avez prouvé dans votre Traité, le groupe de cette équation,
après l’adjonction d’une racine carrée [...], se trouve isomorphe sans mériédrie 103 au
groupe des 25 920 substitutions fractionnaires des quotients des z. Or je ne considérerai
pas quelques autres qualités spéciales de cette équation, mais je m’occuperai, dans ce
qui suit, de toutes les équations du vingt-septième degré ayant le même groupe. [Klein
1888, p. 174]

Il y a donc un déplacement d’attention de l’équation aux vingt-sept droites vers son groupe,
lequel est en particulier débarrassé de la géométrie provenant de la configuration des vingt-
sept droites 104 — l’aspect géométrique mis ici en avant par Klein consiste à interpréter
les zαβ comme des coordonnées de l’espace.

3.2.12 Un article de Maschke, 1889

L’article de Maschke présent dans le corpus, [Maschke 1889], concerne indirectement
le lien entre les fonctions hyperelliptiques et les vingt-sept droites des surfaces cubiques.
Plus précisément, Maschke rappelle comment, par analogie avec la théorie des fonctions
elliptiques, Klein puis son élève Witting ont développé une théorie de fonctions hyperel-
liptiques donnant lieu à un groupe quaternaire formé de 51 840 substitutions linéaires 105.
Ce groupe, isomorphe au groupe de la trisection des périodes des fonctions hyperellip-
tiques (réduit par adjonction d’une racine carrée) est également isomorphe au groupe de
l’équation aux vingt-sept droites d’une surface cubique.

Pour Maschke, la présentation par Jordan de cet isomorphisme est toutefois superficiel
et c’est Klein qui a commencé à l’expliquer plus en profondeur :

[Le groupe de la trisection des fonctions hyperelliptiques du premier ordre est], comme
l’a également remarqué Monsieur C. Jordan, isomorphe au groupe de l’équation du 27e

degré dont dépendent les 27 droites d’une surface du troisième ordre, bien qu’il ne
semble exister entre ces deux groupes aucun rapport profond. (Entre temps, Monsieur
F. Klein a entrepris de réduire ces deux problèmes l’un à l’autre 106.) [Maschke 1889,
p. 319]

103. En langage plus actuel, cela signifie isomorphe (tout court).
104. Je reviendrai sur ce déplacement d’attention dans le dernier chapitre de cette thèse.
105. L’épithète « quaternaire » signifie que les substitutions du groupe en question agissent sur quatre
variables.
106. « [Die Gruppe der Dreitheilung der hyperelliptischen Functionen erster Ordnung ist], wie ebenfalls
Herr C. Jordan bemerkt hat, isomorph mit der Gruppe der Gleichung 27ten Grades, von der die 27 Geraden
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Les travaux de Maschke sont donc ceux auxquels faisait référence Klein dans son article de
1888. Il s’agit donc de recherches destinés (au moins en partie) à être utilisés pour réaliser
la démarche générale décrite par Klein.

L’article de Maschke est tourné essentiellement vers la théorie des formes, puisqu’il
s’agit de trouver un système complet de représentants de formes pour le groupe G de 51 840
substitutions associé aux fonctions hyperelliptiques. Cela signifie que Maschke exhibe un
nombre fini de formes algébriques dont les combinaisons entre elles permettent de retrouver
toute forme algébrique invariante par l’action de G.

La seule équation de la géométrie qui y apparaît dans cet article 107 se situe dans le
commentaire de Maschke sur le lien entre vingt-sept droites et fonctions hyperelliptiques
qui vient d’être signalé. Elle ne fait l’objet d’aucun travail mathématique mais permet de
situer explicitement l’article de Maschke dans une série de travaux concernant le lien entre
les vingt-sept droites et les fonctions hyperelliptiques.

Le problème de trouver certaines formes algébriques invariantes permet ici de relier
l’article de Maschke aux travaux de Hermite et de Clebsch (en particulier) sur le même
sujet 108.

3.2.13 Le Lehrbuch de Weber, 1896

Le Lehrbuch der Algebra de Weber, [Weber 1896], fait partie du corpus car il est donné
en référence par l’Encyklopädie pour l’équation aux neuf points d’inflexion 109. C’est plus
exactement le deuxième tome du Lehrbuch qui fait partie du corpus. Ce tome est divisé en
quatre livres : groupes, groupes linéaires, applications de la théorie des groupes, nombres
algébriques. Celui des applications comporte un chapitre intitulé « Les points d’inflexion
d’une courbe du troisième ordre », à côté duquel se trouvent d’autres chapitres, consacrés à
la théorie des équations métacycliques 110, aux tangentes doubles des courbes quartiques, à
la théorie de l’équation générale de degré 5, aux groupes de substitutions linéaires ternaires
et enfin à la théorie des équations du septième degré et au problème des formes du groupe
simple d’ordre 168.

Dans le chapitre sur les neuf points d’inflexion, Weber commence par faire des rappels
de géométrie : définition des points d’inflexion d’une courbe algébrique de degré quelconque,

einer Fläche dritter Ordnung abhängen, obwohl zwischen diesen beiden Gruppen durchaus kein innerer
Zusammenhang zu existiren scheint. (Inzwischen hat Herr F. Klein es unternommen, beide Probleme auf
einander zu reduciren, [Klein 1888]. »
107. Noter que quelques formes et invariants sont interprétées géométriquement a posteriori : voir [Ma-
schke 1889, p. 328-330].
108. Sur la théorie des invariants, voir [Fisher 1966 ; Parshall 1989].
109. Voir [Corry 2004, p. 33-43] pour une présentation générale et sa place dans le développement de
l’algèbre moderne, et [Ehrhardt 2012, p. 213-221] pour le rôle du Lehrbuch dans les réélaborations de la
théorie de Galois.
110. Une équation métacyclique est une équation dont la résolution complète se fait par résolutions d’équa-
tions cycliques. Les équations métacycliques coïncident donc avec les équations résolubles par radicaux.
Voir [Weber 1895, p. 597].
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courbe hessienne puis cas d’une courbe cubique avec en particulier les relations d’aligne-
ment existant entre les neuf points d’inflexion. Weber part ensuite de ces relations pour
dire que l’équation aux neuf points d’inflexion possède la propriété que ses racines sont
liées trois par trois par des relations rationnelles. Cela lui permet d’introduire la notion de
Tripelgleichung, qu’il définit de la même façon que Netto. À ce moment, il fait référence à
deux articles de notre corpus : celui de Hesse, [Hesse 1847], en tant que première étude des
Tripelgleichungen et celui de Noether, [Noether 1879], car c’est là que sont étudiées des
Tripelgleichungen qui ne sont pas associées aux neuf points d’inflexion. Weber montre en-
suite que la notation et les groupements qu’il a mis en évidence pour les points d’inflexion
s’appliquent aux racines de Tripelgleichungen de degré 9. À partir de là, il étudie le groupe
de ces équations et ni la géométrie ni l’équation aux neuf points ne réapparaissent.

La situation diffère donc de [Netto 1882] : la géométrie occupe une place plus importante
en ce sens qu’elle est le prétexte à Weber pour introduire les Tripelgleichungen ; il utilise
ensuite des résultats sur les neuf points d’inflexion comme base d’étude du groupe des
Tripelgleichungen de degré 9.

3.3 Première vue d’ensemble sur les équations de la géomé-
trie

Après avoir décrit les textes du corpus un à un, je propose maintenant de commencer à
présenter quelques informations globales dans le but d’obtenir un premier regard transver-
sal sur le corpus. Ces informations concernent trois points indépendants, mais dont la mise
en conjonction apporte un éclairage intéressant sur la situation : la contribution aux équa-
tions de la géométrie des différents auteurs, les différents statuts de ces équations vis-à-vis
des textes dans lesquels elles apparaissent et des précisions sur les situations géométriques
qui leurs sont associées.

Pour cela, j’ai effectué un relevé systématique de toutes les occurrences d’équations
de la géométrie dans les textes du corpus. Un tableau listant toutes ces occurrences est
donné en annexe D. Le dépouillement du corpus donne ainsi 111 occurrences d’équations
de la géométrie, ou 96 si l’on ne tient pas compte des quatre publications de Jordan
qui se retrouvent presque telles quelles dans le Traité des substitutions et des équations
algébriques.

3.3.1 Un petit noyau

Commençons par regarder la distribution numérique des équations de la géométrie
auteur par auteur. Les chiffres sont présentés dans le tableau 3.3. Y sont figurés les nombres
absolus d’occurrences d’équations de la géométrie pour chaque acteur du corpus, ainsi que
le pourcentage que cela représente par rapport au nombre total d’occurrences. J’ai aussi
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fait figuré les moyennes obtenues en rapportant les nombres absolus au nombre de textes
des auteurs dans le corpus : par exemple, il y a deux textes de Clebsch dans le corpus
pour 30 occurrences d’équations, ce qui représente une moyenne de 15 équations par texte.
Ce nombre permet ainsi d’évaluer la densité d’apparition d’équations de la géométrie pour
chacun des auteurs.

Tous textes Sans [Jordan 1869a,b,c,d]

Nbres abs. % Moy. par txt. Nbres abs. % Moy. par txt.

Hesse 2 1,8% 2 2 2,1 % 2

Kummer 3 2,7% 3 3 3,1 % 1,5

Clebsch 30 27,0% 15 30 31,3 % 15

Jordan 42 37,8% 7 27 28,1 % 13,5

Klein 22 19,8% 7,3 22 22,9 % 7,3

Lie 2 1,8% 2 2 2,1 % 2

Noether 7 6,3% 7 7 7,3 % 7

Netto 1 0,9% 1 1 1,0 % 1

Maschke 1 0,9% 1 1 1,0 % 1

Weber 1 0,9% 1 1 1,0 % 1

Total 111 99,9% 5,8 96 99,9 % 6,4

Table 3.3 – Nombre d’occurrences d’équations de la géométrie pour les différents
auteurs du corpus.

Un premier constat est que Clebsch, Jordan et Klein arrivent largement en tête, que ce
soit au niveau des nombres absolus ou des nombres relatifs. On voit d’ailleurs que ne pas
prendre en compte les publications extraites du Traité a pour effet d’équilibrer la répartition
entre ces trois mathématiciens, au vu de ces nombres. En regardant les moyennes par texte,
la situation change un petit peu si l’on choisit d’inclure ou d’exclure ces publications.
En effet, dans le premier cas, Clebsch se démarque nettement, et Jordan, Klein ainsi que
Noether suivent avec une contribution moitié ; dans le second cas, la contribution de Jordan
grimpe jusqu’au niveau de celle de Clebsch 111. En comparaison avec Clebsch, Jordan, Klein
et Noether, les autres auteurs ne participent que très modestement aux équations de la
géométrie, sous cet angle quantitatif.

Il y a donc un noyau d’auteurs formé de Clebsch, Jordan, Klein et Noether, dans les
textes desquels se trouvent la grande majorité des équations de la géométrie. Or, nous avons
déjà vu que ce groupe de personnes est également fortement lié à la fois personnellement
et mathématiquement. Cela indique donc une circulation intense d’idées sur les équations
de la géométrie, ce que renforce encore le constat d’intrication de leurs textes en regard

111. À partir de maintenant, je ne présenterai des données quantitatives que sur la base du corpus restreint,
c’est-à-dire sans les références [Jordan 1869a ; Jordan 1869b ; Jordan 1869c ; Jordan 1869d].
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des relations de citations fait plus haut.

Si ces quatre mathématiciens concentrent de cette façon l’activité mathématique des
équations de la géométrie, cela ne signifie pas non plus qu’il faille exclure les autres de
l’analyse. Par exemple, la description faite dans la section précédente a montré que les
textes de Kummer sont cités par Clebsch, Jordan et Klein pour divers résultats sur les
surfaces quartiques, utilisés comme base de travail ou pris en compte pour les comparer à
leurs propres théorèmes. Kummer apparaît ainsi en tant que référence commune pour les
premiers travaux sur les surfaces quartiques. Quantitativement, Hesse fait lui aussi partie
des contributeurs modestes. Son statut de professeur de Clebsch et la place de son article
dans le corpus indique toutefois qu’il est un auteur important pour les équations de la
géométrie.

En ce sens, la situation générationnelle est ici un peu différente de celle des mathéma-
ticiens engagés en théorie des nombres au début xixe siècle. Rappelons à ce sujet que l’his-
toriographie usuelle réduisait la théorie des nombres aux apports plutôt isolés de quelques
mathématiciens, environ un par génération. Mais C. Goldstein et N. Schappacher ont mon-
tré qu’une description plus juste demandait d’abord de prendre en compte plus d’un mathé-
maticien par génération. Ils ont également souligné que les différentes générations n’étaient
pas étanches, mais avaient au contraire largement interagi dans la recherche mathématique,
réagissant (de façon parfois contrastée mais toujours liée) aux mêmes questions 112. Pour
ce qui est des équations de la géométrie, ce que j’ai expliqué plus haut montre assez peu
d’interaction directe entre la génération de Hesse et de Kummer et la suivante : si les sujets
et résultats mathématiques de la première génération sont connus et repris par celle qui
lui succède, il n’y a pas de discussion ou de travail commun sur les questions relatives aux
équations de la géométrie.

3.3.2 Plusieurs statuts pour les équations de la géométrie

Pour décrire maintenant le statut de chaque occurrence d’équation de la géométrie par
rapport au texte qui la contient, j’ai dégagé cinq catégories permettant de classifier ces
occurrences.

La première catégorie est formée des équations de la géométrie qui sont l’objet d’étude
d’un texte qui leur est clairement consacré ou dont elles sont la motivation première. C’est
par exemple le cas de l’équation aux vingt-sept droites dans l’article « Sur l’équation aux
vingt-sept droites des surfaces du troisième degré », [Jordan 1869b], ou pour les équations
de la géométrie auxquels sont dévolus les différents paragraphes du chapitre des applications
géométriques du Traité de Jordan. J’ai aussi classé dans cette catégorie l’équation aux neuf
points d’inflexion qui apparaît dans l’article de Hesse, [Hesse 1847]. En effet, si le titre de cet
article laisse penser qu’il se rapporte principalement à des équations qui ne sont pas issues

112. Voir [Goldstein & Schappacher 2007].
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de la géométrie : « Résolubilité algébrique des équations du 9e degré dont les racines ont la
propriété qu’une fonction rationnelle et symétrique donnée θ(xλ, xµ) de deux racines xλ, xµ
donne une troisième racine 113 xχ de sorte que l’on ait simultanément xχ = θ(xλ, xµ),
xλ = θ(xµ, xχ), xµ = θ(xχ, xλ) », les recherches contenues dans cet article ont été inspirées
par des résultats sur les points d’inflexion, et plus de la moitié est consacré à l’équation
aux neuf points d’inflexion.

Une deuxième catégorie pour les équations de la géométrie englobe celles qui sont
étudiées pour elles-mêmes, mais dans un texte qui ne leur est pas principalement consacré.
Autrement dit, les résultats qui s’y rapportent sont développés dans leur texte mais ne sont
utilisés à aucun moment. L’équation aux seize droites des surfaces quartiques à coniques
doubles dans l’article de Clebsch de 1868, [Clebsch 1868], illustre cette catégorie. Cet
article porte effectivement sur la géométrie de ces surfaces (représentation sur un plan,
étude des courbes tracées, etc.), et si l’équation aux seize droites y est étudiée, les résultats
de résolubilité qui sont établis ne jouent aucun rôle dans les autres démonstrations de
l’article. D’autres exemples se trouvent dans le premier article de Klein, [Klein 1870], dans
lequel plusieurs équations de la géométrie surviennent, accompagnées de propriétés de
résolubilité, bien qu’elles ne soient jamais mobilisées après coup.

Pour la troisième catégorie, j’ai considéré les équations de la géométrie qui apparaissent
dans leur texte en tant que réduites ou résolvantes d’autres équations de la géométrie
(généralement issues des deux catégories précédentes). L’exemple suivant, déjà mentionné
au chapitre précédent, concerne les quarante-cinq plans contenant trois à trois les vingt-sept
droites des surfaces cubiques :

Prenons, par exemple, pour inconnue de la question le plan du triangle formé par
trois droites qui se coupent : ces triangles étant au nombre de quarante-cinq, on aura
une équation du quarante-cinquième degré, équivalente à [l’équation aux vingt-sept
droites]. [Jordan 1870b, p. 319]

Ici, l’équation aux quarante-cinq plans n’est pas étudiée en tant que telle : elle survient dans
le paragraphe du Traité consacré à l’équation aux vingt-sept droites en tant que réduite
particulière de cette dernière. On peut encore citer l’exemple de l’équation aux cinq cônes
présentée par Clebsch comme résolvante de l’équation aux seize droites dans l’article de
1868, [Clebsch 1868], ou toutes les résolvantes qui étaient données dans l’article de Klein
de 1871, [Klein 1871b]. Un point particulier est que pour tous ces exemples, la propriété
d’être des réduites d’une autre équation n’est jamais expliquée (explicitement en tout cas)
autrement que par le fait de l’existence même des groupements d’objets géométriques.
Les processus mathématiques permettant d’expliquer pourquoi ce que j’avais appelé les
« réduites géométriques » du Traité étaient bien équivalentes à l’équation aux vingt-sept
droites ne sont donc pas encore élucidés ; mais nous voyons apparaître dans le corpus des
équations de la géométrie des cas tout à fait similaires à ces réduites géométriques.

113. Coquille dans le titre de l’article original, où est écrit xk à cet endroit.
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La quatrième catégorie que je souhaite mettre en évidence est composée d’équations
dont les propriétés sont utilisées à d’autres fins que l’étude propre des équations de la
géométrie. On peut trouver dans cette catégorie des équations servant à déterminer le
nombre d’objets vérifiant certaines conditions — dans les catégories précédentes, le nombre
d’objets est toujours connu a priori. Par exemple, dans l’article de Kummer sur les surfaces
quartiques contenant des coniques, [Kummer 1863], nous avons vu que la propriété de
l’équation donnant les cônes recherchée par Kummer est d’être de degré 5, ce qui lui permet
d’en déduire que les cônes correspondants sont au nombre de cinq 114. Un autre exemple
illustrant cette quatrième catégorie est issu de l’article de Clebsch sur l’interprétation
géométrique de la théorie de l’équation du cinquième degré 115 :

Pour mettre l’équation du cinquième degré sous [la forme d’une équation pure], il
faut résoudre une équation quadratique qui sépare sur leur tangente les deux points
d’inflexion de la courbe C ; ces points sont à prendre pour base pour donner à l’équation
la forme z51 − z52 = 0. [Clebsch 1871b, p. 341]

Là encore, les équations de la géométrie sont utilisées à un autre dessein que leur propre
étude : dans cet exemple, le fait que l’équation considérée est quadratique indique à Clebsch
que la transformation correspondant aux deux points d’inflexion aura des coefficients fai-
sant intervenir des racines carrées ; il s’agit ainsi pour Clebsch de contrôler les irrationalités
impliquées dans les transformations de l’équation du cinquième degré.

Enfin, la cinquième et dernière catégorie est faite d’équations de la géométrie qui sont
seulement évoquées, que ce soit dans ces commentaires ou de vagues suggestions sans être
impliquées dans un travail mathématique. C’est par exemple le cas dans le texte de Lie, qui
évoque l’équation aux seize droites et celle aux seize points singuliers dans son paragraphe
de commentaires. C’est aussi le cas dans le second paragraphe du chapitre des applications
géométriques du Traité des substitutions et des équations algébriques, où Jordan donne à
titre d’exemples des équations pouvant être étudiées de façon analogue à ce qu’il a fait en
amont.

La répartition des différents statuts auteur par auteur est donnée dans le tableau 3.4,
où la différence entre nombre total de statuts et celui d’équations de la géométrie s’explique
par le fait que certaines équations possèdent plusieurs statuts : par exemple, l’objet même
de la note [Jordan 1870a] est de trouver une certaine réduite de l’équation aux vingt-sept
droites. Cette réduite possède donc à la fois les statuts 1 et 3.

On peut déjà voir que les quatre premiers statuts se distribuent à peu près équita-
blement sur l’ensemble des occurrences d’équations de la géométrie. Le dernier statut ne

114. Cet exemple montre que des équations de la géométrie peuvent avoir des statuts différents selon le
texte auquel elles appartiennent, et donc selon le travail dans lequel l’auteur du texte la mobilise.
115. « Nur ist zuvor, um die Gleichung 5ten Grades auf diese Form zu bringen, eine quadratische Gleichung
zu lösen, welche die beiden Wendepunkte von C auf dieser Tangente trennt ; diese muss man zu Grunde
legen, um der Gleichung die Form z5

1 − z5
2 = 0 zu geben. »
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Statut 1 Statut 2 Statut 3 Statut 4 Statut 5 Total

Hesse 2 2

Kummer 3 1 4

Clebsch 7 7 18 1 33

Jordan 14 2 9 3 28

Klein 4 9 6 2 1 27

Lie 2 2

Noether 3 3 2 2 10

Netto 1 1

Maschke 1 1

Weber 1 1

Total 25 24 24 23 8 104

Table 3.4 – Répartition des statuts des équations de la géométrie.

représente quant à lui qu’une petite portion de l’ensemble : cela signifie que les équations
de la géométrie sont majoritairement impliquées dans des démonstrations mathématiques,
que ce soit pour leur propre étude ou pour d’autres buts. En outre, comme les descrip-
tions précédentes l’ont montré, ces démonstrations relèvent de façons de faire partagées,
précisément identifiables, et que l’on retrouve de façon récurrente dans le corpus.

Il est intéressant de constater une différence de répartition entre deux des contribu-
teurs principaux du corpus que sont Jordan et Clebsch. Chez Jordan, il y a une majorité
d’équations ayant le statut 1, ce qui reflète que ses publications qui apparaissent dans le
corpus sont toutes dédiées à l’étude d’équations de la géométrie. En revanche, chez Clebsch,
ce statut est totalement absent, illustrant les apparitions sporadiques des équations de la
géométrie dans ses travaux décrite par les auteurs de sa notice nécrologique :

La théorie générale des équations algébriques, comme elle a été fondée par Lagrange,
développée par Gauss et Abel puis érigée par Galois dans son actuelle généralité, a
grandement intéressé Clebsch. Il n’a toutefois engagé aucune véritable recherche propre
dans cette direction, mais il a été utile à ces questions en ne laissant passer aucune
occasion, lorsqu’un problème algébrique ou géométrique conduisait à des équations
de caractère particulier, d’attirer l’attention sur ces équations en elles-mêmes dignes
d’intérêt 116. [Brill, Gordan et al. 1873, p. 47]

En outre, la prédominance du statut 4 chez Clebsch s’explique par le fait que l’essentiel des

116. « Die allgemeine Theorie der algebraischen Gleichungen, wie sie durch Lagrange begründet, durch
Gauss und Abel weiter entwickelt, durch Galois zu ihrer jetztigen Allgemeinheit erhoben worden ist, hat
Clebsch in hohem Masse interessirt. Er hat freilich in dieser Richtung nicht eigentlich eigene Untersuchun-
gen angestellt, aber er hat indirect diesen Fragen genützt, indem er keine Gelegenheit vorübergehen liess,
wenn ein geometrisches oder algebraisches Problem zu Gleichungen besonderen Charakters hinleitete, auf
eben diese Gleichungen als an und für sich beachtenswerth hinzuweisen. »
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équations ayant ce statut proviennent de son mémoire sur l’interprétation géométrique de
la théorie de l’équation du cinquième degré : presque toutes servent à cette interprétation,
et pas à des études d’équations de la géométrie.

Chez les autres contributeurs principaux que sont Klein et Noether, la répartition se fait
sans trop de différence entre les quatre premiers statuts, à l’image de la répartition globale.
Enfin, les statuts qui sont comptés pour les auteurs restants reflètent ce qui ressortait de
la description de leurs textes. Ainsi, l’équation aux neuf points était considérée en elle-
même dans les textes de Hesse, Netto et Weber ; les équations de la géométrie de Kummer
apparaissaient ça et là dans des articles dévolus à l’étude des surfaces quartiques ; elles ne
faisaient que l’objet de commentaires dans les textes de Lie et de Maschke.

3.3.3 Équations célèbres, équations anonymes

Regardons maintenant les situations géométriques auxquelles sont associées les diffé-
rentes occurrences d’équations de la géométrie.

Environ deux tiers de ces occurrences concernent des équations de la géométrie associées
à des situations géométriques qu’on ne trouve qu’une ou deux fois dans tout le corpus. À
titre d’exemple, on peut mentionner l’équation aux quarante-cinq triangles formés à partir
des vingt-sept droites, rencontrée en tout à deux endroits, ou encore l’équation associée
aux systèmes de trente-deux droites mis en évidence dans l’article de Klein de 1870, [Klein
1870]. Toutes ces équations surviennent donc de façon tout à fait ponctuelles, et sont
rarement travaillées par plus d’un auteur du corpus.

Le tiers restant des occurrences d’équations de la géométrie est distribué entre les cinq
situations que sont les vingt-sept droites, les neuf points d’inflexion, les seize droites des
quartiques à conique double, les vingt-huit tangentes doubles et les seize points singu-
liers des surfaces de Kummer. Leur fréquence d’apparition ne sont pas toutes identiques :
les vingt-sept droites et les neuf points d’inflexion reviennent un peu plus souvent que
les autres. La plupart des équations correspondant à ces cinq situations entrent dans la
catégorie du statut 1 au sens précédent, mais ce n’est pas systématique. Par exemple,
l’équation aux seize droites est dans toutes les catégories sauf la 3, selon le texte auquel
elle appartient.

Les équations de ces cinq situations géométriques sont celles qui étaient explicitement
listées dans l’Encyklopädie et qui formaient les sujets de cinq des six paragraphes du cha-
pitre des applications géométriques du Traité, ce qui explique peut-être en partie les forts
nombres d’occurrences associés. Mais il faut remarquer que ces équations sont retrouvent
chez différents auteurs ; elles circulent, elles sont reprises, retravaillées ou commentées selon
les cas.

Remarquons à ce propos que les sous-réseaux que le graphe des citations du corpus
avait mis en évidence ne coïncident pas tout à fait avec des groupes de textes centrés sur
les mêmes équations de la géométrie. C’est le cas pour le sous-réseau formé de [Klein 1888 ;
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Maschke 1889] (auxquels on peut d’ailleurs ajouter la note [Jordan 1870a]), correspondant
au problème du lien entre les vingt-sept droites et les fonctions hyperelliptiques. Mais dans
le texte du sous-réseau [Kummer 1863 ; Kummer 1864 ; Clebsch 1868 ; Klein 1870 ; Clebsch
1871b ; Klein 1871b ; Lie 1872], on trouve les équations aux seize droites ainsi que celle aux
seize points singuliers. Enfin, le troisième sous-réseau [Hesse 1847 ; Noether 1879 ; Netto
1882 ; Weber 1896] fait apparaître à la fois l’équation aux neuf points d’inflexion et celle
aux vingt-huit tangentes doubles.

Cette intrication souligne le fait que les auteurs du corpus, même s’ils consacrent par-
fois des textes principalement à une seule de ces équations, ne les considèrent souvent pas
individuellement. Elles sont partie d’un tout, étiqueté « équations de la géométrie », et sont
liées entre elles dans les textes. Ainsi, les équations aux vingt-sept droites, aux vingt-huit
tangentes doubles et aux seize droites étaient reliées dans les travaux de Jordan ; les équa-
tions aux seize points et aux seize droites sont présentées ensemble dans les commentaires
de Lie ; l’équation aux vingt-huit tangentes doubles donne lieu aux Tripelgleichungen, qui
sont en retour reliées à l’équation aux neuf points d’inflexion.

L’équation aux neuf points

Cette dernière équation tient un rôle un peu particulier car c’est elle qui fait l’objet
d’un chapitre dans chacun des deux livres que sont le Substitutionentheorie de Netto et
le Lehrbuch de Weber. Or, et c’est l’occasion de revenir sur un point que j’avais laissé
de côté jusqu’à présent, elle fait également l’objet d’un chapitre dans le célèbre Cours
d’algèbre supérieure de Serret. Ce chapitre est d’abord apparu sous la forme d’une note
supplémentaire dans la deuxième édition de ce manuel, [Serret 1854], intitulée « Sur la
résolution algébrique de l’équation du neuvième degré à laquelle conduit la recherche des
points d’inflexion des courbes du troisième degré ». L’objet de la note était, selon l’aveu de
Serret lui-même, de « reproduire » les recherches de Hesse concernant l’équation associée
aux neuf points d’inflexion des courbes cubiques :

La démonstration que M. Hesse a donnée dans son second mémoire, pour établir
la résolubilité de l’équation du neuvième degré dont il s’agit, suppose également le
théorème de Maclaurin [sur l’alignement trois à trois des points d’inflexion]. M. Hesse
fait voir qu’il existe certaines relations entre les racines, et il démontre généralement
que toute équation du neuvième degré dont les racines ont cette même propriété, est
résoluble par radicaux. L’analyse de M. Hesse est assez remarquable pour que je croie
devoir la reproduire ici. [Serret 1854, p. 539]

Il s’agissait effectivement d’une reproduction, dans le sens où Serret reprenait alors pas à
pas les travaux de Hesse, notations comprises 117.

117. Dans la troisième édition du Cours d’algèbre, un supplément apparaissait : Serret montrait en plus
l’existence de vingt-sept (!) points particuliers sur une courbe cubique et prouvait que l’équation corres-
pondante était résoluble par radicaux. Il renvoyait à un article de Steiner, [Steiner 1846b] dans la même



210 CHAPITRE 3

La présence de l’équation aux neuf points d’inflexion dans les éditions du manuel de
Serret postérieures à 1854 — ainsi que l’édition allemande, [Serret 1868] — montre qu’elle
devait probablement être un exemple destiné à être connu des étudiants et qu’elle a donc
fait partie des connaissances communes des mathématiciens de la seconde moitié du xixe

siècle (et même au-delà, avec sa présence dans les livres de Netto et de Weber). Rejoignant
ainsi les équations d’Abel, celles de Galois 118, etc., l’équation aux neuf points se présente
finalement comme un exemple commun de la théorie des équations à cette époque.

Du reste, jamais cité par les auteurs du corpus pour ce chapitre sur les points d’inflexion,
le Cours d’algèbre confirme son statut de manuel destiné à un public plus étudiant : il
n’intervient pas en tant que référence dans les textes de recherche du corpus.

L’équation aux vingt-sept droites

Ajoutons encore un mot sur l’équation associée à l’objet principal de cette thèse : les
vingt-sept droites. Comme on l’a vu lors de la description du corpus, outre les travaux de
Jordan examinés au chapitre précédent, elle intervient en tant que sujet de motivation du
texte de Klein de 1888, consacré au lien entre les fonctions hyperelliptiques et les vingt-sept
droites. L’équation aux vingt-sept droites était aussi présente dans le mémoire de Clebsch
de 1871, intervenant dans le processus d’interprétation géométrique de l’équation quintique.
Enfin, elle était listée dans le texte de Klein de 1871, aux côtés d’autres équations de la
géométrie, en tant qu’exemple intuitif pour la théorie des équations.

La présentation que j’ai faite de ces travaux a montré qu’ils étaient liés par une certaine
thématique, autre que celle des vingt-sept droites : la volonté par Clebsch et Klein de
géométriser certaines parties de la théorie des équations. À ce titre, je les analyserai plus
finement, mais dans un chapitre ultérieur, continuant pour le moment à examiner le corpus
entier des équations de la géométrie.

3.4 Des éléments de cultures en contact

Comme les descriptions effectuées dans la section 3.2 le suggèrent, le corpus des équa-
tions de la géométrie se présente comme un ensemble de textes dans lesquels s’opèrent des
rapprochements entre une certaine partie de l’algèbre (théorie des équations, théorie des
substitutions) et une certaine partie de la géométrie (liée aux configurations finies d’ob-
jets associés à des courbes et surfaces de petit degré). Je souhaite considérer sous l’angle
de la notion de culture les deux côtés mis ensemble par ces équations de la géométrie.

équation apparaissait. De ce point de vue, il existe donc au moins une équation de la géométrie antérieure
au mémoire de Hesse de 1847. Mais dans tout le corpus constitué dans ce chapitre, je n’ai trouvé aucune
mention à ces travaux de Steiner : l’équation de la géométrie qui s’y trouve n’a pas circulé entre les auteurs
du corpus.
118. Je rappelle qu’une équation de Galois est une équation irréductible telle qu’il existe deux de ses
racines qui permettent d’exprimer rationnellement toutes les autres.
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Cela me servira de socle pour analyser par la suite plus précisément comment s’exprime
l’entremêlement des deux dans les textes du corpus.

La définition de culture que j’ai ici en tête est celle des anthropologues Alfred Louis
Kroeber et Clyde Kluckhohn :

La culture consiste en des patterns explicites et implicites du et pour le comportement,
acquis et transmis par symboles, constituant les réalisations distinctives des groupes
humains, incluant leur incarnation en artéfacts ; le cœur essentiel de la culture consiste
en des idées traditionnelles (c’est-à-dire dérivées et sélectionnées historiquement) et
en particulier leurs valeurs attachées ; les systèmes culturels peuvent d’une part être
considérés comme des produits de l’action et d’autre part comme des éléments de
conditionnement pour l’action future 119. [Kroeber & Kluckhohn 1952, p. 118]

C’est dans l’idée de pattern que réside une caractéristique forte de cette notion de culture.
Lorsque des individus sont empreints d’une certaine culture, leur action, leur comporte-
ment et leurs idées sont guidées par des modèles préexistants. Réciproquement, parce qu’ils
se soumettent à ces modèles, les individus participent à la consolidation (mais aussi à des
modifications continues et subreptices) de la culture. Déceler des conformités comporte-
mentales à des patterns permet ainsi à l’observateur de deviner une culture en place dans
laquelle les comportements en question sont valorisés en tant que comportements normaux.
Il s’agit donc d’observer une organisation particulière des manières de faire et de penser
d’un certain groupe social, et c’est cette organisation que l’on décrit en tant que culture
du groupe.

Dans le cas des mathématiques du xixe siècle, l’action à laquelle l’historien a accès
est principalement incarnée dans les textes, publiés ou non 120, sous forme de théorèmes,
de démonstrations, ou de commentaires mélioratifs ou dépréciatifs sur tel objet et telle
approche. Ainsi, pour déterminer s’il existe par exemple une culture de la géométrie au
xixe siècle, il faudrait en principe examiner tous les textes se rapportant à la géométrie 121

durant cette période et examiner si des régularités de comportement s’y trouvent. Pour
cela, plusieurs aspects seraient à prendre en compte : les sujets mathématiques eux-mêmes
ou les techniques de démonstration, mais aussi les façons de formuler des théorèmes, les
notations adoptées, les résultats supposés connus, les savoirs tacites 122, etc. Il faudrait
aussi prendre en compte les auteurs eux-mêmes, voir s’ils sont engagés sur plusieurs fronts
(on peut penser à ce que nous appelons aujourd’hui la géométrie algébrique et la géométrie
différentielle), si leurs affiliations institutionnelles jouent un rôle dans la façon qu’ils ont

119. « Culture consists of patterns, explicit and implicit, of and for behaviour acquired and transmitted
by symbols, constituting the distinctive achievements of human groups, including their embodiment in
artifacts; the essential core of culture consists of traditional (i.e. historically derived and selected) ideas
and especially their attached values; culture systems may, on the one hand, be considered as products of
action, on the other, as conditional elements of future action. »
120. Elle peut aussi s’incarner en des artéfacts tels que les instruments de calcul ou, ce qui est plus proche
de notre sujet, des modèles en fil de fer ou en plâtre de surfaces.
121. Cela poserait bien sûr la question de savoir déterminer ce qui relève de la géométrie ou non.
122. Au sujet des savoirs et connaissances tacites en mathématiques, voir [Archibald et al. 2012].
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de produire des mathématiques, et étudier de façon précise les processus de transmission
du savoir entre eux, en particulier de génération en génération.

Je voudrais ici donner des indices allant dans le sens d’une culture de la théorie des
équations en lien avec les travaux de Galois d’une part, et d’une culture des configurations
géométriques d’une part. Dans les deux cas, le point de départ sera la reconnaissance de
certains points mathématiques qui sont apparus de façon récurrente dans la description du
corpus des équations de la géométrie, et que j’interpréterai comme des traces des cultures
en question.

Remarquons que la situation n’est pas symétrique entre ces deux morceaux algébrique
et géométrique, pour deux raisons. D’abord, un certain nombre de recherches historiques ré-
centes 123 ont étudié la circulation, les lectures et les sédimentations des travaux de Galois
au cours du xixe siècle. Ces recherches permettent maintenant de situer assez efficace-
ment les différentes traces des travaux associés à Galois dans le cadre de l’époque, offrant
ainsi une bonne base pour examiner la question d’une culture. À l’inverse, les recherches
historiques sur le sujet des configurations géométriques sont, me semble-t-il, encore trop
peu développées pour pouvoir m’y baser 124. À cette asymétrie historiographique s’ajoute
ensuite une asymétrie concernant les auteurs du corpus des équations de la géométrie eux-
mêmes : parmi les auteurs les plus actifs, seul Jordan est spécialisé en théorie des équations
et des substitutions, alors que Hesse, Clebsch, Klein et Noether sont plutôt des géomètres
de formation. Je souhaite en fait exploiter cette différence, et tenter de saisir le côté géomé-
trique de l’affaire par les géomètres eux-mêmes. En raison des lacunes historiographiques
évoquées plus haut, les compétences (sur les configurations géométriques) qu’ils mobilisent
dans le corpus seront confrontées à l’Encyklopädie der mathematischen Wissenschaften.
Pour suggérer une culture des configurations géométriques, j’utiliserai ainsi une présenta-
tion de ces compétences faite à la fin du xixe siècle par des mathématiciens auteurs de
l’Encyklopädie (et par là-même proches des points de vue de Klein).

3.4.1 Vers une culture de la théorie des équations en lien avec les travaux
de Galois

Le premier élément allant dans le sens d’une culture de la théorie des équations et
que l’on peut mettre en évidence à partir du corpus est celui du problème même de la
résolubilité d’équations algébriques particulières. En effet, dans presque tous les textes du
corpus, les équations de la géométrie sont étudiées dans le but de déterminer des propriétés
de résolution — par radicaux, par la mise en évidence de réduites particulières ou par
des fonctions transcendantes. Or, cette question de résolubilité des équations était une

123. J’ai déjà donné les références suivantes au fur et à mesure de ce chapitre et du précédent, [Brechen-
macher 2006 ; Brechenmacher 2011 ; Ehrhardt 2011 ; Goldstein 2011a ; Ehrhardt 2012].
124. Pour les courbes cubiques et quartiques, voir [Gray 2000 ; Gray 2010]. Pour quelques éléments sur
les surfaces de Kummer, voir [Rowe 2013].
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question centrale de la théorie des équations, déjà avant le début du xixe siècle. C’est sous
cet angle qu’avait par exemple été traitée l’équation cyclotomique dans les Disquisitiones
Arithmeticae de Gauss. Le théorème de résolubilité de cette équation fut un résultat qui
intégra rapidement les traités d’algèbre du début du xixe siècle tout en nourrissant la
recherche sur les équations algébriques à cette époque 125.

Abel lui-même avait mené des recherches en s’inspirant de la cyclotomie, s’intéressant
aux équations dont les racines sont liées par certaines relations, [O. Neumann 2007, p. 120],
et c’est justement dans la lignée de ces recherches que Hesse plaçait son mémoire de 1847.
On peut d’ailleurs remarquer que l’inscription dans ces thématiques de recherche se lit aussi
dans des formulations typiques, allant jusqu’à reprendre des notations caractéristiques.
Ainsi, rappelons que Hesse avait étudié les équations de degré 9, dont les racines x1, . . . , x9

sont liées trois par trois par des relations rationnelles et symétriques avec la propriété que
si une telle relation est xµ = θ(xχ, xλ), alors on a aussi xλ = θ(xµ, xχ) et xχ = θ(xλ, xµ).
Hesse avait montré que de telles équations sont résolubles par radicaux, et mis ce résultat
en relation avec une conjecture d’Abel de 1830 : si une équation irréductible de degré
premier possède la propriété que parmi trois quelconques de ses racines, l’une est toujours
fonction rationnelle des deux autres, alors cette équation est résoluble par radicaux.

Ce type d’énoncé concernant des équations de degré donné et dont les racines sont liées
par des relations était typique dans la théorie des équations du début du xixe siècle. Il
en existait des semblables chez Abel lui-même : « Si les racines d’une équation d’un degré
quelconque sont liées entre-elles de sorte, que toutes ces racines peuvent être exprimées
rationnellement au moyen de l’une d’elles, que nous désignerons pas x ; si, de plus, en
désignant par θx, θ1x deux autres quelconques racines en question, on a θθ1x = θ1θx,
l’équation dont il s’agit sera toujours résoluble algébriquement. » [Abel 1829, p. 132]. On
trouve encore des énoncés ressemblants chez Galois : « Pour qu’une équation de degré
premier soit résoluble par radicaux, il faut et il suffit que deux quelconques de ses racines
étant connues, les autres s’en déduisent rationnellement. » [Galois 1846, p. 395]. Enfin, on
pourra encore penser aux équations étudiées par Mathieu et que Jordan avait placées dans
le Traité. Ce sont des équations de degré 8 telles que si trois de leurs racines a, b, c sont
données, il en existe une quatrième d telle que d = ψ(a, b, c), c = ψ(d, a, b), b = ψ(c, d, a)

et a = ψ(b, c, d), où ψ est à nouveau une fonction rationnelle et symétrique.
L’existence de formulations semblables et se retrouvant de façon répétée dans les tra-

vaux de mathématiciens différents est ainsi une marque indiquant une certaine culture de
la théorie des équations au début du xixe siècle. Le fait qu’on en retrouve encore des traces
dans le Traité des substitutions et des équations algébriques, plus tardif, montre ainsi que
Jordan est encore imprégné de cette culture lorsqu’il écrit son ouvrage.

Si l’équation cyclotomique, les équations d’Abel et celles de Galois ne sont apparues que
de façon très ténue dans le corpus des équations de la géométrie, des travaux concernant

125. [Goldstein & Schappacher 2007 ; O. Neumann 2007].
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d’autres équations particulières y ont été explicitement mis en avant : ceux sur l’équa-
tion du cinquième degré et sur les équations modulaires. C’était ainsi une partie de ces
travaux que Jordan visait lorsqu’il écrivait : « Tous les géomètres connaissent le fait le
l’abaissement des équations modulaires pour les transformations des degrés 5, 7 et 11, et
les importantes conséquences qu’en a déduites M. Hermite », [Jordan 1869a, p. 865]. Plus
précisément, l’abaissement des équations modulaires était un résultat qui avait été énoncé
sans démonstration par Galois en 1832 ; il avait par la suite été prouvé par Betti ainsi que
par Hermite dans les années 1850. Ce dernier avait alors lié l’équation modulaire pour la
transformation d’ordre 5 à l’équation générale du cinquième degré ; un des résultats de base
sur lesquels il s’était appuyé était que la quintique pouvait se mettre sous la forme dite de
Jerrard x5−x−a = 0 au moyen d’une transformation de Tschirnhaus 126. Hermite en avait
alors déduit qu’il était possible de résoudre l’équation du cinquième degré au moyen des
fonctions elliptiques — l’impossibilité de résolubilité par radicaux avait été démontrée par
Abel quelques années plus tôt, en 1826-1828. À la même époque que Hermite, Kronecker
et Brioschi avaient eux aussi proposé une façon de résoudre l’équation du cinquième degré
à l’aide des fonctions elliptiques 127. Comme j’ai pu le décrire précédemment, Klein avait
également exposé son point de vue sur le sujet, à travers ses recherches sur l’icosaèdre des
années 1870-1880.

Tous ces résultats sur les équations modulaires et l’équation du cinquième degré se
sont vus dans notre corpus, en tant que connaissances usuelles 128, mais aussi en tant que
modèles de la marche à suivre pour d’autres travaux. Par exemple, Jordan situait explici-
tement son résultat d’abaissement de l’équation de trisection des fonctions hyperelliptiques
dans la lignée de ses prédécesseurs et avait aussi cherché (dans le Traité) à résoudre les
équations de degré quelconque à l’aide des fonctions hyperelliptiques. De même, Noether
présentait les résultats connus à ce sujet 129 avant de proposer son approche, consistant à
introduire l’équation aux vingt-huit tangentes doubles. Or, ces travaux de Betti, Hermite
et Kronecker représentent une des voies par lesquelles les recherches de Galois ont été lues
et diffusées dans les années 1850-1860 130. Dans notre corpus, on les voit en toile de fond,
raccordées aux équations de la géométrie par plusieurs des auteurs eux-mêmes ; c’est ainsi
un deuxième élément allant dans le sens d’une culture de la théorie des équations, dont

126. [Houzel 2002, p. 73-74 ; Goldstein 2011a].
127. [Houzel 2002, p. 77-79 ; Petri & Schappacher 2004]. L’entremêlement entre théorie des équations et
fonctions elliptiques chez Hermite et Kronecker est lié au champ de recherches qui a été baptisé « analyse
algébrique arithmétique » dans [Goldstein & Schappacher 2007].
128. Ou en tout cas présentées comme telles : « Tous les géomètres connaissent... ». Voir aussi le mémoire
de Clebsch de 1871, consistant à interpréter géométriquement tous les éléments relatifs à l’équation du
cinquième degré. Le fait qu’il mentionne une « théorie de l’équation du cinquième degré » laisse d’ailleurs
supposer qu’il considère ces éléments comme un tout, édifié en théorie.
129. Pour Noether, il s’agit plutôt de l’équation modulaire de degré 8 et son lien à l’équation du septième
degré, mais comme nous l’avons vu, les références données sont les mêmes travaux de Betti, Kronecker et
Hermite.
130. [Brechenmacher 2011 ; Goldstein 2011a ; Ehrhardt 2012].



3.4. DES ÉLÉMENTS DE CULTURES EN CONTACT 215

fait partie tout ce qui se rattache aux équations modulaires, y compris leur lien avec la
résolubilité des équations générales.

Le troisième élément permettant de deviner une telle culture est que ces travaux sur les
équations modulaires et l’équation du cinquième degré font intervenir un certain nombre
de techniques qui se retrouvent également dans le traitement des équations de la géométrie,
et qui sont en partie héritées de générations antérieures. Parmi ces techniques, l’usage de
résolvantes ou de fonctions de racines est central : nous l’avons vu (sous différentes formes)
en particulier chez Hesse, Clebsch, Jordan, Klein et Noether. Ainsi, dans l’article de Hesse,
il s’agissait de créer des résolvantes de l’équation aux neuf points d’inflexion, en s’aidant
de relations entre les racines, ce qui s’apparente à ce qui pouvait être fait dans les travaux
sur les équations de l’époque d’Abel. L’emploi de fonctions de racines prenant un nombre
particulier de valeurs (éventuellement pour en déduire des résolvantes) chez Jordan et chez
Noether est particulièrement marquant. Il renvoie d’abord au problème de recherche de
résolvantes développé par Lagrange, Vandermonde et Waring à la fin du xviiie siècle 131.
Mais il se situe aussi dans des développements (liés aux précédents) plus proches de Jordan,
consistant à déterminer le nombre de valeurs que peuvent prendre des fonctions algébriques
données 132. Or, créer des résolvantes à partir de fonctions explicites de racines et prenant le
bon nombre de valeurs était un des points cruciaux des travaux de Hermite et de Kronecker
évoqués précédemment.

Remarquons également que l’utilisation par Clebsch d’un tableau (de couples de droites)
pour en déduire des propriétés de résolubilité de l’équation aux seize droites rappelle l’usage
de Betti d’un tableau pour décrire les (permutations associées aux) substitutions du groupe
de l’équation modulaire d’ordre 5 et en déduire 133 l’existence d’une réduite de degré 5.

Le cas de l’utilisation de groupes de substitutions mérite aussi qu’on s’y arrête. Les
textes du corpus qui ne les utilisent pas sont ceux de Hesse, Kummer, Clebsch et celui de
Klein de 1870. Dans les autres, les groupes sont au moins évoqués, sinon étudiés et utilisés
pour répondre aux questions de résolubilité des équations de la géométrie. Ils avaient
aussi joué un rôle important pour les équations modulaires, en particulier pour Galois et
Betti. Changeant légèrement de point de vue sur cette question, Hermite ne s’était pas
arrêté aux décompositions du groupe de l’équation modulaire et avait cherché à mettre
en avant les résolvantes correspondantes, ce qui exprimait son attachement aux aspects
effectifs des calculs 134. Le point de vue de Kronecker sur les méthodes de Galois était plus
tranché : ces dernières étaient pour lui « plus propres à cacher la vraie nature des équations
résolubles qu’à la découvrir 135 ». Au contraire, Jordan qualifiait les travaux de Galois de

131. [O. Neumann 2007, p. 108]. Par ailleurs, remarquer que ces objets et leur utilisation dans la théorie
des équations étaient par exemple présentées dans le Cours d’algèbre supérieure de Serret, dès sa première
édition de 1849.
132. [Ehrhardt 2012, p. 160].
133. [Goldstein 2011a, p. 236].
134. [Goldstein 2011a, p. 243].
135. Cité à partir de [Ehrhardt 2012, p. 119]. Au sujet des préférences de Kronecker pour les formules et
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« base définitive » de la théorie des équations, [Jordan 1870b, p. i], et son Traité en fait
évidemment grand usage, notamment pour les équations de la géométrie.

L’usage (ou non) des groupes dans le corpus des équations de la géométrie et dans les
travaux adjacents met en évidence deux des difficultés de la question de culture. L’une est
liée à l’aspect chronologique et dynamique des savoirs qui y sont en jeu : situé chronologi-
quement au milieu du corpus, le Traité de Jordan fait évoluer les savoirs algébriques des
uns et des autres, et construit petit à petit une théorie des groupes en devenir 136. Ainsi, au
contraire d’héritages plus anciens comme les résolvantes ou les fonctions de racines, il ne
faut pas oublier de considérer que dans les années 1870, les savoirs relatifs aux groupes de
substitutions sont toujours en constitution ; examiner le rôle des équations de la géométrie
dans cette constitution est justement un des enjeux de la présente thèse.

L’autre difficulté est liée à celle de l’existence de points de vue parfois conflictuels sur
des objets ou des approches. L’exemple de ceux de Kronecker et de Jordan sur ce qu’est la
nature d’une équation pourrait faire penser qu’il n’y a pas une culture, mais des cultures
de la théorie des équations. Toutefois, il me semble plus juste de voir cela comme les parts
d’interprétations personnelles qui existent dans toute culture, et qui peuvent elles-mêmes
provenir de l’intrication des auteurs dans d’autres cultures. Ainsi, comme le suggère C.
Ehrhardt, les points de vue de Kronecker sur la théorie des équations pourraient être liés
à une culture institutionnelle liée à l’université de Berlin 137. Par ailleurs, il faut souligner
que tous ces points de vue parfois antagonistes sont exprimés sur des objets, résultats ou
théories qui sont sinon reconnues par, au moins connues de tous les auteurs : il ne peut y
avoir conflit que sur un terrain partagé.

Pour résumer, c’est ce terrain partagé, constitué des différents éléments que j’ai mis
en évidence (questions communes de résolubilité des équations, travaux sur les équations
modulaires et l’équation du cinquième degré, utilisation de techniques répandues), qui
suggère une certaine culture de la théorie des équations autour du milieu du xixe siècle,
associée en particulier aux travaux de Galois.

Enfin, je précise encore que les indices mis en évidence dans les paragraphes précédents
sont loin d’épuiser tout ce qui relèverait de la théorie des équations au xixe siècle. On
pourrait ainsi penser aux approximations de racines, à la séparation des racines et en
particulier au théorème de Sturm, autant de thèmes liés à l’équation dite séculaire 138.

les calculs, voir [Edwards 1989 ; Edwards 2005 ; Edwards 2009].
136. [Wussing 1969].
137. « Au moment où Kronecker y fait ses études, Berlin est un centre de recherches particulièrement
dynamique. La constitution de l’identité et de la spécificité des mathématiques berlinoises passe par le
privilège accordé à certains types de recherches, lié à une conception particulière des mathématiques.
L’adhésion à ces schémas de pensée constitue donc, pour un débutant comme Kronecker, tout autant
une affaire d’héritage intellectuel inculqué à travers l’enseignement, c’est-à-dire une façon “naturelle” de
pratiquer et de concevoir la discipline, qu’un moyen de voir ses efforts récompensés par la reconnaissance
des maîtres. » [Ehrhardt 2012, p. 124-125].
138. Sur ces deux derniers points, voir [Sinaceur 1991 ; Brechenmacher 2007b]. Comme écrit en intro-
duction de thèse, F. Brechenmacher a plus récemment discuté de la situation de l’équation séculaire à la
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3.4.2 Vers une culture des configurations géométriques

Pour examiner à présent le côté géométrique de la situation, je vais me concentrer sur
les cinq configurations principales qui sont associées aux équations de la géométrie et qui
ont été dégagées à la section 3.3 : les neuf points d’inflexion des courbes cubiques, les seize
droites des surfaces quartiques à conique double, les seize points singuliers des surfaces de
Kummer, les vingt-sept droites des surfaces cubiques et les vingt-huit tangentes doubles
des courbes quartiques. Des indices allant dans le sens d’une culture de ces configurations
seront donnés par des problèmes et des résultats que l’on retrouve de façon récurrente pour
chacune d’elles, et souvent traités par les mêmes mathématiciens.

Pour cela, je me baserai sur la liste de problèmes mathématiques associés aux vingt-
sept droites et qui ont été décrits au chapitre 1 : existence des vingt-sept droites et de
divers objets incarnant certaines de leurs relations d’incidence (les quarante-cinq triangles,
les trente-six doubles-six, etc.) ; problème de notation ; recherche des cas de réalité pour les
vingt-sept droites et les quarante-cinq triangles ; utilisation des droites dans la détermina-
tion des formes des surfaces cubiques ; liens avec d’autres configurations 139.

Comme je l’ai écrit plus haut, les recherches historiques sur le sujet des configurations
géométriques sont pour le moment encore trop peu développées pour pouvoir s’y baser.
Je voudrais toutefois mentionner quelques travaux récents qui, bien que n’étant pas en
relation directe avec les auteurs de notre corpus, mettent en évidence des difficultés de
la question d’une culture des configurations. Au milieu du xixe siècle en effet, les bri-
tanniques Cayley, Sylvester et Kirkman étaient engagés dans la « tactique », un domaine
des mathématiques rattaché aux notions d’ordre et d’arrangement, et lié aux problèmes
récréatifs, [Ehrhardt 2015]. La tactique faisait typiquement intervenir des problèmes com-
binatoires, comme celui des quinze écolières 140. Or, d’après Dick Tahta, de tels problèmes
combinatoires auraient influé sur les intérêts et les façons de faire de Cayley vis à vis des
configurations géométriques, [Tahta 2006]. C. Ehrhardt insiste sur le fait que la tactique
ne s’est pas transportée en Allemagne, dont sont issus la plupart des auteurs du corpus
des équations de la géométrie. On ne peut toutefois pas exclure que ce contexte particulier
pour les mathématiciens britanniques n’ait pas influé sur les auteurs du corpus de façon
indirecte : par exemple, nous avons vu que Clebsch avait commencé à étudier les surfaces de
petit degré à partir des travaux de Cayley et de Salmon. Ces considérations dévoilent ainsi

lumière de la notion de culture, [Brechenmacher 201 ?].
139. Dans cette liste, je n’ai donc pas pris en compte les questions relatives aux façons d’engendrer les
surfaces cubiques (par faisceaux et autres gerbes), qui, comme on l’a vu, se rattachent davantage aux
surfaces elles-mêmes qu’à leurs droites — du reste, les problèmes analogues de savoir engendrer les courbes
cubiques et quartiques, ainsi que les surfaces quartiques de Kummer ou à conique double existent. Je
n’ai pas non plus tenu compte ici de l’approche des configurations par la théorie des groupes, puisqu’elles
partagent cela en commun par définition même du corpus.
140. Le problème est le suivant : quinze jeunes filles sortant trois par trois de leur école sur sept jours
consécutifs, il s’agit de trouver la façon dont elles peuvent se disposer par trois, de sorte que sur les sept
jours, il n’y en ait jamais deux qui marchent côte à côte.
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la complexité de la question de la culture : on voit sur l’exemple donné ici qu’il faudrait
tenir compte de domaines moins directement reliés à la géométrie, comme la combinatoire
des mathématiques récréatives, mais influant potentiellement sur les façons de faire des
auteurs du corpus.

Cela étant dit, j’utiliserai maintenant l’Encyklopädie der mathematischen Wissenschaf-
ten, pour les raisons décrites plus haut. Dans cet ouvrage, les courbes cubiques et quar-
tiques sont traitées dans un chapitre particulier écrit par Gustav Kohn, [Kohn 1908], et les
surfaces quartiques de Kummer et à conique double dans un chapitre de Wilhelm Franz
Meyer, [Meyer 1930]. Noter que ces deux auteurs étaient des proches de Klein. Meyer avait
en effet fait lui-même partie du noyau dur du projet encyclopédique initié par Klein 141.
Kohn était quant à lui un mathématiciens autrichien ; il enseigna la géométrie (et en par-
ticulier le sujet des courbes algébriques) à l’université de Vienne, présentant notamment
les points de vue de Klein sur le sujet 142.

Commençons avec les neuf points d’inflexion des courbes cubiques planes. L’Encyklo-
pädie indique que Newton avait déjà considéré des points d’inflexion des courbes cubiques
dans son Enumeratio linearum tertii ordinis (1704) et qu’à la même époque, De Gua et
Maclaurin avaient chacun démontré que la droite qui joint deux points d’inflexion d’une
courbe cubique recoupe cette courbe en un troisième points d’inflexion. C’est à Plücker
que sont attribués les premiers approfondissements généraux sur le sujet des points d’in-
flexion, [Plücker 1835]. Plücker avait ainsi montré qu’il existe exactement (pour les cubiques
lisses) neuf points d’inflexion et douze droites les contenant trois à trois 143, et avait établi
les distributions possibles des points sur les droites. Plücker avait aussi montré que parmi
les neuf points d’inflexion, il y en a toujours trois qui sont réels et six qui sont imaginaires
et proposé une classification des cubiques en fonction de leur forme.

Kohn fait remonter aux travaux de Hesse (que nous avons déjà rencontrés) l’existence
des quatre triangles formés à partir des douze droites 144, que nous avons déjà rencon-
trés, [Hesse 1844a ; Hesse 1844b]. Parmi d’autres objets pouvant être construits à partir
des neuf points d’inflexion, Kohn présente les « polaires harmoniques » des points d’in-
flexion, qui sont des lieux définis de la façon suivante. Étant donné un point d’inflexion,
on regarde toutes les droites qui passent par ce point : elles coupent donc la cubique en le
point d’inflexion et deux autres points. Sur chacune de ces droites, il alors existe un unique
point qui forme avec les trois premier une division harmonique. La polaire harmonique est
le lieu formé de tous ces quatrièmes points. Une propriété est que ce lieu est une droite,

141. [Tobies 1994].
142. « Some lectures by Gustav Kohn on projective geometry, algebraic curves, and continuous groups
were “strong and clear”, and introduced the unifying work of Felix Klein on group theory. » [W. Moore
1989].
143. Kohn ne mentionne pas Poncelet, lequel est cité par [Hesse 1847] pour ces droites (cf. supra).
144. Kohn ajoute d’ailleurs que parmi les côté d’un tel triangle, il y en a toujours un qui est réel, les deux
autres étant complexes conjugués. Aucune référence n’est donnée à cet endroit, et je n’ai pas vu ce résultat
apparaître dans les travaux de Hesse que j’ai pu consulter.
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et il y a donc neuf polaires harmoniques (associées aux neuf points d’inflexion). Toujours
d’après Kohn, ces polaires ont été étudiées par Plücker, Hesse et Steiner, [Plücker 1835 ;
Steiner 1846a ; Hesse 1849]. Un exemple (simple) de théorème associé à ces polaires est que
les trois polaires harmoniques associées à trois points d’inflexion alignés sont concourantes.

Enfin, remarquons que Kohn fait mention de la notation des neuf points d’inflexion au
moyen de couples (xy) d’entiers modulo 3, avec la propriété que trois points sont alignés si
et seulement si la somme des premiers indices et celle des seconds indices sont toutes deux
congrues à 0 modulo 3. À ce sujet, il renvoie en particulier à [Clebsch 1876].

En ce qui concerne les vingt-huit tangentes doubles, leur existence est attribuée à
Plücker, [Plücker 1839]. L’Ecnyklopädie présente une classification des courbes quartiques
en fonction de leurs singularités et précise dans chaque cas le nombre de tangentes doubles.
Toujours en 1839, Plücker avait affirmé que les points de contact de quatre tangentes
doubles quelconques appartenaient tous à une même conique, mais Hesse avait vu que ce
résultat n’était pas vrai pour toutes les tangentes doubles 145. D’après Kohn, le résultat le
plus important au sujet des tangentes doubles des quartiques est l’existence des « groupes
de Steiner », démontrée par ce dernier dans un article de 1855, [Steiner 1855]. Ces groupes
sont formés de six couples de tangentes doubles de la façon suivante : étant donné un
couple de tangentes doubles, il en existe cinq autres tels que la propriété pressentie par
Plücker est vraie, c’est-à-dire que les huit points de contact associés d’une part au couple
donné et d’autre part à un des cinq autres sont situés sur une même conique. Plusieurs
théorèmes avaient alors été démontrés au sujet de ces groupes de Steiner, comme par
exemple le fait que les douze tangentes doubles d’un groupe sont tangentes à une même
courbe de classe 3. Il existait par ailleurs de nombreux autres objets mis en valeur à partir
des vingt-huit tangentes doubles, comme 63 systèmes de coniques tangentes à six des
tangentes doubles, etc. En relation avec ces systèmes de coniques, Kohn mentionne Geiser,
qui les avait retrouvés grâce à son lien entre courbes quartiques et surfaces cubiques, [Geiser
1869b].

Kohn mentionne également un problème de notation pour les vingt-huit tangentes
doubles, que Hesse aurait été le premier à résoudre grâce à un système désignant ces
tangentes par des couples de chiffres compris entre 1 et 8, [Hesse 1855b]. Cette notation
avait entre autres été commentée et utilisée par Cayley puis par Noether, dans le but
de voir comment elle permettait de retrouver les différents groupements des tangentes
doubles, [Cayley 1868b ; Noether 1879].

Enfin, Kohn indique qu’en 1839, Plücker s’était déjà intéressé à la détermination du
nombre de tangentes doubles réelles parmi les vingt-huit. Il renvoie toutefois à un article
plus tardif de Zeuthen pour la réponse définitive à ce problème, [Zeuthen 1874]. Ces travaux
de Zeuthen ont déjà été décrits au chapitre 1 : déduites de celles pour les vingt-sept droites

145. Voir une remarque ajoutée par Hesse dans un article de Jacobi sur le nombre de tangentes doubles
à une courbe de degré quelconque, [Jacobi 1850, p. 260].
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par la projection de Geiser, les possibilités pour le nombre de tangentes réelles sont 28,
16, 8 et 4. Comme on l’a décrit plus haut, l’article de Zeuthen faisait aussi le lien entre la
réalité des tangentes doubles et les formes possibles des courbes quartiques.

Je passe aux seize droites des surfaces quartiques à conique double. Dans son chapitre
de l’Encyklopädie, Meyer indique que ces surfaces étaient apparues dans des travaux de
Kummer, [Kummer 1863], mais que leur étude plus approfondie avait été faite par Clebsch
en 1868, [Clebsch 1868] — ces deux articles de Kummer et de Clebsch sont ceux qui sont
issus de notre corpus. Clebsch avait ainsi démontré l’existence des seize droites sur ces
quartiques et en avait étudié les relations d’incidence, les plus basiques étant que chaque
droite en rencontre exactement cinq autres. À partir de ces relations, des objets avaient
été crées, comme certains quadrilatères (au nombre de quarante) qui sont formés de quatre
droites sécantes deux à deux, ou cinq cônes quadratiques, ayant la propriété qu’ils possèdent
exactement quatre plans tangents qui coupent la surface quartique en une paire de droites.
Clebsch avait aussi mis en évidence des « doubles-quatre », qui sont des ensemble de huit
droites, notées

a b c d

α β γ δ

telles que chaque droite coupe celles qui ne sont ni sur la même ligne, ni sur la même
colonne, et seulement celles-là (par exemple a coupe β, γ, δ et pas les autres du tableau).
Clebsch avait dénombré 20 doubles-quatre, et avait explicitement écrit qu’il étaient l’ana-
logue des doubles-six de Schläfli pour les vingt-sept droites des surfaces cubiques 146.

Au sujet de la notation des seize droites, Clebsch avait utilisé les nombres de 1 à 16, mais
l’Encyklopädie en présente une autre, utilisant les symboles ai, bj , cij . À ce sujet, Meyer
ne donne pas de référence, mais comme on l’a vu, une telle notation avait été utilisée par
Geiser dans ses travaux sur le lien entre les vingt-sept droites et les seize droites, [Geiser
1869c], et fait écho à la notation proposée par Schläfli pour les vingt-sept droites.

Enfin, Meyer attribue à Zeuthen le mérite d’avoir réglé la question de réalité des seize
droites et des cinq cônes 147. Pour cela, Zeuthen avait utilisé une projection analogue à celle
de Geiser pour les surfaces cubiques, et s’était ramené aux vingt-huit tangentes doubles
des courbes quartiques planes.

Enfin, regardons les seize points singuliers des surfaces de Kummer. L’Encyklopädie
confirme ce qui a été écrit supra : c’est Kummer, en 1864, qui avait considéré des surfaces
quartiques possédant exactement seize points singuliers, soit le maximum pour des surfaces
de ce degré, [Kummer 1864]. Il avait montré que ces points sont contenus six à six sur des
coniques, et les plans de ces coniques sont des plans tangents singuliers à la surface quar-

146. [Clebsch 1868, p. 157].
147. [Zeuthen 1879], traduit en italien par Gino Loria, [Loria 1887].



3.4. DES ÉLÉMENTS DE CULTURES EN CONTACT 221

tique, au sens où ils lui sont tangents le long des coniques. Cela donnait ainsi seize plans
tangents singuliers qui contiennent six à six les points singuliers, et qui sont réciproquement
six à six concourants en chacun des points singuliers. Des objets particuliers étaient encore
une fois liés aux seize points et seize plans, comme des tétraèdres ayant pour sommets
quatre des seize points singuliers, et pour faces quatre des plans tangents singuliers. Meyer
indique que ces tétraèdres pouvaient se grouper par quadruplets qui contenaient en tout
les seize points, et par d’autres quadruplets qui contenaient en tout les seize plans ; des sys-
tèmes de deux tels quadruplets sont appelés « quatre-quatre » (en allemand : « Viervier »)
par Meyer, mais ce dernier ne donne pas de référence quant à cette dénomination.

Par ailleurs, une notation des seize points avait été proposée en 1878 par Weber, en
conséquence de la représentation des surfaces de Kummer au moyen des fonctions thêta à
deux variables 148. La notation consistait à désigner les seize points singuliers et les seize
plans singuliers par des couples (ij) ou des triplets (ijk), et les relations d’incidence étaient
encore une fois retrouvées grâce à cette notation.

Pour finir, d’après Meyer, la question de la réalité des points et des plans singuliers
avait été traitée par Karl Rohn, [Rohn 1881]. Il est d’ailleurs intéressant de noter que Rohn
avait explicitement fait l’analogie avec le problème de réalité pour les surfaces cubiques (et
les quadriques également), lié à la question de leur forme :

Quand on parle du comportement d’une sorte de surface par rapport à sa forme,
on entend usuellement par là toutes les différentes formes qui sont données soit par
spécialisation du cas général, soit par changement du comportement de réalité. Ainsi
parle-t-on pour les surfaces du second degré d’une surface imaginaire et de surfaces
réelles avec des génératrices réelles ou imaginaires, mais aussi de sphères et de couples
de plans comme spécialisation du cas général. De même, on distingue pour les surfaces
du troisième degré, en fonction de la réalité de leurs droites, les surfaces avec 27, 15,
7 droites, et deux surfaces avec 3 droites ; par spécialisation, on obtient les surfaces
avec des points nœuds usuels, ou biplanaires, ou uniplanaires. On peut aussi, pour la
surface de Kummer, soumettre avec succès ce double changement de la forme à des
recherches plus poussées 149. [Rohn 1881, p. 99]

Cette dernière citation est un exemple qui montre l’entremêlement des recherches qui
concernent les surfaces de petit degré : sont liés entre eux, et utilisés comme modèles
pour les quartiques, les résultats et méthodes développées pour les surfaces quadriques et

148. [Weber 1878]. Cette représentation avait été déjà été développée par Cayley et Borchardt, [Borchardt
1877 ; Cayley 1877].
149. « Wenn man von den gestaltlichen Verhältnissen einer Flächengattung spricht, so versteht man
darunter gewöhnlich alle diejenigen verschiedenen Gestalten, welche sich entweder durch Specialisirung des
allgemeinen Falles, oder durch Aenderung der Realitätsverhältnisse ergeben. So spricht man bei den Flächen
2. Grades von einer imaginären Fläche und von reellen Flächen mit reellen oder imaginären Erzeugenden,
weiter aber auch von Kegel und Ebenenpaar als Specialisirung des allgemeines Falles. Ebenso unterscheidet
man bei Flächen 3. Grades, nach der Realität ihrer Geraden, Flächen mit 27, 15, 7, und zwei Flächen mit 3
Geraden; durch Specialisirung erhält man die Flächen mit gewöhnlichen, oder biplanaren, oder uniplanaren
Knotenpunkten. Auch bei der Kummer-schen Fläche kann man diese doppelte Aenderung der Gestalt mit
Erfolg einer näheren Untersuchung unterwerfen. »
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cubiques quant à leur forme, que ce soit au moyen de la réalité des droites qui y sont
incluses ou au moyen de leurs singularités.

Les problèmes mathématiques associés aux vingt-sept droites se retrouvent donc dans
les quatre autres principales configurations de droites et de points. En particulier, on pourra
remarquer que la recherche des relations d’incidence entre ces droites ou points est constam-
ment mise en valeur, et associée à la création de nouveaux objets comme des triangles, des
quadrilatères, des tétraèdres, etc. Ce type de recherches est donc commun pour les configu-
rations géométriques. Mais il est frappant que cette « normalité » se renforce d’emprunts
de méthodes ou même de noms entre les configurations : pensons ainsi par exemple aux
« doubles-quatre » des seize droites, explicitement mis en parallèle avec les « doubles-six »
des vingt-sept droites. En outre, la cohésion entre les différentes configurations est encore
renforcée par l’établissement de liens mathématiques entre elles, comme celui de Geiser
entre les vingt-sept droites et les vingt-huit tangentes doubles.

Au niveau des chronologies, on a pu voir (en tout cas au xixe siècle) que ces recherches
de relations d’incidence survenaient dès les premiers travaux consacrés aux courbes ou
surfaces en question. Chercher des objets particuliers associés aux courbes et surfaces de
petit degré semble ainsi être une question « naturelle » pour les mathématiciens engagés
dans ces travaux. Tout cela suggère donc une culture des configurations géométriques,
disons dans le deuxième tiers du xixe siècle, dans laquelle un des patterns consiste à
considérer des points ou droites sur des courbes et surfaces, à explorer les relations qui les
lient et éventuellement les utiliser pour comprendre ces courbes et surfaces.

Les éléments suggérant deux cultures en contact dans le corpus des équations de la géo-
métrie ayant été maintenant présentés, je vais analyser la façon dont y ils sont entremêlés.
Cela me permettra d’éclaircir un problème encore laissé en suspend : celui des « réduites
géométriques » de l’équation aux vingt-sept droites dans le Traité des substitutions et des
équations algébriques de Jordan.



Chapitre 4

Les équations de la géométrie : un
système culturel

Avec le chapitre 3, nous avons vu qu’il existe une étiquette « équations de la géométrie »,
plutôt floue mais recouvrant une gamme d’objets qui sont partagés par plusieurs mathé-
maticiens. À ces objets partagés s’associent en outre des manières de faire mathématiques
assez précises mais qui disparaissent rapidement dans le temps : l’essentiel des activités
en question est concentré entre les années 1868 et 1872. Il s’agit maintenant de décrire la
façon dont s’organise ce savoir lié aux équations de la géométrie. Une catégorie d’analyse
qui, de premier abord, semble naturelle pour la situation est celle de « discipline ».

4.1 Une discipline des équations de la géométrie ?

Plusieurs sens et plusieurs approches ont été proposés au sujet de la notion de « disci-
pline » en histoire des sciences 1. Dans cette section, j’en sélectionnerai trois.

Commençons avec la notion de discipline dans un sens tiré des travaux de M. Guntau
et H. Laitko. Comme expliqué au chapitre 2, il s’agit de « caractériser une discipline ma-
thématique par une liste d’éléments internes 2 comme son sujet d’étude, ses concepts et
théorèmes clés, sa systématisation, son système de preuves, les valeurs mathématiques pré-
conisées pour l’évaluation de ses résultats, etc. », [Goldstein & Schappacher 2007, p. 54].
La description du corpus a montré que les activités liées aux équations de la géométrie
rencontrent en partie ces caractéristiques internes, puisque nous y avons vu des énoncés
et démonstrations typiques s’en dégager 3. Il est en revanche plus difficile de parler d’un
sujet d’étude systématisé, pour trois raisons. La première de ces raisons est que, comme

1. Voir [Gauthier 2007, p. 20-23].
2. Par définition même, cette notion de discipline exclut donc les facteurs sociaux que « culture » incite

à prendre en compte.
3. Nous verrons aussi dans la suite du présent chapitre que ces énoncés et démonstrations sont parfois

associés à des « valeurs préconisées ».
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nous l’avons vu, il n’y a pas de définition claire de ce que sont les « équations de la géo-
métrie » ; le sujet lui-même n’est donc pas bien défini. La deuxième raison est qu’à part
dans l’Encyklopädie, il n’y a pas d’apparition de rubrique « équations de la géométrie »
dans les classifications de la fin du xixe siècle — même dans le Répertoire bibliographique,
l’entrée que j’avais utilisée mêlait certains exemples d’équations issus de la géométrie avec
les équations modulaires. Enfin, nous avons vu que les équations aux vingt-sept droites,
aux neuf points, etc., sont loin d’être toutes des objets d’étude propres de textes. De ce
point de vue, un des contributeurs les plus importants du corpus, Clebsch, est même un
cas extrême puisqu’il ne propose aucune publication dont le but principal est d’étudier
l’une ou l’autre de ces équations. Celles-ci n’ont donc pas toutes ce statut central que l’on
pourrait attendre dans une discipline qu’elles définiraient.

Nulle trace non plus de livres entièrement consacrés aux équations de la géométrie :
cette absence disqualifie donc également les équations de la géométrie en tant que discipline
académique 4. Ceci est d’ailleurs conforté par ce que j’ai pu trouver sur les enseignements
donnés dans la seconde moitié du xixe siècle à Göttingen. En effet, parmi les manuscrits
de cours ou de séminaires de Clebsch et de Klein que j’ai pu consulter aux archives de
Göttingen, aucun n’est complètement dévolu aux équations de la géométrie. On trouve en
revanche, de façon sporadique, certaines de ces équations dans des cours de géométrie ou
d’algèbre, ce qui entre en écho avec la présence d’équations de la géométrie en tant que
sujets de chapitres spécifiques dans les livres d’algèbre de l’époque. Comme je l’ai déjà
souligné, cet aspect indique que les équations de la géométrie font partie des exemples
censés être classiques d’équations algébriques.

L’existence de ces chapitres spécifiques pourrait faire spontanément penser à la notion
de « spécialité scientifique », ce qui m’amène à la troisième notion de discipline. Cette notion
a été proposée et théorisée par Nicholas C. Mullins lors de son étude de la formation de la
biologie moléculaire en tant que discipline, [Mullins 1972]. Dans sa démarche, Mullins prend
en compte les facteurs intellectuels tout autant que sociaux, et structure la constitution
d’une discipline en quatre étapes 5.

La première de ces étapes est celle du « groupe paradigmatique ». Il s’agit au départ d’un
certain nombre d’individus qui ne se connaissent pas nécessairement (ni personnellement,
ni scientifiquement) mais qui s’intéressent à des problèmes similaires — il n’y a ni méthode
partagée, ni même d’objet d’étude clairement identifié. Par groupes de deux ou trois,
ces individus commencent à entrer en contact via leurs intérêts communs. En travaillant
ensemble, ils systématisent ainsi peu à peu leurs interactions en développant un vocabulaire

4. Voir [Goldstein & Schappacher 2007, p. 55] et [Gauthier 2007, chap. 6].
5. Un texte de Michel Grossetti intitulé « Sur l’émergence des collectifs », et qui sera prochainement

publié dans un ouvrage collectif sur le sociologue Andrew Abbott, m’a été très éclairant sur ce sujet. La
description des quatre étapes qui suit s’en inspire en partie.
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commun et des fragments de paradigme. Ceci conduit à la deuxième étape, celle du « réseau
de communication ».

Ce développement s’intensifie encore jusqu’à la troisième étape, qui est celle du « grou-
pement » (cluster). À ce stade, « les scientifiques deviennent conscients de leurs modèles
de communication et commencent à établir des frontières autour de ceux qui travaillent
sur leur problème commun. [...] Ces groupements sont souvent identifiés par un nom à la
fois par ceux qui sont à l’intérieur et par ceux qui sont à l’extérieur du groupement 6 ». Il
y a donc la mise en place de lignes situant les uns et les autres en tant que participants ou
non aux activités scientifiques en question. Dans les termes de M. Grossetti : « On passe
du collectif latent et du réseau, structures analytiques seulement observables de l’extérieur,
à une entité collective reconnue et constituée comme telle par ses membres. »

La quatrième et dernière phase est celle de la « spécialité » : il s’agit de doter le grou-
pement de l’étape précédente d’un structure institutionnelle. Cette structure facilite la
diffusion des travaux des scientifiques, qui ont donc connaissance des recherches d’autres,
même s’ils ne sont pas en contact personnel. La structure joue également un rôle d’or-
ganisation, consistant à développer des procédures de recrutement, à soutenir des revues
spécialisées, etc.

Deux remarques principales me semblent émerger d’une confrontation du cas des équa-
tions de la géométrie avec ces quatre étapes de développement d’une discipline. La première
est que la description de Mullins semble convenir à première vue si l’on regarde seulement
la seconde étape, celle de « réseau de communication ». Comme cela a en effet été mis
en évidence et répété, il y a bien une communication scientifique entre les différents ma-
thématiciens engagés dans les travaux concernant les équations de la géométrie, qui sont
eux-mêmes pour la plupart liés de façon personnelle ou institutionnelle. Mais si l’on re-
garde le passage de l’étape 1 à l’étape 2 de Mullins, ce sont les intérêts communs pour
le sujet scientifique qui font entrer en contact les individus. Autrement dit, le sujet de la
discipline en constitution est ce qui engendre la sociabilisation. Or, pour les équations de
la géométrie, il semble que le phénomène soit en général l’inverse de cela : les relations
personnelles, mathématiques ou institutionnelles préexistantes favorisent la circulation de
et l’attrait pour ces équations.

Souvenons-nous par exemple des liens entre Clebsch et Jordan :

[L]es relations multiples [que Clebsch] avait nouées avec Camille Jordan ramenèrent
son attention vers tout ce qui se rattache aux groupements remarquables des racines
d’une équation. Réciproquement, c’est principalement à lui qu’on est redevable d’avoir
mis Camille Jordan en état de consacrer aux « équations de la géométrie » un chapitre
spécial dans son grand ouvrage 7. [Brill, Gordan et al. 1873, p. 47]

6. « A cluster forms when scientists become self-conscious about their patterns of communication and
begin to set boundaries around those who are working on their common problem. [...] These clusters are
often identified by a name by those inside and outside the cluster », [Mullins 1972, p. 69].

7. « [S]päter wurde seine Aufmerksamkeit durch die vielfachen Beziehungen, in die er mit Camille
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Cette citation laisse bien entendre que Clebsch et Jordan étaient entrés en contact avant
que les équations de la géométrie deviennent entre eux un sujet particulier. De même,
Clebsch et Klein s’étaient rencontrés d’abord pour gérer des affaires relatives au décès
de Plücker — j’ai justement mis en évidence précédemment que Klein avait commencé à
s’intéresser aux équations de la géométrie après cette rencontre. En revanche, il est plus
difficile de trancher dans le cas du lien entre Klein et Jordan. Lorsqu’il le décrit, Klein
associe fortement son voyage à Paris (avec Lie) et sa rencontre avec Jordan au Traité des
substitutions et des équations algébriques. Il est donc possible qu’il ait voulu faire cette
rencontre en raison même de son intérêt pour le chapitre des applications géométriques 8.

La confrontation de notre cas des équations de la géométrie avec la constitution de
l’étape 2 de Mullins permet ainsi de revenir sur la chronologie des événements et de penser
plus finement aux phénomènes de sociabilisation qui y sont à l’œuvre. Ainsi, les équations
de la géométrie ne sont pas des objets qui rassemblent des mathématiciens déconnectés ;
la situation est plutôt que la diffusion des problèmes et façons de faire qui y sont associés
est favorisée par des relations qui les précèdent. Cela étant dit, ajoutons qu’il n’est pas
exclu que l’intérêt commun pour ce sujet agisse comme un vecteur renforçant a posteriori
les liens sociaux préexistants.

La seconde remarque sur la structuration décrite par Mullins concerne sa troisième
étape, qu’il appelle « groupement ». Là, la description cesse d’être valable pour le corpus
des équations de la géométrie. En effet, les auteurs de ce corpus ne se donnent pas de nom
collectif ou n’établissent pas de critère d’appartenance au groupe ; bref, ils ne créent pas,
à partir des équations de la géométrie, de frontière entre eux-mêmes et un extérieur. Il n’y
a donc pas de délimitation sociale et scientifique construite en ce sens-là, et cela montre
qu’il n’y a pas de discipline des équations de la géométrie au sens de Mullins 9.

L’utilisation de la notion de « discipline » n’étant ainsi pas adéquate pour décrire l’or-
ganisation du savoir lié aux équations de la géométrie, je propose d’exploiter celle de
« culture ». Comme je l’ai souligné dans l’introduction de la thèse, trois caractéristiques res-
sortent principalement de la multitude de définitions que les anthropologues et sociologues
ont donné de « culture » : il s’agit d’un ensemble de traits (incluant valeurs et symboles)
formant un système cohérent, partagé par une pluralité de personnes et se transmettant par

Jordan getreten war, immer wieder auf Alles, was mit merkwürdigen Gruppirungen von Wurzeln einer
Gleichung im Zusammenhange steht, hingelenkt. Umgekehrt hat man es ihm hauptsächlich zu verdanken,
wenn Camille Jordan im Stande war, in seinem grossen Werke (Traité des substitutions et des équations
algébriques. Paris, Gauthier-Villars 1870) ein besonderes Capitel den „Gleichungen der Geometrie“ zu
widmen. » La traduction est celle de [Jordan 1881, p. 33].

8. Les travaux historiques cités plus haut à ce sujet ne permettent pas d’élucider ce point avec précision.
9. Mullins fait remarquer qu’en général, « beaucoup de réseaux de communication s’éteignent avant

qu’ils aient la chance de former des groupements », [Mullins 1972, p. 78]. Parmi les facteurs qu’il propose
pour expliquer cette instabilité, Mullins met en avant l’importance d’un leader charismatique pour le
groupe, en défaut duquel le réseau peut justement disparaître. La fin de la forte concentration des activités
des équations de la géométrie se situant vers 1872, une hypothèse est de relier cela à la mort de Clebsch,
survenue en novembre 1872.
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apprentissage. Ces caractéristiques se trouvent présentes dans la définition du sociologue
Guy Rocher sur laquelle je me baserai ici :

La culture [est] un ensemble lié de manières de penser, de sentir et d’agir plus ou moins
formalisées qui, étant apprises et partagées par une pluralité de personnes, servent,
d’une manière à la fois objective et symbolique, à constituer ces personnes en une
collectivité particulière et distincte. [Rocher 1968, p. 111]

Remarquons d’emblée que la dernière partie de cette définition, qui donne une fonction
constitutive à une culture, ne fait pas partie des caractéristiques faisant l’objet d’un consen-
sus parmi les anthropologues et les sociologues. J’en discuterai autour des équations de la
géométrie à la fin du chapitre.

Comme l’explique G. Rocher lui-même, la formule « manières de penser, de sentir et
d’agir » est empruntée à Émile Durkheim. Elle « présente l’avantage de souligner que les
modèles, valeurs, symboles qui composent la culture incluent les connaissances, les idées,
la pensée [... et] que la culture est action, qu’elle est d’abord et avant tout vécue par des
personnes ; c’est à partir de l’observation de cette action que l’on peut inférer l’existence de
la culture et en tracer les contours », [Rocher 1968, p. 112]. Pour notre propos d’histoire des
mathématiques, il est bien entendu impossible d’observer cette action in situ, à la manière
d’un ethnologue. L’étude se fait donc à partir des traces matérielles de cette action qui ont
survécu au temps — textes publiés ou non, dessins, instruments de mesure ou de calculs,
modèles de surfaces, etc. — et qui informent d’une manière ou d’une autre sur les idées
mathématiques elles-mêmes, les façons de faire des mathématiciens, leurs sources, leurs
influences ou encore leurs valeurs. Pour le corpus des équations de la géométrie, seuls des
textes écrits sont à disposition. Il s’agit donc d’en mener un examen précis afin d’en dégager
des traits caractéristiques qui permettent « d’observer l’action » et d’en « inférer l’existence
de la culture ».

Pour cela, je vais soumettre les textes du corpus à une analyse consistant en la dis-
section des équations de la géométrie selon des composantes techniques précises, relevant
des processus de reconnaissance d’une part et de résolution de ces équations d’autre part.
Cette démarche analytique, nécessaire pour pouvoir décrire le savoir en jeu, aura pour effet
de donner une image disloquée de la situation. Je ferai ainsi apparaître d’abord séparément
des procédés techniques, que l’on pourrait qualifier de « pratiques ». Mais comme je l’ai
expliqué dans l’introduction de la thèse, les pratiques ne sont qu’un des aspects qui sont à
prendre en compte dans une culture. Je vais en effet montrer qu’elles sont empreintes de
valeurs et qu’elles font partie d’un ensemble intriqué et cohérent de traits caractéristiques
dont l’organisation est celle d’un système culturel.
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4.2 Reconnaître les équations de la géométrie

Dans cette section sont mis en évidence les processus de reconnaissance identitaire des
équations de la géométrie par les auteurs du corpus. Pour cela, trois points sont étudiés :
les désignations de ces équations, la nature de leurs racines et les identifications faites entre
différentes équations.

4.2.1 Désignations

En regroupant par familles lexicales les façons qu’ont les auteurs du corpus de désigner
les équations de la géométrie, neuf types de désignations apparaissent 10.

Quatre familles de désignations se distinguent quantitativement parmi les neuf. La pre-
mière est celle utilisant le verbe « déterminer » ou le nom « détermination » (en allemand,
bestimmen et Bestimmung 11), comme dans « l’équation du sixième degré par laquelle sont
déterminées les six tangentes 12 », [Kummer 1864] ou l’« équation du quatrième degré de
détermination des groupes de six triangles associés 13 », [Klein 1871b, p. 355]. Cette série
représente 22% de l’ensemble des désignations relevées. Avec 16% du total pour chacune,
viennent ensuite à égalité d’une part la famille liant syntaxiquement équations et objets
géométriques par la préposition « à », se manifestant dans les faits par l’article contracté
« aux 14 », comme dans « l’équation aux vingt-sept droites », [Jordan 1870b, p. 317] et
d’autre part celle centrée autour du verbe « dépendre » (abhängen), comme dans « l’équa-
tion du seizième degré dont dépendent les seize droites de la surface 15 », [Clebsch 1868,
p. 145]. Arrive enfin, avec 13% du tout, la famille employant le verbe « séparer » (trennen)
avec par exemple « l’équation du sixième degré [...] par laquelle les six tangentes doubles
[...] sont séparées les unes des autres 16 », [Clebsch 1871b, p. 341].

Les cinq autres familles de désignations contribuent chacune à moins de 10% du total.
Il y a ainsi celles qui lient directement les racines d’une équation à des objets géométriques,
comme dans « la réduite du quarantième degré qui a pour racines nos ennéaèdres », [Jor-

10. Pour toutes les statistiques qui viennent, j’ai exclu de mon relevé toutes les désignations qui prove-
naient des publications ayant tout juste précédé le Traité des substitutions et des équations algébriques de
Jordan, [Jordan 1869a ; Jordan 1869b ; Jordan 1869c ; Jordan 1869d].
11. Sauf ceux de Jordan et [Klein 1888] qui sont écrits en français, tous les textes du corpus sont en langue

allemande. L’utilisation par Jordan d’un certain nombre de désignations différentes (cf. infra, figure 4.1)
m’a été utile pour les traductions.
12. « Die Gleichung sechsten Grades, durch welche [...] die sechs Tangenten bestimmt werden ».
13. « [Die] Gleichung vom 4ten Grade zur Bestimmung der Gruppen von je 6 zusammengehörigen Drei-

ecken ».
14. C’est par ce biais que j’ai traduit les expressions comme « die Doppeltangentengleichung » : « l’équa-

tion aux tangentes doubles », [Weber 1896, p. 380].
15. « Die Gleichung sechzehnten Grades, von welcher die sechzehn Geraden der Oberfläche abhängen. »

Remarquer que certaines des désignations peuvent appartenir à deux des familles présentées ici, comme :
« Die Gleichung sechzehnten Grades, von der die Bestimmung der Singularitäten der Kummerschen Fläche
vierten Grades mit 16 Knotenpunkten abhängt », [Klein 1871b, p. 357]. Dans de tels cas, j’ai compté une
occurrence dans chaque famille correspondante.
16. « Die Gleichung 6ten [...], durch welche die 6 Doppeltangenten [...] von einander getrennt werden. »
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dan 1870a, p. 328], ce qui représente 9% de l’ensemble. Ensuite, des désignations utilisant
le verbe « donner » (geben) forment 8% du total, avec par exemple « une équation du
cinquième degré dont les racines donnent cinq cônes 17 », [Kummer 1863, p. 335]. Pour
6% du tout, d’autres désignations sont des périphrases impliquant des « problèmes » : « Le
problème des points d’inflexion d’une courbe du troisième ordre conduit [...] à une équation
du neuvième degré 18 », [Hesse 1847, p. 202]. Avec la même proportion de 6%, certaines
désignations se utilisent le verbe « trouver » (finden), comme pour : « les tangentes com-
munes [...] sont trouvées par des équations résolubles algébriquement 19 », [Clebsch 1871b,
p. 303]. Pour finir, quelques équations de la géométrie se distinguent par une désignation
les présentant en tant que « résolvantes », sans pour autant faire appel aux verbes ou noms
listés ci-dessus, et comptent pour 4% du total. Pour illustrer cette dernière famille : « les
15 [droites] sont l’image d’une résolvante du quinzième degré 20 », [Klein 1871b, p. 357].

Ces familles étant établies, des statistiques auteur par auteur peuvent donner une idée
de la diversité lexicale dans leurs textes respectifs. Je présente en figure 4.1 les diagrammes
correspondants pour les trois contributeurs que sont Clebsch, Jordan et Klein ; les chiffres
pour les autres se trouvent dans la table 4.1.

Dét. Dép. Don. Trouv. Sép. Aux Prob. Rac. Résolv. Total

Hesse 2 2

Kummer 2 1 3

Clebsch 1 4 5 6 12 1 1 30

Jordan 4 7 2 1 9 5 28

Klein 11 3 5 2 4 25

Lie 2 2

Noether 4 2 1 5

Netto 1 1

Maschke 1 1

Weber 1 1

Total 22 16 8 6 13 16 6 9 4 100

Table 4.1 – Les intitulés des colonnes sont respectivement : Déterminer, Dépendre,
Donner, Trouver, Séparer, Aux, Problèmes, Racines et Résolvantes.

Sans entrer dans une description détaillée de ces diagrammes, on pourra remarquer le

17. « Eine Gleichung fünften Grades [...], deren fünf Wurzeln fünf Kegelflächen geben. » J’ai ajouté à
cette famille les quelques désignations utilisant des verbes comme « délivrer » (liefern).
18. « Das Problem der Wendepunkte einer Curve dritter Ordnung [...] führt, wenn man eine Variable

eliminirt, auf eine Gleichung neunten Grades mit einer Unbekannten, deren Wurzeln dieselbe Eigenschaft
haben, welche ich zwischen den Wurzeln der im Vorhergehenden behandelten Gleichung [...] annahm. »
19. « Die gemeinschaftlichen Tangenten [...] werden durch alebraisch lösbare Gleichungen gefunden. »
20. « Die 15 Directricenpaare sind das Bild einer Resolvente 15ten Grades. »
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2

(a) Clebsch

2

(b) Jordan

2

(c) Klein

Figure 4.1 – Répartition des désignations chez Clebsch, Jordan et Klein.
Légende : � Déterminer – � Dépendre – � Donner – � Trouver – � Séparer –
� Aux – � Problème – � Racines – � Résolvantes.

relatif éclectisme dont Clebsch, Jordan et Klein font preuve, signe possible que les diffé-
rentes désignations sont équivalentes pour chacun d’eux, et donc que leur variété reflète
davantage des variations du langage naturel plutôt que des différences mathématiques
propres.

Il est également possible de regarder comment se répartissent les auteurs pour chacune
des familles de désignations qui ont été décrites précédemment. Ainsi, pour les deux princi-
pales, on obtient les diagrammes de la figure 4.2. Les répartitions sont ici peu homogènes,

1

(a) Déterminer

1

(b) Aux

Figure 4.2 – Répartition des auteurs pour les deux familles «Déterminer » et «Aux ».
Légende : � Kummer – � Clebsch – � Jordan – � Klein – � Lie – � Maschke –
� Noether – � Weber.

même en tenant compte de la forte participation globale de Clebsch, Jordan et Klein : par
exemple, Clebsch et Jordan utilisent les désignations « déterminer » à peu près autant de
fois (en nombres absolus) que Kummer et Noether. À l’opposé, Clebsch n’utilise jamais de
désignation « aux », et apparaît de ce fait assez peu dans ces deux diagrammes.

Pour pallier aux effets de petit nombre, mais aussi prendre en compte leur possible
synonymie, j’ai enfin créé des grandes catégories de désignations en réunissant les familles
lexicales qui me semblaient les plus apparentées. J’ai ainsi réuni les familles « Détermi-
ner », « Dépendre », « Donner » et « Trouver », qui regroupent des désignations indiquant
un processus d’obtention de la connaissance des objets associés : il s’agit de telle équation
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dont la résolution « détermine » tels objets, ou permet de les trouver « trouver », etc. No-
ter que j’y ai pas joint la famille « Séparer » car les désignations de cette famille-là me
paraissaient davantage renvoyer à une sélection d’un des objets associés à une équation
de la géométrie plutôt qu’à la connaissance de tous ces objets dans leur ensemble — ne
s’accordant d’ailleurs pas avec les autres familles, celle-ci est restée seule à l’issue de ma
création de grandes catégories 21. En revanche, j’ai regroupé les familles « Aux » et « Ra-
cines », desquelles sont issues des désignations mettant l’accent sur les objets géométriques
eux-mêmes, sans utilisation de verbe particulier.

Les trois principales catégories obtenues sont « Déterminer / Dépendre / Donner /
Trouver », « Aux / Racines » et « Séparer » ; elles représentent respectivement 49%, 24%
et 14% du total. Les résultats se trouvent sur la figure 4.3. On remarque une utilisation

1

(a) Déterminer / Dépendre /
Donner / Trouver

1

(b) Aux / Racines

2

(c) Séparer

Figure 4.3 – Répartition des auteurs pour les trois catégories « Déterminer / Dé-
pendre / Donner / Trouver », « Aux / Racines » et « Séparer ».
Légende : � Hesse – � Kummer – � Clebsch – � Jordan – � Klein – � Lie –
� Maschke – � Netto – � Noether – � Weber.

partagée des deux premières catégories de désignations, pour lesquelles tous les auteurs du
corpus apparaissent. Compte tenu de la forte prédominance en terme de nombres absolus
d’occurrences pour Clebsch, Jordan et Klein, on voit même que, au niveau des proportions,
tous les auteurs se répartissent à peu près équitablement dans la première catégorie. Au
contraire, la troisième catégorie est une spécificité clebschienne : Jordan y apparaît car son
utilisation du verbe « séparer » a été relevée dans une traduction qu’il fait de Clebsch dans
le Traité des substitutions et des équations algébriques, [Jordan 1870b, p. 309].

Il est intéressant de noter que, bien qu’étant donc largement partagées, presque toutes
les désignations sont mathématiquement flottantes, au sens où les significations précises des
verbes et noms utilisés ne sont jamais données. Pourtant, l’usage très majoritaire d’articles
définis dans ces désignations suggère une compréhension et une reconnaissance identitaire
des équations loin d’être ambiguës. Autrement dit, tout se passe comme si tous les auteurs
savent bien ce que sont « l ’équation aux vingt-sept droites », « l ’équation dont dépendent
les cinq cônes », « la réduite qui a pour racines nos ennéaèdres », etc.

21. De même, je n’ai joint les familles « Problème » et « Résolvantes » à aucune autre.
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On pourrait alors imaginer que toutes les expressions utilisées font implicitement réfé-
rence au seul procédé général de formation des équations de la géométrie présent dans le
corpus — c’est celui décrit dans le Traité des substitutions et des équations algébriques et
que j’ai présenté au début du chapitre précédent —, dont la dernière phrase peut s’inter-
préter comme une définition de « déterminer » :

L’un des problèmes les plus fréquents de la géométrie analytique est de déterminer
quels sont les points, ou bien les lignes ou surfaces d’une espèce donnée, qui satisfont
à certaines conditions. Lorsque le nombre des solutions est limité, les coordonnées
du point cherché (ou les paramètres que renferme l’équation des lignes ou des sur-
faces cherchées) sont déterminées par un système d’équations algébriques A,B, . . . en
nombre égal à celui des inconnues x, y, . . . Éliminons toutes les inconnues, sauf une
seule, x : on sait que le degré de l’équation finale X indiquera le nombre des solutions
du problème : et si les racines de cette équation sont inégales, soit x0 l’une d’elles : on
aura les valeurs correspondantes de y0, . . . exprimées en fonction rationnelle de x0, en
substituant x0 à la place de x dans les équations A,B, . . ., et en cherchant le système
des solutions communes à ces équations.

Les points, lignes ou surfaces cherchés sont donc déterminés lorsqu’on a résolu l’équa-
tionX, et correspondent respectivement à ses diverses racines x0, x1, . . . [Jordan 1870b,
p. 301]

«Déterminer » des objets géométriques signifierait donc résoudre l’équation de la géométrie
correspondante. Mais je vais à présent montrer que ces équations ne sont elles-mêmes
presque jamais bien définies : cela implique que la remarque de Jordan ne peut pas être
considérée comme une explication tout à fait précise du sens de « déterminer ».

4.2.2 Racines et objets correspondants ; (non) formation des équations

Parmi les équations de la géométrie du corpus, un petit nombre seulement a pour
caractéristique d’avoir des racines clairement identifiées, que ce soit dans leur désignation
ou plus généralement dans le texte environnant. On trouve notamment l’équation dont
les racines sont les abscisses ou les ordonnées des points d’inflexion des courbes cubiques
(« l’équation dont dépendent les points d’inflexion, qui a par exemple les abscisses de
ces points comme racines », [Weber 1896, p. 342]) ou l’équation dont les racines sont
des paramètres particuliers d’un certain faisceau de surfaces (voir la citation de Kummer
donnée plus bas). Si dans ces exemples, les racines sont des grandeurs scalaires paramétrant
des objets géométriques, il existe d’autres exemples pour lesquels les racines sont, dans la
désignation même de l’équation, les objets eux-mêmes, comme c’est de la cas pour « la
réduite du quarantième degré qui a pour racines [les quarante] ennéaèdres », [Jordan 1870a,
p. 328].

Cette incarnation directe des racines en objets géométriques évite donc toute explici-
tation, toute mention des grandeurs pouvant éventuellement paramétrer ces objets. Ces
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lacunes sont en fait caractéristiques des équations de la géométrie : aussi variés que soient
les objets régis par ces équations, seule la poignée de cas évoquée à l’instant indique ce que
doivent être les racines. Or, ces objets peuvent être des points, des courbes, des surfaces,
des systèmes de points, de courbes ou de surfaces — donnons quelques exemples en vrac
pour illustrer cette variété : points d’inflexion, tangentes doubles, droites incluses dans
des surfaces, tétraèdres et hyperboloïdes, systèmes de triangles, systèmes de douze droites
ayant des relations d’incidence prescrites, triplets de couples de tétraèdres, etc. Les gran-
deurs pouvant paramétrer ces divers objets ne sont jamais précisées, ni même évoquées par
les auteurs du corpus. L’attention n’est donc pas du tout portée sur la réalisation concrète
des racines des équations de la géométrie ; les racines sont les triangles, les ennéaèdres, etc.

Ce flottement en rejoint un autre, concernant la formation des équations. Rares sont
en effet les équations de la géométrie pour lesquelles un procédé de formation est décrit.
Lorsque cela arrive, ces procédés peuvent être de deux types : ceux faisant appel à une
élimination d’inconnues dans un système d’équations polynomiales, et ceux consistant à
exprimer des conditions de dégénérescence de faisceaux de courbes ou de surfaces.

En ce qui concerne les éliminations, on notera qu’elles ne sont jamais mises en œuvre ex-
plicitement. Ainsi, dans le mémoire de Hesse lié aux courbes cubiques, [Hesse 1847], celui-ci
indique que l’équation aux neuf points d’inflexion d’une cubique s’obtient par élimination
d’une variable entre l’équation de la cubique et celle de ce qu’on appelle aujourd’hui sa
courbe hessienne. Mais il se contente de donner une notation w = 0 pour l’équation ré-
sultante, sans en proposer une écriture développée. Un autre cas intéressant est celui de
l’équation aux seize droites des surfaces quartiques à conique double dans l’article corres-
pondant de Clebsch, [Clebsch 1868]. Ce dernier y cherche les équations entre lesquelles
éliminer des inconnues pour obtenir l’équation aux seize droites, mais cette recherche se
fait longtemps après que Clebsch énonce des résultats sur cette dernière équation. L’éli-
mination lui sert à prouver qu’il y a bien seize droites sur la surface : le fait de ne pas
avoir formé l’équation ne pose donc pas de problème pour l’étudier a priori au début du
texte. Reste le procédé général de formation des équations de la géométrie donné dans le
Traité des substitutions et des équations algébriques. Comme cela vient d’être décrit, on
ne trouve que très peu de traces d’indications explicites sur de quelconques éliminations à
faire pour obtenir les équations de la géométrie et donc d’applications de ce procédé gé-
néral. En fait, la démarche décrite par Jordan reste très floue sur trois points : le système
d’équations représentant les objets d’une situation géométrique donnée 22, les paramètres
y entrant en jeu, et le processus d’élimination lui-même. Comme j’ai déjà eu l’occasion
de le souligner, différents choix pour ces données seraient possibles a priori et pourraient

22. À part dans les rares cas déjà mis avant, aucune mention de tels systèmes ne peut se trouver dans les
textes du corpus. On peut s’imaginer la complexité de savoir exhiber un système d’équations représentant
par exemple un double-six, ensemble de douze droites de l’espace définies par leur inclusion dans une
surface cubique, mais aussi des relations d’incidence et de non-incidence entre elles.
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donner des équations finales différentes 23.
Quelques rares équations de la géométrie sont définies par des conditions de dégénéres-

cence de faisceaux. Une telle condition est évoquée dans l’article de Kummer sur les surfaces
quartiques contenant des coniques, [Kummer 1863] : « la condition, aisément développable,
que ψ+λφ+λ2p2 = 0 représente un cône conduit à une équation du cinquième degré pour
la constante λ, dont les cinq racines donnent cinq cônes 24 ». Si Kummer n’explicite pas la
condition en question, Clebsch le fait dans son article sur les surfaces quartiques à conique
double, et il obtient une forme explicite de l’équation en question 25 :

δ + λ2 =
a2

α+ λ2
+

b2

β + λ
+

c2

γ + λ
,

où λ est l’inconnue et où a, b, c, α, β, γ et δ sont des paramètres entrant dans l’équation
de la surface quartique. Cette forme explicite ne semble toutefois pas être importante pour
Clebsch : elle intervient au beau milieu de ses calculs, ne consiste pas un but en soi dans
l’article en question et n’est pas liée par exemple à l’équation aux seize droites.

En fait, la question de la formation explicite d’équations associées à des objets d’une
configuration géométrique semble plutôt être reliée à la théorie des formes et des invariants.
Ainsi, dans l’article de Maschke de notre corpus, il existe une équation, sous forme d’un
polynôme développé, liée aux quatre triangles d’inflexion d’une courbe cubique 26 :

Pour le faisceau χf+λ∆ = 0, on obtient les quatre valeurs χ : λ qui donnent les quatre
courbes du faisceau se scindant en trois droites (les quatre triangles d’inflexion) à partir
de l’équation : G(χ, λ) = χ4 − Sχ2λ2 − 4

3Tχλ
3 − 1

12S
2λ4 = 0. [Maschke 1889, p. 328]

Dans cette citation, ∆, S et T sont des invariants associés à la forme binaire représentant la
courbe cubique en question. Pour le résultat qui y est exprimé, Maschke fait principalement
référence aux Vorlesungen über Geometrie de Clebsch, éditées de façon posthume par
Ferdinand Lindemann, [Clebsch 1876] ; l’équation aux quatre triangles y est effectivement
calculée dans un cadre de théorie des invariants. L’écriture de l’équation donnant les quatre
triangles d’inflexion avait d’ailleurs déjà été trouvée auparavant (dans les années 1850) par
Siegfried Aronhold dans des travaux de théorie des formes :

Il était réservé aux progrès de la nouvelle algèbre, créée par Sylvester, Cayley et
Salmon, et en particulier les belles découvertes d’Aronhold de former réellement toutes

23. L’ensemble « équations de la géométrie » n’est donc pas mis en rapport avec un autre ensemble
préétabli. De ce point de vue, le Traité ne possède pas, sur ce sujet, le statut de texte inaugural au sens
d’Alain Herreman. Voir [Herreman 2012 ; Herreman 2013].
24. « Die leicht zu entwickelnde Bedingung, dass φ+λφ+λ2p2 = 0 eine Kegelfläche darstelle [sic], führt

auf eine Gleichung fünften Grades für die Constante λ, deren fünf Wurzeln fünf Kegelflächen geben ».
25. Voir [Clebsch 1868, p. 166].
26. Je rappelle que ces triangles sont ceux que l’on peut former à partir des douze droites joignant trois

à trois les neuf points d’inflexion d’une courbe cubique, de sorte que chacun de ces triangles contienne
l’ensemble des neuf points. « [...], so erhält man für das Büschel χf + λ∆ = 0 diejenigen vier Werthe von
χ : λ, welche die vier in drei gerade Linien zerfallenden Curven des Büschels (die vier Wendedreiecke)
ergeben, aus der Gleichung: G(χ, λ) = χ4 − Sχ2λ2 − 4

3
Tχλ3 − 1

12
S2λ4 = 0. »
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les équations résolvantes [de l’équation aux neuf points] et ainsi de régler le problème 27.
[Clebsch 1872b, p. 22]

La recherche et l’utilisation d’écritures explicites d’équations de la géométrie sont ici plutôt
reliées à la théorie des formes et des invariants par Clebsch et n’entrent donc pas dans le
cadre des théories des équations et des substitutions. Le fait que ni l’Encyklopädie ni le
Répertoire bibliographique ne pointent directement vers des travaux de théorie des formes
confirme cela : dans notre corpus, le centre d’attention est porté ailleurs.

Bilan : le vague des équations

La question de la réalisation des équations de la géométrie est donc quasi systémati-
quement passée sous silence : ni les paramètres censés représenter les objets géométriques,
ni les équations entre lesquelles procéder à une élimination, ni l’élimination elle-même ne
sont des aspects que les auteurs du corpus cherchent à expliciter ou même à mentionner.
Ainsi, la description faite par Jordan d’un procédé général de formation des équations de
la géométrie semble plutôt être une justification qu’il convient de placer dans un ouvrage
de synthèse tel que le Traité des substitutions et de équations algébriques, sans qu’elle soit
destinée à être appliquée dans la pratique, au cas par cas. Partant, dire avec Jordan que
« déterminer » des objets géométriques consiste à résoudre l’équation associée n’est pas une
définition robuste : en effet, donner un sens précis à « déterminer » reviendrait à connaître
précisément ce qu’est cette équation, ou au moins ce que sont ses racines.

Je pense donc que les désignations utilisant ces verbes comme « déterminer » ou « dé-
pendre » renvoient à des équations qui pourraient être formées d’une certaine façon, sans
que cela soit destiné à être effectivement réalisé. La focale est plutôt mise sur les objets
géométriques correspondant aux racines, comme l’attestent les cas d’incarnation directe
des racines en objets géométriques. Dès lors, il importe peu de savoir précisément ce que
les désignations signifient : elles permettent de pointer vers des équations qui restent la
plupart du temps sans écriture explicite, quelques fois uniquement symbolisées par des
lettres génériques égalées ou non à zéro, comme 28 X ou w = 0. Du reste, leur imprécision
mathématique n’entrave pas leur circulation entre les différents auteurs du corpus ; elles
ne sont sujettes à aucune discussion dans les textes du corpus et ne donnent pas lieu à de
quelconques incompréhensions ou quiproquos.

La variété des objets régis par les équations de la géométrie et leur lien direct (sans
explicitation de paramètres) avec les racines, l’emploi répandu d’articles définis et de verbes
au sens imprécis pour désigner les équations, l’absence de questionnement sur la façon de

27. « Den Fortschritten der von Sylvester, Cayley und Salmon geschaffenen neuern Algebra, und zwar
insbesondere den schönen Entdeckungen Aronholds, war es vorbehalten, alle zu lösenden Gleichungen
wirklich zu bilden, und damit das Problem zu erledigen. »
28. L’emploi de la lettre capitale X pour désigner certaines équations n’est d’ailleurs pas spécifique aux

équations de la géométrie : on pourrait interpréter cet usage commun comme une marque d’une théorie
des équations au xixe siècle.
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les réaliser concrètement : tout cela plaide pour une compréhension tacite et partagée des
équations de la géométrie. En effet, ces indices suggèrent l’existence de « connaissances
tacites relationnelles » au sens de Harry Collins. Il s’agit de connaissances qui pourraient
être explicitées — si les équations de la géométrie ne sont pas formées explicitement, il
existe toutefois des descriptions de procédures permettant de le faire — mais qui ne le sont
pas en raison d’une façon de communiquer propre à des auteurs dans un contexte local
donné 29.

L’étude de processus d’identifications d’équations de la géométrie va permettre de pré-
ciser leur compréhension tacite et partagée au sein du corpus, en montrant que la nature des
objets régis n’y est pas centrale, au contraire des relations d’incidence qu’ils entretiennent
entre eux.

4.2.3 Identifications d’équations

Par « identifications », j’entends tout processus de la part des auteurs du corpus consis-
tant à dire que deux équations se rapportant à des objets géométriques différents sont en
fait les mêmes 30. Pour examiner cette question, deux exemples sont détaillés dans cette
sous-section.

Le premier concerne la situation de la surface de Kummer. Je rappelle que dans son
texte du corpus de 1864, [Kummer 1864], ce dernier avait montré qu’il existe des surfaces
d’ordre quatre possédant exactement seize points singuliers, soit le nombre maximal pour
de telles surfaces : ce sont ces surfaces qui ont été baptisées par la suite « surfaces de Kum-
mer ». Kummer avait en outre montré que les seize points singuliers d’une telle surface
sont situés six à six sur seize plans tangents singuliers à la surface, et que réciproquement,
ces seize plans se coupent six à six en les seize points singuliers. Il n’avait toutefois pas
étudié d’équation de la géométrie correspondante, et c’est Jordan qui avait publié en pre-
mier à ce sujet, dans deux articles d’abord, [Jordan 1869c ; Jordan 1869d], puis dans le
Traité, [Jordan 1870b] — dans chacun de ces textes, Jordan avait rappelé les propriétés
d’incidence entre les seize points et les seize droites. Or, il est intéressant de remarquer
que l’équation géométrique étudiée dans ces références de Jordan n’est pas à chaque fois
la même : dans [Jordan 1869c], il s’agit de « l’équation aux seize points singuliers », alors
que dans [Jordan 1869d] et [Jordan 1870b], Jordan parle de « l’équation du seizième degré

29. « Weak, or relational, tacit knowledge [...] is knowledge that could be made explicit [...] but is
not made explicit for reasons that touch on no deep principles that have to do with either the nature
and location of knowledge or the way humans are made. [...] Relational tacit knowledge is just a matter
of how particular people relate to each other—either because of their individual propensities or those
they acquire from the local social groups to which they belong. » [Collins 2010, p. 86]. La problématique
des connaissances tacites en mathématiques a été étudiée lors d’une rencontre à Oberwolfach en 2012.
Voir [Archibald et al. 2012], et en particulier (p. 134) : « [Tacit knowledge includes] the case of descriptions
which are left incomplete because their authors assume, or know by experience, that their readers share a
certain knowledge with them. ».
30. Il ne s’agit donc pas de questionner les différentes identités d’une même équation comme celles d’un

théorème à des époques et dans des lieux différents.
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dont dépendent les seize plans singuliers ».
Les résultats que donne Jordan sur ces équations sont pourtant identiques : elles se

résolvent toutes deux grâce à une équation générale du sixième degré et des équations
quadratiques. Quant aux preuves, elles sont les mêmes à échange près des mots « points »
et « plans ». Ainsi, dans [Jordan 1869c], les seize points singuliers (et les racines cor-
respondantes) sont notés a, b, c . . . et Jordan introduit une fonction algébrique des ra-
cines ϕ = abcdef + · · · dans laquelle chaque terme correspond à six points appartement
à un même plan tangent singulier — comme dans les autres situations géométriques, Jor-
dan utilise de telles fonctions ϕ en montrant que les substitutions des racines qui les
laissent invariantes sont les substitutions formant le groupe de l’équation associée. Au
contraire, dans [Jordan 1869d] et [Jordan 1870b], ce sont les seize plans singuliers qui sont
notés a, b, c . . . et les termes de ϕ correspondent chacun à six plans s’intersectant en un des
points singuliers.

J’ajoute de plus que le paragraphe correspondant de [Jordan 1870b] est intitulé « Points
singuliers de la surface de M. Kummer », et que lorsque Jordan évoque ces travaux dans
sa notice destinée à sa candidature à l’Académie des Sciences, il y parle de l’équation aux
seize points 31.

Cet amalgame entre points singuliers et plans singuliers n’est pas, me semble-t-il, une
simple erreur éditoriale. Il indique plutôt que Jordan conçoit comme identiques l’équation
aux seize points et celle aux seize plans. Cette identité, si elle n’est ni expliquée ni même
explicitée, provient de l’identité des relations d’incidence mutuelles entre les seize points
d’une part et les seize plans d’autre part : comme décrit précédemment, une manifesta-
tion de cette identité est la similitude des fonctions ϕ associées et donc des groupes de
substitutions correspondants. Je signale encore que dans son article sur les complexes de
droites, [Klein 1870], Klein fait référence à Jordan lorsqu’il retrouve le fait que « la déter-
mination des singularités d’une surface de Kummer dépend de la résolution d’une équation
du sixième degré et d’équations quadratiques supplémentaires 32 ». Or, son usage du terme
« singularités » est ici ambigu, et donc particulièrement intéressant : juste avant d’énon-
cer ce résultat, Klein parle simultanément des seize points singuliers et des seize plans
singuliers, de sorte que son énoncé pourrait concerner indifféremment les uns ou les autres.

Passons maintenant au second exemple annoncé, qui concerne les vingt-sept droites
des surfaces cubiques. Nous avons vu que dans une note publiée en 1870, [Jordan 1870a],
Jordan était revenu sur le résultat obtenu dans le Traité, liant les vingt-sept droites aux
fonctions hyperelliptiques. Rappelons aussi qu’en 1856, Steiner avait défini des trièdres
particuliers, dont les propriétés avaient été réécrites dans le Traité :

Si deux [des quarante-cinq] triangles abc, a′b′c′ n’ont aucun côté commun 33, on peut

31. [Jordan 1881, p. 32].
32. « Die Bestimmung der Singularitäten einer Kummer’schen Flächen hängt von der Auflösung einer

Gleichung sechsten Grades und mehrerer quadratischer Gleichungen ab. » [Klein 1870, p. 216].
33. Ici, les lettres a, b, c, . . . sont les notations des droites qui sont les côtés des triangles.
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leur associer un troisième a′′b′′c′′ tel, que les côtés correspondants se coupent, et
forment trois nouveaux triangles aa′a′′, bb′b′′, cc′c′′. [Jordan 1870b, p. 316]

Maintenant, dans la note de 1870 sus-citée, Jordan utilise ces trièdres pour définir de
nouveaux objets : des « ennéaèdres », c’est-à-dire des systèmes particuliers formés de neuf
triangles. Il énonce 34 :

On vérifiera aisément que l’ennéaèdre formé par [ces neuf triangles] jouit des propriétés
suivantes :

1o Ces triangles n’ont aucune droite commune ;

2o Soient α, β deux quelconques d’entre eux ; le triangle γ qui, combiné avec α
et β forme un trièdre (défini à la façon de Steiner), fera lui-même partie de
l’ennéaèdre.

Il résulte évidemment de ces propriétés que, l’ennéaèdre étant supposé connu, les
neuf triangles dans lesquels il se décompose ne dépendront plus que d’une équation
hessienne. [Jordan 1870a, p. 327]

L’expression « équation hessienne » renvoie à la classe d’équations que Hesse avait étudiée
dans [Hesse 1847], c’est-à-dire la classe d’équations de degré 9 dont les racines x1, . . . , x9

sont liées trois par trois par des relations rationnelles et symétriques avec la propriété sup-
plémentaire suivante : si xk = θ(xi, xj) est une telle relation, alors on a aussi xi = θ(xj , xk)

et xj = θ(xk, xi). Pour Hesse, ces équations n’étaient pas géométriques au départ ; c’est
seulement dans un second temps qu’il avait montré que l’équation aux neuf points d’in-
flexion était de ce type. Or, en 1870, Luigi Cremona écrit à Jordan, au sujet des ennéaèdres :

Ces systèmes de 9 plans [ont] entr’eux les mêmes relations que les racines d’une équa-
tion Hessienne. Ce n’est pas sans intérêt de voir dans ce système de 9 plans un type
géométrique qui correspond à une équation hessienne et dont les 9 éléments peuvent
être tous réels ; tandis que dans la question des points d’inflexion d’une cubique plane,
il y a toujours six points imaginaires 35.

Les relations dont parle Cremona sont celles données par Jordan dans le 2o de la citation
précédente 36. Cela souligne le fait que « équation hessienne » ne renvoie pas à l’équation
aux neuf points d’inflexion, mais à la classe d’équations de degré 9 étudiée par Hesse en
1847 37. Ainsi se dessine l’idée d’une équation hessienne pouvant s’incarner géométrique-
ment de deux façons différentes, pourvu que les objets géométriques en question entre-

34. J’ai employé ici les lettres α, β, γ en lieu et place des a, b, c de Jordan pour éviter la confusion avec
la citation précédente.
35. Extrait d’une lettre de Cremona à Jordan datée du 9 février 1870 et reproduite dans [Jordan Œuvres

4, p. 598]. D’autres extraits de cette même lettre ont été cités et discutés au chapitre 2.
36. Le 1o sert en fait à légitimer le 2o , puisqu’il indique que deux triangles de l’ennéaèdre peuvent

toujours être complétés en un trièdre de Steiner.
37. Une confirmation de cette assertion se trouve dans la notice nécrologique de Plücker écrite par

Clebsch : « [diese] Classe algebraisch lösbarer Gleichungen 9. Grades, welche Hesse’s Namen führen, und
für welche die Wendepuncte das erste Beispiel bilden », [Clebsch 1872b, p. 22].



4.3. RÉSOLUTIONS DES ÉQUATIONS DE LA GÉOMÉTRIE 239

tiennent entre eux les mêmes relations d’incidence : tout comme deux triangles de l’ennéa-
èdre sont toujours associés (par les trièdres de Steiner) à un troisième qui fait partie de cet
ennéaèdre, deux points d’inflexion d’une cubique sont toujours associés (par alignement)
à un troisième point d’inflexion de la cubique 38.

Ces deux exemples mettent en évidence des processus d’identification d’équations de
la géométrie pouvant régir des objets de nature différentes dès lors que coïncident leurs
relations d’incidence mutuelles, pouvant d’ailleurs être de nature différente : alignement,
concours, coplanarité, appartenance aux trièdres de Steiner. Le silence autour des paramé-
trages d’objets géométriques et des formations des équations ainsi que ces identifications
montrent finalement une conception identitaire des équations de la géométrie qui est dé-
tachée de leur réalisation concrète. Basée sur la reconnaissance d’un degré et de relations
entre racines, cette conception se lit directement sur le nombre d’objets d’une situation
géométrique et les relations d’incidence qui les lient.

4.3 Résolutions des équations de la géométrie

L’analyse faite dans la section précédente a dégagé une image de la façon qu’ont les
auteurs du corpus de concevoir et reconnaître les équations de la géométrie. Je vais main-
tenant regarder ce qui se rapporte aux procédés de résolution de ces équations. Il s’agit
ainsi d’examiner des résultats algébriques comme la possibilité de résoudre une équation
par radicaux, l’existence de réduites ou celles d’équations équivalentes particulières.

Une première constatation, fondamentale, est que tous les résultats de résolubilité des
équations de la géométrie sont liés à l’existence de groupements entre les objets correspon-
dant aux racines 39. Nous verrons cependant que selon les cas, ces groupements peuvent
être exprimés différemment, et mobilisés de façon plus ou moins directe dans les procédés
de résolution.

Ainsi ai-je déjà pu discuter en détail le fait que dans le Traité des substitutions et
des équations algébriques, Jordan utilisait presque toujours les fonctions ϕ pour étudier
les équations de la géométrie, et que ces fonctions ϕ étaient créées à partir des relations
d’incidence existant entre les objets associés aux diverses équations. Par exemple, les vingt-
sept droites d’une surface cubique (et les racines associées) étant notées a, b, c, . . ., Jordan
avait écrit la liste des quarante-cinq triangles que l’on peut former à partir de ces droites :

38. Ces identifications préfigurent la notion de configuration au sens de Reye (1876), comme exposé
dans [Steinitz 1910]. Dans cette dernière référence, on trouve entre autres les diverses configurations sur
les courbes cubiques, dont la configuration hessienne, mais aussi la configuration de Kummer, renvoyant à
celle des seize points et seize plans singuliers.
39. Les équations de la géométrie ne sont pas toutes impliquées dans ces résultats de résolution : voir par

exemple les équations des quatrième et cinquième catégories données au paragraphe 3.3.3 du chapitre 3.
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abc, ade, afg, etc. La fonction algébrique définie était alors la suivante :

ϕ = abc+ ade+ afg + · · · ,

où il y a donc quarante-cinq termes correspondant aux quarante-cinq triangles. Jordan avait
alors utilisé cette fonction pour étudier l’équation aux vingt-sept droites : les substitutions
sur les racines a, b, c . . . laissant ϕ invariante sont les substitutions du groupe de l’équation.

Les relations d’incidence sont donc bel et bien importantes pour Jordan, et sont expri-
mées à travers les fonctions ϕ. Comme je l’ai montré au chapitre 2, une fois la traduction de
l’information géométrique opérée par ces fonctions, le langage géométrique était abandonné
au profit de considérations sur les groupes (forme des substitutions, ordre, sous-groupes
distingués, etc.). C’étaient ensuite ces considérations qui permettaient de trouver des ré-
sultats de résolubilité sur les équations de la géométrie. Il n’y avait donc pas de transfert
direct de l’information concernant les relations d’incidence vers les résultats de résolubilité.

Je vais maintenant montrer plusieurs autres cas de résolubilité d’équations de la géo-
métrie dans lesquels les relations d’incidence interviennent également, parfois de façon plus
directe que pour les fonctions ϕ de Jordan.

4.3.1 Utilisations de tableaux

Rappelons que dans son article de 1847, Hesse proposait de montrer la résolubilité
algébrique de toute équationX du neuvième degré dont les racines x1, . . . , x9 sont liées trois
par trois par des relations rationnelles et symétriques avec la propriété que si xk = θ(xi, xj)

est une telle relation, alors on a aussi xi = θ(xj , xk) et xj = θ(xk, xi). Esquissons la
démonstration de Hesse de ce théorème.

Hesse commence par appeler « racines conjuguées » des racines de l’équation liées par
les relations θ, et montre qu’il existe exactement douze triplets de racines conjuguées, qu’il
représente en tableau :

x1x2x3 x4x5x6 x7x8x9

x2x4x7 x3x5x8 x1x6x9

x5x7x1 x6x8x2 x4x9x3

x8x1x4 x9x2x5 x7x3x6.

Il forme alors des fonctions yijk = (α−xi)(α−xj)(α−xk), où α est une nouvelle inconnue
et où xi, xj et xk sont des racines conjuguées. Il obtient ainsi douze fonctions y, qu’il
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représente à nouveau grâce à un tableau :

y123 y456 y789

y247 y358 y169

y571 y682 y493

y814 y925 y736.

Hesse définit ensuite des fonctions z = (β−yijk)(β−yi′j′k′)(β−yi′′j′′k′′), où les y employés
sont pris sur une même ligne du tableau précédent et où β est une nouvelle inconnue :
quatre fonctions z1, . . . , z4 sont ainsi formées. Il démontre alors que l’équation de degré 4

dont dépendent les zi a ses coefficients rationnels en fonction de ceux de l’équation de
départ X, et donc qu’elle est résoluble par radicaux (en fonction des coefficients de X).
Par suite, l’équation (de degré 3 en β) z1 = 0 ayant pour racines y123, y456 et y789, on peut
trouver ces dernières par radicaux en fonction des coefficients de X. Enfin, appliquer le
même argument aux équations (de degré 3 en α) y123 = 0, y456 = 0 et y789 = 0 permet de
trouver par radicaux les racines x1, . . . , x9 de X.

Comme dit précédemment, Jacobi avait lu les travaux de Hesse sur les points d’inflexion
des courbes cubiques et avait alors incité ce dernier à travailler sur l’équation X. Dans
l’article de Hesse, [Hesse 1847], l’équation aux neuf points d’inflexion n’arrive qu’après ce
que nous venons de décrire : Hesse prouve que cette équation possède la propriété des
relations θ en utilisant l’alignement trois par trois des points d’inflexion. Ainsi, le tableau
des racines conjuguées peut être interprété comme le tableau donnant la liste des points
d’inflexion alignés. Que Hesse l’ait vu comme tel ou non importe assez peu ici. Les tableaux
représentent une disposition des triplets de racines, qui servent à créer des résolvantes dans
un second temps ; ils ne portent pas en lui-même la propriété de résolution, contrairement
à ce qui se passe dans l’exemple suivant.

Cet exemple se trouve dans l’article de Clebsch sur les surfaces quartiques, [Clebsch
1868] ; je rappelle qu’il s’agit chronologiquement de la première intervention de Clebsch
dans le corpus des équations de la géométrie et qu’il avait été intéressé par ces équations
par le biais de Hesse. Dans cet article, Clebsch utilise dès le début sa représentation sur un
plan des surfaces quartiques à conique double pour montrer l’existence de seize droites sur
de telles surfaces. Il recherche ensuite les relations d’incidence existant entre ces droites :
chacune des seize droites en coupe cinq autres, qui ne se coupent pas entre elles. Clebsch
représente ce premier résultat grâce au tableau suivant (où les nombres 1, . . . , 16 sont les
notations pour les seize droites et où la première ligne de la première colonne par exemple
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signifie que la droite 1 rencontre les droites 6, 7, 8, 9 et 16) :

1) 6, 7, 8, 9, 16 9) 1, 5, 10, 11, 13

2) 6, 10, 11, 12, 16 10) 2, 3, 8, 9, 15

3) 7, 10, 13, 14, 16 11) 2, 4, 7, 9, 14

4) 8, 11, 13, 15, 16 12) 2, 5, 7, 8, 13

5) 9, 12, 14, 15, 16 13) 3, 4, 6, 9, 12

6) 1, 2, 13, 14, 15 14) 3, 5, 6, 8, 11

7) 1, 3, 11, 12, 15 15) 4, 5, 6, 7, 10

8) 1, 4, 10, 12, 14 16) 1, 2, 3, 4, 5

(I.)

Grâce à ce premier tableau, Clebsch établit la liste des couples de droites sécantes, qu’il
représente à nouveau en tableau :

1, 6 2, 6 3, 7 4, 8 5, 9 6, 13 7, 15 9, 11

1, 7 2, 10 3, 10 4, 11 5, 12 6, 14 8, 10 9, 13

1, 8 2, 11 3, 13 4, 13 5, 14 6, 15 8, 12 10, 15

1, 9 2, 12 3, 14 4, 15 5, 15 7, 11 8, 14 11, 14

1, 16 2, 16 3, 16 4, 16 5, 16 7, 12 9, 10 12, 13

(II.)

Il poursuit son investigation en énumérant les quarante quadrilatères pouvant être formés
par les seize droites. Ceci est fait à l’aide d’un troisième tableau qui ne sera pas reproduit ici,
n’étant pas mis en rapport avec l’équation aux seize droites — voir cependant la figure 4.4.
Clebsch continue :

En revanche, à chaque couple sont associés trois autres qui ne le coupent pas ; ces trois
autres ne se coupent pas non plus entre eux. Les quarante couples (II.) se divisent ainsi
en dix groupes de quatre, de sorte que quatre couples d’un groupe ne se coupent pas
entre eux ; et ces dix groupes se divisent à nouveau en cinq fois deux groupes conjugués
qui contiennent ensemble toutes les seize droites 40. [Clebsch 1868, p. 145]

Il représente à nouveau ces résultats dans un tableau, où les « groupes conjugués » sont

40. « Dagegen gehören zu jedem Paar drei andere, welche dasselbe nicht schneiden; diese drei anderen
schneiden sich unter einander ebenfalls nicht. Die vierzig Paare (I.) [sic] zerfallen daher in zehn Gruppen zu
vier, dergestalt, dass vier Paare einer Gruppe einander nicht schneiden; und diese zehn Gruppen zerfallen
wieder in fünfmal zwei solche conjugirte Gruppen, welche zusammen alle sechzehn Geraden enthalten. »
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situés sur un même ligne :

2, 6; 3, 7; 4, 8; 5, 9. 1, 16; 10, 15; 11, 14; 12, 13.

1, 6; 3, 10; 4, 11; 5, 12. 2, 16; 7, 15; 8, 14; 9, 13.

1, 7; 2, 10; 4, 13; 5, 14. 3, 16; 6, 15; 8, 12; 9, 11.

1, 8; 2, 11; 3, 13; 5, 15. 4, 16; 6, 14; 7, 12; 9, 10.

1, 9; 2, 12; 3, 14; 4, 15. 5, 16; 6, 13; 7, 11; 8, 10.

(IV.)

Et comme on l’a déjà vu, Clebsch écrit directement après le tableau :

Ce tableau est important surtout parce qu’il apprend que l’équation du seizième degré
dont dépendent les seize droites de la surface se résout à l’aide d’une équation du
cinquième degré. Cette équation, qui délivre les cinq couples de groupes (IV.), n’est
autre que celle à l’aide de laquelle Monsieur Kummer a obtenu les cinq cônes du second
ordre dont les arêtes touchent doublement la surface en question, [Kummer 1863] 41.
[Clebsch 1868, p. 145]

Le processus de déduction d’une réduite du cinquième degré à partir du tableau n’est pas
expliqué par Clebsch, et dans la suite de l’article, il passe à des considérations qui n’ont
plus de rapport avec ce tableau ou le résultat de résolubilité correspondant.

J’ai fait remarquer au chapitre précédent que cette utilisation de tableau pouvait rap-
peler celle faite par Betti en rapport avec l’équation modulaire de degré 6 : Betti avait en
effet représenté à l’aide d’un tableau une partition du groupe de l’équation modulaire et
en avait déduit la possibilité d’abaissement de celle-ci.

Un usage de tableaux dans un cadre de résolution d’équations algébriques peut aussi
être trouvé dans les travaux de Galois. Ce dernier avait relié les étapes de la résolution
de l’équation générale de degré 4 aux décompositions successives de son groupe, dont les
substitutions étaient représentés sur plusieurs tableaux successifs. Ainsi, si a, b, c, d sont
les quatre racines de cette équation, Galois avait commencé par en décrire le groupe réduit

41. « Diese Tafel ist vorzugsweise von Wichtigkeit, weil sie lehrt, dass die Gleichung sechzehnten Grades,
von welcher die sechzehn Geraden der Oberfläche abhängen, mit Hülfe einer Gleichung fünften Grades gelöst
wird. Diese Gleichung, welche die fünf Paare von Gruppen (IV.) liefert, ist keine andere, als diejenige mit
deren Hülfe Herr Kummer die fünf Kegel zweiter Ordnung erhalten hat, deren Seiten die fragliche Fläche
doppelt berühren (Sitzung der Berl. Acad. vom 16. Juli 1863). » La référence donnée dans cette citation est
celle de notre corpus. Remarquer ici un autre exemple d’identification entre deux équations de la géométrie
de degré 5, régissant des objets de nature différente : des couples de groupes de couples de droites d’une
part, des cônes d’ordre 2 d’autre part.
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Figure 4.4 – Extrait de [Clebsch 1868].
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par adjonction d’une racine carrée :

abcd, acbd, adbc,

badc, cabd, dacb,

cdab, dbac, bcad,

dcba, dcba, cbda.

Galois avait ensuite écrit que

ce groupe se partage lui-même en trois groupes [...]. Ainsi, par l’extraction d’un seul
radical du troisième degré, il reste simplement le groupe

abcd,

bacd,

cdab,

dcba;

ce groupe se partage de nouveau en deux groupes :

abcd, cdab,

badc, dcba.

Ainsi, après une simple extraction de racine carrée, il restera

abcd,

badc;

ce qui se résoudra enfin par une simple extraction de racine carrée. [Galois 1846,
p. 428-429]

Si un parallèle peut ainsi être fait entre l’utilisation de tableaux chez Galois d’une part, et
chez Clebsch (ou Hesse) d’autre part, il faut toutefois insister sur une différence notable
entre les deux : les tableaux de Galois représentent des groupes des substitutions, alors que
cette notion est totalement absente chez Clebsch, dont les tableaux représentent des objets
géométriques. En outre, au contraire de Galois, Clebsch passe directement du tableau au
résultat de résolubilité, sans passer par des décompositions successives du tableau.

Il est également possible d’imaginer Clebsch relisant les travaux de Hesse décrits précé-
demment et transposant directement le raisonnement de ce dernier au cas des seize droites :
l’équation de degré 5 correspondant aux cinq lignes du tableau (IV.) est alors l’analogue de
celle de degré 4 (en z) correspondant aux quatre lignes du tableau des triplets de racines
conjuguées de Hesse. Là encore, le parallèle n’est pas total car Clebsch n’utilise pas son
tableau pour créer des résolvantes, comme le fait Hesse.
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L’usage de Clebsch de tableaux lui est donc propre, et est a priori inscrit dans la
géométrie plutôt que l’algèbre. On soulignera que ce sont bien les droites elles-mêmes qui
sont les entrées du tableau, et que celui-ci est formée à partir de leurs relations d’incidence.
Ces dernières se trouvent ainsi au cœur du processus de résolution de l’équation aux seize
droites 42.

Je signale encore l’utilisation de trois tableaux dans le Traité des substitutions de Jor-
dan. Le premier est plutôt une disposition tabulaire de l’écriture des différents termes de
la fonction ϕ associée aux neuf points d’inflexion :

ϕ = (00)(01)(02) + (10)(11)(12) + (20)(21)(22)

+ (00)(10)(20) + (01)(11)(21) + (02)(12)(22)

+ (00)(11)(22) + (01)(20)(12) + (02)(10)(21)

+ (00)(12)(21) + (01)(10)(22) + (02)(20)(11).

Cependant, Jordan ne fait aucun usage de cette disposition tabulaire (du moins explici-
tement) pour l’étude du groupe de ϕ. Le deuxième tableau de Jordan est la reproduction
de celui de Clebsch sur les seize droites des surfaces quartiques à conique double. Enfin, le
troisième tableau est lié aux seize points singuliers et aux seize plans singuliers des surfaces
de Kummer. Après avoir rappelé les relations d’incidence liant ces objets, il écrit :

Soient
a b c d

e f g h

i k l m

n p q r

les seize plans. Prenons arbitrairement dans le tableau ci-dessus une ligne horizontale,
telle que efgh, et une colonne verticale, telle que cglq : supprimons le plan g commun
à cette ligne et à cette colonne ; les six plans restants e, f, h, c, l, q, formeront l’une des
seize combinaisons de six plans concourants. [Jordan 1870b, p. 313]

Ici encore, le tableau n’est pas utilisé par Jordan directement dans le processus de résolution
de l’équation aux seize plans singuliers : il lui sert à lister les « seize combinaisons de six
plans concourants » qui vont former les termes de la fonction ϕ correspondante. Il n’y
a donc pas, comme c’était le cas chez Clebsch, de déduction immédiate de propriétés
de résolubilité à partir des différents tableaux présents dans le chapitre des applications
géométriques du Traité 43.

42. Clebsch a recours à des tableaux dans ses deux articles présents dans le corpus, mais l’exemple que
je viens de présenter est le seul pour lequel on peut voir un lien avec une équation de la géométrie. Voir
par exemple [Clebsch 1868, p. 157] pour la liste des « doubles-quatre » de la surface quartique à conique
double et [Clebsch 1871b, p. 310] pour un tableau représentant des droites associées à certaines surfaces.
43. L’usage (différent) de tableaux représentant des matrices ou des déterminants, en particulier par
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4.3.2 Relations d’incidence et objets dérivés

Je passe maintenant à l’utilisation de ce que j’appelle des « objets dérivés » dans cer-
taines résolutions d’équations de la géométrie, c’est-à-dire d’objets géométriques formés à
partir des objets correspondant aux racines des équations.

Réduites de l’équation aux vingt-sept droites

Je vais rappeler ici quelques points concernant ce que j’ai appelé, au chapitre 2 de cette
thèse, les « réduites géométriques » de l’équation aux vingt-sept droites.

Dans le paragraphe du Traité des substitutions et des équations algébriques consacré
à l’équation aux vingt-sept droites d’une surface cubique, se trouvait une série de trois
remarques mentionnant l’existence d’équations particulières équivalentes à celle des vingt-
sept droites, les « réduites géométriques ». La première de ces remarques était la suivante :

Prenons, par exemple, pour inconnue de la question le plan du triangle formé par
trois droites qui se coupent : ces triangles étant au nombre de quarante-cinq, on aura
une équation du quarante-cinquième degré, équivalente à la proposée. [Jordan 1870b,
p. 319]

La deuxième rappelait la définition des triplets de doubles trièdres de Steiner et leur
nombre, 40, à partir de quoi Jordan donnait immédiatement l’existence d’une équation
de degré 40 équivalente à celle des vingt-sept droites. La troisième remarque était encore
du même genre :

On peut déterminer de 27 · 16/2 manières différentes une paire de droites qui ne se
coupent pas. On peut d’ailleurs grouper ces paires six à six (doubles-six de Schläfli),
de telle sorte que les droites d’une paire rencontrent chacune une droite de chaque
autre paire du double-six. Les doubles-six dépendent donc d’une équation de de-
gré 27 · 16/(2 · 6) = 36, qui sera encore équivalente à la proposée. [Jordan 1870b, p. 319]

L’argumentation de Jordan se réduisait à ces citations : il n’expliquait ni ce que sont les
équations dont dépendent les quarante-cinq plans, les quarante triplets de doubles trièdres
ou les trente-six doubles-six, ni pourquoi ces équations sont équivalentes à l’équation aux
vingt-sept droites.

Les citations précédentes montrent toutefois l’importance accordée aux relations d’in-
cidence existant entre les vingt-sept droites, et incarnées en les objets dérivés que sont
les triangles, les triplets de doubles trièdres et les doubles-six. Alors que la lecture seule
du Traité n’avait pas permis d’élucider le pourquoi de ces réduites et les faisait même
apparaître comme des irrégularités au sein de cet ouvrage, nous allons à présent voir que
des situations analogues se trouvent et s’expliquent dans le corpus des équations de la
géométrie.

Jordan, a été étudié dans [Brechenmacher 2006]. Voir également [Gauthier 2007] pour le cas d’Albert
Châtelet.
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Klein et les résolvantes géométriques

Regardons ainsi l’article de Klein intitulé « Ueber eine geometrische Repräsentation
der Resolventen algebraischer Gleichungen », [Klein 1871b]. Les principaux résultats de
cet article ont déjà été décrits au chapitre précédent. Je rappellerai et développerai ici
quelques points importants pour le présent propos. Dès l’introduction, Klein mettait en
avant l’importance des équations de la géométrie pour leur côté intuitif :

Le grand avantage de ces exemples est qu’ils présentent de façon intuitive les idées abs-
traites en elles-mêmes si particulières de la théorie des substitutions. Il se rapportent
la plupart du temps à des équations de caractère très particulier, entre les racines
desquelles ont lieu des groupements particuliers, laissant ainsi voir comment de telles
équations peuvent se comporter 44. [Klein 1871b, p. 346]

Cette importance du caractère intuitif était telle que Klein proposait ensuite d’incarner
toute équation algébrique générale en une équation de la géométrie : il s’agissait de prendre
n éléments d’un espace de dimension n − 2 comme image des n racines d’une équation,
et de remplacer les permutations des racines par les transformations linéaires de l’espace
qui échangent entre eux les n éléments 45. Lorsqu’il détaillait cette méthode, Klein mettait
l’accent sur l’image des résolvantes :

Je m’imagine appliquées à un élément quelconque de l’espace à n − 2 dimensions les
n! transformations qui permutent entre eux les n éléments donnés. Cet élément quel-
conque prend en général n! différentes positions. Le système des n! éléments ainsi
engendrés est l’image de la résolvante de Galois de l’équation de degré n représentée
par les n éléments donnés. Avec des hypothèses particulières sur l’élément quelconque,
les n! éléments qui en sont issus coïncident les uns les autres. La résolvante de Galois
devient alors une puissance d’une expression, qui sera qualifiée de résolvante particu-
lière 46. [Klein 1871b, p. 348]

À la fin de son article, Klein montrait comment s’appliquait cette méthode dans le cas de
l’équation générale du sixième degré. Pour cela, il utilisait la géométrie des complexes de

44. « Der hohe Nutzen dieser Beispiele liegt darin, dass sie die an und für sich so eigenartig abstracten
Vorstellungen der Substitutionstheorie in anschaulicher Weise dem Auge vorführen. Sie beziehen sich zu-
meist auf Gleichungen von sehr particulärem Character, zwischen deren Wurzeln besondere Gruppirungen
Statt haben, und lassen also übersehen, wieso deratige besondere Gleichungen auftreten können. »
45. « Ich will nun im Folgenden auf eine Methode aufmerksam machen, vermöge deren man ein geome-

trisches Bild für die allgemeinen Gleichungen eines beliebigen Grades erhält, insbesondere für diejenigen
Gruppirungen der Wurzeln einer solchen Gleichung, wie man sie zur Aufstellung der Resolventen gebraucht.
Diese Methode benutzt als Bild für die n Wurzeln einer Gleichung n Elemente des Raumes von (n − 2)
Dimensionen und ersetzt die Vertauschungen der Wurzeln unter sich durch diejenigen linearen Transfor-
mationen des genannten Raumes, durch welche die n gegebenen Elemente in sich übergeführt werden »,
[Klein 1871b, p. 346].
46. « Auf ein beliebiges Element des Raumes von (n− 2) Dimensionen denke ich mir nun die n! Trans-

formationen angewandt, welche die n gegebenen Elemente unter einander vertauschen. Dasselbe nimmt
dann im Allgemeinen n! besondere Lagen an. Das System der somit erzeugten n! Elemente ist das Bild der
Galois’schen Resolvente der durch die n gegebenen Elemente vorgestellten Gleichungen nten Grades. Für
besondere Annahmen des beliebigen Elementes können die n! Elemente, welche aus ihm hervorgehen, zu
mehreren jedesmal zusammenfallen. Die Galois’sche Resolvente wird dann eine Potenz eines Ausdrucks,
der als eine besondere Resolvente bezeichnet wird. »
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droites qu’il avait développée dans son article de 1870 du corpus, [Klein 1870]. Dans cette
référence, Klein avait rappelé que les droites de l’espace peuvent être décrites grâce à six
coordonnées complexes homogènes x1, . . . , x6 satisfaisant une relation quadratique R = 0.
Les six ensembles de droites donnés respectivement par les équations x1 = 0, . . . , x6 = 0

étaient appelés des complexes. Une propriété était alors que les droites appartenant à deux
complexes donnés coupent toutes deux droites fixes, appelées directrices des complexes.

Pour l’image géométrique de l’équation générale de degré 6 donnée dans [Klein 1871b],
les racines étaient remplacées par les six complexes et Klein expliquait alors que les permu-
tations des racines correspondent aux transformations de l’espace qui laissent R invariante,
à un multiple près. Il ne s’apesantissait néanmoins pas sur l’étude de ces transformations
et préférait donner des exemples de résolvantes particulières :

Deux quelconques des six complexes donnés ont une congruence en commun qui
consiste en deux directrices. Il y a 6 · 5/2 = 15 tels couples de directrices. Ces couples
de directrices sont en même temps les couples de droites que les quatre complexes
restants ont en commun.

Les 15 couples de directrices sont l’image d’une résolvante du quinzième degré.

Les 15 couples de directrices forment maintenant les arêtes de 15 tétraèdres (en ce
sens que l’on peut diviser de 15 façons six éléments en trois groupes de deux).

Ces 15 tétraèdres représentent une deuxième résolvante du quinzième degré.

Maintenant, de ces 15 tétraèdres, on peut en choisir, et ce de 6 façons, 5 qui contiennent
les 30 directrices comme arêtes.

Ces groupes de 5 tétraèdres représentent une résolvante du sixième degré 47. [Klein
1871b, p. 357]

Le même type d’argument était encore employé pour trouver une résolvante du dixième
degré représentant dix hyperboloïdes.

On remarquera à quel point l’argumentation de Klein fait écho à celle de Jordan : il
s’agit de mettre en évidence des groupements des objets de base et d’en déduire directe-
ment l’existence de résolvantes. Ici, le cadre est différent car Klein écrit un article dont
le but est justement de présenter une façon de se représenter géométriquement des résol-
vantes d’équations : ce but peut ainsi se voir comme une façon d’ériger en méthode plus
systématique les raisonnements vus chez Jordan.

47. « Je 2 der 6 gegebenen Complexe haben eine Congruenz gemein und diese besitzt 2 Directricen. Es
giebt 6·5/2 derartiger Directricenpaare. Diese Directricenpaare sind zugleich diejenigen Linienpaare, welche
den 4 übrigen Complexen jedesmal gemeinsam sind. Die 15 Directricenpaare sind das Bild einer Resolvente
15ten Grades. Die 15 Directricenpaare bilden nun die Kanten von 15 Tetraedern (dem entsprechend, dass
man 6 Elemente auf 15 Weisen in 3 Gruppen von 2 theilen kann). Diese 15 Tetraeder stellen eine zweite
Resolvente 15ten Grades dar. Aus den 15 Tetraedern nun kann man auf 6 Weisen solche 5 aussuchen,
die zusammen alle 30 Directricen zu Kanten haben. Diese Gruppen von 5 Tetraedern repräsentiren eine
Resolvente des 6ten Grades. »
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Les procédés de résolution ainsi décrits utilisent donc directement, sans traduction algé-
brique intermédiaire, l’existence de groupements d’objets géométriques correspondant aux
racines. Cela s’accorde bien à la fois avec l’absence générale de formation des équations de
la géométrie et l’insistance faite sur les relations d’incidence : pour concevoir les équations
et pour les résoudre, nul besoin de savoir les former ; il suffit de comprendre comment
se comportent les objets géométriques associés aux racines et trouver des objets dérivés
adéquats. Comme les sous-sections suivantes vont le montrer, tout cela repose sur le désir
de la part des auteurs de placer ces objets dérivés au cœur de la compréhension même des
équations de la géométrie.

4.3.3 Une « démonstration définitive »

Je rappelle encore une fois certains points qui ont été vus au chapitre 2. Il s’agit de la
question du résultat concernant le lien entre les vingt-sept droites et les fonctions hyperel-
liptiques : Jordan avait montré dans le Traité que l’équation de la trisection des périodes
de ces fonctions a le même groupe, après adjonction d’un radical carré, que l’équation aux
vingt-sept droites.

Parmi les lettres reçues par Jordan à l’occasion de la mise en circulation du Traité, celle
écrite par Luigi Cremona mentionnait en particulier sur ce résultat :

Il y a une question qui excite au plus haut degré ma curiosité : celle du rapprochement
de la recherche des 27 droites d’une surface cubique (qui ont été découvertes par MM.
Cayley et Salmon, avant Steiner) avec la trisection des fonctions hyperelliptiques.
Surtout au point de vue géométrique, il y a là une véritable énigme à expliquer 48.

Ce à quoi Jordan avait répondu :

La démonstration définitive d’une liaison entre cette question des 27 droites et la
division des fonctions abéliennes me semble une question bien intéressante, mais trop
difficile pour moi, qui ne possède assez ni les théories géométriques, ni celles des
fonctions abéliennes. L’intérêt que vous paraissez prendre à ce sujet m’a cependant
décidé à faire un premier pas dans cette voie, en cherchant quelle est la fonction des
27 droites qui satisfait à une équation du 40e degré, analogue à celle de la trisection
des fonctions abéliennes.

Il s’agissait donc, pour Jordan et pour Cremona, de revenir après coup sur le lien entre
fonctions hyperelliptiques et vingt-sept droites et d’en donner une « démonstration défini-
tive ».

Or, ces extraits mettent en évidence que la clé pour cette démonstration réside du côté
de la géométrie, et s’incarne en une « fonction des 27 droites », c’est-à-dire un objet dérivé
créé à partir des vingt-sept droites. L’analogie avec les « réduites géométriques » du Traité
est claire, Jordan ayant commencé par chercher dans les objets dérivés déjà connus :

48. Extrait d’une lettre de Cremona à Jordan datée du 19 décembre 1869, conservée aux Archives de
l’École polytechnique (réf. VI2A2(1855) 9).
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J’avais d’abord pensé qu’il fallait prendre pour nouvelle inconnue un terne de trièdres
conjugués ; mais l’équation du 40e degré ainsi obtenue n’est pas celle que l’on cherche,
quoique présentant avec elle des traits de ressemblance assez remarquables 49.

Dans la suite de la lettre, Jordan indiquait que la fonction adéquate qu’il avait trouvée
était un ennéaèdre, c’est-à-dire un système de neuf plans contenant les vingt-sept droites
trois à trois et entretenant entre eux des relations d’incidence particulières. Les résultats
avaient ensuite été publiés dans la note de 1870 du corpus, [Jordan 1870a], dans laquelle
Jordan annonçait « faciliter la comparaison » des vingt-sept droites et des fonctions hyper-
elliptiques en exhibant les ennéaèdres — de façon simultanée et indépendante, Cremona
avait lui aussi mis à jour ces ennéaèdres 50.

Comme je l’ai expliqué au chapitre 2, l’équivalence entre l’équation aux vingt-sept
droites et celle aux quarante ennéaèdres n’était pas justifiée par Jordan, et rappelait ainsi
la situation des « réduites géométriques » du Traité. Mais il y a, dans le cas des objets
dérivés que sont les ennéaèdres, une dimension supplémentaire que l’on peut lire dans
l’échange entre Jordan et Cremona : c’est par eux que passent la bonne compréhension du
problème et sa « démonstration définitive ».

4.3.4 La « nature particulière » d’une équation

Un type de commentaire similaire sur les objets dérivés se retrouve dans des commen-
taires de Clebsch, Klein et Noether au sujet des travaux de Hesse sur l’équation aux neuf
points d’inflexion. Les grandes lignes de l’approche de Hesse dans son article de 1847, [Hesse
1847], ont déjà été brossées : Hesse s’intéressait d’abord à des équations algébriques de de-
gré 9 dont les racines sont liées par certaines relations, et il montrait dans un second
temps que l’équation aux neuf points d’inflexion est de ce type, les relations entre racines
provenant de l’alignement trois à trois des points d’inflexion.

Dans la notice nécrologique qu’il écrit de Hesse, Klein revient sur ces recherches :

Hesse attaqua le problème de la détermination algébrique des neuf points d’inflexion.
Parce que l’on peut ranger en quatre triangles les douze lignes sur lesquelles ces points
sont disposés trois à trois, la résolution de l’équation du neuvième degré considérée
dépend d’une équation du quatrième degré 51. [Klein 1875, p. 48]

Les quatre triangles qu’évoque Klein ont pour côtés les douze droites contenant trois à trois
les points d’inflexion, de sorte que ces derniers sont tous inclus dans chacun des quatre

49. Les « terne[s] de trièdres conjugués » sont les triplets de couples de trièdres de Steiner, déjà évoqués
précédemment. La ressemblance qu’évoque Jordan est qu’après adjonction d’une de leurs racines, l’équation
de la trisection et celle des quarante triplets ont même groupe.
50. Voir [Cremona 1870] ainsi que la lettre de Cremona à Jordan reproduite dans [Jordan Œuvres 4,

p. 598]
51. « Andererseits ergriff Hesse das Problem der algebraischen Bestimmung der neun Wendepunkte. Weil

man die zwölf Linien, auf welchen dieselben zu drei vertheilt liegen, in vier Dreiecke ordnen kann, hängt
die Lösung der betr. Gleichung neunten Grades von einer Gleichung vierten Grades ab. »
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triangles. Comme expliqué précédemment, leur existence avait été démontrée par Hesse
dans un article de 1844, [Hesse 1844b]. Mais alors que ce dernier ne les mentionnait à aucun
endroit de son article sur l’équation aux neuf points, Klein place dans leur existence la
raison même de l’existence d’une réduite du quatrième degré 52 : la résolution de l’équation
aux neuf points dépend d’une équation du quatrième degré « parce que » les douze droites
les contenant trois à trois forment quatre triangles. Il s’agit donc d’une résolution via les
objets dérivés, comme celles décrites précédemment.

Cette insistance faite sur les triangles se lit aussi dans la notice nécrologique de Julius
Plücker écrite par Clebsch. Alors que ce dernier évoque les travaux de Plücker sur les
courbes cubiques, il ajoute :

Les quatre triangles en lesquels se groupent [les douze droites joignant trois à trois
les points d’inflexion] étaient encore inconnus de Plücker. En les trouvant, [Hesse
1844b], Hesse fut à même de révéler la vraie nature algébrique du problème. Ainsi fut
révélé le caractère merveilleux de cette classe d’équations du neuvième degré résolubles
algébriquement qui portent le nom de Hesse, et pour lesquelles les points d’inflexion
forment le premier exemple 53. [Clebsch 1872b, p. 22]

Ici, Clebsch va plus loin que Klein : l’existence des quatre triangles permet d’accéder à
la « vraie nature algébrique du problème ». C’est également ce qu’écrit Noether dans sa
nécrologie de Hesse :

Par les recherches sur les points d’inflexion des courbes du troisième ordre, pour les-
quels seules les douze droites qui les contiennent trois à trois n’étaient alors connues,
l’existence des quatre triangles en lesquels les droites se groupent a donné un aperçu
sur la nature particulière de l’équation du neuvième degré qui détermine les neuf
points 54. [Noether 1875, p. 86]

Un peu plus loin, Noether place l’exemple des neuf points d’inflexion dans un cadre plus
large, celui des exemples intuitifs (les équations de la géométrie) guidant la compréhension
de la théorie des substitutions :

Une image géométrique pour tous les rapports concernant des groupements de racines
a été acquise. De tels exemples particuliers et intuitifs ont vraiment participé à une

52. Il est bien entendu possible de relier les quatre triangles à l’approche de Hesse : ils correspondent
aux quatre lignes du tableau des racines conjuguées (cf. supra).
53. « Dagegen waren Plücker die vier Dreiecke noch unbekannt, zu welchen diese Geraden sich gruppiren.

Indem Hesse diese fand (Crelles Journ. Bd. 28, 1844), vermochte derselbe die wahre algebraische Natur
des Problems zu erschliessen. Es zeigte sich der wunderbare Character jener Classe algebraisch lösbarer
Gleichungen 9. Grades, welche Hesse’s Namen führen, und für welche die Wendepuncte das erste Beispiel
bilden. »
54. « Bei der Untersuchung der Wendepunkte der Curve dritter Ordnung aber, für welche vorher nur

die zwölf Geraden, welche dieselben zu je drei enthalten bekannt waren, ergab sich durch den Nachweis
der vier Dreiseite, in die sich die Geraden gruppiren, ein Einblick in die besondere Natur der Gleichung
neunten Grades, welche die neun Punkte bestimmt. »
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conception plus aisée ainsi qu’au développement de la théorie des substitutions, en elle-
même si abstruse, et dont les bases élaborées par Galois après les recherches d’Abel
ont été publiées peu après ces travaux de Hesse 55. [Noether 1875, p. 86]

La mention de l’intuition fait écho à celle déjà rencontrée dans l’introduction du mémoire de
Klein sur la représentation géométrique des résolvantes, [Klein 1871b]. Comme chez Klein,
l’accent est mis sur l’« image géométrique » des « groupements de racines », à laquelle
s’oppose une difficile théorie des substitutions — Noether va ici un peu plus loin que
Klein, et place les équations de la géométrie dans une chronologie du développement de la
théorie des substitutions.

La nature des équations de la géométrie est donc placée dans l’existence des objets
dérivés, incarnations géométriques de relations d’incidence ou des groupements de racines.
À titre de comparaison, on se souviendra de la conception de Kronecker de la nature
d’une équation, que j’ai évoquée dans le chapitre précédent. Pour lui, la nature d’une
équation devait se lire dans des formules concrètes et explicites pour les racines, et pas
dans des applications des méthodes de Galois, « plus propres à cacher la vraie nature des
équations résolubles qu’à la découvrir 56 » : contraste net avec une vision des équations de
la géométrie et de leurs racines non explicitées, situées (par Noether et Klein) dans une
lecture géométrique et intuitive de la théorie des équations et en particulier des travaux de
Galois.

4.3.5 Résolutions, groupements et intuition

À travers tous les exemples décrits dans cette section, nous avons vu l’importance des
groupements d’objets géométriques exprimant leurs relations d’incidence dans les processus
de résolution des équations de la géométrie. Exprimés de diverses manières, ce sont toutefois
les objets dérivés qui semblent cristalliser l’attention, en particulier parce qu’ils sont la clé
pour bien comprendre certaines situations ou pour accéder à la nature des équations.

Au sein du corpus des équations de la géométrie, les « réduites géométriques » de Jordan
se fondent parmi d’autres exemples et perdent ainsi la spécificité qu’elles avaient en regard
du seul Traité des substitutions et des équations algébriques. De plus, au vu de l’insistance
faite sur les objets dérivés dans le corpus, le retour par Jordan sur le lien entre les fonctions
hyperelliptiques et les vingt-sept droites par les ennéaèdres est moins étonnant que ce qu’il
n’y paraissait au chapitre 2.

Que Jordan doive lui-même apporter une « démonstration définitive » à ce lien qu’il
a lui-même démontré par des isomorphismes de groupes peut ainsi se voir comme un

55. « [Es] war auch ein geometrisches Bild für alle auf die Gruppirungen der Wurzeln bezüglichen Ver-
hältnisse gewonnen. Solche anschauliche speciellere Beispiele haben wesentlich auf die leichtere Auffasung
und auch auf die Ausbildung der an sich so abstrusen Substitutionstheorie gewirkt, deren von Galois schon
balch nach den Abel’schen Untersuchungen geschaffene Grundlagen auch erst nach dieser Arbeit Hesse’s
veröffentlicht worden sind. »
56. Cité à partir de [Ehrhardt 2012, p. 119]. Voir aussi [Edwards 1989 ; Edwards 2005 ; Edwards 2009].
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problème de communication : il s’agit pour lui d’apporter une réponse en des termes (les
ennéaèdres) qui seront acceptés et compris par ses pairs, au contraire d’un lien qui relève
de la « si abstruse » théorie des substitutions.

Nous avons vu que la tension entre la difficulté et le caractère abstrait de la théorie
des substitution d’une part, et le côté intuitif lié à la géométrie, est explicitement mise
en avant par Klein et par Noether. Mais elle est aussi exprimée par d’autres personnes,
toujours dans des situations en rapport avec les équations de la géométrie. Ainsi, lorsque
Clebsch remercie Jordan pour l’envoi de la seconde partie du Traité des substitutions et
des équations algébriques 57, il avoue devoir capituler devant les difficultés qu’elle présente,
faute de pouvoir recourir à la géométrie :

Seulement maintenant puis-je vous adresser mes remerciements pour l’aimable envoi de
la seconde partie de votre livre. J’aurais seulement aimé que vous auriez pu m’envoyer
en même temps la compréhension nécessaire, car malheureusement je dois avouer que
ces profondes et importantes recherches vont pour le moment bien au-delà de mes
compétences. Je m’en tiens à la première moitié, où la géométrie vient à mon aide et
guide les idées dans les choses abstraites. J’espère que la compréhension du reste ne
me restera pas à jamais en défaut 58.

Les difficultés associées aux travaux de Jordan ne sont d’ailleurs pas spécifiques aux auteurs
du corpus que sont Clebsch, Klein et Noether. Par exemple 59, dans le paragraphe final de
sa revue bibliographique du Traité, Jules Hoüel commente :

Telle est l’analyse des principales questions résolues par M. Jordan. Cette analyse
nous a été rendue facile par les développements qu’a donnés l’auteur dans différents
recueils. Les travaux qui précèdent viennent au moment favorable ; car les progrès de
la Géométrie analytique ont permis, comme on l’a vu, à M. Jordan, de donner des
applications qui ajoutent un grand intérêt et un nouvel attrait à la théorie si difficile
des substitutions. [Hoüel 1871, p. 169]

La tension entre théorie des substitutions et géométrie ainsi plusieurs fois exprimée en
rappelle une autre, un peu plus tardive, entre théorie des nombres et géométrie. Sébastien
Gauthier a en effet analysé les interventions de l’intuition géométrique dans la géométrie
des nombres de Hermann Minkowski notamment ; et il est vrai que le rapprochement

57. Cette seconde partie correspond très probablement au Livre IV, consacré à la classification des
équations résolubles par radicaux.
58. « Erst jetzt also kann ich Ihnen meinen Dank aussprechen für die freundliche Uebersendung der

zweiten Abtheilung Ihres Buches. Ich wollte nur, Sie hätten mir auch zugleich das nöthige Verständnis
mitschicken können, denn leider, ich muss es gestehen, gehen diese tiefen und wichtigen Untersuchungen
bis jetzt weit über meine Fassungsgabe hinaus. Ich halte mich an die erste Hälfte, wo die Geometrie mir
zu Hülfe kommt, und die Gedanken auch bei den abstracten Dingen leitet. Hoffentlich wird auch das
Verständnis des Übrigen mir nicht immer versagt bleiben. » Extrait d’une lettre de Clebsch à Jordan
datée du 5 mars 1871, conservée aux Archives de l’École polytechnique (réf. VI2A2(1855) 15). Je remercie
Norbert Schappacher pour l’aide qu’il m’a apportée pour la transcription et la traduction de cet extrait.
59. Bien qu’ils ne concernent pas la géométrie, on se souviendra également des commentaires de Hermite

sur l’usage des substitutions dans les travaux de Jordan, dont l’étude lui était « tellement difficile et
tellement pénible ». Voir [Brechenmacher 2006, p. 173-175].
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d’une théorie des nombres difficile et abstraite et d’une géométrie intuitive fait écho à celui
observé ici pour les équations de la géométrie 60. Mais alors qu’en géométrie des nombres,
la géométrie prend pleinement sa fonction heuristique à travers l’utilisation de dessins,
nulle trace de telles représentations ne peut se trouver dans notre corpus, ni même dans
les documents qui orbitent autour de celui-ci (autres textes publiés, lettres, manuscrits de
cours).

Nulle trace non plus d’usage pour les équations de la géométrie de modèles de surfaces,
dont nous avons pourtant vu que certains étaient déjà produits et utilisés à d’autres fins
(en particulier par Clebsch et Klein) autour de 1870. L’intuition mobilisée pour ou par
les équations de la géométrie autour des groupements de leurs racines ne semble donc
pas mettre en jeu une réalisation matérielle de ces groupements ; elle provient plutôt de
la possibilité d’incarner et de découvrir géométriquement des groupements de racines en
objets géométriques, sans avoir à recourir à la théorie des substitutions. Ainsi, résoudre
une équation de la géométrie revient finalement à un jeu d’assemblage adéquat d’objets :
des droites à disposer en triangles 61, des plans à disposer en ennéaèdres, etc. Cet aspect
combinatoire des équations de la géométrie est d’ailleurs attesté par le fait qu’en général,
certains des objets dont les groupements sont étudiés sont complexes ou situés à l’infini.

Je vais maintenant récapituler tous les résultats obtenus jusqu’à présent dans ce chapitre
et montrer en quoi ils forment un tout cohérent. Il sera utile, pour décrire ce tout, de se
baser sur la notion de culture.

4.4 Les équations de la géométrie : une culture ?

Je rappelle que j’utilise ici la définition de culture de Guy Rocher : « un ensemble lié
de manières de penser, de sentir et d’agir plus ou moins formalisées qui, étant apprises
et partagées par une pluralité de personnes, servent, d’une manière à la fois objective
et symbolique, à constituer ces personnes en une collectivité particulière et distincte »,
[Rocher 1968, p. 111]. Comme souligné au début du chapitre, cette définition comporte
les caractéristiques d’une culture que l’on retrouve dans la plupart des définitions, mais
insiste également sur une fonction constitutive d’une culture. En suivant les explications
de G. Rocher lui-même, je vais à présent tester cette définition sur le cas des équations de
la géométrie, en procédant morceau par morceau.

60. Voir [Gauthier 2009], et en particulier les citations données à la page 202.
61. Sur un plan mathématique, je n’ai trouvé dans le corpus aucune justification que les objets déri-

vés proposés représentaient effectivement des résolvantes. Prenons l’exemple de l’équation aux vingt-sept
droites et de sa réduite correspondant aux quarante-cinq triangles et raisonnons en termes (anachroniques)
de permutation conservant les relations d’incidence. Toute permutation des vingt-sept droites conservant
leurs relations d’incidence induit évidemment une permutation des quarante-cinq triangles conservant leur
relations d’incidence. Mais la réciproque est vraie car les cinq triangles qui contiennent une droite donnée
n’ont que celle-ci en commun. Autrement dit, la connaissance des triangles et de leurs relations permet de
retrouver celle des vingt-sept droites. Voir [B. Segre 1942, p. 23] pour plus de détails.
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4.4.1 Des traits culturels partagés

Comme écrit dans l’introduction de ce chapitre, les « manières de penser, de sentir
et d’agir » sont formés de « modèles, valeurs, symboles [incluant] les connaissances, les
idées, la pensée », [Rocher 1968, p. 112]. Dans le cas des équations de la géométrie, ces
éléments sont les éléments caractéristiques que j’ai analysés précédemment : désignation
des équations, absence générale de définition et de formation précises de celles-ci, processus
d’identification, de reconnaissance et de résolution.

Commençons par la question du partage de ces éléments par « une pluralité de per-
sonnes ». Par construction même du corpus, tous les auteurs qui y sont engagés étudient au
moins une équation de la géométrie ; de plus, tant ces auteurs que leurs textes forment un
réseau assez serré, indice de réelles circulations du savoir lié aux équations de la géométrie.
Ces circulations sont entre autres reflétées par un usage répandu de désignations de ces
équations ou de procédés de résolution. Nous sommes donc bien dans un cas où des façons
de faire mathématiques sont partagées dans une certaine collectivité. Le caractère social
du savoir lié aux équations de la géométrie, important pour la définition de G. Rocher
(mais aussi pour toutes les autres définitions de « culture »), est donc bien présent ici. Par
ailleurs, la question du nombre importe peu à ce dernier dans la question d’une culture : « il
peut suffire de quelques personnes pour créer la culture d’un groupe restreint [...]. La notion
de culture ne s’applique pas qu’à une société globale. Les sociologues parlent volontiers de
la culture d’une classe sociale, d’une région, d’une industrie, d’un “gang” », [Rocher 1968,
p. 112-113]. Cette remarque s’accorde bien au cas des équations de la géométrie : parmi la
dizaine de mathématiciens qui y sont engagés, seule une poignée participe à l’essentiel des
activités entre 1868 et 1872.

Les apparitions répétées et ressemblantes de façons de faire particulières nous per-
mettent ainsi de deviner des modèles (ou patterns) qui sont partagés par la collectivité.
Mais le concept de modèles contient aussi une idée de contrainte sociale, en ce sens qu’ils
orientent l’action à venir, c’est-à-dire que les façons de faire ou des comportements collec-
tifs sont façonnés par les modèles 62. Dans le cas des équations de la géométrie, on pourra
penser à l’exemple de la « démonstration définitive » de Jordan (et par Jordan lui-même)
du lien entre les vingt-sept droites et les fonctions hyperelliptiques. On peut en effet voir
dans cet exemple une mise en conformité de la réponse de Jordan suivant les modèles exis-
tants — ici, répondre à une question de résolubilité d’équation de la géométrie en mettant
en avant un objet dérivé, et non pas en montrant une égalité de groupes.

En se conformant à ces modèles, les auteurs du corpus manifestent par là-même leur
adhésion à des valeurs sous-jacentes, sanctionnant les bonnes conduites : « les modèles
peuvent être considérés comme des formes symboliques des valeurs ; et l’orientation de l’ac-

62. « [L]e chercheur établit par abstraction les formes à partir des conduites des gens qu’il observe : il
décrit les modèles de conduite, qui [...] moulent le comportement, façonnent les attitudes, les croyances et
les opinions. » [Herskovits 1952, p. 123].
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tion conforme à certains modèles témoigne aussi, d’une manière symbolique, de l’adhésion
du sujet à des valeurs données », [Rocher 1968, p. 94]. Par exemple, ces valeurs disent que
les bonnes désignations pour les équations de la géométrie sont celles que nous avons ren-
contrées, ou que les questions pertinentes sont celles qui concernent leur résolubilité. Outre
ces valeurs qui sont inférées de l’existence même de comportements récurrents, d’autres
ont été mises en évidence à l’aide de remarques d’ordre épistémique émanant des auteurs.
Il y a ainsi une valorisation de ce j’ai appelé les « objets dérivés » comme bonne façon de
formuler des résultats, que ce soit parce qu’ils permettent de vraiment comprendre un lien
entre équations ou d’en accéder à la nature.

Nous avons donc des modèles et des valeurs partagés, liés entre eux selon G. Rocher par
des relations symboliques. En particulier, il y a là une idée de symbolisme de participation,
consistant à considérer que la conformité de l’action d’un individu aux modèles reflète son
adhésion à certaines valeurs. Je souhaiterais toutefois nuancer un peu cette idée en insistant
sur le fait qu’une action conforme à des modèles peut symboliser une adhésion à des valeurs,
mais à différents degrés. Prenons un exemple religieux 63 : faire le signe de croix en entrant
dans une église catholique montre une conformité sociale aux usages en place, mais peut
recouvrir des réalités très différentes sur les individus eux-mêmes, en particulier sur leur
position vis-à-vis des valeurs religieuses. De même, l’usage des désignations particulières
des équations de la géométrie indique l’existence d’un certain groupe social à considérer,
mais ne traduit pas de façon uniforme l’adhésion aux valeurs en place.

On voit en tout cas que les « manières de penser, de sentir et d’agir » relevées à partir
du corpus des équations de la géométrie peuvent être vues comme des traits culturels,
même s’il convient d’être prudent quant aux spécificités des individus — surtout dans une
collectivité formée seulement d’une poignée de sujets, comme dans notre cas. Continuons
justement la discussion sur cette question-là.

D’abord, soulignons que par l’expression « plus ou moins formalisées » qu’il utilise dans
sa définition de « culture », G. Rocher signifie que « les manières d’agir, de sentir et de
penser » ne sont pas nécessairement soumises à des règles strictes ; elles peuvent ou même
doivent s’accompagner d’une « part d’interprétation et d’adaptation personnelle », [Rocher
1968, p. 112]. Par exemple, cet aspect se voit bien sur l’existence même de différentes va-
riations que l’on trouve pour les désignations des équations de la géométrie. En outre, et
alors qu’aucune de ces désignations n’est unanimement adoptée (voire : sont la spécificité
d’un auteur, comme dans le cas de l’utilisation de « séparer » par Clebsch), les différences
n’entravent ni la communication, ni la compréhension entre les mathématiciens. De même,
les nuances qui existent entre les diverses expressions des groupements d’objets (tableaux,
objets dérivés, etc.) peuvent être vus comme autant de déclinaisons plus ou moins per-
sonnelles qui n’obstruent pas leur circulation. La notion de culture permet ainsi de rendre

63. G. Rocher lui-même illustre l’idée de symbolisme de participation avec (entre autres) l’exemple des
religions, en insistant surtout sur l’effet de sociabilisation des rites religieux.
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compte, comme c’est le cas ici, d’ensembles de traits globalement homogènes mais présen-
tant des variations idiosyncratiques.

Pour ce qui est ensuite du niveau d’engagement des auteurs, les relevés que j’ai ef-
fectués au chapitre 3 ont montré des disparités assez fortes. Par exemple, l’équation aux
neuf points d’inflexion a une place extrêmement restreinte dans le texte de Netto, qui ne
participe de ce point de vue que très peu au corpus. De même, bien que tous les auteurs
se basent d’une façon ou d’une autre sur les relations d’incidence dans leurs procédés de
résolution, Hesse n’utilise pas du tout les mêmes techniques que les autres — typiquement,
déduire directement l’existence d’une réduite à partir de l’existence d’objets dérivés. À
l’inverse, Clebsch, Jordan, Klein et Noether peuvent être situés au centre des travaux sur
les équations de la géométrie, que ce soit au niveau du nombre d’occurrences d’équations,
au niveau de leurs relations fortes avec les autres auteurs ou au niveau de leur adhésion
explicite aux valeurs concernant la nature et la bonne compréhension des équations. Cela
ne signifie pas pour autant qu’il faille exclure les uns de l’analyse au profit des autres, mais
plutôt qu’il est nécessaire de pondérer l’engagement de chacun des auteurs.

En effet, comme j’ai déjà eu l’occasion de l’écrire, Hesse a eu un rôle important dans
la formation mathématique des autres auteurs du corpus. Or, la question de transmission
des traits culturels par apprentissage est importante dans la notion de culture, que ce soit
pour G. Rocher ou d’autres sociologues et anthropologues : « L’acquisition de la culture
résulte des divers modes et mécanismes de l’apprentissage [...]. Les traits culturels ne sont
donc pas partagés par une pluralité de personnes de la même façon que peuvent l’être
des traits physiques ; on peut dire que les derniers sont le fruit de l’hérédité, tandis que
les premiers sont un héritage que chaque personne doit recueillir et faire sien. » [Rocher
1968, p. 113]. Dans le cas des équations de la géométrie, nous avons vu ce mécanisme de
transmission opérer à deux niveaux. D’abord par une filiation générationnelle dans laquelle
Hesse et Clebsch jouent un rôle important : comme indiqué au chapitre 3, Clebsch a été
intéressé par les équations particulières, dont celles issues de la géométrie, par les travaux
de Hesse (un de ses professeurs), et il a ensuite joué un rôle certain dans l’ajout du chapitre
des applications géométriques du Traité des substitutions et des équations algébriques de
Jordan, et on a aussi vu l’impact de Clebsch sur les premiers travaux de Klein. Ensuite,
la présence d’équations de la géométrie dans le Traité de Jordan et le Cours d’algèbre
supérieure de Serret montre bien la part de transmission par apprentissage pour les auteurs
du corpus 64 : par exemple, ces ouvrages font partie des références de Klein pour ce qui
est de la théorie des substitutions au début des années 1870 65. En revanche, les livres de
Netto et de Weber, étant les plus récents du corpus, ne participent pas à la formation de

64. En revanche, mes sources n’ont pas permis de trouver de trace d’apprentissage sous la forme (par
exemple) d’une remarque d’un auteur à un autre, lui enseignant quelle sont les bonnes façons de faire ou
lui indiquant qu’il n’a pas abordé telle question comme il le faudrait.
65. Voir par exemple le début de [Klein 1871b] ou les commentaires relatifs à la théorie de Galois dans

le Programme d’Erlangen, [Klein 1872, p. 39].
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nos auteurs. Le fait qu’il évoquent encore des équations de la géométrie montre plutôt que
le sujet reste digne d’intérêt à la fin du siècle. Nous voyons donc l’intérêt de prendre en
compte les auteurs comme Hesse ou Netto, même s’il est vrai que le cœur des activités liées
aux équations de la géométrie est situé plus proche de Clebsch, Jordan, Klein et Noether.

Les premières caractéristiques de « culture » sont donc présentes dans le cas des équa-
tions de la géométrie, puisque nous avons des traits culturels partagés et appris par une
pluralité de personnes.

4.4.2 Une « collectivité particulière et distincte » ?

J’en viens maintenant au point de la définition de culture de G. Rocher concernant
la fonction de constitution des personnes engagées dans la culture « en une collectivité
particulière et distincte ». D’après Rocher en effet, une culture a cette fonction sociale
de rassembler subjectivement une pluralité de personnes, à l’instar par exemple d’un rap-
prochement géographique ou d’un lien du sang, tant et si bien que « ces personnes [...]
se sentent enfin, chacune individuellement et toutes collectivement, membres d’une même
entité qui les dépasse et qu’on appelle un groupe, une association, une collectivité, une
société », [Rocher 1968, p. 117].

Or, dans le cas des équations de la géométrie, aucun indice ne laisse penser que les au-
teurs qui y sont engagés se sentent membres d’une entité commune, d’un « nous » subjectif
qu’ils pourraient définir eux-mêmes. En effet, comme j’ai déjà pu le dire à l’occasion de la
discussion de l’usage de « discipline », ces auteurs ne se donnent pas de nom collectif ou
n’établissent pas de critère d’appartenance au groupe ; ils ne créent pas, à partir du sujet
des équations de la géométrie, de frontière entre eux et d’autres mathématiciens. Précisons
que cela ne signifie pas que nos auteurs principaux ne savent pas à qui s’adresser, ou quels
sont les textes qu’ils doivent lire pour le sujet des équations de la géométrie. En revanche,
il n’y a pas de constitution délibérée d’une identité assumée de la pluralité autour des
équations de la géométrie 66.

Je vais maintenant passer à une caractéristique essentielle, exprimée dans la définition
de G. Rocher par les mots « ensemble lié ».

4.4.3 Un système culturel

Il s’agit par là de souligner que les manières de penser, de sentir et d’agir doivent former
un système intriqué et cohérent : « les différents éléments qui composent une culture donnée
ne sont pas simplement juxtaposés l’un à l’autre. Des liens les unissent, des rapports de
cohérence les rattachent les uns aux autres », [Rocher 1968, p. 115]. Ce point me semble
très important pour le cas des équations de la géométrie, car tous les traits caractéristiques

66. Pour illustrer le sentiment d’appartenance d’individus à un tout plus grand, on pourra penser à
des membres d’une institution (comme une grande école de l’enseignement supérieur) dotée d’une culture
propre et revendiquée. Voir [Cuche 2010, p. 121].
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qui ont été analysés séparément dans ce chapitre et le précédent sont liés entre eux, et
forment un tout cohérent.

En effet, soutenue par les valeurs mettant les objets géométriques eux-mêmes au cœur
de la compréhension des équations de la géométrie, l’accentuation faite sur les relations
d’incidence permet d’expliquer à la fois les modes de résolution et d’identification de ces
équations, leurs différentes désignations et l’absence générale de formations explicites. Par
exemple, il n’est pas utile à Clebsch, Jordan, Klein ou Noether, de (savoir comment) former
l’équation aux neuf points d’inflexion et ses résolvantes puisque l’attention est essentiel-
lement portée sur les points d’inflexion eux-mêmes et leurs groupements géométriques en
droites ou en triangles. La désignation « l’équation aux neuf points » est ainsi un symbole
faisant référence 67 à une certaine équation de degré 9, qu’il serait possible de former mais
qui sera surtout considérée sous l’angle de l’incarnation géométrique de ses racines et de
leurs groupements. Tous les flottements et imprécisions que nous avons relevées au sujet
des désignations ne rendent pas leur emploi problématique ; elles permettent au contraire
une communication efficace entre les membres de la pluralité en évitant des définitions ma-
thématiquement techniques que personne ne cherche à réaliser effectivement. Un parfait
exemple est la désignation « la réduite qui a pour racines nos ennéaèdres » de Jordan, qui
réunissait en elle un flottement concernant le paramétrage des ennéaèdres, une incarna-
tion géométrique directe des racines, l’équivalence à l’équation aux vingt-sept droites, et
en même temps, un emploi d’un article défini laissant entendre une compréhension sans
équivoque.

Bien que les désignations des équations de la géométrie ne soient pas porteuses d’une
dimension affective, ou émotionnelle, un parallèle intéressant peut être fait avec la notion
de « symbolisme de condensation » d’Edward Sapir :

[Le symbolisme de condensation] est une forme très ramassée de conduite substitutive
qui permet de libérer instantanément une tension affective sous forme consciente ou
inconsciente. [...] Pratiquement, les deux types [symbolisme de référence et de conden-
sation] vont de pair. Ainsi, certaines formes d’écriture, l’orthographe stylisée, les pro-
nonciations spéciales, les slogans, sont des symboles de référence ; mais ils prennent
facilement l’allure de rites affectifs, et revêtent soudain pour l’individu et pour la
société une importance considérable en tant que formes substitutives de l’expression
affective. [Sapir 1921, p. 18-19]

Pour les équations de la géométrie, il y a en effet une idée de concentration d’une charge
de significations dans leurs désignations, comme expliqué à l’instant. Ainsi, l’utilisation
même d’une désignation comme « la réduite qui a pour racines nos ennéaèdres » induit une
libération de tous les aspects décrits plus haut, dont celui de privilégier les objets dérivés
dans toute question relative aux équations de la géométrie.

67. Nous touchons ici à des aspects sémiotiques des équations de la géométrie. Pour un approche sémio-
tique de l’histoire de la topologie, voir [Herreman 2000].
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Quoi qu’il en soit, l’intrication de tous les éléments liés aux équations de la géométrie
est une cause d’un symptôme que j’avais mis en évidence tout au début du chapitre 3 :
l’absence de définition mathématique précise des équations de la géométrie et le besoin
de forger ma propre compréhension de ce qu’elles sont en me plongeant dans l’ensemble
des textes. Outre leur reconnaissance, la compréhension de certains points mathématiques
impliquant les équations de la géométrie est aussi passée par la compréhension du tout,
ou du moins par une vision d’ensemble. Autrement dit, les traits caractéristiques de ces
équations ne se comprennent pleinement que lorsqu’ils sont mis en conjonction les uns avec
les autres, alors que l’isolement de l’un d’eux peut conduire l’observateur à une situation
qui lui semble dénuée de sens.

Reprenons ainsi l’exemple (qui m’a d’ailleurs conduit jusqu’ici) des « réduites géomé-
triques » de l’équation aux vingt-sept droites. La première de ces réduites était celle associée
aux quarante-cinq triangles :

Prenons, par exemple, pour inconnue de la question le plan du triangle formé par
trois droites qui se coupent : ces triangles étant au nombre de quarante-cinq, on aura
une équation du quarante-cinquième degré, équivalente à la proposée. [Jordan 1870b,
p. 319]

Comme je l’avais fait remarquer, l’existence de cette équation aux quarante-cinq triangles
et son équivalence avec celle aux vingt-sept droites ne paraissait pas entrer dans le type
d’énoncés et de démonstrations du Traité des substitutions et des équations algébriques.
Mais, mis en conjonction avec les façons de faire que l’on retrouve dans le corpus, et
en particulier avec la valorisation des objets dérivés, ce passage du Traité prend plus de
sens. Les valeurs prennent ainsi une importance d’autant plus grande qu’elles participent à
rendre le système lié : « les valeurs contribuent à donner une certaine cohérence à l’ensemble
des règles ou modèles, dans une société donnée. [Pris] séparément, les modèles trouvent
difficilement leur explication et [...] les liens qui les unissent ne sont pas toujours apparents.
c’est par référence à des valeurs qui les sous-tendent [...] que les modèles prennent une portée
et un sens plus profonds et que s’éclairent les liens qui les rattachent les uns aux autres,
tant au niveau des acteurs qu’à celui des collectivités. » [Rocher 1968, p. 86].

Finalement, les caractéristiques communément acceptées de la notion de culture se
retrouvent dans le cas des équations de la géométrie. Pour insister sur l’intrication de ses
éléments, mais aussi rappeler qu’il n’y a pas de constitution subjective d’une collectivité,
je parlerai désormais de système culturel pour référer au type d’organisation des savoirs
liés aux équations de la géométrie.

4.5 Un système culturel composite

Pour tenter de comprendre la place des « réduites géométriques » dans le Traité des
substitutions et des équations algébriques de Jordan, il s’agissait pour moi d’étudier le mode
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d’organisation du savoir lié aux équations de la géométrie. J’en suis ainsi venu à examiner
un corpus étalé de 1847 à 1896, mais dont les textes étaient essentiellement concentrées
entre 1868 et 1872, avec pour contributeurs principaux Clebsch, Jordan et Klein — le texte
du quatrième auteur important qu’est Noether arrivait un peu plus tard.

Un des points marquants du corpus était que ces équations de la géométrie formaient
un ensemble mathématiquement mal défini, mais que cela n’empêchait pas les auteurs de
repérer ce qui en relevait, de savoir comment les étudier, ou encore de chercher à accéder
à leur nature. Ce flottement était incarné en particulier par des désignations imprécises,
que le lecteur pouvait comprendre à force d’immersion dans les textes du corpus. Mon but
a alors été de savoir décrire cette nécessité d’immersion, en rendant compte de l’activité
mathématique elle-même mais aussi des modalités de son organisation.

J’ai ainsi mis en évidence plusieurs caractéristiques des équations de la géométrie :
outre les désignations que je viens d’évoquer, des procédés de résolution de ces équations
ont été mis à jour, et notamment certains mettant ce que j’ai appelé les objets dérivés au
centre de la compréhension de la nature des équations. En mettant en évidence un réseau
resserré de relations mathématiques, personnelles et institutionnelles, j’ai souligné que ces
façons de faire étaient bien partagées et apprises au sein de la collectivité. Plus que cela, j’ai
essayé de montrer qu’elles formaient un tout cohérent et intriqué ; autrement dit, qu’elles
ne pouvaient pleinement se comprendre qu’en étant mises les unes en conjonction avec les
autres. C’est pour cette raison principalement que je les ai décrites comme autant de traits
d’un système culturel.

Pour finir la description de ce système culturel, je voudrais enfin revenir sur certains de
ses traits, et montrer en quoi ils sont constitués d’éléments provenant de ce que j’ai suggéré
être des cultures de théorie des équations d’une part et des configurations géométriques
d’autre part. Concentrons-nous sur la période d’avant 1872. Nous avons vu que les procédés
de résolution des équations de la géométrie se basaient tous sur la connaissance des relations
d’incidence existant entre les objets associées à ces équations. Selon les auteurs, ces relations
étaient exprimées en relations entre racines, en fonctions de racines, en tableaux, ou en
résolvantes via leur expression en objets dérivés. Or, nous avons vu d’une part que ces
formes (relations entre racines, fonctions, etc.) étaient des éléments d’une culture de la
théorie des équations d’une grosse première moitié du xixe siècle ; d’autre part, que la
recherche des relations d’incidence d’objets associés à des courbes et surfaces de petit
degré étaient la marque probable d’une culture des configurations géométriques.

Dans le cas des relations entre racines et pour les fonctions ϕ, les groupements géo-
métriques étaient traduits sous une forme algébrique, ce qui permettait dans un deuxième
temps de déployer un arsenal issu de la théorie des équations (et des substitutions). Au
contraire, pour les tableaux et les objets dérivés, il y avait un transfert direct de l’infor-
mation géométrique au résultat algébrique. Autrement dit, dans ces cas, la recherche des
groupements géométriques se substitue à la recherche des résolvantes ou des groupements
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algébriques de racines, et change du même coup la valeur associée : ce n’est plus la forme
algébrique du groupement qui est valorisée, mais sa forme géométrique.

Ainsi, l’introduction des modèles et valeurs de la culture géométrique (les groupements
d’objets) dans ceux de la culture algébrique (comment « bien » résoudre une équation) les
change en partie. Il s’agit là d’un cas de réinterprétation au sens de Herskovits,

processus par lequel d’anciennes significations sont attribuées à des éléments nou-
veaux ou par lequel de nouvelles valeurs changent la signification culturelle de formes
anciennes. [Herskovits 1952, p. 248]

En ce sens, le système culturel des équations de la géométrie est donc bien formé d’éléments
provenant de la rencontre entre de ce que j’ai suggéré être une culture de la théorie des
équations d’une part, et d’une culture des configurations géométriques d’autre part. C’est
pour cela qu’on pourra le qualifier de composite.

Remarquons encore que cette réinterprétation, de laquelle résultent en partie les traits
du système culturel, est sous-tendue par le contexte, décrit plus haut, d’une théorie des
substitutions difficile, face à laquelle se tient une géométrie moins abstruse et plus intui-
tive, en tout cas pour Clebsch, Klein et Noether. Il y a ainsi une raison pour ces derniers
de substituer à des groupements de racines des groupements de points ou de droites, qui
est qu’ils peuvent mieux comprendre ces derniers. La situation est donc celle de géomètres
qui, pour assimiler les résultats et les techniques de la théorie des substitutions, ont re-
cours à leurs façons de faire géométriques, remplacent les groupements de racines par des
groupements d’objets.

Un autre phénomène de réinterprétation peut être deviné dans le corpus. En effet, alors
que la plupart des textes présentaient ou étudiaient les équations de la géométrie comme
des exemples particuliers d’équations, deux d’entre eux allaient plus loin. Il s’agit du mé-
moire de Clebsch sur l’interprétation géométrique de la théorie de l’équation du cinquième
degré, [Clebsch 1871b], et de l’article de Klein sur la représentation géométrique des résol-
vantes d’équations, [Klein 1871b], qui proposent tous deux une sorte de géométrisation de
pans entiers de la théorie des équations.
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Chapitre 5

Interprétations géométriques :
équations, invariants et groupes

Si les travaux de Clebsch ou Klein sur les équations de la géométrie ne délimitent pas
une communauté spécifique de mathématiciens, ces deux mathématiciens placent toutefois
des frontières entre différents domaines mathématiques. En effet, nous avons vu que dans
certains textes du corpus des équations de la géométrie, ils proposent chacun une interpré-
tation géométrique de certains aspects de la théorie des équations. Le présent chapitre a
pour but d’examiner le rôle que jouent les équations de la géométrie dans ces interpréta-
tions et d’étudier les conséquences qui en ont découlé. Les textes de Clebsch et de Klein
sont datés de 1871, ce qui correspond à la fin de la période des activités intenses autour
des équations de la géométrie. Commencer par analyser ces textes me permettra ensuite
de suivre, au moins en partie, la situation des équations de la géométrie après 1872.

5.1 Clebsch et l’équation générale du cinquième degré

Le mémoire qui fait l’objet de cette section est daté de juin 1871, [Clebsch 1871b] ;
il s’agit donc d’une publication tardive dans la vie de Clebsch (1833-1872). Il est intitulé
« Ueber die Anwendung der quadratischen Substitution auf die Gleichungen 5ten Grades
und die geometrische Theorie des ebenen Fünfseits ». Comme j’ai déjà eu l’occasion de
l’écrire, durant sa carrière, Clebsch avait été intéressé par la théorie des équations sans
pour autant mener systématiquement des recherches exclusivement consacrées à ce sujet.
Parce qu’il se rapporte essentiellement à l’équation du cinquième degré, le mémoire que
nous allons examiner a donc une place singulière au sein de l’œuvre de Clebsch. Au vu des
titres de la liste de ses publications, il semble d’ailleurs que Clebsch n’ait pas abordé de
sujet analogue avant ou après la publication de ce mémoire de 1871 1.

1. La liste des publications de Clebsch se trouve à la fin d’une de ses notices nécrologiques, [Brill, Gordan
et al. 1873, p. 51-55]. À part [Clebsch 1871b], seule la publication [Clebsch 1871a] a un titre qui mentionne
les équations de degré 5 et 6. Il s’agit d’une courte note aux Nachrichten der Königlichen Gesellschaft in
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Comme la plupart des articles de Clebsch que j’ai pu examiner, le mémoire [Clebsch
1871b], est un texte très riche et parfois difficile à suivre, que ce soit à cause d’une écriture
parfois sibylline, de la technicité des arguments ou de la prolifération de résultats ne servant
pas à la trame générale mais que Clebsch se garde de signaler comme tels. Dans ce qui
suit, j’ai essayé de dégager au maximum les grands axes du mémoire en donnant assez
d’explications pour que le lecteur voit ce quoi il retourne sans se noyer dans les détails.
Notons que ce choix d’une présentation la plus claire possible a cependant un coût, puisqu’il
ne permet pas de rendre compte du style de rédaction et d’exposition de Clebsch lui-même.

Le mémoire débute par une introduction dans laquelle Clebsch annonce les différents
résultats qu’il va obtenir. Il explique ainsi qu’il va s’agir d’interpréter géométriquement les
travaux de Hermite et de Kronecker sur l’équation du cinquième degré, basés sur la théorie
des transformations des fonctions elliptiques 2. La fin de l’introduction résume le tout, et
montre bien que Clebsch souhaitait exhiber au passage des résultats ne se rapportant pas
à l’équation du cinquième degré :

On obtient ainsi, comme première application des principes généraux développés dans
l’introduction du mémoire, un aperçu géométrique complet sur les rapports qui existent
entre les équations de degré 5 et leurs résolvantes, en particulier sur le rapport avec
la forme de Jerrard et l’équation modulaire. Avec cela, il résulte en même temps une
série de remarquables résultats purement géométriques, qui semblent adéquats pour
montrer la fécondités des idées et méthodes développées 3. [Clebsch 1871b, p. 285]

Outre son introduction, le mémoire [Clebsch 1871b] est composé de 19 sections pour une
soixantaine de pages. J’en ai dégagé la division suivante 4 :

— Principes de l’interprétation géométrique, exemple du quadrilatère (sections 1 à 4).

— Propriétés géométriques du quintilatère et des courbes associées (sections 5 à 9).

— Intérêt de l’étude de la courbe C = 0 (section 10).

— Étude géométrique de la courbe C = 0 (sections 11 à 14).

— Interprétation géométrique de la méthode de Jerrard (section 15).

— Étude de la surface diagonale (sections 16 à 18).

Göttingen, présentant certains des résultats du mémoire que nous étudions, [Clebsch 1871b].
2. J’en exposerai les détails au moment voulu.
3. « So erhält man als eine erste Anwendung der im Eingange der Abhandlung entwickelten allgemei-

nen Principien eine vollständige geometrische Uebersicht über die Zusammenhänge, welche zwischen den
Gleichung 5ten Grades und ihren Resolventen bestehen, insbesondere über den Zusammenhang mit der Jer-
rard’schen Form und der Modulargleichung. Dabei ergiebt sich zugleich eine Reihe bemerkenswerther rein
geometrischer Resultate, welche geeignet scheinen, die Fruchtbarbeit [sic] der entwickelten Anschauungen
und Methoden darzuthun. »

4. Les termes apparaissant dans cette liste seront expliqués plus loin. Par ailleurs, pour simplifier ma
présentation, je ne respecterai pas tout le temps l’ordre du mémoire de Clebsch.
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— Récapitulatif pour l’interprétation de la méthode de Hermite et interprétation de la
méthode de Kronecker (section 19).

Entrons maintenant dans le détail mathématique, en commençant par les principes géné-
raux d’interprétation géométrique.

5.1.1 Principes généraux d’interprétation géométrique

Substitutions quadratiques

Pour commencer, Clebsch considère une équation algébrique de degré n et d’inconnue λ,
notée f(λ) = 0 — à aucun moment du mémoire n’est faite de remarque sur la nature
rationnelle, réelle ou complexe (par exemple) de ses coefficients. Il introduit ce qu’il appelle
une « substitution » ou « transformation 5 »

ξ =
ϕ(λ)

ψ(λ)
,

où ϕ et ψ sont des fonctions polynomiales. Une telle transformation est dite « linéaire »
lorsque ϕ et ψ sont de degré 1, et est dite « supérieure » si elles sont de degré au moins 2. La
transformation est destinée à opérer sur l’équation f(λ) = 0, et ξ désigne donc la nouvelle
inconnue. Ainsi, si les racines de l’équation de départ sont notées λi, alors les racines de
l’équation transformée sont les ξi = ϕ(λi)/ψ(λi). Autrement dit, si les facteurs de l’équation
de départ sont les (λ− λi), alors ceux de l’équation transformée sont les (ϕ(λi)− ξψ(λi)).

Au sujet de ces transformations, Clebsch renvoie à deux articles antérieurs, l’un dû
à Paul Gordan et l’autre à lui-même, [Gordan 1870 ; Clebsch 1871c]. Chacune de ces ré-
férences se rapporte à la théorie des invariants. Gordan et Clebsch y rappellent chacun
que l’effet des transformations linéaires sur les formes algébriques a déjà été bien étudié,
au contraire de celui des transformations supérieures. Tous deux mentionnent toutefois
des travaux de Hermite dans lesquelles ce dernier avait introduit de telles transformations
supérieures dans son approche de l’équation générale du quatrième degré, [Hermite 1858b].

Revenons au mémoire de Clebsch dont il est principalement question ici. La substitu-
tion ξ = ϕ(λ)/ψ(λ) est appelée « substitution quadratique » lorsque ϕ et ψ sont de degré
au plus 2 ; c’est ce type de substitution qui est au cœur des recherches de Clebsch dans le
mémoire que nous étudions. Pour une substitution quadratique, Clebsch écrit

ϕ(λ) = y1 + λy2 + λ2y3 et ψ(λ) = x1 + λx2 + λ2x3,

où les xi et les yi sont des nombres complexes (non tous nuls), de sorte que les facteurs de

5. Précisons que le terme « substitution » n’a pas le même que chez Jordan par exemple, c’est-à-dire
qu’il ne désigne pas ce que nous appelons aujourd’hui une permutation. De plus, les « transformations »
ici en jeu ne sont pas des transformations du plan ou de l’espace comme des rotations ou des homothéties.
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l’équation transformée deviennent

(y1 − ξx1) + λi(y2 − ξx2) + λ2
i (y3 − ξx3).

L’idée de Clebsch est alors de considérer x1, x2, x3 d’une part et y1, y2, y3 d’autre part
comme les coordonnées homogènes de deux points x et y du plan, qui seront appelés points-
base de la substitution. Ainsi, à une substitution quadratique est associée une droite (xy),
et les racines ξi de l’équation transformée correspondent aux points d’intersection de (xy)

avec les n droites définies par z1 + λiz2 + λ2
i z3 = 0, où z1, z2, z3 sont les coordonnées

courantes du plan 6. Pour Clebsch, « on obtient ainsi un aperçu plus clair de l’essence de
la substitution quadratique 7 ».

Clebsch fait ensuite remarquer que toutes les droites z1 +λiz2 +λ2
i z3 = 0 sont tangentes

à la conique 8 d’équation z2
2 − 4z1z3 = 0, puis résume le tout en un théorème :

L’ensemble de toutes les équations en lesquelles se transforme une équation donnée
par une substitution quadratique correspond aux systèmes de points d’intersection des
droites d’un plan avec les côtés d’un certain polylatère, dont les côtés touchent une
conique 9. [Clebsch 1871b, p. 286]

Autrement dit, l’équation donnée f(λ) = 0 de degré n et de racines notées λi définit les n
droites z1 + λiz2 + λ2

i z3 = 0 toutes tangentes à une même conique ; à une transformation
quadratique ξ = ϕ(λ)/ψ(λ) correspond une droite (xy) ; les racines de l’équation transfor-
mée correspondent aux points d’intersection de (xy) avec les n droites précédentes.

Remarquons que Clebsch utilise le terme Vielseit, que j’ai traduit par polylatère et non
pas par polygone, réservé à la traduction de Vieleck — je parlerai dans la suite de n-latère,
de quadrilatère ou de quintilatère suivant le nombre de côtés. En effet, Clebsch fait une
différence entre ces deux objets qui sont duaux l’un de l’autre : un polygone est un ensemble
de points (qui sont reliés par des droites) alors qu’un polylatère est un ensemble de droites
(qui se coupent en des points).

6. En effet, la droite (xy) a pour équations paramétriques
z1 = y1 − ξx1

z2 = y2 − ξx2

z3 = y3 − ξx3.

Son intersection avec une droite d’équation z1 + λiz2 + λ2
i z3 = 0 est obtenue pour le paramètre ξ tel

que (y1 − ξx1) + λi(y2 − ξx2) + λ2
i (y3 − ξx3) = 0. Vu ce qui précède, ce paramètre est la racine ξi de

l’équation transformée.
7. « Wir erhalten hierdurch eine deutlichere Einsicht in das Wesen der quadratischen Substituti-

on », [Clebsch 1871b, p. 286].
8. Pour le vérifier, on peut substituer z1 = −λiz2 − λ2

i z3 dans l’équation de la conique et vérifier
qu’on obtient une équation du second degré (homogène) à discriminant nul. Cette nullité signifie que la
droite z1 +λiz2 +λ2

i z3 = 0 possède un contact d’ordre 2 avec la conique, c’est-à-dire qu’elle lui est tangente.
9. « Die Gesammtheit aller Gleichungen, in welche eine gegebene durch eine quadratische Substitution

übergeht, entspricht den Schnittpunktsystemen der Geraden einer Ebene mit den Seiten eines gewissen
Vielseits, dessen Seiten einen Kegelschnitt berühren. »
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Clebsch indique ensuite ce qu’entraîne le changement des points-bases dans son inter-
prétation géométrique des substitutions quadratiques. Ainsi, si une première substitution
est donnée par deux points x, y, le choix de deux autres points x′, y′ situés sur la droite (xy)

correspond à une substitution linéaire supplémentaire. Plus précisément, si les coordonnées
de x′ et y′ sont données par

x′i = αxi + βyi et y′i = γxi + δyi,

alors la substitution linéaire en question est donnée par l’homographie 10

ξ′ =
γ + δξ

α+ βξ
.

Autrement dit, si une première substitution quadratique associée à une droite a été opé-
rée sur une équation, alors tout changement de points-base sur cette droite entraîne une
substitution linéaire sur la nouvelle équation. Pour Clebsch :

Il est très important [...] que les éléments caractéristiques impliqués dans la trans-
formation supérieure apparaissent séparément de l’influence que peut encore exercer
une transformation linéaire ultérieure ; et cette propriété donne à la transformation en
question ainsi qu’à sa signification géométrique toute leur valeur 11. [Clebsch 1871b,
p. 287]

Dans la suite du mémoire 12, Clebsch s’attache à trouver des substitutions quadratiques
pouvant transformer une équation donnée en une équation pour laquelle certains invariants
sont nuls. Pour pouvoir suivre sa démarche, je propose d’abord un paragraphe de rappels
sur les formes et invariants, inspiré de deux livres, [Clebsch 1872a ; Clebsch 1876]. Le
premier est le livre de Clebsch consacré à la théorie des formes binaires, Theorie der binären
algebraischen Formen ; le second, édité de façon posthume par Ferdinand Lindemann, est
intitulé Vorlesungen über Geometrie, comprenant entre autres de longs développements sur
la théorie des invariants.

10. Dans l’article de Clebsch, on lit ξ′ =
α+ βξ

γ + δξ
, ce qui me semble erroné.

11. « Es ist von grosser Wichtigkeit, dass hierdurch die in der höhern Transformation liegenden eigen-
thümlichen Elemente gesondert erscheinen von dem Einfluss, welchen eine nachträgliche lineare noch aus-
üben kann; und diese Eigenschaft giebt der vorliegenden Transformation und ihrer geometrischen Deutung
vorzugsweise ihren Werth. »
12. Clebsch donne aussi, au début du mémoire, une interprétation analogue des transformation cubiques

ξ =
y1 + λy2 + λ2y3 + λ3y4

x1 + λx2 + λ2x3 + λ3x4

en termes de points x, y de l’espace. Cette interprétation n’est plus du tout évoquée dans la suite de ses
recherches, et j’en passerai donc les détails sous silence.
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Formes et invariants : rappels

On se donne une forme binaire f(x1, x2) de degré n, c’est-à-dire un polynôme homogène
de degré n. Une telle forme peut toujours s’écrire de la façon suivante :

f(x1, x2) = a0x
n
1 + na1x

n−1
1 x2 +

n(n− 1)

2
a1x

n−2
1 x2

2 + · · ·+ anx
n
2 .

Si on opère une transformation linéaire inversible changeant x1, x2 en ξ1, ξ2, alors on peut
toujours écrire f(x1, x2) = f ′(ξ1, ξ2), où les coefficients a′i de f ′ sont des fonctions des
ai et des coefficients de la transformation linéaire. Un invariant de f est une expression
polynomiale homogène I(a1, . . . , an) telle que pour toute transformation linéaire, on a

I(a′1, . . . , a
′
n) = rkI(a1, . . . , an),

où r est le déterminant de la transformation linéaire appliquée et k un entier ne dépendant
que de celle-ci. Le degré de l’invariant I est son degré en tant que polynôme.

Par exemple, regardons la forme quadratique f(x1, x2) = a0x
2
0 + 2a1x1x2 + a2x

2
2. L’ac-

tion de la transformation linéaire x1 = α11ξ1 + α12ξ2

x2 = α21ξ1 + α22ξ2

permet d’écrire f(x1, x2) = a′0ξ
2
1 + 2a′1ξ1ξ2 + a′2ξ

2
2 avec a′0 = a0α

2
11 + 2a1α12α21 + a2α

2
22,

etc. Le discriminant ∆ de f , défini par ∆ = a0a2− a2
1 est un invariant de degré 2 de f car,

comme on peut le vérifier par le calcul, on a

a′0a
′
2 − a′1

2
= r2(a0a2 − a2

1).

Passons à la notation symbolique des formes et des invariants, que Aronhold avait
introduite dès 1849 et que Clebsch avait ensuite adoptée et exploitée à partir de la fin des
années 1850 13. Pour une forme binaire f(x1, x2) = a0x

n
1 + na1x

n−1
1 x2 + · · · , la notation

symbolique consiste à poser f = (b1x1 + b2x2)n, ou même f = bnx, et à stipuler que
dans le développement du binôme (b1x1 + b2x2)n, il faut remplacer formellement chacun
des termes bn1 , b

n−1
1 b2, . . . , b

n
2 par a0, a1, . . . , an respectivement. L’usage de la lettre b étant

purement formel, il est possible de la remplacer par n’importe quelle autre. On peut donc
par exemple écrire f = bnx = cnx, les mêmes règles de substitutions étant valables pour les
coefficients c. Ceci étant dit, notons (bc) = b1c2 − b2c1 ; c’est un déterminant symbolique

13. Pour des éléments d’une histoire de la théorie des invariants (comprenant cette notation symbolique),
voir [Fisher 1966 ; Parshall 1989]. Par ailleurs, on trouvera une présentation et une justification actuelle de
la notation symbolique et des calculs qui en découlent dans [Kung & Rota 1984].
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associé à f . L’élévation à la puissance n de cette expression donne

(bc)n = bn1 · cn2 − nbn−1
1 b2 · c1c

n−1
2 + · · ·+ (−1)nbn2 · cn1 ,

et l’on pourra remplacer chacun des symboles formels bn−k1 bk2 et cn−k1 ck2 par ak.

Pour fixer les idées, regardons l’exemple n = 2 en prenant comme précédemment une
forme quadratique f(x1, x2) = a0x

2
0 + 2a1x1x2 + a2x

2
2 notée symboliquement f = b2x = c2

x.
Les règles de substitution symbolique sont :

b21 = a0

b1b2 = a1

b22 = a2

et


c2

1 = a0

c1c2 = a1

c2
2 = a2.

Appliquons ces règles de substitutions symboliques dans l’expression développée de (bc)2 :

(bc)2 = b21c
2
2 − 2b1b2c1c2 + b22c

2
1 = a0a2 − 2a1a1 + a2a0

Il est important de remarquer qu’on ne peut remplacer que ce qui est remplaçable : par
exemple, b1 seul n’apparaît pas dans les règles de substitutions, et ne peut donc être rem-
placé en tant que tel — on ne sait remplacer que b21 ou b1b2. En tout cas, cet exemple montre
que le discriminant de la forme quadratique f est une fonction rationnelle d’expressions
symboliques (bc), puisque l’on a ∆ = (bc)2/2.

En fait, dans un article de 1861, [Clebsch 1861], Clebsch avait démontré que tout
invariant d’une forme binaire (de degré quelconque) se représente symboliquement comme
une combinaison linéaire de produits de déterminants symboliques (bc). Autrement dit,
tout invariant I d’une forme binaire f = bnx = cnx s’écrit

I =
∑

C
∏

(bc),

où les C sont des constantes.

Enfin, rappelons l’interprétation géométrique des formes binaires que Clebsch utilisait.
Une telle forme f(x1, x2) permet de définir n rapports x1/x2 par la relation f(x1, x2) = 0.
Ces rapports peuvent alors être vus comme autant de points sur une droite projective, de
coordonnées (x1 : x2) — Clebsch parlait de séries de points. Réciproquement, n points sur
une droite projective permettent de définir une forme binaire de degré n, et l’on peut dès
lors parler des invariants d’une série de points sur une droite.

Pour finir, ajoutons que les règles du calcul symbolique existent aussi pour les formes
ternaires, c’est-à-dire les formes dépendant de trois variables. Une telle forme est ainsi
notée symboliquement f = (b1z1 + b2z2 + b3z3)n, ou encore f = b3z = c3

z. Il y a encore des
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déterminants symboliques (bcu) définis par

(bcu) =

∣∣∣∣∣∣∣∣∣∣
b1 c1 u1

b2 c2 u2

b3 c3 u3

∣∣∣∣∣∣∣∣∣∣
,

les règles de substitutions symboliques étant obtenues exactement comme pour les formes
binaires.

Annulation d’invariants

Revenons à notre mémoire de Clebsch sur l’interprétation géométrique de la quin-
tique, [Clebsch 1871b]. Comme expliqué précédemment, étant donnée une équation no-
tée f(λ) = 0, on peut lui associer une forme binaire f(x1, x2) en l’homogénéisant, c’est-
à-dire en remplaçant l’inconnue λ par x1/x2 et en multipliant le tout par xn2 . De cette
façon, on peut parler des invariants de f(λ) = 0, qui sont les invariants de f(x1, x2). Un
point important pour notre propos est que ces invariances renvoient à des transformations
linéaires. Par conséquent, si une substitution quadratique est opérée sur une équation, ses
invariants peuvent être modifiés. Dans le mémoire que nous étudions ici, Clebsch veut jus-
tement faire en sorte à ce que les équations transformées par substitutions quadratiques
aient certains invariants qui s’annulent.

En fait, cette idée de chercher à transformer des équations de sorte à annuler des
invariants avait déjà été mise en avant par Hermite quelques années auparavant, pour les
équations du quatrième et du cinquième degré 14. En particulier pour le cinquième degré, à
la suite de ses travaux et de ceux de Kronecker (et Brioschi) à ce sujet, il avait élaboré un
grand mémoire récapitulatif dans lequel il avait cherché à unifier les différentes approches
de la quintique par le biais de la théorie des invariants, [Hermite 1865-66].

Le théorème sur lequel Clebsch s’appuie est le suivant :

Toutes les droites qui coupent un n-latère donné [et provenant d’une équation algé-
brique,] de sorte que pour le système de points d’intersection, un certain invariant [J ]
de degré χ s’annule enveloppent une courbe (J = 0) de classe χn/2. [...] La courbe
J = 0 a les côtés du n-latère comme tangentes χ-uples 15. [Clebsch 1871b, p. 291]

Je ne transcrirai pas la démonstration de ce théorème, mais des explications sur l’énoncé
lui-même seront utiles pour bien comprendre la suite.

D’abord, rappelons qu’on peut parler des coordonnées (homogènes) d’une droite du
plan : ce sont les coefficients u1, u2, u3, définis à coefficient de proportionnalité commun

14. [Goldstein 2011a, p. 248-249].
15. « Alle Geraden, welche ein gegebenes n-Seit so schneiden, dass für das Schnittpunktsystem eine

gewisse Invariante χten Grades verschwindet, umhüllen eine Curve (J = 0) der Classe χn/2. [...] Die Curve
J = 0 hat die Seiten des n-Seits zu χfachen [sic] Tangenten. »
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près, apparaissant dans une équation u1z1 +u2z2 +u3z3 = 0 de cette droite. Les courbes du
plan peuvent alors être décrites par ces coordonnées dites tangentielles, au lieu des coor-
données ponctuelles z1, z2, z3. Par exemple, définir une courbe par l’équation u2

1 + u2u3 = 0

signifie la définir comme l’enveloppe des droites dont les coordonnées vérifient cette équa-
tion. Autrement dit, une droite du plan est tangente à la courbe si et seulement si ses
coordonnées vérifient l’équation. Cette dernière est alors appelée équation tangentielle et
son degré est la classe de la courbe.

J’en viens maintenant au théorème de Clebsch. Soit f = anx = bnx la forme symbolique de
la forme binaire associée à l’équation algébrique donnée. Comme on l’a vu, cette équation
définit un n-latère dont les côtés ont pour équations respectives z1 +λiz2 +λ2

i z3 = 0, les λi
étant les racines de l’équation donnée. Le produit des membres de gauche de ces équations
donne une forme ternaire en z1, z2, z3, de degré n, notée symboliquement f = anz = bnz .
Remarquons que Clebsch fait double emploi de la lettre f , qui est utilisée une fois pour
désigner une forme binaire, et l’autre fois pour une forme ternaire — dans la suite, je
préciserai à chaque fois de quel cas il s’agit.

On se donne maintenant une droite de coordonnées u1, u2, u3 et on considère le système
de ses n points d’intersection avec le n-latère. Les invariants de ce système de points sont
alors tous donnés par les formules 16

J =
∑

C
∏

(abu).

On peut ainsi voir J comme une expression polynomiale en u1, u2, u3, de sorte que l’équa-
tion J = 0 s’interprète comme l’équation tangentielle d’une certaine courbe.

Le théorème de Clebsch cité plus haut dit que dans l’interprétation géométrique, les
substitutions quadratiques faisant s’annuler un invariant J de l’équation de départ cor-
respondent aux droites du plan qui vérifient l’équation tangentielle J = 0, étant entendu
que dans cette dernière, on est passé aux « formations ternaires » en u, comme expliqué à
l’instant.

Voyons, en suivant Clebsch, l’exemple de l’équation du quatrième degré pour clarifier
tout cela.

5.1.2 Un exemple : l’équation du quatrième degré

Pour mettre les choses en perspective, renversons l’ordre adopté par Clebsch et rappe-
lons pour commencer quelques résultats qui avaient été obtenus par Hermite sur l’équation
du quatrième degré dans des travaux de 1858, [Hermite 1858b] 17.

16. Ce résultat avait été montré par Clebsch dans [Clebsch 1861].
17. Ces travaux sont discutés dans [Goldstein 2011a, p. 249].
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Hermite avait remarqué que toutes les équations de la forme

x4 − 6Sx2 − 8Tx− 3S2 = 0 (5.1)

pouvaient se résoudre à l’aide de l’équation modulaire associée à la transformation d’ordre 3

des fonctions elliptiques. La question était alors de pouvoir ramener toute équation du qua-
trième degré sous cette forme. Hermite avait procédé en deux étapes. La première était
de montrer qu’une équation ax4 + 4bx3 + 6cx2 + 4dx + e = 0 dont l’invariant quadra-
tique i = ae− 4bc+ 3c2 est nul peut se ramener à la forme (5.1). Hermite avait vu que
cela peut être fait par simple translation de la variable. La seconde étape était de montrer
que toute équation de degré 4 peut être transformée en une équation ayant un invariant i
nul. Pour cela, Hermite avait trouvé une transformation supérieure de la variable de la
forme y = ϕ(x) — remarquons que cette transformation supérieure était polynomiale et
pas rationnelle comme celles considérées ici par Clebsch 18. En outre, Hermite avait pris
soin de montrer que les coefficients de la transformation y = ϕ(x) permettant d’annuler i
n’impliquaient que l’adjonction de racines carrées 19.

Voyons à présent ce que Clebsch propose pour l’équation de degré 4. Cette dernière,
ou plutôt la forme binaire associée, est notée symboliquement f = a4

x = b4x, et son inva-
riant quadratique est alors, toujours en notation symbolique, i = (ab)4. Comme expliqué
précédemment, l’équation donne lieu à un quadrilatère dans le plan, et Clebsch indique
qu’à changement de coordonnées du plan près, les côtés de ce quadrilatère peuvent être
représentés par les équations 20

z1 + z2 + z3 = 0

−z1 + z2 + z3 = 0

z1 − z2 + z3 = 0

z1 + z2 − z3 = 0.

Par conséquent, le produit des quatre membres de gauche donnant la forme ternaire f
représentant le quadrilatère est

f = z4
1 + z4

2 + z4
3 − 2z2

1z
2
2 − 2z2

2z
2
3 − 2z2

3z
2
1 .

18. L’usage par Clebsch de transformations rationnelles peut être vu comme une trace de son approche
géométrique, alors que l’utilisation de transformations polynomiales par Hermite renvoie plutôt à une
approche algébrique.
19. Cette attention sur les adjonctions de racines carrées renvoie à l’incorporation d’éléments provenant

des travaux de Galois dans ceux d’Hermite. [Goldstein 2011a, p. 250]
20. Rappelons que choisir un repère projectif du plan revient à choisir un triangle de référence dont les

côtés deviennent chacun les axes d’annulation d’une des coordonnées. Pour ramener les équations d’un
quadrilatère sous la forme annoncée par Clebsch, il suffit de choisir pour triangle de référence le triangle
formée des trois diagonales du quadrilatère (un quadrilatère est un ensemble de quatre droites, qui se
coupent donc en six points et définissent ainsi trois diagonales).
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En la notant symboliquement f = a4
z = b4z, le théorème d’interprétation géométrique

de Clebsch dit que trouver une substitution annulant l’invariant i revient à trouver une
tangente à la courbe d’équation tangentielle i = (abu)4 = 0. Dans son mémoire, Clebsch
annonce que l’invariant i est donné par

i =
8

3
(u4

1 + u4
2 + u4

3 − u2
1u

2
2 − u2

2u
2
3 − u2

3u
2
1).

Pour voir cela, il s’agit d’expliciter l’expression (abu)4 ; trouvons donc d’abord les règles
de substitutions de la notation symbolique. Puisque

f = a4
z = z4

1 + z4
2 + z4

3 − 2z2
1z

2
2 − 2z2

2z
2
3 − 2z2

3z
2
1 ,

on développe la puissance f = (a1z1 + a2z2 + a3z3)4 :

(a1z1 + a2z2 + a3z3)4 = a4
1z

4
1 + a4

2z
4
2 + a4

3z
4
3+

+4a3
1a2z

3
1z2+4a3

1a3z
3
1z3 + 4a1a

3
2z1z

3
2 + 4a3

2a3z
3
2z3 + 4a1a

3
3z1z

3
3 + 4a2a

3
3z2z

3
3+

+ 6a2
1a

2
2z

2
1z

2
2 + 6a2

2a
2
3z

2
2z

2
3 + 6a2

3a
2
1z

2
3z

2
1+

+ 12a2
1a2a3z

2
1z2z3 + 12a1a

2
2a3z1z

2
2z3 + 12a1a2a

2
3z1z2z

2
3 .

En comparant avec la forme de f , on obtient les règles de substitutions suivantes :

a4
1 = a4

2 = a4
3 = 1

a3
1a2 = a3

1a3 = a1a
3
2 = a3

2a3 = a1a
3
3 = a2a

3
3 = 0

a2
1a

2
2 = a2

2a
2
3 = a2

1a
2
3 = −1/3

a2
1a2a3 = a1a

2
2a3 = a1a2a

2
3 = 0.

En outre, comme je l’ai expliqué supra, des règles identiques s’obtiennent en remplaçant
d’un coup toutes les lettres a par des lettres b.

Passons maintenant au déterminant symbolique (abu). Par définition de celui-ci, on a :

(abu)4 =

∣∣∣∣∣∣∣∣∣∣
a1 b1 u1

a2 b2 u2

a3 b3 u3

∣∣∣∣∣∣∣∣∣∣

4

=
(
(a1b2 − a2b1)u1 + (a3b1 − a1b3)u2 + (a1b2 − a2b1)u3

)4
.

Les règles du calcul symbolique disent qu’il faut d’abord développer entièrement cette
puissance quatrième avant de faire les substitutions données par les règles d’identification
précédentes. Par exemple, dans l’expression de (abu)4, le terme en u4

1 est

a4
1b

4
2 − 4a3

1a2b1b
3
2 + 6a2

1a
2
2b

2
1b

2
2 − 4a1a

3
2b

3
1b2 + a4

2b
4
1,
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qui est égal, d’après les règles de substitutions, à

1 · 1− 4 · 0 · 0 + 6 · (−1

3
)(−1

3
)− 4 · 0 · 0 + 1 · 1 =

8

3
.

En faisant de même pour les coefficients de u3
1u2, u2

1u
2
2, etc., on trouve bien le résultat qui

était donné par Clebsch :

i =
8

3
(u4

1 + u4
2 + u4

3 − u2
1u

2
2 − u2

2u
2
3 − u2

3u
2
1).

Clebsch remarque ensuite que cette expression se factorise :

i =
8

3
(u2

1 + εu2
2 + ε2u2

3)(u2
1 + ε2u2

2 + εu2
3),

où ε est une racine cubique de l’unité. Cette factorisation montre que la courbe i = 0

est formée des deux coniques 21 d’équations tangentielles respectives u2
1 + εu2

2 + ε2u2
3 = 0

et u2
1 + ε2u2

2 + εu2
3 = 0. Clebsch conclut alors :

Avec cela, on peut assortir d’un apparat géométrique la résolution de l’équation de
degré 4, telle Hermite [l’a] 22 donnée, [Hermite 1858b]. Cette résolution repose sur le
fait qu’on peut changer, par une transformation supérieure, l’équation biquadratique
en une autre pour laquelle i [...] disparaît [...]. En effet, on n’a besoin que de prendre
le quadrilatère f = 0 associé à l’équation d’ordre 4 et de construire [la courbe i = 0.
Cette] équation se sépare par ce qui précède en 2 coniques, ce qui se fait à l’aide d’une
équation quadratique ; chaque tangente d’une telle conique donne alors une équation
biquadratique pour laquelle i = 0, et qui est donc résolue par une équation cubique
pure 23. [Clebsch 1871b, p. 296]

On remarquera que pour Clebsch, il n’y a absolument aucun souci d’effectivité : trouver
explicitement la substitution quadratique permettant d’annuler i est un point qui n’est
évoqué à aucun moment. Cet aspect l’oppose ainsi à Hermite qui cherchait toujours des
procédures effectives et concrètes. Par ailleurs, noter que l’« apparat géométrique » de
Clebsch consiste à interpréter en termes de droites et de courbes les coefficients de sa
transformation quadratique et les invariants à annuler. Il ne s’agit donc pas par exemple
d’interpréter géométriquement la transformation y = ϕ(x) que Hermite avait utilisée dans

21. Les courbes de classe 2 coïncident avec les courbe d’ordre 2, c’est-à-dire les coniques.
22. Dans cette citation, outre les travaux de Hermite, Clebsch mentionne ceux de Gordan, [Gordan 1870].

Ce dernier avait de son côté étudié l’annulation d’un autre invariant de l’équation du quatrième degré.
23. « Man kann hieran in geometrischem Gewande die Lösung der Gleichung 4ten Grades knüpfen, wie

Hermite (Comptes Rendus t. 46. p. 961) und Gordan (Borchardt’s Journal Bd. 71, p. 164) dieselbe gegeben
haben. Diese Lösung beruht darauf, dass man die biquadratische Gleichung durch eine höhere Transfor-
mation in eine solche verwandelt, für welche i [...] verschwindet [...]. In der That braucht man nur das zu
der Gleichung 4ter Ordnung gehörige Vierseit f = 0 zu nehmen, und [die Curve i=0 zu bilden. Diese] Glei-
chung zerfällt nach dem Obigen in 2 Kegelschnitte, eine Zerlegung, welche mit Hülfe einer quadratischen
Gleichung ausgeführt wird; jede Tangente eines solchen Kegelschnittes liefert dann eine biquadratische
Gleichung, für welche i = 0 und welche also durch eine reine cubische Gleichung gelöst wird. »
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ses travaux de 1858. Pour Clebsch, l’apport de Hermite réside plutôt dans le fait d’avoir
« résolu » l’équation du quatrième degré en montrant qu’il était possible d’annuler son
invariant i (ce qui permet ensuite de la résoudre via les fonctions elliptiques).

En revanche, et on le reverra dans la suite, il est essentiel à Clebsch de contrôler les
irrationalités impliquées dans son interprétation géométrique : ces irrationalités doivent être
en accord avec les méthodes qu’il interprète. Dans le cas présent, comme la courbe i = 0 se
compose de deux coniques, l’interprétation géométrique ne fait intervenir que des racines
carrées (correspondant à la racine cubique de l’unité ε) ; trouver ensuite une tangente à
l’une de ces coniques n’introduit pas d’irrationalité supplémentaire 24. Il n’y a donc que des
racines carrées qui sont introduites, comme c’était le cas dans la démarche de Hermite.

5.1.3 L’équation du cinquième degré

Après l’exemple du quadrilatère, Clebsch en arrive à l’équation du cinquième degré.
Comme je l’ai évoqué en début de section, Clebsch va surtout se référer aux recherches de
Hermite et de Kronecker sur le sujet. Rappelons-en ici les grandes lignes, ce qui permettra
par la suite de comparer avec ce que Clebsch propose 25.

Comme j’ai déjà pu le décrire dans cette thèse, le résultat sur lequel se basait l’approche
de Hermite était la possibilité d’abaisser d’un degré l’équation modulaire (de degré 6)
associée à la transformation d’ordre 5 des fonctions elliptiques. Cette équation provenait
de la théorie de la transformation des fonctions elliptiques, consistant à chercher y, ` et M
en fonction de x et k, de sorte que

dy√
(1− y2)(1− `2y2)

=
1

M

dx√
(1− x2)(1− k2x2)

.

Lorsque y est cherché sous la forme y = U(x)/V (x) avec U, V premiers entre eux de degrés
respectifs n et n − 1, il s’agit de la transformation d’ordre n. Dans ce cas, ` est lié à k
par une équation de degré n + 1 appelée équation modulaire ; M est aussi lié à k par une
équation de degré n + 1, appelée équation du multiplicateur. Le résultat que Galois avait
annoncé en 1832 était que lorsque n valait 5, 7 ou 11, l’équation modulaire possédait une
réduite de degré n− 1.

Ce résultat, qui avait été énoncé sans démonstration, avait été prouvé par Betti en
1853 par des considérations de décompositions du groupe de l’équation modulaire. Dans
le cas n = 5 qui nous intéresse, ce groupe est (en termes actuels) PGL2(F5), qui se réduit
à PSL2(F5) par adjonction d’une racine carrée. L’abaissement de l’équation modulaire

24. En termes modernes, si une conique est donnée par l’annulation d’une forme quadratique, ses tan-
gentes sont obtenues grâce à la forme bilinéaire associée, déduite de la forme quadratique par la règle de
dédoublement des termes. Toutes ces considérations n’apparaissent que de façon floue chez Clebsch.
25. Je me base sur [Goldstein 2011a] pour ce qui est de Hermite, sur [Petri & Schappacher 2004] pour

Kronecker. Voir aussi [Gray 2000 ; Houzel 2002], où d’autres approches, comme celle de Brioschi, sont
décrites.
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vu par Galois correspond alors à l’existence d’un sous-groupe (non distingué) d’indice 5

de PSL2(F5).

Hermite connaissait ces résultats et n’en s’était pas contenté, cherchant explicitement
la forme de la réduite de degré 5 correspondant au sous-groupe d’indice 5 — les résultats
avaient été publiés en 1858, [Hermite 1858a]. Pour cela, il avait trouvé une fonction des
racines de l’équation modulaire qui ne prend que 5 valeurs différentes sous l’action du
groupe PSL2(F5). Ces valeurs z1, . . . , z5 étaient de la forme zi = Φ(ω + 16i), où ω est
le quotient des périodes des fonctions elliptiques et Φ une fonction, dont la forme était
connue explicitement, dépendant de quantités fixes liées à ces mêmes fonctions. Un point
important était que ces formules donnaient lieu à certains développements en série. Hermite
en avait déduit que les zi étaient les racines de l’équation

Φ5 − αΦ− β = 0, (5.2)

où α, β sont des quantités dépendant explicitement de quantités liées aux fonctions ellip-
tiques. Cette équation de degré 5 est donc l’équation réduite de l’équation modulaire.

Le lien avec l’équation générale du cinquième degré provenait alors de la forme dite de
Jerrard 26. Le mathématicien George Birch Jerrard avait en effet démontré que l’équation
quintique pouvait toujours se ramener à la forme

y5 − y −A = 0. (5.3)

Cela était fait en utilisant une transformation de Tschirnhaus y = a+ bx+ cx2 +dx3 +ex4,
dont les coefficients ne faisaient intervenir que des racines carrées et cubiques des coefficients
de la quintique. Pour résoudre l’équation du cinquième degré, Hermite avait alors identifié 27

les formes 5.2 et 5.3, et ainsi explicitement exprimé les racines y de la seconde en fonction
des racines zi de la première. L’équation du cinquième degré était par conséquent résolue
à l’aide des fonctions elliptiques.

D’autres recherches de Hermite avaient consisté à caractériser des propriétés de l’équa-
tion du cinquième degré par la théorie des invariants : il s’agissait de trouver des invariants
et covariants 28 dont les annulations respectives donnaient des informations quant à la réa-
lité ou la multiplicité des racines par exemple. Des travaux analogues avaient été développés

26. On trouve aussi parfois « forme de Bring-Jerrard », ou, comme c’est ici le cas pour Clebsch, « forme
de Tschirnhaus-Jerrard ». Voir [Beauville 2012] pour un point de vue actuel, en lien avec la dimension
essentielle du groupe S5.
27. Il est aisé de ramener l’équation Φ5 − αΦ − β = 0 sous la forme Ψ5 − Ψ − α−5/4β = 0, en po-

sant Φ = α1/4Ψ. La forme de Jerrard y5 − y − A = 0 étant donnée, le point technique suivant consiste à
trouver des fonctions elliptiques donnant lieu à des constantes α, β vérifiant A = α−5/4β. Hermite prouve
que cela peut être fait grâce à une équation de degré 4 à coefficients dans Q[

√
5].

28. Un covariant d’une forme binaire f(x1, x2) est une expression K(a0, . . . , an, x1, x2) polynomiale en
les coefficients de f et en les variables x1, x2 telle que pour toute substitution linéaire inversible opérée
sur x1, x2, on a K(a′0, . . . , a

′
n, ξ
′
1, ξ
′
2) = K(a0, . . . , an, x1, x2), les notations étant celles données précédem-

ment. En particulier, on parle de covariant linéaire lorsqu’il fait intervenir linéairement les variables x0, x1.
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au sujet de l’équation du quatrième degré : ce sont ceux que j’ai présentés précédemment.

Passons maintenant aux recherches de Kronecker ; ce dernier en avait fait part à Her-
mite dans une lettre de 1858, dont un extrait avait ensuite été publié, [Kronecker 1858b].
Au contraire de Hermite, celui-ci ne s’était pas basé sur l’équation modulaire, mais sur
l’équation du multiplicateur provenant de la transformation d’ordre 5 des fonctions el-
liptiques. Une autre différence était que Kronecker n’utilisait pas la forme de Jerrard de
l’équation du cinquième degré.

Le point de départ de Kronecker était de considérer une certaine fonction cyclique

f(ν, x0, x1, x2, x3, x4)

des racines x0, . . . , x4 de la quintique, ν étant un certain paramètre. En termes actuels,
cela signifie que f est invariante par un sous-groupe cyclique du groupe (réduit) de la quin-
tique A5. À partir de f , Kronecker avait exhibé cinq autres fonctions f1, . . . , f5 également
cycliques ; les six fonctions f, f1, . . . , f5 correspondent ainsi aux six sous-groupes cycliques
d’ordre 5 de A5. Comme ces fonctions sont cycliques, la résolution de l’équation de degré 6

dont elles dépendent ramène la quintique sous forme d’une équation pure, c’est-à-dire de
la forme x5 = A, qui est alors résoluble par radicaux. Autrement dit, une fois que f est
connue, les xi s’en déduisent par radicaux.

L’équation dont dépendent f, f0, . . . , f4 est celle que Kronecker avait mis en lien avec
la théorie des fonctions elliptiques. En effet, Kronecker avait indiqué qu’il est possible de
trouver (par radicaux carrés) le paramètre ν entrant dans la définition de f de sorte qu’on
ait

f2 + f2
0 + f2

1 + f2
2 + f2

3 + f2
4 = 0.

Grâce à cette condition, Kronecker avait alors calculé explicitement la forme de l’équation
dont dépendent les fonctions cycliques. Il avait ainsi montré que les six fonctions vérifient
l’équation

f12 − 10φf6 + 5ψ2 = ψf2,

où φ et ψ sont des fonctions rationnelles en les coefficients de l’équation du cinquième
degré, et en certaines racines carrées. L’équation en f était alors mise en correspondance
avec l’équation du multiplicateur, et Kronecker avait donné en conséquence des expressions
de f, f0, . . . , f4 à l’aide des fonctions elliptiques.

Comme je l’ai écrit un peu plus haut, face aux travaux de Kronecker, Hermite avait
cherché un point de vue unificateur entre leurs méthodes. Ce point de vue lui avait été
offert par l’annulation d’invariants de l’équation du cinquième degré, [Hermite 1865-66].
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Forme de Jerrard et invariant C

Revenons maintenant aux travaux de Clebsch. Ce dernier commence par donner toute
une liste d’invariants et de covariants de l’équation du cinquième degré, en renvoyant à
des recherches de lui-même et de Gordan, [Clebsch & Gordan 1867]. Parmi eux, le plus
important pour la suite est un invariant de degré 12, noté C. D’autres invariants A,B et
des covariants α, δ apparaîtront également, de façon plus auxiliaire 29.

Clebsch rappelle ainsi que si l’invariant C est nul, alors l’équation du cinquième degré
peut se mettre sous la forme de Jerrard par une substitution linéaire — comme il le précise
lui-même, ce résultat avait été publié peu auparavant, [Clebsch 1871a]. Clebsch avait ainsi
montré que lorsque l’invariant C d’une équation du cinquième degré était nul, on devait
considérer la substitution linéaire

x =
δ −Bα
δ + B

2 α
,

où x est la nouvelle inconnue, l’ancienne étant présente dans les variables des covariants
α et δ. Il avait en effet vu que l’application de cette substitution linéaire à l’équation du
cinquième degré lui donnait la forme

x5 − B

4A2
(5x+ 1) = 0,

qui est « presque » une forme de Jerrard.
S’appuyant sur ces résultats antérieurs, Clebsch résume le problème :

Il est connu que la résolution de Hermite des équations du cinquième degré repose
sur une résolution de l’équation [sous forme de Jerrard] à l’aide des fonctions ellip-
tiques. Vu ce qui précède, dès que l’invariant C d’une équation du cinquième degré
s’annule, l’équation se ramène à cette forme et est donc résolue au sens hermitien.
Mais si pour l’équation donnée, C n’est pas nul, alors on peut formuler le problème
de résoudre l’équation du cinquième degré de la façon suivante : ramener, au moyen
d’une transformation supérieure, l’équation à une autre pour laquelle C s’annule. Mais
dans notre interprétation géométrique, cela n’est rien d’autre que de devoir trouver
n’importe quelle tangente à la courbe C = 0 30. [Clebsch 1871b, p. 318]

Clebsch précise encore qu’une telle tangente doit être trouvée par radicaux carrés ou cu-

29. Ces invariants et covariants sont également listés dans [Hermite 1865-66]. Une différence avec Hermite
est que Clebsch donne tous les invariants et covariants sous forme symbolique. Par exemple, si l’équation
du cinquième degré est notée f = a5

z = b5z, il définit d’abord un covariant i = (ab)4azbz. L’invariant A par
exemple est alors défini par la relation symbolique A = (ii′)2.
30. « Bekanntlich beruht Hermite’s Auflösung der Gleichungen 5ten Grades auf einer Lösung der Glei-

chung (14) mit Hülfe der elliptischen Functionen. Sobald die Invariante C einer Gleichung 5ten Grades
verschwindet, ist durch das Vorige die Züruckführung der Gleichung auf diese Form, also ihre Lösung im
Hermite’schen Sinne, gegeben. Ist bei der gegebenen Gleichung aber C von Null verschieden, so kann man
die Aufgabe, die Gleichung 5ten Grades zu lösen, darin setzen: dass mittelst einer höheren Transformation
die Gleichung in eine solche mit verschwindendem C verwandelt werden soll. Aber in unserer geometri-
schen Interpretation heisst dies nichts anderes, als dass irgend eine Tangente der Curve C = 0 gefunden
werden soll. »
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biques, puisque l’utilisation d’une transformation de Tschirnhaus ramenant une équation
du cinquième degré à une forme de Jerrard implique ce type de radicaux uniquement.

Avec Clebsch, remarquons en outre qu’une fois la tangente trouvée, le choix de bons
points-base sur celle-ci aura pour effet d’induire la transformation linéaire

x =
δ −Bα
δ + B

2 α
,

et donc de ramener effectivement l’équation de départ sous la forme x5− B

4A2
(5x+ 1) = 0.

La courbe C = 0

Dans ce paragraphe, je ne vais qu’énoncer les résultats sur la courbe C = 0 qui seront
utiles pour la suite. Ce faisant, je contracte en quelques lignes de très longs développements
du mémoire de Clebsch et ne sélectionne qu’une poignée de propriétés parmi bien d’autres.
Je laisse ainsi de côté des résultats intermédiaires servant à démontrer ces propriétés, mais
également des résultats que Clebsch n’utilise pas pour son interprétation géométrique de
la quintique.

Clebsch détermine ainsi le genre de la courbe C = 0. Je rappelle que le genre d’une
courbe algébrique complexe est un nombre dépendant de son degré et de ses singularités
s’il en existe. Plus précisément, le genre d’une courbe lisse de degré n est donné par

p =
(n− 1)(n− 2)

2
,

et lorsque la courbe est singulière, il faut retrancher au membre de droite de cette formule
des nombres correspondant aux singularités. On attribue généralement à Clebsch la dé-
nomination Geschlecht, traduit en français par « genre » ; elle avait été proposée dans ses
travaux du début des années 1860, dans lesquels il avait proposé une façon d’appliquer les
fonctions abéliennes à la géométrie 31.

Dans le cas présent de la courbe C = 0, Clebsch utilise une version duale de la formule
donnant le genre, basée non pas sur le degré mais sur la classe de la courbe. D’une part,
comme l’invariant C est de degré 12, le théorème d’interprétation géométrique de Clebsch
dit que la courbe C = 0 est de classe 5 · 12/2 = 30. D’autre part, Clebsch montre que
cette courbe possède 12 tangentes d’inflexion doubles, c’est-à-dire 12 droites tangentes à
la courbe en deux points d’inflexion distincts. À partir de la connaissance de la classe
de C = 0 et du nombre de tangentes d’inflexion doubles, Clebsch calcule le genre p de la

31. Voir [Dieudonné 1974 ; Gray 1989 ; Houzel 2002]. Un des grands mémoires dans lesquels fonctions
abéliennes et géométrie sont liées est « Ueber die Anwendung der Abelschen Functionen in der Geome-
trie », [Clebsch 1864a], que nous avons rencontré lors de l’étude du Traité des substitutions et des équations
algébriques de Jordan. Rappelons par ailleurs qu’il existait aussi une notion de genre provenant de la théorie
des formes algébriques telle qu’exposée dans les Disquisitiones Arithematicae. Voir [Lemmermeyer 2007].
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courbe, et trouve p = 4. Il s’agit là d’un résultat important pour la suite de l’interprétation
géométrique.

Première interprétation géométrique

Je rappelle que l’interprétation géométrique de Clebsch de la substitution quadratique
l’avait conduit à savoir trouver une tangente à C = 0, en n’introduisant que des radicaux
carrés et cubiques. Pour cela, il va transformer successivement cette courbe par transfor-
mations birationnelles, c’est-à-dire par applications bijectives définies presque partout et
qui transforment les coordonnées des points de façon rationnelle.

Un argument essentiel pour Clebsch est l’utilisation de la représentation d’une surface
cubique sur un plan. Nous avons déjà rencontré ces représentations lors de l’étude du
Traité des substitutions et des équations algébriques au chapitre 2. Dans un article de 1865,
Clebsch avait montré que toute surface cubique peut se représenter sur un plan, c’est-à-
dire que pour toute surface cubique, il existe une application birationnelle entre elle et le
plan projectif. Les points du plans en lesquels l’application birationnelle n’est pas définie
de façon univoque étaient appelés les points fondamentaux ; il s’agissait de six points en
position générale. Clebsch avait en particulier étudié comment se transforment les courbes
du plan (resp. incluses dans la cubique) dans la représentation.

Décrivons maintenant l’approche de Clebsch pour trouver une tangente à C = 0. La
première étape consiste à dire que puisque C = 0 est de genre 4, alors elle est birationnelle à
une courbe, que je noterai Γ, d’ordre 6 avec 6 points doubles 32. Noter que, la courbe C = 0

étant décrite par coordonnées tangentielles, cette application birationnelle associe un point
de Γ à chaque tangente de C = 0. Clebsch considère alors les six points doubles de Γ comme
les points fondamentaux de la représentation d’une certaine surface cubique sur le plan E
de Γ. Dans cette représentation, la courbe Γ est alors envoyée sur une courbe gauche γ qui
est l’intersection complète de la cubique avec une certaine surface quadrique 33.

Il s’agit alors de « revenir » sur E à partir de la quadrique. En effet, Clebsch projette
sur E « cette surface quadrique à partir d’un de ses points (lequel peut se trouver à l’aide
uniquement d’une équation quadratique) de la façon habituelle 34 » — cela signifie qu’une
projection stéréographique est effectuée à partir d’un des points de la quadrique. Clebsch
indique ensuite que par cette projection, γ est envoyée sur une courbe Γ′ d’ordre 6 avec
deux points triples. Pour résumer, il y a donc une application qui associe à une tangente de

32. Une courbe d’ordre 6 avec 6 points doubles est une courbe de genre (6− 1)(6− 2)/2− 6 = 4, donc
de même genre que C = 0. Il faut prendre garde au fait que l’égalité du genre de deux courbes n’implique
pas a priori leur équivalence birationnelle (alors que la réciproque est vraie). Je ne détaille pas ce point,
que Clebsch démontre par ce qui s’apparente à ce qu’on appellerait aujourd’hui des calculs de dimension
d’espaces de courbes.
33. Les courbes qui sont des intersections complètes d’une surface cubique et d’une surface quadrique

font l’objet d’un paragraphe de l’article [Clebsch 1866], dans lequel Clebsch avait démontré l’existence des
représentations des cubiques sur le plan.
34. « [Man bildet] diese Fläche 2ter Ordnung sodann von einem ihrer Punkte (dessen Auffindung nur die

Lösung einer quadratischen Gleichung fordert) auf die gewöhnliche Weise ab », [Clebsch 1871b, p. 327].
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la courbe C = 0 un point de la courbe Γ′, et cette application est « presque » birationnelle
car un radical carré a été introduit par le choix d’un point sur la quadrique.

Il reste donc à chercher un point de Γ′. Clebsch écrit d’abord que les deux points
triples de cette courbe « se séparent » par une équation quadratique, puis que toute droite
passant par l’un d’eux recoupe Γ′ en trois points « qui sont séparés au moyen d’une équation
cubique ». Clebsch conclut alors : « à chacun de ces points correspond enfin une tangente
à C = 0 35 ».

Dans l’interprétation géométrique de Clebsch, avoir réussi à trouver une tangente à la
courbe C = 0 revient à avoir déterminé une substitution quadratique donnant à la quintique
la forme de Jerrard. On remarquera l’utilisation d’équations de la géométrie « séparant »
des points : comme j’avais déjà pu l’écrire, ces équations permettent à Clebsch de contrôler
les irrationalités introduites dans son interprétation. Ici, ce ne sont que des racines carrées
et cubiques, ce qui coïncide avec les résultats connus sur l’équation du cinquième degré. On
pourra également noter que Clebsch n’a donné aucune formule pour les diverses applications
birationnelles.

Justement, Clebsch ne s’arrête pas là et indique qu’il va par la suite donner « les
formules de la transformation et donc la solution analytique de la question ». Cela va être
fait par l’intermédiaire d’un autre type d’interprétation géométrique de la méthode de
Jerrard.

Interprétation géométrique de la méthode de Jerrard

Selon Clebsch, cette nouvelle interprétation géométrique de la méthode de Jerrard n’est
« pas aussi directe 36 » que la précédente, portant sur la substitution quadratique. Il rappelle
que cette méthode consiste à considérer la transformation dite de Tschirnhaus

ξ = a+ bλ+ cλ2 + dλ3 + eλ4, (5.4)

où a, b, c, d et e doivent être choisis de sorte à éliminer les coefficients des puissances
deuxième, troisième et quatrième de l’équation du cinquième degré de départ f(λ) = 0. Si
les nouvelles racines sont notées ξ1, . . . , ξ5, on demande donc que∑

ξi = 0,
∑

ξ2
i = 0,

∑
ξ3
i = 0.

En remplaçant les ξi grâce à 5.4, ces conditions s’expriment rationnellement en les coeffi-
cients a, . . . , e ainsi qu’en des fonctions symétriques des λi, qui sont elles-mêmes rationnelles

35. « Jedem dieser Punkte endlich entspricht eine Tangente von C = 0. » [Clebsch 1871b, p. 327].
36. « Auch diese Jerrard’sche Modification der Tschirnhausen’schen Methode ist, wenngleich nicht so

direct wie die quadratische Substitution, einer Art geometrischer Deutung fähig ». [Clebsch 1871b, p. 328].
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en les coefficients de l’équation de départ. On obtient donc un système de la forme
Φ(a, b, c, d, e) = 0

Ψ(a, b, c, d, e) = 0

X(a, b, c, d, e) = 0,

où Φ, Ψ, X sont des fonctions polynomiales homogènes d’ordres respectifs 1, 2, 3.

La fonction linéaire Φ permet de considérer a, b, c, d, e comme des coordonnées penta-
édriques de l’espace, c’est-à-dire qu’elle permet d’exprimer une de ces quantités linéaire-
ment en fonction des autres, de sorte qu’il ne reste plus que quatre coordonnées homogènes
de l’espace. Les équations Ψ = 0 et X = 0 deviennent alors les équations respectives d’une
surface quadrique et d’une surface cubique. L’intersection de ces surfaces est donc une
courbe gauche d’ordre 6, à chaque point de laquelle correspond une transformation de
Tschirnhaus adéquate.

Pour faire le lien avec sa première interprétation, Clebsch cherche ensuite à trouver une
substitution quadratique produisant le même effet qu’une transformation de Tschirnhaus :
avec les notations précédentes, il s’agit de trouver des polynômes du second degré ϕ(λ)

et ψ(λ) tels que
ϕ(λi)

ψ(λi)
= a+ bλi + cλ2

i + dλ3
i + eλ4

i

pour chaque racine λi. Il suffit donc de trouver ϕ et ψ telles que pour tout λ,

ϕ(λ) = (a+ bλ+ cλ2 + dλ3 + eλ4)ψ(λ) + (p+ qλ)f(λ),

où p et q sont des constantes quelconques. En posant comme au début

ϕ(λ) = y1 + λy2 + λ2y3 et ψ(λ) = x1 + x2λ+ x3λ
2,

et en notant f = α+ βλ+ γλ2 + δλ3 + ελ4 + ζλ5, la condition cherchée revient à

y1 = ax1 + pα

y2 = ax2 + bx1 + pβ + qα

y3 = ax3 + bx2 + cx1 + pγ + qβ

0 = bx3 + cx2 + dx1 + pδ + qγ

0 = cx1 + dx2 + ex1 + pε+ qδ

0 = dx3 + ex2 + pζ + qε

0 = ex3 + qζ.
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Ce système permet alors de déterminer x1, . . . , y3 en fonction de a, b, . . . , e ou récipro-
quement. Les formules ainsi trouvées font le lien entre les interprétations géométriques
proposées par Clebsch : à un point de coordonnées pentaédriques (a, b, c, d, e) dans l’inter-
prétation de la méthode de Jerrard correspond un couple de points x, y dans l’interpréta-
tion de la substitution quadratique, et réciproquement. En outre, les deux méthodes ont
fait apparaître une courbe gauche d’ordre 6, que je noterai C , intersection d’une surface
cubique et d’une surface quadrique. Mais maintenant, l’avantage — c’est ce que Clebsch
annonçait — est que ces surfaces ont des équations : Φ = Ψ = 0 et Φ = X = 0, et les
formules de représentation peuvent se déduire par résolution du système précédent.

Plus précisément, les formules de Cramer 37 donnent

ρx1 = M1 σy1 = N1

ρx2 = M2 σy2 = N2

ρx3 = M3 σy3 = N3,

oùM1, . . . , N3 sont des fonctions homogènes de a, b, . . . , e et où ρ, σ sont des constantes. Ce
sont là les formules de représentation des surfaces Φ = Ψ = 0 et Φ = X = 0 respectivement.
Ainsi, à chaque point (a, . . . , e) de la courbe gauche correspondent rationnellement deux
points x, y tels que la droite (xy) soit tangente à C = 0. Finalement, on en déduit les
formules de représentation de la courbe C = 0 38 :

τu1 = M2N3 −M3N2

τu2 = M3N1 −M1N3

τu3 = M1N2 −M2N1.

Autrement dit, ces formules associent rationnellement à un point (a, . . . , e) de la courbe
gauche C , une droite de coordonnées u1, u2, u3, tangente à C = 0. Par conséquent, pour
trouver par radicaux (carrés et cubiques) une tangente à C = 0, il suffit de trouver par
radicaux (carrés et cubiques) un point de C .

Ce dernier point est alors réglé par Clebsch par l’utilisation d’équations de la géométrie,
et il résume le tout de la façon suivante :

Si l’on considère, avec Hermite, l’équation

x5 − ax− b = 0 (1)

comme directement résolue par des fonctions elliptiques, il n’importe alors plus que de

37. C’est également avec les formules de Cramer que Clebsch avait établi la première fois la représentation
d’une surface cubique sur un plan. Voir le chapitre 2.
38. Pour cela, se souvenir qu’une droite u1z1 + u2z2 + u3z3 = 0 passe par deux points de coordonnées

(x1 : x2 : x3) et (y1 : y2 : y3) si et seulement si (u1 : u2 : u3) = (x2y3 − x3y2 : x3y1 − x1y3 : x1y2 − x2y1).
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ramener l’équation du cinquième degré sous cette forme. On n’a alors qu’à déduire un
point quelconque de la courbe gauche du sixième ordre, ce qui se fait en intersectant
une génératrice de la surface Ψ = 0 avec la surface diagonale [X = 0]. Pour cela,
une équation quadratique et une équation cubique sont à résoudre ; la première pour
trouver une génératrice de la surface du second ordre ; l’autre pour déterminer les
points d’intersection de celle-ci avec la surface diagonale. Le point trouvé de la courbe
gauche du sixième ordre donne une tangente à C = 0, et il a été vu [précédemment]
comment le système de points d’intersection sur cette tangente conduit à la forme (1).
Si l’on connaît les points d’intersection de ce système, alors les côtés du quintilatère
sont séparés et l’équation du cinquième degré est résolue 39. [Clebsch 1871b, p. 341]

Voilà comment Clebsch termine son interprétation géométrique de la résolution par Hermite
de l’équation du cinquième degré. Encore ici, on notera que l’attention est portée sur les
irrationalités introduites dans les différentes étapes géométriques, et contrôlées par les
équations de la géométrie.

Il est également intéressant de noter que Clebsch ne fait pas du tout intervenir les
étapes de Hermite de résolution de l’équation du cinquième degré basées sur la théorie des
fonctions elliptiques, comme la recherche explicite d’une réduite d’ordre 5 de l’équation
modulaire et de ses racines. Clebsch considère plutôt, sans d’ailleurs la remettre en question,
que cette résolution est acquise une fois pour toutes dès que la forme de Jerrard est trouvée.

Comme écrit plus haut, Clebsch propose aussi d’interpréter géométriquement la mé-
thode de Kronecker de résolution de l’équation du cinquième degré — pour rapporter sa
démarche, je serai un plus bref que jusqu’à présent, les idées étant du même genre que
celles que j’ai décrites supra. La première étape, d’ailleurs digne d’intérêt pour le sujet
des surfaces cubiques, se raccroche en fait à ce qui précède, puisqu’il s’agit d’examiner les
propriétés de la surface X = 0. Nous allons à ce propos voir réapparaître l’équation aux
vingt-sept droites de cette surface cubique particulière.

La surface diagonale

Pour étudier de plus près la surface d’équation X = 0 trouvée précédemment, Clebsch
change de coordonnées pentaédriques. Il revient en effet à ξ1, ξ2, . . . , ξ5, liés par la rela-
tion

∑
ξi = 0. L’équation de la surface cubique est alors

∑
ξ3
i = 0.

Les plans ξi = 0 sont les cinq faces du pentaèdre de la surface cubique 40 ; chacun d’eux

39. « Wenn man nach Hermite die Gleichung x5 − ax − b = 0 (1) als durch elliptischen Functionen
unmittelbar gelöst betrachtet, so kommt es nur darauf an, die Gleichung 5ten Grades in diese Form zu
bringen. Man hat dann nur einen beliebigen Punkt der Raumcurve 6ter Ordnung zu ermitteln, was geschieht,
indem man eine Erzeugende der Fläche Ψ = 0 mit der Diagonalfläche schneidet. Dazu ist eine quadratische
und eine cubische Gleichung zu lösen; erstere, um eine Erzeugende der Fläche 2ter Ordung zu finden; die
andere, um die Durchschnitte derselben mit der Diagonalfläche zu bestimmen. Der gefundene Punkt der
Raumcurve 6ter Ordnung giebt eine Tangente von C = 0, und wie das Schnittpunktsystem auf dieser zu
der Form (1) führt, ist in §11. gezeigt worden. Kennt man die Schnittpunkte dieses Systems, so sind auch
die Seiten des Fünfseits getrennt, die gegebene Gleichung 5ten Grades gelöst. »
40. Je rappelle qu’en 1851, Sylvester avait indiqué que toute forme cubique F (x, y, z, w) = 0 peut s’écrire
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est donc coupé par les autres suivant un quadrilatère. Ces quadrilatères ont chacun trois
diagonales, dont Clesbch montre qu’elles sont des droites de la surface cubique 41. Il obtient
ainsi 15 droites incluses dans cette surface, qu’il baptise en conséquence surface diagonale
du pentaèdre, ou plus simplement surface diagonale.

Figure 5.1 – Modèle de la surface diagonale. Source : [Fischer 1986b].

Pour cette surface particulière, il y a donc 15 droites « immédiatement connues 42 »
dès lors que l’on connaît les faces du pentaèdre : ce sont les diagonales décrites pré-
cédemment, qui sont aussi les intersections mutuelles des faces. Clebsch trouve ensuite
les 12 droites manquantes à partir des plans du pentaèdre et en utilisant des racines cin-
quièmes de l’unité. Plus précisément, il montre que si ω est une racine primitive cinquième
de l’unité, tous les points de l’espace de coordonnées pentaédriques (ωα1 , ωα2 , . . . , ωα5)

et leurs conjugués (ω−α1 , ω−α2 , . . . , ω−α5), où (α1, α2, . . . , α5) est une permutation quel-
conque de (1, 2, . . . , 5), sont des points de la surface diagonale, et même que leur ligne de
jonction y est entièrement incluse 43. Or, il y a 12 points (ωα1 , ωα2 , . . . , ωα5) — certaines
permutations α donnent les mêmes points — ce qui donne donc les 12 droites restantes

sous la forme F = a1z
3
1 +a2z

3
2 +a3z

3
3 +a4z

3
4 +a5z

3
5 , où les zi sont des formes linéaires en x, y, z, w soumises

à la condition z1 +z2 +z3 +z4 +z5 = 0. Le pentaèdre de la surface cubique d’équation F = 0 est l’ensemble
des cinq plans d’équations respectives zi = 0.
41. Par exemple, il montre que sur la face ξ5 = 0, les équations des diagonales sont toutes de la forme

ξ1 + ξ2 = 0

ξ3 + ξ4 = 0

ξ5 = 0.

On vérifie alors facilement que tout quintuplet (ξ1, . . . , ξ5) vérifiant ces conditions satisfait l’équation de la
surface ξ3

1 + · · ·+ ξ3
5 = 0.

42. « Man sieht, dass auf dieser Fläche sofort 15 der 27 Geraden bekannt sind. » [Clebsch 1871b, p. 333].
43. Pour le voir, on peut remarquer que tous les points de la droite passant par (ωα1 , . . . , ωα5)

et (ω−α1 , . . . , ω−α5) sont de la forme (χωα1 + λω−α1 , . . . , χωα5 + λω−α5), où χ et λ sont des paramètres.
Un simple calcul montre alors que les coordonnées de ces points vérifient l’équation

∑
ξi = 0.
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cherchées. Clebsch en déduit alors un résultat sur l’équation aux vingt-sept droites associée
à la surface cubique :

La résolution de l’équation de degré 27 dont dépendent les 27 droites de la surface
n’exige pour la surface diagonale que la résolution de l’équation de degré 5 survenant
pour le pentaèdre et la détermination de racines cinquièmes de l’unité 44. [Clebsch
1871b, p. 333]

En étudiant les relations d’incidence entre les droites de la surface diagonale, Clebsch
aboutit au fait qu’un de ses doubles-six est « rationnellement connu ». Il considère alors
une représentation de la surface diagonale correspondant à une des moitiés du double-six
rationnel 45. Il montre, grâce aux propriétés d’incidence des vingt-sept droites de la surface
diagonale, que les six points fondamentaux de la représentation forment dix hexagones de
Brianchon, c’est-à-dire que ces six points peuvent être reliés entre eux de dix façons de
sorte à former des hexagones dont les diagonales sont concourantes.

Interprétation de la méthode de Kronecker

Ainsi que je l’ai expliqué précédemment, Kronecker avait entre autres montré à l’aide
de l’équation du multiplicateur (de degré 6) associée à la transformation d’ordre 5 des
fonctions elliptiques, que l’équation générale du cinquième degré pouvait se ramener à
une équation pure, c’est-à-dire de la forme z5 = A. Pour son interprétation géométrique,
Clebsch procède en deux temps. Il s’agit d’abord de trouver une équation de degré 6 dont
la résolution permet de ramener l’équation du cinquième degré à une équation pure, puis de
montrer que cette équation de degré 6 utilisée est analogue à l’équation du multiplicateur.

Pour le premier point, Clebsch se base sur l’étude d’une courbe associée à un invariant B
associé à l’équation du cinquième degré. Cette courbe se décompose en deux courbes B1 = 0

et B2 = 0 ayant chacune six tangentes doubles. Clebsch montre que si on prend une
de ces tangentes doubles comme base de substitution quadratique, alors l’équation du
cinquième degré se transforme en une équation pure. Il lui revient donc à montrer que
« l’équation de séparation » des six tangentes doubles de B1 = 0 est la même que l’équation
du multiplicateur.

Pour cela, Clebsch commence par prouver que l’équation de séparation des six tangentes
doubles est analogue à « l’équation de séparation des six sommets » de l’hexagone de
Brianchon trouvé dans la représentation de la surface diagonale. Passons sous silence la
démonstration de cela ; le problème est alors de montrer que cette dernière équation est
analogue à l’équation modulaire.

44. « Die Lösung der Gleichung 27ten Grades, von welcher die 27 Geraden der Fläche abhängen, erfordet
bei der Diagonalfläche nur die Lösung der beim Pentaeder auftretenden Gleichung 5ten Grades und die
Bestimmung von fünften Wurzeln der Einheit. »
45. Je rappelle que la donnée d’une représentation de la surface sur un plan équivaut à la donnée de six

droites de la surface formant la moitié d’un double-six, ce qui correspond, sur le plan, à la donnée de six
points (fondamentaux) en position générale.
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À nouveau, ce sont des propriétés d’invariants qui sont mis en avant. Plus précisément,
Clebsch indique, en renvoyant à l’article [Clebsch 1871a], que si une équation de degré 6 a
deux de ses invariants (notés a et c) nuls, alors elle peut se transformer en l’équation du
multiplicateur par une substitution linéaire. Il s’agit donc de montrer que c’est le cas pour
l’équation de séparation des six sommets. Clebsch la note symboliquement ϕ = α6

u : c’est
une forme ternaire en u dont chaque facteur représente un des sommets 46.

Clebsch a alors l’idée de traduire par dualité son principe d’interprétation géométrique
du début : une équation ϕ = α6

u = β6
u permet de définir un hexagone ; à toute substitution

quadratique opérée sur cette équation correspond un point du plan, et les substitutions fai-
sant s’annuler un invariant a correspondent aux points appartenant à la courbe d’équation
ponctuelle a = (αβx)6 = 0 ; en outre, les sommets de l’hexagone sont des points doubles
d’une telle courbe.

Or, comme les six sommets ont été pris comme points fondamentaux dans la représen-
tation de la surface diagonale, toute courbe contenant ces points avec multiplicité 2 cor-
respond à une courbe d’ordre 6 tracée sur la surface diagonale, et plus précisément à une
courbe qui est l’intersection complète de la surface diagonale avec une surface quadrique.
Comme précédemment, on peut trouver de points de cette courbe à l’aide d’équations qua-
dratique et cubique. De tels points donnent donc des points du plan correspondant à des
substitutions quadratiques annulant l’invariant a.

Enfin, Clebsch montre que dans le cas d’un hexagone de Brianchon, l’annulation de
l’invariant a entraîne celle de l’invariant c, ce qui achève le tout : « ainsi se trouvent
regroupés et reliés dans une image géométrique vraiment tous les éléments de la résolution
des équations du cinquième degré 47 ».

Comme c’était le cas pour la méthode de Hermite de résolution de la quintique, Clebsch
ne mobilise pas ici ce qui relève de l’équation du multiplicateur. L’accent est encore mis sur
certains invariants, dont l’annulation signifie la possibilité de ramener une équation sous
la forme d’une équation pure ou de l’équation du multiplicateur selon les cas.

5.1.4 Conclusion : transformations d’équations, invariants et géométrie

Le mémoire de Clebsch que j’ai décrit montre une certaine configuration entre théorie
des équations, théorie des invariants et géométrie. Il s’agissait pour Clebsch de proposer une
interprétation géométrique d’éléments se rapportant à la théorie de l’équation du cinquième
degré. Deux types de transformations de cette équation ont été interprétées par Clebsch :
les transformations (ou substitutions) quadratiques et les transformations de Tschirnhaus.

Les conditions d’annulation d’invariants étaient aussi interprétés géométriquement, et
ainsi liées à l’interprétation des substitutions quadratiques. Le but pour Clebsch était alors

46. En coordonnées tangentielles (u1 : u2 : u3), une équation linéaire z1u1 + z2u2 + u3z3 = 0 représente
le point de coordonnées (z1 : z2 : z3).
47. « So finden sich denn wirklich alle Elemente der Auflösung der Gleichungen 5ten Grades hier in einem

geometrischen Bilde zusammengefasst und verbunden », [Clebsch 1871b, p. 345].
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de trouver une substitution faisant s’annuler l’invariant C de la quintique, car sous cette
condition, cette dernière se ramenait linéairement sous forme de Jerrard, et était ainsi
« résolue au sens hermitien ». La question de trouver une tangente à la courbe C = 0 était
alors réglée par Clebsch par un déploiement de techniques et résultats relatifs aux courbes
et surfaces algébriques : recherche de tangentes particulières, calcul du genre, représentation
des surfaces sur un plan, etc.

On a également vu intervenir les équations de la géométrie à plusieurs reprises. Le
plus souvent, il s’agissait d’équations « séparant » des objets géométriques et permettant
de contrôler les irrationalités introduites dans l’interprétation géométrique. Leur usage est
donc important pour Clebsch pour s’assurer de la concordance de sa méthode avec celles
qu’il interprète.

À ce sujet, comme je l’ai fait remarquer précédemment, les méthodes de Hermite et
de Kronecker n’ont pas été interprétées géométriquement étape par étape. Il s’agit plutôt,
pour Clebsch, de prendre pour acquis leurs résultats finaux : d’une part que, la quintique
peut être considérée comme résolue par les fonctions elliptiques dès qu’elle est sous forme
de Jerrard, d’autre part, qu’elle se ramène sous forme d’une équation pure par résolution
de l’équation du multiplicateur. Autrement dit, Clebsch attribue les noms de Hermite et de
Kronecker à des méthodes vues dans leur globalité, et qui ne sont pas discutées en tant que
telles. L’« apparat géométrique » ne s’applique alors qu’aux transformations permettant
d’arriver sur les formes issues de chacune des méthodes.

Alors que Clebsch dit avoir ainsi mis ensemble « vraiment tous les éléments de la ré-
solution de l’équation du cinquième degré », remarquons que certains points n’ont en fait
pas été pris en compte. Par exemple, les noms d’Abel, Galois, Betti ou Brioschi n’appa-
raissent à aucun moment du mémoire de Clebsch. Cela peut éventuellement s’expliquer par
le fait que les résultats de Hermite étant supposées acquis pour Clebsch, il n’est plus lieu
de discuter du problème de résolubilité par radicaux (vs. par fonctions transcendantes) et
donc d’évoquer Abel, ou de revenir sur les étapes faisant intervenir les résultats de Galois
et de Betti. Quoi qu’il en soit, cette absence de Galois et de Betti appelle à une autre
constatation : il n’y a aucune mention de groupes chez Clebsch.

Le mémoire de Clebsch semble avoir été totalement oublié par l’historiographie, qui
mentionne pourtant systématiquement d’autres travaux visant à introduire un point de
vue géométrique sur l’équation du cinquième degré, notamment à partir des travaux de
Hermite et de Kronecker. Ces travaux sont ceux de Klein sur l’icosaèdre, entamés vers 1875
et ayant donné lieu à un livre près de dix ans plus tard, [Klein 1884].

Précisons-le tout de suite : les travaux de Klein et de Clebsch proposent des approches
différentes. En particulier, un point crucial de Klein est d’utiliser des groupes de transfor-
mations de l’espace et des invariants géométriques. Cette alliance de groupes et d’invariants
est celle préconisée dans le Programme d’Erlangen, élaboré par Klein en 1872. Avant de
discuter un peu plus de la place du mémoire de Clebsch dans le livre sur l’icosaèdre, je
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vais pour le moment continuer à suivre la chronologie. Je vais à présent discuter d’un ar-
ticle déjà rencontré, [Klein 1871b], et qui est lié au mémoire de Clebsch décrit dans cette
section. Je propose de montrer qu’il est en lien à la fois avec le Programme d’Erlangen et
les recherches sur l’icosaèdre.

5.2 Des équations de la géométrie au Programme d’Erlangen

et à l’icosaèdre

Pour situer chronologiquement les choses, rappelons qu’en 1869, Klein avait rencontré
Clebsch à Göttingen pour gérer des affaires relatives à la mort de Plücker 48. À la fin du mois
d’août de cette année-là, Klein était allé étudier à Berlin, où il avait rencontré et s’était lié
d’amitié avec Lie. Les deux mathématiciens avaient alors voyagé à Paris vers la fin du mois
d’avril 1870 et y avaient fait entre autres la connaissance de Jordan et de son Traité des
substitutions et des équations algébriques qui venait tout juste d’être publié. En juillet 1870,
Klein dut quitter Paris en raison de la guerre franco-prussienne qui venait de débuter. Klein
passa son habilitation à l’université de Göttingen en janvier 1871 et fut nommé Privatdozent
dans cette université pour l’année académique 1871-1872. Notamment recommandé par
Clebsch, il obtint un poste de professeur ordinarius à l’université d’Erlangen à la fin de
l’année 1872 — il y resta jusqu’en 1875, date à laquelle il partit pour Munich.

5.2.1 Représentation géométrique des résolvantes

J’ai déjà présenté les principales idées de l’article de Klein intitulé « Ueber eine geome-
trische Repräsentation der Resolventen algebraischer Gleichungen », [Klein 1871b]. Cet ar-
ticle est daté de mai 1871, date à laquelle Klein était à Göttingen, travaillant avec Clebsch.
L’extrait suivant, situé en fin d’introduction, montre en outre que Klein avait écrit cet
article en ayant notamment en tête les travaux de Clebsch sur l’équation du cinquième
degré qui ont été décrits dans la section précédente :

La première raison aux affaires géométriques esquissées [ici] m’ont été les considéra-
tions géométriques que M. Clebsch a appliquées dans son mémoire dans le but de
discuter les équations du cinquième degré, qu’il a eu la bonté de partager avec moi
lors de conversations personnelles récurrentes. Par ailleurs, elles se rapportent étroi-
tement aux considérations sur les transformations linéaires d’objets géométriques en
eux-mêmes, comme M. Lie et moi-même les avons expliquées dans l’article « Ueber
diejenigen ebenen Curven, welche durch ein geschlossenes System von einfach unend-
lich vielen vertauschbaren linearen Transformationen in sich übergehen », [Klein & Lie
1871] 49. [Klein 1871b, p. 347]

48. Pour la chronologie qui suit, voir par exemple [Tobies 1981, p. 20-24] ou [Rowe 1989b].
49. « Die nächste Veranlassung zu den hiermit angedeuteten Dingen sind mir die geometrische Betrach-

tungen gewesen, die Herr Clebsch in dem vorstehenden Aufsatze behufs Discussion der Gleichungen 5ten

Grades angewandt hat, und welche mir derselbe in wiederholten persönlichen Unterhaltungen mitzutheilen
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Les travaux communs avec Lie évoqués ici par Klein sont ceux qui portent sur ce qu’ils
appelaient les « courbes et surfaces V » ou «W -Curven » en allemand 50. Une idée prin-
cipale de ces travaux était de considérer des familles de courbes ou de surfaces qui sont
invariantes par des groupes continus de transformations linéaires 51.

Par ailleurs, comme écrit au chapitre 3, Klein ouvre son article sur la représentation
géométrique des résolvantes par une mention explicite des équations de la géométrie :

La théorie générale des équations algébriques est illustrée de la plus belle des façons
par un certain nombre d’exemples géométriques particuliers ; je pense seulement (voir
Camille Jordan, Traité des substitutions, p. 301 etc.) au problème des points d’in-
flexion des courbes du troisième ordre, aux vingt-huit tangentes doubles des courbes
du quatrième ordre, aux vingt-sept droites sur les surfaces du troisième degré, etc.,
mais aussi à la cyclotomie 52. [Klein 1871b, p. 346]

Klein met ensuite en avant le côté intuitif des équations de la géométrie :

Le grand avantage de ces exemples est qu’ils présentent de façon intuitive les idées abs-
traites en elles-mêmes si particulières de la théorie des substitutions. Il se rapportent
la plupart du temps à des équations de caractère très particulier, entre les racines
desquelles ont lieu des groupements particuliers, laissant ainsi voir comment de telles
équations peuvent se comporter 53. [Klein 1871b, p. 346]

Mais il va plus loin qu’une simple constatation, et propose d’incarner géométriquement
toute équation algébrique générale 54 :

Dans ce qui suit, je veux faire remarquer une méthode grâce à laquelle on obtient une
image géométrique pour les équations générales de degré quelconque, en particulier

die Güte hatte. Auf der anderen Seite stehen dieselben im engsten Zusammenhange mit den Betrachtun-
gen über lineare Transformationen geometrischer Gebilde in sich selbst, wie dieselben von Herrn Lie und
mir in dem Aufsatze: „Ueber diejenigen ebenen Curven, welche durch ein geschlossenes System von ein-
fach unendlich vielen vertauschbaren linearen Transformationen in sich übergehen“ (diese Annalen, IV.1),
auseinandergesetzt worden sind. »
50. Ces travaux avaient fait l’objet de deux notes conjointes (en français) aux Comptes rendus de l’Aca-

démie des sciences, [Klein & Lie 1870]. La dénomination française « courbes et surfaces V » est celle qu’on
y trouve.
51. Voir [Rowe 1989b, p. 236-239 ; Hawkins 2000, chap. 1]. D. Rowe souligne que, au moins dans leur

première version dans les Comptes rendus, les recherches sur les courbes et surfaces V employaient un
langage « si sec et si vague que personne ne semble les avoir comprises, à part Max Noether. »
52. « Die allgemeine Theorie der algebraischen Gleichungen wird in schönster Weise durch eine Anzahl

besonderer geometrischer Beispiele illustrirt; ich erinnere nur (Vergl. Camille Jordan. Traité des Substitu-
tions. 1, p. 301 ff.) an das Problem der Wendepunkte der Curven 3ter Ordnung, an die 28 Doppeltangenten
der Curven 4ter Ordnung, an die 27 Linien auf den Flächen 3ten Grades etc., dann aber namentlich auch
an die Kreistheilung. »
53. « Der hohe Nutzen dieser Beispiele liegt darin, daß sie die an und für sich so eigenartig abstrakten

Vorstellungen der Substitutionstheorie in anschaulicher Weise dem Auge vorführen. Sir beziehen sich zu-
meist auf Gleichungen von sehr partikulärem Character, zwischen deren Wurzeln besondere Gruppierungen
statthaben, und lassen also übersehen, wieso derartige besondere Gleichungen auftreten können. »
54. Ici, « équation générale » désigne une équation algébrique entre les racines de laquelle il n’existe

aucun relation non triviale. En termes actuels, il s’agit donc d’une équation ayant pour groupe de Galois
le groupe symétrique tout entier.
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pour les groupements des racines d’une telle équation, comme on en a besoin pour
établir des résolvantes 55. [Klein 1871b, p. 346]

C’est là le point essentiel de l’article de Klein. La méthode permettant de réaliser cette
incarnation consiste à prendre n éléments d’un espace à n − 2 dimensions comme image
des n racines d’une équation, et à remplacer les substitutions entre les racines par des
transformations linéaires de l’espace transformant entre eux les n éléments. Klein insiste
bien sur l’importance des transformations et ajoute que les équations qui ne sont pas
générales peuvent aussi être vues géométriquement :

Le cœur de ces idées est que les permutations des n racines entre elles sont remplacées,
dans l’image géométrique, par des transformations linéaires d’un espace continu. On
peut aussi incarner des équations de type particulier de façon analogue, auquel cas non
pas toutes, mais seulement les permutations caractéristiques des racines se présentent
comme transformations linéaires de l’espace 56. [Klein 1871b, p. 346-347]

J’ai expliqué au chapitre 3 comment sont alors conçues les résolvantes des équations :
elles correspondent à des objets géométriques qui sont (en termes actuels) des orbites des
éléments de base sous l’action des transformations de l’espace.

Nous voyons donc apparaître le principe qui sera plus tard au cœur des recherches de
Klein sur l’équation du cinquième degré, et qui consistera à interpréter le groupe de cette
équation comme le groupe des transformations linéaires laissant invariants les sommets
d’un icosaèdre régulier. Mais je voudrais suggérer que l’article de Klein dont j’ai décrit ici
les idées principales joue aussi un rôle dans l’élaboration du célèbre Programme d’Erlangen,
chronologiquement antérieur au début des travaux sur l’icosaèdre 57.

5.2.2 Le Programme d’Erlangen

En tant que nouveau professeur à Erlangen, Klein dut s’acquitter de deux tâches.
L’une consistait en un discours de présentation auprès de l’ensemble du corpus professoral
de l’université, l’autre en l’écriture d’un texte présentant certaines de ses idées pour la
recherche mathématique. Le discours fut tenu en décembre 1872 ; à travers lui, Klein avait
exprimé ses points de vue sur l’enseignement des mathématiques 58. Lors de la tenue du

55. « Ich will nun im Folgenden auf eine Methode aufmerksam mache, vermöge deren man ein geo-
metrisches Bild für die allgemeinen Gleichungen eines beliebigen Grades erhält, insbesondere für dieje-
nigen Gruppirungen der Wurzeln einer solchen Gleichung, wie man sir zur Aufstellung der Resolventen
gebraucht. »
56. « Das Wesentliche an dieser Vorstellungsweise ist, dass die Vertauschungen der n Wurzeln unter

sich im geometrischen Bilde ersetzt werden durch lineare Transformationen eines continuirlichen Raumes.
Auch Gleichungen von particulärer Art kann man in ähnlicher Weise geometrisch versinnlichen, wobei
dann nicht mehr alle, sondern nur die charakteristischen Vertauschungen ihrer Wurzeln im Bilde als lineare
Raumtransformationen erscheinen. »
57. J’ai consacré un article à ce lien entre les équations de la géométrie et le Programme d’Erlangen, [Lê

2014].
58. Une transcription et un commentaire de cette Anstrittsrede sont proposés dans [Rowe 1983 ; Rowe

1985].
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discours, le texte de Klein avait été distribué à l’auditoire sous forme d’un livret imprimé.
C’est ce texte, originalement intitulé Vergleichende Betrachtungen über neuere geometrische
Forschungen 59, qui est maintenant connu sous le nom de Programme d’Erlangen, [Klein
1872].

Le Programme d’Erlangen est un texte « semi technique », dans lequel Klein expose des
idées exprimant une volonté d’unifier la géométrie par le biais des groupes de transforma-
tions et des invariants 60. Plus précisément, dans son introduction, Klein y exprime que les
développements mathématiques de son époque ont produit un éclatement de la géométrie
en plusieurs sous-produits 61, qu’il convient de réunifier :

La publication de considérations destinées à établir un tel lien a paru d’autant plus
justifiée que la Géométrie, bien qu’elle soit une par essence, ne s’est que trop scin-
dée, en raison du rapide développement qu’elle a pris dans ces derniers temps, en
des disciplines presque séparées [...] dont chacune continue de se développer presque
indépendamment des autres. [Klein 1974, p. 4]

Comme il l’explique lui-même dès le début du Programme, une des bases de ses consi-
dérations provenait de travaux récents ayant réalisé les métriques euclidienne et non-
euclidiennes dans un cadre de géométrie projective. Klein ne donne pas de référence précise
à ce sujet, mais il avait lui-même publié des recherches sur les géométries non-euclidiennes
peu auparavant, [Klein 1871a], prolongeant notamment des travaux de Cayley de la fin des
années 1850. Outre la mention aux géométries non-euclidiennes, Klein évoque encore expli-
citement les travaux qu’il a développés avec Lie : ce sont ceux sur les courbes et surfaces V ,
que nous avons rencontrés plus haut 62.

Les différentes sections du Programme d’Erlangen présentent successivement des prin-
cipes généraux sur la géométrie, les groupes et les invariants, mais également une série
d’exemples à travers lesquels Klein les illustre 63. Ainsi, parmi les principes généraux se
trouve la conception même de la géométrie pour Klein :

59. En français, le titre est devenu « Considérations comparatives sur les recherches géométriques mo-
dernes » dans une traduction de 1891 due à Henri Padé, [Klein 1891] ; elle a été reprise dans une édition
de 1974 commentée par Jean Dieudonné et François Russo, [Klein 1974]. Une liste des traductions du
Programme d’Erlangen se trouve dans [Hawkins 1984].
60. Dans les appropriations plus actuelles du Programme d’Erlangen, l’aspect relatif à la théorie des

invariants est souvent resté dans l’ombre de celui se rapportant aux groupes. Voir [Perrin 2002], dans lequel
Daniel Perrin préconise un renforcement de l’incorporation d’invariants géométriques dans l’enseignement
français. Par ailleurs, l’importance du Programme dans le développement de la théorie des groupes a été
étudiée dans [Wussing 1969].
61. Comme j’ai déjà eu l’occasion de le souligner, cette vision de la géométrie n’est pas objective. Voir [Lo-

renat 2015a].
62. Sans remettre en question son importance, T. Hawkins a discuté le caractère révolutionnaire qui

était souvent attribué au Programme d’Erlangen, notamment en mettant en évidence le rôle de Lie et ses
émules dans le développement des idées du Programme. Voir [Hawkins 1984].
63. Les exemples de Klein sont ce qu’il appelle la géométrie de l’espace réglé, la géométrie des rayons

vecteurs réciproques, la géométrie de la sphère de Lie, la géométrie des transformations rationnelles, etc.
Voir [Gray 2005] pour une description rapide de ces exemples.
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Figure 5.2 – Page de garde du Programme d’Erlangen, [Klein 1872].
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Comme généralisation de la Géométrie se pose ainsi la question générale que voici :
Étant donnés une multiplicité et un groupe de transformations de cette multiplicité 64,
en étudier les êtres au point de vue des propriétés qui ne sont pas altérées par les
transformations du groupe.

Si l’on adopte la façon actuelle de parler dont, il est vrai, on ne se sert que pour
un groupe déterminé, celui des transformations linéaires, on peut encore s’exprimer
ainsi : On donne une multiplicité et un groupe de transformations de cette multiplicité ;
développer la théorie des invariants relatifs à ce groupe. [Klein 1974, p. 7]

Parmi les autres principes généraux du Programme d’Erlangen, Klein indique comment
transférer une géométrie associée à une multiplicitéA à une deuxième multiplicitéA′ : si une
transformation t change A en A′, alors, elle permet de trouver un groupe de transformations
associé à A′ à partir de celui associé à A — en termes actuels, il s’agit de conjuguer par t
le groupe associé à A.

Klein explique aussi quel est l’effet de privilégier certains éléments sur le groupe associé
à la multiplicité :

On donne une multiplicité et, pour en faire l’étude, un de ses groupes de transfor-
mations. Soit proposé d’étudier les êtres de la multiplicité eu égard à l’un d’eux. On
peut alors soit adjoindre celui-ci à l’ensemble des êtres et rechercher, au sens du groupe
donné, les propriétés du système complet, soit ne rien adjoindre, mais borner les trans-
formations prises pour base de l’étude à celles du groupe donné qui n’altèrent pas l’être
considéré (et qui forment nécessairement un groupe). [Klein 1974, p. 9]

Ici, le verbe « adjoindre » rappelle la notion d’adjonction provenant de la théorie des
équations, en particulier de Galois 65 : tout comme l’adjonction d’une racine à une équation
donnée réduit le groupe de cette dernière à ses substitutions lui laissent la racine inaltérée,
l’adjonction d’un élément de l’espace réduit le groupe de transformations à celles qui le
laissent inaltéré.

À part cette allusion, d’autres mentions explicites de la théorie des équations et des sub-
stitutions se trouvent dans le Programme d’Erlangen. Ainsi, lorsqu’il introduit ce qu’est un
groupe de transformations de l’espace, Klein précise que « la notion et la dénomination [en]
sont empruntées à la théorie des substitutions où l’on traite, non des transformations d’un
champ continu, mais des permutations d’un nombre fini de grandeurs discrètes », [Klein
1974, p. 6, note (2)]. En outre, ces analogies confirmées dans les remarques finales du
Programme :

On est conduit à poser les problèmes dont nous voulions encore parler par une com-
paraison entre les idées que nous avons exposées et ce que l’on nomme la théorie des
équations de Galois.

64. Le mot de Klein est « Mannigfaltigkeit », que l’on traduirait aujourd’hui plutôt par « variété », même
s’il ne s’agit toutefois pas là de la notion actuelle de variété. Voir [Scholz 1980, p. 131].
65. En allemand, Klein emploie le verbe « hinzufügen », mais il parle aussi de « Adjunction der Haupt-

gruppe invarianten Eigenschaften », [Klein 1872, p. 8].
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Dans la théorie de Galois comme ici, tout l’intérêt réside dans les groupes de trans-
formations. Mais les objets auxquels se rapportent les transformations sont bien diffé-
rents : là on a affaire à un nombre limité d’éléments distincts, ici à un nombre indéfini
d’éléments d’un ensemble continu [...]. [Klein 1974, p. 36]

Il est intéressant de noter que Klein ne s’arrête pas à une comparaison superficielle et,
« par l’identité de la notion de groupe, [pousse] plus loin la comparaison » entre théorie de
Galois et géométrie :

Dans la théorie de Galois telle qu’elle est exposée, par exemple, dans le Traité d’Al-
gèbre supérieure de Serret ou dans le Traité des substitutions de C. Jordan, ce qui
fait proprement l’objet des recherches, c’est la théorie même des groupes ou des sub-
stitutions ; la théorie des équations en découle comme application. Par analogie, nous
voudrions une théorie des transformations, une théorie des groupes qui peuvent être
engendrés par des transformations d’une nature donnée. [Klein 1974, p. 36]

Cet extrait a souvent été mis en avant par l’historiographie pour souligner le parallèle fait,
par la notion de groupe, entre théorie de Galois et géométrie 66. Sans remettre ce point
en cause, je voudrais insister sur le fait que Klein n’avait pas ici en tête que des principes
généraux sur les groupes de substitutions.

La suite de l’extrait précédent montre en effet que Klein faisait aussi référence à des
aspects plus techniques de la théorie des substitutions et des équations :

Les notions de commutativité, de similitude, etc., trouveraient emploi comme dans
la théorie des substitutions. Le traitement d’une multiplicité tiré de la considération
d’un groupe fondamental de transformations apparaîtrait comme une application de
la théorie des transformations.

Dans la théorie des équations ce sont tout d’abord les fonctions symétriques des co-
efficients qui offrent de l’intérêt, mais ensuite ce sont les expressions qui demeurent
inaltérées, sinon par toutes les permutations des racines, au moins par un grand nombre
d’entre elles. Dans le traitement d’une multiplicité avec un groupe pris comme fon-
damental, nous voudrions d’abord, par analogie, déterminer les corps [...], les figures
qui demeurent inaltérées par toutes les transformations du groupe ; mais il est des
figures qui n’admettent pas toutes les transformations du groupe, mais seulement
quelques-uns d’entre elles, et ces figures, au sens du traitement basé sur le groupe,
sont particulièrement intéressantes, elles jouissent de propriétés remarquables. [Klein
1974, p. 36-37]

Ces mentions aux techniques de la théorie des substitutions renvoient donc à des savoirs que
Klein avait probablement acquis en particulier dans les livres qu’il cite : le Cours d’algèbre
supérieure de Serret (peut-être dans sa version allemande) et le Traité des substitutions et
des équations algébriques de Jordan. Elles montrent donc que l’analogie voulue par Klein

66. [Hawkins 1984, p. 444 ; Rowe 1989b, p. 211]. Voir aussi [Wussing 1969, p. 142 ; Eckes 2011, p. 115],
qui insistent sur le côté classificatoire provenant de la théorie des groupes.
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entre théorie de Galois et géométrie n’est pas que nourrie par des principes généraux por-
tant sur les groupes, mais aussi par des considérations qu’il a pu développer en travaillant
lui-même sur le sujet des équations et des substitutions.

Pour repérer de tels travaux, on peut regarder les Gesammelte mathematische Abhand-
lungen de Klein. Dans ces œuvres, il existe une section dévolue à la théorie des équations et
des groupes de substitutions — distincte de celle consacrée à ce qui relève du Programme
d’Erlangen —, et une seule des publications qui y sont listées est antérieure au Programme.
Il s’agit de l’article intitulé « Ueber eine geometrische Repräsentation der Resolventen al-
gebraischer Gleichungen » qui faisait partie du corpus des équations de la géométrie et
dont j’ai ré-exposé les principales idées précédemment, [Klein 1871b].

Soulignons que les œuvres complètes de Klein avaient été publiées de son vivant : les
trois tomes sont parus en 1921, 1922 et 1923 respectivement, alors que Klein est mort
en 1925. Dans la préface du premier tome, les éditeurs Fricke et Ostrowski indiquent que
Klein avait lui-même activement participé à l’édition de ses œuvres, et en particulier à
leur organisation 67. L’existence et les intitulés des différentes sections sont donc fortement
empreints des choix de Klein, et peuvent donner une image de ses recherches éclatées en
plusieurs lignes disjointes et indépendantes. Je veux montrer qu’au contraire, il existe des
rapprochements entre elles : ici, entre la section sur le Programme d’Erlangen et celle sur
la théorie des équations et des substitutions.

L’article [Klein 1871b] se présente donc comme un point d’entrée pour évaluer les
connaissances de Klein en théorie des équations au moment où il élabore le Programme
d’Erlangen. Or, comme nous l’avons vu, cet article se basait explicitement sur des consi-
dérations liées aux équations de la géométrie, décrits comme des exemples particuliers
et intuitifs. Klein y mentionnait le Traité des substitutions et des équations algébriques,
ouvrage également cité dans Programme d’Erlangen. Et, comme dans le Programme, l’ac-
cent était mis sur les groupes de transformations de l’espace, en tant que remplaçants
des groupes de substitutions dans une incarnation géométrique des équations algébriques
générales.

Les mentions de la théorie de Galois dans le Programme renvoient donc au corpus
des équations de la géométrie, dont nous avons vu que Klein était un des contributeurs
principaux. Elles montrent ainsi des connaissances et des manières de faire autour d’objets
liant théorie des équations (et des substitutions) et géométrie avec lesquelles Klein était
familier en 1872. Le point ici est de remarquer que ces connaissances et manières de faire
ont participé à l’élaboration du Programme d’Erlangen. Les équations de la géométrie se
présentent donc comme une des influences plus cachées ayant joué sur la constitution du
Programme d’Erlangen, aux côtés des géométries non-euclidiennes ou des travaux communs
avec Lie sur les courbes et surfaces V .

Comme T. Hawkins l’a montré, le Programme d’Erlanegn lui-même a connu une diffu-

67. [Klein Œuvres 1, p. iv].
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sion assez faible entre 1872 et le début des années 1890 — je reviendrai sur ce point dans
la conclusion du chapitre, préférant suivre la chronologie, et présenter quelques travaux
d’avant 1890. En revanche, une série d’articles ont permis de répandre les idées de Klein :
ceux sur les équations algébriques, et notamment sur l’équation du cinquième degré.

5.2.3 L’icosaèdre et le mémoire de Clebsch

Les travaux de Klein sur l’équation du cinquième degré et l’icosaèdre ont déjà fait
l’objet de descriptions historiques, et il n’est pas question pour moi d’y revenir en détail 68.
Je voudrais toutefois d’abord souligner que les idées générales que Klein exposait dans
son article sur la représentation géométrique des résolvantes, [Klein 1871b], y sont bien
mises en œuvre. En effet, un des points de l’approche de Klein consiste à considérer les
cinq racines de l’équation du cinquième degré comme autant de coordonnées pentaédriques
d’un point de l’espace 69 et à montrer que leur groupe de substitutions est isomorphe au
groupe des transformations de l’espace laissant invariant un icosaèdre régulier 70.

Par ailleurs, le mémoire de Clebsch que nous avons étudié précédemment est cité à
quelques reprises dans le livre, [Klein 1884], mais pas pour la méthode générale d’interpré-
tation géométrique de l’équation du cinquième degré basée sur les substitutions quadra-
tiques. En effet, Clebsch est mentionné pour avoir étudié la surface cubique diagonale 71,
sans que les rapports qu’il a établis entre cette surface et l’interprétation géométrique de
la quintique soient mis en avant par Klein.

On peut se demander pour quelles raisons Klein a ainsi évité de mentionner plus pré-
cisément les travaux de Clebsch qui portaient sur la même thématique. Une piste possible
est de voir cela comme un effet de la volonté de la part de Klein de promouvoir l’utilisation
des groupes de transformations. En effet, comme je l’ai expliqué, Clebsch se basait sur de
considérations touchant au quintilatère et autres courbes associés sans jamais faire appel à
de groupes (de quelque nature que ce soit). Passer sous silence ces méthodes permet donc à
Klein d’augmenter son autorité sur ce qui est une bonne interprétation géométrique. L’uti-
lisation des groupes en géométrie, comme préconisé par le Programme d’Erlangen, était
bien vue comme une nouveauté, notamment en comparaison avec les façons de faire de
Clebsch. C’est ce que souligne rétrospectivement Klein (en 1921), se souvenant des temps
ayant tout juste précédé le Programme :

68. Voir [Gray 2000] que j’ai déjà pu citer.
69. Cinq coordonnées homogènes définissent un point dans un espace de dimension 4, mais demander

que leur somme soit nulle permet de les voir comme des coordonnées pentaédriques d’un point d’un espace
de dimension 3 — cette condition revient à considérer des équations du cinquième degré n’ayant pas de
terme en x4.
70. L’article [Klein 1871b] est cité dans [Klein 1884, p. 160]. En citant cet article, Klein fait également

mention de l’interprétation géométrique des résolvantes et de la transformation de Tschirnhaus. Notons
toutefois que cette dernière n’est pas abordée dans l’article en question, mais qu’elle l’est dans [Clebsch
1871b].
71. [Klein 1884, p. 166, 218, 226].
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Durant l’élaboration de mon programme, j’ai naturellement toujours pensé à ce que
mon cher professeur Clebsch (que je devais certainement remercier pour ma nomination
précoce à Erlangen) aurait dit sur mes explications, qui diffèrent tant de sa façon de
penser systématico-projective. En vain ! Car Clebsch succomba soudainement à un cas
de diphtérie le 7 novembre 1872, à seulement 39 ans. Son opinion, que j’attendais avec
un mélange d’espoir et de crainte, ne vint donc jamais 72. [Klein Œuvres 1, p. 412]

Cette citation montre bien les changements que Klein avait conscience de provoquer en
insistant toujours plus sur l’importance des groupes de transformations, surtout en regard
de la géométrie de son professeur.

Une autre piste pouvant expliquer la disparition presque totale de Clebsch dans le livre
sur l’icosaèdre est plus indirecte. Nous avons vu que Clebsch n’avait pas remis en question
les approches de Hermite et de Kronecker sur l’équation du cinquième degré. Au contraire,
il les considérait comme deux façons possibles de résoudre cette équation, et son objectif
était uniquement de les revêtir d’un habillement géométrique. Or, les historiens ont souligné
le fait que Klein avait voulu se démarquer des méthodes de Hermite et de Kronecker 73. Il
est donc possible que la contribution de Clebsch sur le sujet ait été minimisée par ce biais,
prenant pour acquis des travaux que Klein comptait remanier à sa façon.

5.2.4 La résolution de l’équation aux vingt-sept droites par Klein, 1888

Pour voir sur un exemple comment Klein a mis plus tard en application ses principes de
l’icosaèdre, revenons sur le lien entre les vingt-sept droites et les fonctions hyperelliptiques.
Nous avons déjà vu qu’en 1888, Klein était revenu sur ce lien dans un article du corpus des
équations de la géométrie, [Klein 1888]. Cet article est un extrait d’une lettre écrite par
Klein et adressée à Jordan. Comme je l’ai expliqué au chapitre 3, Klein explique que les
idées qui y sont exprimées proviennent des travaux que son élève Alexander Witting avait
fait sur les fonctions hyperelliptiques quelques temps auparavant 74.

Klein avait alors pressenti une nouvelle façon de rapprocher les fonctions hyperellip-
tiques et les vingt-sept droites et l’avait fait savoir à Jordan, qui lui avait écrit en retour
(juillet 1886) :

Ce que vous m’écrivez sur les études de M. Witting m’intéresse vivement. Je suis per-
suadé que le rapprochement que j’ai signalé entre la trisection des fonctions elliptiques
et les droites des surfaces cubiques n’est pas dû à un hasard et que les deux problèmes

72. « Bei der Ausarbeitung meines Programms habe ich selbsverständlich immer daran gedacht, was
wohl mein verehrter Lehrer Clebsch (dem ich zweifellos auch die frühzeitige Berufung nach Erlangen zu
verdanken hatte) zu meinen Darlegungen, die so vielfach von seiner systematisch-projectiven Denkweise
abwischen, sagen würde. Vergeblich! Denn Clebsch ist am 7. November 1872, im Alter von nur 39 Jahren,
einem Anfall von Diphteritis plötzlich erlegen. Es kam also nicht zu der Stellungsnahme, der ich mit einer
Mischung von Hoffnung und Furcht entgegensah. »
73. [Goldstein 2011a ; Petri & Schappacher 2004].
74. Ces travaux ont été publiés dans [Witting 1887a ; Witting 1887b].
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doivent être identiques au fond, et j’aimerais fort qu’on me le montrât 75.

Klein lui avait alors envoyé la lettre qui devait paraître un peu plus tard sous la forme de
l’article [Klein 1888] dans le Journal de mathématiques pures et appliquées, dont Jordan
avait pris la direction en 1885. Ce dernier écrivit à Klein, en août 1887 :

Merci de l’envoi de votre lettre sur les 27 droites. Elle est non seulement intéressante,
mais admirablement claire, et quoi que vous en disiez, en très-bon style. À peine si j’ai
eu à y faire ça et là quelques retouches tout à fait insignifiantes avant de l’adresser à
Gauthier Villars 76.

L’article de Klein s’intitule Sur la résolution, par les fonctions hyperelliptiques, de l’équation
du vingt-septième degré, de laquelle dépend la détermination des vingt-sept droites d’une
surface cubique. Klein commence par poser le problème : « L’équation des 27 droites d’une
surface cubique et la trisection des fonctions hyperelliptiques du premier ordre ayant le
même groupe, il [s’agit] de réduire, s’il [est] possible, le premier problème au second. » [Klein
1888, p. 169].

Pour cela, il rappelle d’abord les grandes lignes de sa méthode de résolution des équa-
tions du cinquième degré en lien avec l’icosaèdre. Klein expose ensuite la trame des « consi-
dérations tout à fait analogues sur les fonctions hyperelliptiques (du premier ordre) et les
équations du vingt-septième degré », qu’il a en tête, [Klein 1888, p. 171]. La première étape
consiste donc à construire une forme normale pour l’équation de transformation des fonc-
tions hyperelliptiques, et la seconde à pouvoir réduire l’équation aux vingt-sept droites à
cette forme normale. Tout juste esquissé ici par Klein, ce procédé de résolution a ensuite
été complètement détaillé par Heinrich Burkhardt dans trois imposants mémoires publiés
en 1890, 1891 et 1893 77.

Ces travaux s’inscrivent donc bien dans la lignée des recherches de Klein des années
1870-1880 sur les équations algébriques. La remarque suivante de Burkhardt est d’ailleurs
révélatrice des rapprochements de domaines mathématiques caractéristiques de ces re-
cherches :

Les résultats auxquels nous sommes parvenus n’ont pu être atteints que par la conjonc-
tion de tous les outils qu’offrent à la recherche la théorie de fonctions de Riemann, la
théorie des invariants au sens strict, la Liniengeometrie et la théorie des équations de
Galois. Les présentes recherches veulent être comprises comme une contribution à l’ef-
fort pénétrant, maintenant toujours plus puissant, consistant à libérer ces différentes
disciplines de leur isolement mutuel 78. [Burkhardt 1893, p. 343]

75. Extrait d’une lettre de Jordan à Klein, datée du 26 juillet 1886 et conservée aux archives de Göttingen
sous la référence Cod. Ms. F. Klein 10 : 13. La lettre entière est retranscrite en annexe E.
76. Extrait d’une lettre de Jordan à Klein, datée du 28 août 1887 et conservée aux archives de Göttingen

sous la référence Cod. Ms. F. Klein 10 : 16. La lettre entière est retranscrite en annexe E.
77. [Burkhardt 1890 ; Burkhardt 1891 ; Burkhardt 1893].
78. « [D]ie Resultate zu welchen wir gelangt sind, haben wir nur erreicht durch Heranziehung aller Hilfs-

mittel, welche die Riemann’sche Functionentheorie, Invariantentheorie in engeren Sinne, Liniengeometrie,
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Comme le laisse entendre cette citation, la géométrie à l’œuvre dans ces travaux n’est
pas en rapport direct avec la configuration des vingt-sept droites : c’est la géométrie des
droites, la Liniengeometrie telle que Klein l’avait exposée dans [Klein 1870] qui est mise
en valeur.

Effectivement, Klein écrit lui-même que la provenance géométrique du groupe des vingt-
sept droites n’importe pas pour le problème :

Considérons maintenant l’équation du vingt-septième degré des droites d’une surface
cubique. Comme vous l’avez prouvé dans votre Traité, le groupe de cette équation,
après adjonction d’une racine carrée, se trouve isomorphe sans mériédrie au groupe
des 25920 substitutions fractionnaires des quotients des z. Or je ne considérerai pas
quelques autres qualités spéciales de cette équation, mais je m’occuperai, dans ce qui
suit, de toutes les équations du vingt-septième degré ayant le même groupe. [Klein
1888, p. 173-174]

De ce point de vue, on constate ainsi la disparition de l’objet « équation aux vingt-sept
droites » au profit d’un groupe dont Klein ne retient que des propriétés désincarnées géo-
métriquement. Autrement dit, si les vingt-sept droites (et de leur équation) donnent encore
lieu à des recherches à la fin des années 1880, leurs relations d’incidence et les objets comme
les triangles ou les doubles-six ne sont plus évoquées.

En outre, il est intéressant de relever que Jordan désire qu’on lui montre pourquoi
les problèmes des vingt-sept droites et des fonctions hyperelliptiques sont les mêmes « au
fond ». Cela suggère en effet que la réponse qu’il avait lui-même apportée plus de quinze
auparavant avec les ennéaèdres n’est pas, ou plus, satisfaisante. J’avais interprété ce recours
aux ennéaèdres comme un problème de communication dans un groupe social pour lequel
les bonnes réponses (compréhensibles) étaient celles faisant appel à ce que j’ai appelé
les objets dérivés. Le changement est donc manifeste : ces objets ne sont plus ceux qui
attirent l’attention, et la bonne réponse au problème est celle provenant de l’analogie avec
les travaux sur l’icosaèdre.

5.3 Des groupes d’équations de la géométrie

J’en viens maintenant à deux autres textes datés de la même époque que les précédents,
à partir desquels je vais continuer à illustrer la disparition des façons de faire caractéristique
liées aux équations de la géométrie autour de 1870. Le premier de ces textes est un article
de Heinrich Weber de 1884, [Weber 1884], consacré à l’étude du groupe de Galois de
l’équation aux vingt-huit tangentes doubles. Le second est la thèse faite par Friedrich
Kühnen en 1888, sur le sujet du groupe de l’équation aux vingt-sept droites. Notons que
ces deux textes étaient listés par Henderson dans son livre sur les vingt-sept droites des

Galois’sche Gleichungstheorie der Untersuchung darbieten. Als ein Beitrag zu den jetzt immer mächti-
ger durchdringenden Bestrebungen, diese verschiedenen Disciplinen aus ihrer gegenseitigen Isolierung zu
befreien, wollen diese Untersuchungen verstanden sein. »
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surfaces cubiques, dans son paragraphe sur l’approche du sujet par la théorie des groupes.
En outre, l’article de Weber a été par la suite repris en grande partie dans le chapitre de
son Lehrbuch der Algebra sur les vingt-huit tangentes doubles que j’avais laissé de côté au
chapitre 3.

5.3.1 Un article de Weber sur les vingt-huit tangentes doubles, 1884

L’article de Weber est intitulé Ueber die Galois’sche Gruppe der Gleichung 28ten Gra-
des, von welcher die Doppeltangenten einer Curve vierter Ordnung abhängen, [Weber 1884].
Weber commence par y expliquer qu’il va utiliser des résultats sur les fonctions thêta à
trois variables qu’il a développés dans un livre qu’il a écrit sur ce sujet quelques années au-
paravant, [Weber 1876]. D’après lui, ces résultats conduisent à « une présentation claire et
élégante du groupe de Galois de l’équation du vingt-huitième degré dont dépendent les tan-
gentes doubles, lequel groupe permet de déceler facilement et simplement les particularités
algébriques de cette équation 79 ».

Remarquons que Weber aborde dès le début de son article la question du domaine
de rationalité à considérer. Il indique ainsi qu’il faut considérer pour cela l’ensemble des
fonctions rationnelles des coefficients de l’équation de la courbe quartique donnée. En
outre, il précise qu’il n’est pas important de distinguer si les coefficients eux-mêmes sont
des nombres rationnels ou non 80. En fait, dans toute la suite de l’article, Weber ne revient
pas sur la question du domaine de rationalité. Son approche du groupe de Galois est basée
sur des considérations de substitutions de racines, comme dans le Traité des substitutions
et des équations algébriques de Jordan : c’est le genre de considération que l’on retrouvera
dans une partie du Lehrbuch der Algebra. En particulier, les considérations de Weber au
sujet du groupe de Galois étudié dans l’article discuté ici ne sont pas celles inspirées de
celle de Richard Dedekind, mettant en valeur les extensions du domaine de rationalité 81.

Le résultat principal provenant des recherches de Weber sur les fonctions thêta est
que les racines de l’équation aux vingt-huit tangentes doubles peuvent se grouper sept par
sept, et ce de 288 façons différentes. Plus précisément, la propriété de ces ensembles de
sept racines, appelés Siebenersysteme, est que les sept racines de chacun d’eux permettent
de trouver rationnellement les vingt-et-une restantes. Ainsi, Weber note ξ1, ξ2, . . . , ξ7 les
racines d’un Siebenersystem donné ; il existe alors une fonction rationnelle f telle que

ξ12 = f(ξ1, ξ2 | ξ3, ξ4, ξ5, ξ6, ξ7)

est encore une racine de l’équation aux vingt-huit tangentes doubles. Le symbole « | » qui

79. « [Diese Resultate führen] zu einer übersichtlichen und eleganten Darstellung der Galois’schen Gruppe
der Gleichung 28ten Grades, von welcher die Doppeltangenten abhängen, welche die algebraischen Eigent-
hümlichkeiten dieser Gleichung leicht und einfach erkennen lässt. » [Weber 1884, p. 489].
80. Voir [Weber 1884, p. 489].
81. Cette approche est exposée une dizaine d’années plus tard, dans [Weber 1893]. Voir à ce sujet [Corry

2004, p. 34].
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apparaît dans la formule signifie que la fonction f est invariante par substitution des cinq
racines situées à droite de la barre ou par transposition de celles à gauche. De plus, une
substitution remplaçant ξ1, ξ2 par deux autres racines ξh, ξk change la valeur de f , laquelle
devient une nouvelle racine 82 notée ξhk.

Cette propriété est à la base de l’étude du groupe G de l’équation aux vingt-huit
tangentes doubles 83. En effet, Weber montre que G est formé des substitutions entre
les racines ξ obtenues de la façon suivante. Pour un Siebenersystem donné ξ1, . . . , ξ7, on
considère les substitutions entre ces sept racines ; les relations données par la formule f
montrent que ces substitutions induisent alors des permutations entre les racines restantes,
et ceci de façon entièrement déterminée par la substitution opérant sur les sept premières.
Comme il y a 288 Siebenersysteme, Weber en déduit que le groupe G est formé de 288 · 7!

substitutions.
À partir de cela, Weber entame la recherche de sous-groupes de G. Par exemple, il

montre que G possède comme sous-groupe le groupe symétrique S8 et exhibe 35 substitu-
tions notées Uι,ι′,ι′′,ι′′′ telles que 84

G = S8 +
∑

S8Uι,ι′,ι′′,ι′′′ .

En termes actuels, les trente-cinq substitutions Uι,ι′,ι′′,ι′′′ ainsi que l’identité sont ainsi les
représentants des classes de G/S8.

En utilisant de telles décompositions du groupe G, et grâce à la forme explicite de
ses générateurs, Weber parvient ensuite à montrer par exemple que le discriminant de
l’équation aux vingt-huit tangentes doubles est le carré d’une quantité rationnelle, ou
encore que G est un groupe simple. Weber se propose aussi de chercher les sous-groupes
non distingués (il parle de « diviseurs impropres »), qui correspondent à des équations
« dont les racines abaissent le groupe de l’équation aux vingt-huit tangentes doubles 85 ». Il
renvoie d’ailleurs, à cette occasion, au Traité des substitutions et des équations algébriques,
indiquant que Jordan a déjà répondu à cette question, mais de façon différente.

Parmi les sous-groupes ainsi trouvés, Weber met en particulier en évidence un sous-
groupe d’indice 336, et exhibe une fonction formée de 18 des racines ξ qui lui correspond :

w = ξ16ξ26ξ36ξ46ξ56ξ7 + ξ17ξ27ξ37ξ47ξ57ξ6 + ξ1ξ2ξ3ξ4ξ5ξ67.

Ce qu’il est intéressant de remarquer est que Weber en propose une interprétation géomé-

82. Il y a donc bien
(

7
2

)
= 21 racines du type ξhk, avec 1 6 h, k 6 7 et ξhk = ξkh.

83. Dans le chapitre du Lehrbuch der Algebra, Weber établit la propriété f non pas par les fonctions
thêta, mais par de propriétés géométriques : les Siebenersysteme correspondent à des ensembles de sept
tangentes doubles liées entre elles par des relations d’incidence particulières. La suite du chapitre est quant
à elle quasiment identique à l’article que nous sommes en train de décrire.
84. Dans cette notation, les indices ι, ι′, ι′′, ι′′′ sont des entiers.
85. « Um solche Gleichungen zu ermitteln, deren Wurzeln die Gruppe der Doppeltangentengleichung

erniedrigen, hat man uneigentliche Divisoren der Gruppe [G] aufzusuchen. » [Weber 1884, p. 498].
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trique :

On peut donner l’interprétation géométrique suivante à ce groupe : on peut choisir 18
tangentes doubles qui forment trois hexagones de Brianchon, et ceci de 336 manières
différentes 86. [Weber 1884, p. 503]

Aucune explication n’est donnée par Weber 87. On pourra toutefois noter que les résolutions
spécifiques aux équations de la géométrie ne se retrouvent pas ici ; l’attention est portée
surtout sur les groupes et sous-groupes de substitutions. En particulier, cet exemple montre
que Weber ne fait pas appel à ce que j’avais appelé des « réduites géométriques » : c’est au
contraire le résultat algébrique (l’existence d’un sous-groupe particulier) qui est transcrit
en termes de configuration géométrique. De plus, Weber ne semble pas vouloir formuler
le résultat cité précédemment en termes d’une équation de la géométrie dont les racines
seraient des triplets d’hexagones de Brianchon.

5.3.2 La thèse de Friedrich Kühnen, 1888

Freidrich Kühnen (1858-1940) a étudié les mathématiques, la physique et la géodésie
à divers endroits : Bonn, Paris, Göttingen, Berlin, Genf et Marburg 88. C’est dans cette
dernière ville que Kühnen a préparé sa thèse, laquelle fut publiée en 1888 et intitulée
Ueber die Galois’sche Gruppe der Gleichung 27. Grades, von welcher die Geraden auf der
allgemeinen Fläche dritter Ordnung abhängen, [Kühnen 1888]. Après cette thèse, Kühnen
resta quelque temps à Marburg en tant que professeur assistant, puis partit à l’Institut de
géodésie de Potsdam en 1891. Au vu des titres de ses publications listées dans [Engelmann
1982], Kühnen n’a abordé le sujet des vingt-sept droites ou de la théorie de Galois que
dans sa thèse ; le reste des publications se rapporte à la géodésie.

Je n’ai trouvé aucune mention explicite du professeur avec lequel Kühnen a préparé sa
thèse. Plusieurs indices laissent penser qu’il s’agit de Weber. Outre le fait que ce dernier
était à Marburg entre 1884 et 1892 89, on trouve dans la thèse de Kühnen une référence
à l’article décrit précédemment, [Weber 1884] — Kühnen le cite pour signaler qu’il en a
emprunté les notations et les méthodes. D’ailleurs, comme le laisse présager la ressemblance
de leurs titres, les sujets de la thèse de l’un et de l’article de l’autre sont apparentés : il s’agit
de l’étude du groupe de Galois de l’équation aux vingt-huit tangentes doubles pour l’un, et
aux vingt-sept droites pour l’autre. Enfin, on pourra ajouter qu’une thèse plus tardive de
Fritz Glaser, [Glaser 1911], porte encore un titre tout à fait similaire 90 et partage également

86. Dieser Grupper kann die folgende geometrische Interpretation gegeben werden : Es lassen sich auf
336 Arten 18 Doppeltangenten auswählen, welche drei Brianchon’sche Sechsecke bilden.
87. Je rappelle qu’un hexagone de Brianchon est un hexagone dont les diagonales joignant les sommets

opposés sont concourantes. La théorème de Brianchon dit qu’un hexagone est de ce type si et seulement
s’il est circonscrit à une conique.
88. Les informations de ce paragraphe sur Kühnen sont tirées de [Engelmann 1982].
89. [Schappacher & Volkert 2005].
90. Ueber die Galoissche Gruppe der Gleichung 16. Grades, von der die 16 Knotenpunkte der Kummer-

schen Fläche 4. O. abhängen.
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notations et méthodes avec l’article de Weber ; de plus, Glaser y signale explicitement qu’il
l’a effectuée avec Weber.

Venons-en maintenant au contenu de cette thèse de Kühnen, dévolue au groupe de
Galois de l’équation aux vingt-sept droites. Kühnen y rappelle d’abord la définition des
doubles-six de Schläfli ainsi que la notation des vingt-sept droites qui en découle, et les
règles d’incidences associées : un double-six est un ensemble de douze droites a1, . . . , a6,
b1, . . . , b6 parmi les vingt-sept d’une surface cubique, telles que si on les représente avec le
tableau

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6,

alors chaque droite intersecte uniquement celles qui ne sont situées ni sur la même ligne,
ni sur la même colonne. Ainsi, lorsque i 6= j, les droites ai et bj sont sécantes ; il existe
alors une troisième droite (parmi les vingt-sept), notée cij , avec laquelle elles forment un
triangle. Il y a 36 doubles-six et ils permettent notamment de retrouver les 45 triangles
formés à partir des vingt-sept droites.

Kühnen présente alors ces relations d’incidence comme la base d’étude pour le groupe
de l’équation aux vingt-sept droites :

Les relations entre les droites de la surface se transposent aux racines de l’équation
algébrique de degré 27 dont dépendent les 27 droites de la surfaces générale du troi-
sième ordre, et elles peuvent ainsi servir à mettre en place le groupe de Galois de
l’équation 91. [Kühnen 1888, p. 7]

Pour réaliser cela, Kühnen note d’abord ij les racines correspondant aux droites cij ,
pour 1 6 i, j 6 6, puis i7 et i8 les racines correspondant respectivement aux droites bj
et ai. Les relations d’incidence entre les droites sont alors traduites en relations entre les
racines. Par exemple, Kühnen explique qu’il existe une fonction rationnelle f telle que l’on
ait par exemple

17 = f(18 | 28, 38, 48, 58, 68),

ce qui correspond au fait que la droite b1 est sécante aux droites a2, . . . , a6. Le symbole
« | » qui apparaît dans cette formule permet à Kühnen de préciser que toute permutation
entre 28, 38, 48, 58, 68 ne change pas la valeur de f , mais que si 18 est changé en i8, alors la
valeur 17 de f est changée en i7 — on voit ici de façon claire la ressemblance avec l’article
de Weber. Des relations analogues sont données en lien avec les droites cij . Ainsi, il existe,
d’après Kühnen, une fonction rationnelle ϕ telle que

12 = ϕ(18, 27) = ϕ(17, 28),

91. « Die Beziehungen zwischen den Geraden der Fläche lassen sich auf die Wurzeln der algebraischen
Gleichung 27. Grades übertragen, von welcher due 27 Geraden der allgemeinen Fläche dritter Ordnung
abhängen, und sir können dazu dienen die Galois’sche Gruppe der Gleichung aufzustellen. »
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car les droites c12, a1 et b2 (resp. cij , a2 et b1) sont sécantes. Kühnen indique alors que le
groupe de Galois G de l’équation aux vingt-sept droites est formé de toutes les substitutions
de ses racines qui préservent les relations f et ϕ.

On pourra observer que le groupe de Galois de l’équation aux vingt-sept droites est ainsi
relié aux relations d’incidence existant entre les droites, comme c’était le cas dans le Traité
de Jordan. Mais, au contraire de l’approche de ce dernier, ces relations sont uniquement
exprimées en termes de relations rationnelles entre les racines : il n’y a pas de création
d’une fonction algébrique de ces racines dont le groupe est égal à celui de l’équation.

Kühnen utilise ensuite les relations f et ϕ pour lister des substitutions qui engendrentG,
en chercher l’ordre ainsi que des sous-groupes distingués ou non. Il cite d’ailleurs le Traité
de Jordan pour le résultat selon lequel G ne possède qu’un seul sous-groupe distingué
(d’indice 2), mais que Kühnen propose de démontrer de façon différente. Noter que, comme
chez Jordan, les résultats sur G sont pour la plupart traduits en des propriétés de l’équation
aux vingt-sept droites : par exemple, Kühnen déduit que le discriminant de cette équation
est le carré d’une quantité rationnelle à partir du fait que toutes les substitutions de G
sont composées d’un nombre pair de transpositions.

En revanche, une différence frappante entre la thèse de Kühnen et les travaux de Jordan
concerne la recherche des sous-groupes qui ne sont pas transitifs 92. Kühnen écrit :

Pour l’équation du vingt-septième degré considérée, les diviseurs intransitifs du groupe
sont de grand intérêt à cause de leur signification géométrique, comme c’est en général
le cas. Ces diviseurs peuvent servir à déduire les positions mutuelles et les figures des
vingt-sept droites sur la surface générale du troisième ordre 93. [Kühnen 1888, p. 24]

L’accent est ensuite mis sur le fait que c’est l’algèbre qui permet de retrouver les « figures »
associées aux vingt-sept droites :

[Ces positions mutuelles et figures] ont déjà été exposées de façon complètement claire
par des considérations géométriques de Steiner, Cremona, Schläfli [...], mais nous vou-
lons ici déduire les mêmes résultats d’une manière algébrique 94. [Kühnen 1888, p. 24-
25]

Comme il le précise un peu plus loin dans sa thèse, Kühnen entend ainsi montrer la « fécon-
dité de la méthode algébrique 95 ». Il va ainsi mettre en évidence un sous-groupe d’indice 45,
à la suite de quoi il en déduit qu’il existe 45 triangles formés à partir des vingt-sept droites.
D’autres sous-groupes sont trouvés, associés aux triplets de doubles trièdres de Steiner, etc.

92. C’est-à-dire ceux qui ne permettent pas de remplacer n’importe quelle racine par n’importe qu’elle
autre.
93. « Bei der betrachteten Gleichung 27. Grades sind die intransitiven Divisoren der Gruppe wegen

ihrer geometrischen Deutung von grösserem Interesse, als dies allgemein der Fall ist. Dieselben können
dazu dienen, die gegenseitige Lage und Figurationen der 27 Geraden auf der allgemeinen Fläche dritter
Ordnung zu ermitteln. »
94. « Diese sind zwar von Steiner, Cremona, Schläfli [...] durch geometrische Betrachtung bereits voll-

ständig klar gelegt, doch wollen wir hier dieselben Resultate in algebraischer Weise ableiten. »
95. « Um jedoch die Fruchtbarkeit der algebraischen Methode zu zeigen... », [Kühnen 1888, p. 25].
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Il est donc intéressant de remarquer que le processus est ici inversé par rapport à la
présentation de Jordan de ce que j’avais appelé les « réduites géométriques ». Alors que
dans le Traité, les réduites étaient directement déduites de l’existence des objets comme
les triangles, les trièdres de Steiner ou les doubles-six de Schläfli, c’est maintenant l’étude
du groupe qui doit servir à retrouver les différentes configurations géométriques. La façon
de faire propre aux équations de la géométrie dans les textes du corpus de ces équations
et datés d’autour de 1870 n’apparaît donc pas du tout dans la thèse de Kühnen. C’est
même le contraire (la recherche de sous-groupes qui sont interprétés géométriquement a
posteriori) qui est présenté comme une « méthode algébrique fructueuse ».

5.4 Groupes et géométrie : une acculturation ?

En suivant les équations de la géométrie à partir de 1871, plusieurs rapports entre
groupes et géométrie ont été vus dans ce chapitre. Nous avons ainsi constaté que si un
intérêt subsistait encore dans les années 1880 pour le sujet des groupes de Galois associés à
ces équations, certaines des façons de faire typiques que j’ai mises en évidence au chapitre
précédent étaient absentes des travaux correspondants. La même constatation pourrait
d’ailleurs être faite sur d’autres textes du tournant du siècle : outre le Lehrbuch der Algebra
de Weber que j’ai déjà discuté, certaines équations de la géométrie font encore l’objet de
chapitres dans le manuel de Julius Petersen, [Petersen 1897], ou les livres sur les groupes
finis auxquels Dickson avait participé, [Dickson 1901b ; Miller et al. 1916], mais on n’y
trouve plus de procédés de résolution par les objets dérivés 96.

J’ai aussi insisté sur le rôle des équations de la géométrie dans la constitution du
Programme d’Erlangen, en montrant que Klein avait en tête ces objets liant groupes (de
substitutions) et géométrie au moment où il insistait sur l’importance des groupes de trans-
formations. Les derniers textes que j’ai étudiés dans ce chapitre datent de la fin des années
1880 ; c’est justement à partir de cette époque que le Programme d’Erlangen et ses idées ont
commencé à être largement diffusés 97, notamment à travers une réimpression allemande
(1893) et des traductions en italien (1890), français (1891), anglais (1893), hongrois (1897),
russe (1895-1896) et polonais (1905). Sur le sujet des vingt-sept droites, il est possible de
repérer des traces de rapprochements entre groupes et géométrie dans des travaux de ces
années-là. Par exemple, on peut lire dans des articles d’Ernesto Pascal, [Pascal 1892 ; Pascal
1893], des considérations de « sous-groupes de substitutions laissant fixes un plan tangent
triple 98 », qui indiquent bien que les substitutions sont vues comme agissant sur les objets
géométriques eux-mêmes, et pas sur des racines d’une équation.

96. En revanche, on ne trouve pas d’équations de la géométrie dans le manuel de Henri Vogt, [Vogt 1895].
97. Voir [Hawkins 1984], déjà cité.
98. « Sottogruppo di sostituzioni che lasciano fisso un piano tritangente ». Remarquer qu’à la fin des

années 1880, Pascal avait fait une partie de ses études à Göttingen, où il travailla avec Klein. Voir [Berzolari
1939-40].
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Nous voyons donc que les équations de la géométrie ont d’une part subsisté au moins
jusqu’au début du xxe siècle en tant qu’exemples d’équations particulières, au même titre
que les équations cyclotomiques, modulaires, etc., et d’autre part participé aux modifica-
tions de points de vue sur la géométrie elle-même. Si l’on pense en termes de cultures,
nous pouvons donc décrire la situation comme celle d’une acculturation entre théorie des
groupes (en constitution) et géométrie, initiée autour des équations de la géométrie dont le
système culturel ne formerait qu’une étape transitoire 99. Ce concept d’acculturation a été
défini par les anthropologues Robert Redfield, Ralph Linton et Melville Herskovits pour
rendre compte des contacts entre groupes culturels :

L’acculturation est l’ensemble des phénomènes qui résultent d’un contact continu et
direct entre des groupes d’individus de cultures différentes et qui entraînent des chan-
gement dans les modèles culturels initiaux de l’un ou des deux groupes 100. [Redfield
et al. 1936, p. 149]

Dans le cas présent, nous voyons donc, à moyen terme, les équations de la géométrie devenir
des exemples usuels de la théorie des groupes (ou des équations) et même en modifier la
vision, Klein voulant incarner géométriquement toute équation ; nous constatons aussi leur
effet sur l’incorporation de la théorie des groupes en géométrie.

Je voudrais ainsi d’abord revenir sur le sujet des équations de la géométrie lui-même. Le
corpus que j’ai créé pour l’étudier se basait sur une section du chapitre de l’Encyklopädie
der mathematischen Wissenschaften consacré à la théorie de Galois. J’ai par conséquent été
conduit à privilégier un certain type de travaux dans lesquels j’ai étudié des articulations
entre groupes et équations d’une part, et géométrie d’autre part. D’autres domaines de
recherche mathématique en lien avec les neuf points d’inflexion, les vingt-sept droites, etc.,
ne sont pas apparus par ce biais. Nous pouvons ainsi penser à l’approche des configurations
géométriques mise en place par Karl Theodor Reye à partir de 1876, [Reye 1876], ou encore
à la géométrie énumérative que Hermann Schubert expose dans son livre de 1879, [Schubert
1879] — on pourra d’ailleurs noter que ces voies de recherche datent de la fin des années
1870, soit après la période forte des équations de la géométrie. Ces travaux mériteraient
bien sûr un examen détaillé pour en déterminer le statut vis à vis des équations de la
géométrie, mais aussi du rapprochement entre groupes et géométrie.

Un autre aspect essentiel à prendre en compte pour la question d’acculturation est
d’ordre social. Roger Bastide a en effet souligné que lors d’une analyse de contact cultu-
rels, il est important d’étudier les facteurs sociaux et politiques présidant à ces contacts 101.
On peut ainsi se demander si des raisons politiques ont joué un rôle dans l’intérêt porté aux

99. Ce que j’ai interprété au chapitre précédent comme une réinterprétation serait un indice supplémen-
taire de cette acculturation.
100. « Acculturation comprehends phenomena which result when groups of individuals having different
cultures come into continuous first-hand contact, with subsequent changes in the original cultural patterns
of either of both groups. » La traduction est celle de [Cuche 2010, p. 59].
101. [Bastide 1998 ; Bastide 2007].
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équations de la géométrie. Par exemple, une question serait de savoir si Clebsch n’a pas
voulu récupérer par leur biais les travaux de Galois d’une manière géométrique, présentée
comme intuitive, et concurrente à ce qui était fait à Berlin. Cela renforcerait encore davan-
tage la filiation déjà décrite entre Clebsch et Klein : car la fin des années 1880, période sur
laquelle le présent chapitre s’est terminé, est le moment où Klein commence la construc-
tion du « grand Göttingen », usant notamment l’intuition géométrique comme bannière de
ralliement contre les points de vue Berlinois 102.

102. Voir [Rowe 1989a] et, plus spécifiquement au sujet de l’arithmétisation, [Petri & Schappacher 2007].



Conclusion

L’objectif présenté dans l’introduction générale de la thèse était de suivre l’équation aux
vingt-sept droites afin de capter certaines dynamiques à l’œuvre dans les rapprochements
entre théorie des groupes et géométrie dans la seconde moitié du xixe siècle. Arrivé au
terme des cinq chapitres, il est temps pour moi de récapituler les principaux résultats
obtenus. Faute de l’avoir strictement suivie au fil des chapitres, je voudrais commencer par
tracer une chronologie fine de la rencontre entre théorie des substitutions et géométrie.

Comme je l’ai montré aux chapitres 1 et 3, il existait, dans le deuxième tiers du xixe

siècle, un savoir-faire géométrique sur le sujet des courbes et des surfaces algébriques de
petit degré. Ce savoir-faire consistait d’abord à mettre en évidence des points ou des droites
particulières associés à ces courbes et surfaces. Ces points ou droites étaient alors étudiés
du point de vue de leurs relations d’incidence, ou utilisés comme base de travail pour
comprendre les courbes ou surfaces auxquelles ils étaient associés. Par exemple, en 1849,
Cayley et Salmon avaient montré l’existence des vingt-sept droites des surfaces cubiques et
avaient immédiatement mis en évidence les quarante-cinq triangles reflétant leurs relations
d’incidence. En 1856, Steiner était arrivé aux mêmes résultats, et avait exhibé d’autres
objets créés à partir des vingt-sept droites, comme les triplets de doubles trièdres. Un peu
plus tard, en 1858, Schläfli avait quant à lui approfondi la question de la notation des
vingt-sept droites (laquelle devait refléter le mieux possible leurs relations d’incidence),
prouvant au passage l’existence des trente-six doubles-six ; mais il avait également utilisé
les vingt-sept droites et les quarante-cinq triangles pour classifier les surfaces cubiques
selon les possibilités pour ces objets d’être réels.

Il est important de noter que ce savoir-faire des configurations géométriques existait
avant que ces dernières ne donnent lieu chacune tour à tour à des équations algébriques.
Ainsi, lorsqu’en 1847, Hesse étudia l’équation aux neuf points d’inflexion, l’alignement trois
à trois de ces points en douze droites était déjà connu au moins depuis le début des années
1830. Hesse avait alors transcrit ce résultat en termes algébriques de relations rationnelles
entre des racines, sur lesquelles il s’était basé pour montrer la résolubilité par radicaux de
l’équation correspondante — toute la démarche de Hesse se situait encore dans la lignée
des travaux de Gauss et d’Abel sur les équations algébriques.

Le cas de l’équation aux seize droites des surfaces quartiques à conique double étudiée
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par Clebsch est un peu différent, car celui-ci mettait en évidence à la fois les relations
d’incidence entre ces droites et les résultats de résolubilité de l’équation associée dans un
même article de 1868. La cohabitation dans une même publication de ces deux aspects ne
doit toutefois pas faire penser que la théorie des équations y précédait la géométrie : il y a
bien dans cet article une manifestation de certaines façons de faire géométriques usuelles
pour Clebsch (dont certaines apparaissaient également dans un texte de Kummer de 1863),
mobilisées dans un second temps pour la déduction de résultats sur l’équation aux seize
droites.

Avec cet article de Clebsch, nous sommes arrivés dans la période de temps dans laquelle
se concentre l’essentiel des activités liées aux équations de la géométrie, 1868-1872. C’est
dans le Traité des substitutions et des équations algébriques de Jordan (1870) qu’ont été
regroupées pour la première fois dans un même chapitre et sous une même appellation
« équations de la géométrie » les principales équations du corpus, associées aux neuf points
d’inflexion, à un problème de contact entre courbes cubiques et courbes quartiques, aux
seize droites des surfaces quartiques à conique double, aux seize points singuliers de la
surface de Kummer, aux vingt-sept droites des surfaces cubiques et à d’autres problèmes
de contact dont font partie les vingt-huit tangentes doubles des courbes quartiques. Pour
chacune de ces équations, Jordan s’était basé sur des résultats géométriques déjà connus,
démontrés par Hesse, Clebsch, Steiner ou Kummer. Ces résultats étaient à chaque fois des
relations d’incidence, que Jordan exprimait sous la forme de fonctions particulières des
racines de l’équation correspondante. L’égalité du groupe d’une équation avec le groupe
de la fonction des racines permettait à Jordan de déployer les méthodes de Galois et de
montrer par là leur efficacité pour déterminer les propriétés de résolubilité de l’équation.
Ces considérations lui avaient aussi permis d’établir un lien entre les équations aux vingt-
huit tangentes doubles, aux vingt-sept droites et aux seize droites. Ce faisant, Jordan
« retrouvait » une relation entre les vingt-sept droites et les vingt-huit tangentes vue par
Geiser un peu auparavant, ce dernier voulant ensuite « confirmer » la « conjecture » de
Jordan sur le lien entre les vingt-sept droites et les seize droites. Enfin, un autre outillage
que celui des méthodes de Galois était mobilisé par Jordan dans le chapitre des applications
géométriques du Traité. Il s’agissait des « réduites géométriques » de l’équation aux vingt-
sept droites, associées à des objets dérivées de ces dernières, comme les quarante-cinq
triangles, les trente-six doubles-six ou encore les quarante ennéaèdres. Ces derniers étaient
d’ailleurs apparus en tant que « réponse définitive » au problème du lien entre les vingt-sept
droites et la trisection des périodes des fonctions hyperelliptiques. Toutes ces « réduites
géométriques » étaient des équations de la géométrie, équivalentes à d’autres équations en
raison de l’existence même de certains objets dérivés. Elles se trouvaient non seulement dans
le Traité, mais aussi dans la majorité des textes du corpus des équations de la géométrie.

L’année 1871 est celle durant laquelle sont parus les textes de Clebsch et de Klein pré-
sentant des interprétations géométriques de certaines parties de la théorie des équations.
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Clebsch avait proposé un « habillement géométrique » des méthodes de Hermite et de Kro-
necker de résolution de l’équation du cinquième degré, datées des années 1850 et basées sur
la théorie de transformations des fonctions elliptiques. Cet habillement passait notamment
par des résultats (déjà vus par Hermite) permettant de relier les méthodes de Hermite et
de Kronecker à des annulations d’invariants. Les équations de la géométrie étaient alors
mobilisées par Clebsch en tant que moyen de contrôler les irrationalités introduites dans
son interprétation géométrique. Inspiré en partie par ce mémoire de Clebsch, Klein avait
ensuite décrit une manière de représenter géométriquement les résolvantes d’équations algé-
briques. Le point essentiel de sa méthode consistait à remplacer les racines d’une équation
par des objets géométriques d’un espace, et les substitutions de racines par des transforma-
tions linéaires de l’espace. Peu après l’écriture de ce texte sur la représentation géométrique
des résolvantes, Klein élabora son Programme d’Erlangen de 1872. Comme il l’écrivit lui-
même dans les remarques finales du Programme, il avait cherché à établir une analogie
entre géométrie et théorie des équations au moyen de la notion de groupe : groupes de
transformation d’un côté, groupes de substitutions de l’autre.

Après 1872, les activités concernant les équations de la géométrie perdent en concentra-
tion, à l’exception peut-être de l’article de Noether de 1879 sur le lien entre l’équation du
huitième degré et l’équation aux vingt-huit tangentes doubles. À partir des années 1880,
les équations de la géométrie que j’ai trouvées mettent en lumière plusieurs phénomènes.
Certaines de ces équations — le plus souvent, l’équation aux neuf points d’inflexion — ont
rejoint des traités d’algèbre comme le Susbtitutionentheorie de Netto ou le Lehrbuch der
Algebra de Weber et deviennent des exemples d’équations particulières, au même titre que
les équations cyclotomiques, les équations d’Abel, etc. On assiste aussi à la disparition de
façons de faire particulières des années 1868-1872, dont l’emblématique usage des « réduites
géométriques ». Ainsi, la thèse de Kühnen de 1888 témoigne d’un renversement de la situa-
tion, puisqu’il s’agissait pour lui de focaliser ses recherches sur le groupe de l’équation aux
vingt-sept droites et d’interpréter l’existence de sous-groupes particuliers en termes géo-
métriques a posteriori. Enfin, la résolution par Klein en 1888 de l’équation aux vingt-sept
droites par les fonctions hyperelliptiques est aussi révélatrice de certains changements,
puisque Klein prenait en considération tout groupe identique à celui de l’équation aux
vingt-sept droites, sans plus s’occuper de ces droites. Il y appliquait ensuite les méthodes
développées quelques années plus tôt dans ses travaux sur l’équation du cinquième degré
et l’icosaèdre.

Cette chronologie des équations de la géométrie étant ainsi écrite, je voudrais mainte-
nant m’y appuyer pour présenter les autres résultats principaux de la thèse.

D’abord, le Traité des substitutions et des équations algébriques de Jordan s’est avéré
être un ouvrage central pour la circulation du savoir relatif aux équations de la géométrie.
Première publication étudiant l’équation aux vingt-sept droites, le Traité rassemble aussi
en tant que sujet à part entière les principales équations de la géométrie. Par une analyse
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minutieuse des mathématiques, j’ai analysé précisément comment théorie des substitutions
et géométrie y étaient entrelacées. En particulier, en démêlant les fils du va-et-vient entre
Jordan et Geiser, j’ai également pu souligner qu’en 1870, il n’y avait pas encore de dic-
tionnaire entre ces deux domaines : les rapprochements entre théorie des substitutions et
géométrie étaient encore en train d’être constitués, justement par le biais des équations de
la géométrie. Cette analyse du chapitre des applications géométriques et de celui des appli-
cations à la théorie des transcendantes a également mis en évidence des aspects techniques
du Traité et, par conséquent, précisé ce que Klein avait pu en tirer, notamment pour la
constitution de son Programme d’Erlangen.

La thèse a aussi fait ressortir un mathématicien important pour le sujet des équations
de la géométrie : Alfred Clebsch. Si celui-ci s’est distingué par sa contribution massive dans
le corpus de ces équations, son importance tient aussi à son rôle dans la transmission du
savoir. J’ai en effet souligné que Clebsch avait été intéressé par les équations de la géométrie
à travers les recherches de Hesse, et qu’il avait ensuite eu une influence décisive sur l’écriture
du chapitre des applications géométriques du Traité de Jordan. Par ailleurs, si son rôle dans
le début de la carrière de Klein était déjà décrit par l’historiographie, en particulier en ce
qui concerne la façon dont il avait accueilli celui-ci à Göttingen en 1869 ou l’avait aidé à
devenir professeur à Erlangen en 1872, ce qui a été transmis mathématiquement de l’un
à l’autre reste encore peu clair. Le mémoire de Clebsch sur l’interprétation géométrique
de l’équation du cinquième degré était complètement oublié par l’historiographie. En le
décrivant, j’ai montré une certaine configuration disciplinaire entre géométrie, invariants
et équations, différente de celle existant dans les célèbres travaux sur l’icosaèdre de Klein,
plus tardifs et reprenant des éléments du mémoire de Clebsch.

J’ai cherché à deux reprises au cours des chapitres de la thèse à explorer la notion de
culture pour décrire certaines organisations du savoir mathématique. J’ai d’abord essayé de
donner des éléments suggérant des cultures algébrique et géométrique dans le deuxième tiers
du xixe siècle, en tout cas pour une partie de l’algèbre en rapport avec les travaux de Galois
et pour ce qui relève des configurations géométriques. Mettre en évidence ces éléments a
surtout été pour moi l’occasion d’insister sur le sérieux avec lequel considérer la question
des cultures associées à des domaines mathématiques durant une période relativement
longue, et sur la difficulté de savoir y répondre. De façon plus positive, j’ai par ailleurs
recouru à la notion de culture pour décrire l’organisation du savoir lié aux équations de la
géométrie, en particulier dans la période 1868-1872. Par ce biais, j’ai été invité à prendre
en considération la question de communautés liées par un sentiment de cohésion provenant
d’objets mathématiques ; cet aspect m’a en fait convaincu d’abandonner le mot « culture »
pour le cas des équations de la géométrie. En revanche, après avoir analysé en détail chacun
des traits caractéristiques du savoir lié à ces équations, j’en suis venu à utiliser l’expression
« système culturel » pour rendre compte de la façon dont ils formaient un tout intriqué,
empreint de valeurs et partagé entre une poignée individus sur une période éphémère.
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Pour finir, je souhaite revenir sur les modalités de l’acculturation de la théorie des
groupes de substitutions en géométrie, chez des géomètres allemands liés principalement à
l’université de Göttingen. On pourra déjà remarquer que cette acculturation s’est surtout
produite dans un sens. En effet, si le programme de Klein consistant à géométriser toutes
les équations algébriques pour les rendre intuitives a été partiellement mis en œuvre avec
l’icosaèdre et ses avatars, il semble qu’il n’y en ait pas eu d’autre réalisation, en particulier
hors du cercle de Klein — Jordan lui-même abandonne les équations de la géométrie
après 1870. En revanche, j’ai expliqué comment les géomètres allemands que nous avons
rencontrés ont réussi à comprendre intuitivement la théorie des substitutions grâce à un
savoir-faire géométrique préexistant, consistant à savoir chercher des groupements d’objets
associés à des courbes et des surfaces de petit degré. Ils sont ainsi parvenus à intégrer
des notions qui leur étaient étrangères en mobilisant des connaissances qui leur étaient
familières. Le système des activités intellectuelles de 1868-1872 apparaît finalement comme
une étape transitoire de ce processus d’intégration ; les produits de ce processus sont les
équations de la géométrie, incarnations des rapprochements entre équations, groupes et
géométrie.
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Annexe A

Publications de Henderson recensées
par le Jahrbuch et MathSciNet

Les travaux d’Archibald Henderson recensés par le Jahrbuch et par MathSciNet sont au
nombre de 19. Ce nombre comprend une redondance correspondant à la recension d’une
réimpression de l’édition de 1911 du livre sur les vingt-sept droites, [Henderson 1911].
Notons MathSciNet renvoie à une réimpression d’une autre publication de Henderson,
mais l’article original n’apparaît lui-même pas dans la liste donnée par le Jahrbuch.

1903 — « The Derivation of the Brianchon configuration from two spatial point-triads »,
The American Mathematical Monthly 10, p. 36–41.

1903 — « Harmonic Pairs in the Complex Plane », The American Mathematical Monthly
10, p. 90–97.

1911 — The Twenty-seven Lines upon the Cubic Surface, Cambridge : Cambridge Uni-
versity Press.

1920 — The Teaching of Geometry. The University of North Carolina Record, Extension
Series, Nr. 39.

1923 — Relativity. A Romance of Science, Chapell Hill : University of North Carolina
Press.

1924 — The Theory of Relativity. Studies and Contributions, London : H. Milford (avec
A. W. Hobbs et J. W. jr. Lasley).

1924 — The Theory of Relativity. Studies and Contributions, Chapell Hill : University of
North Carolina Press (avec A. W. Hobbs et J. W. jr. Lasley).
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1925 — « Is the Universe Finite? », The American Mathematical Monthly 32, p. 213–223.

1928 — « Observations on Simultaneous Quadratic Equations », The American Mathe-
matical Monthly 35, p. 337–346.

1930 — « The Cubic and Biquadratic Equations. Vieta’s Transformations in the Complex
Plane », The American Mathematical Monthly 37, p. 515–521.

1936 — « New Aspects of Relativity. Geometrical Treatment of the Voigt and Page Trans-
formations », Journal of the Elisha Mitchell Scientific Society 52, p. 1–19.

1937 — « A Classic Problem in Euclidean Geometry. A Basic Study », Journal of the
Elisha Mitchell Scientific Society 53, p. 246–281.

1936 — « On Harmonic Separation », National Mathematics Magazine 13, p. 3–21 (avec
J. W. jr. Lasley).

1941 — « A New Geometrical Interpretation of Einstein’s Special Relativity Theory »,
Journal of the Elisha Mitchell Scientific Society 57, p. 284–293.

1945 — « The Geometry of Tensors of the First Order », Journal of the Elisha Mitchell
Scientific Society 61, p. 33–47.

1945 — « Mathematics and the Physical Sciences », dans A State University Surveys the
Humanities, Lauren C. MacKinney, Nicholson B. Adams & Harry K. Russell (éds.),
Chapell Hill : University of North Carolina, p. 144-159.

1945 — « Differential Equations with Quadrilateral Envelope. Cuspidal and Nodal Loci »,
National Mathematical Magazine 20, p. 51–68.

1960 — The Twenty-seven Lines upon the Cubic Surface, New-York : Hafner Publishing
Co., réimpression de la version de 1911.

1985 — The Elisha Mitchell Scientific Society : Its History and Achievements. Reprint of
the 1934 Original., Journal of the Elisha Mitchell Scientific Society 99, p. 87–99.
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Références bibliographiques du livre
de Henderson

Cette annexe présente la totalité des références bibliographiques données dans le livre
de Henderson sur les vingt-sept droites, [Henderson 1915], listées par ordre chronologique
de leur année de publication. Dans le tableau qui les contient, les références dont le titre
est suivi d’une astérisque sont celles dont le titre est erroné dans [Henderson 1915]. Les
colonnes intitulées « Biblio. » et « Histo. » indiquent si ces références apparaissent dans la
section bibliographique du livre de Henderson ou son résumé historique respectivement. Le
tableau comporte deux colonnes supplémentaires donnant les classifications respectives du
Catalogue of Scientific Papers et du Jahrbuch über die Fortschritte der Mathematik. Les
items correspondant à ces classifications sont décrites ci-après.

Je commence par donner un extrait de la classification du Catalogue correspondant aux
numéros apparaissant dans le tableau qui suit. Par souci de précision, j’ai occasionnellement
ajouté à ces numéros des exposants. Ces ajouts se produisent dans deux situations se
rapportant à l’article concerné : lorsque celui-ci apparaît dans l’appendice de l’index du
Catalogue, auquel cas l’exposant est un « a », et lorsqu’il est dans la section 7640 des
surfaces algébriques de degré supérieur au second. Pour cette dernière éventualité, les
différents exposants sont détaillés dans la liste qui suit.

Catalogue of Scientific Papers. Subject Index, Pure Mathematics

0032 Bibliographies

0080 Intruments, including Calculating Machines. Models
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Arithmetic and Algebra

Theory of groups

1210 Discrete groups of finite and of infinite order (including groups of permutations)

Analysis 1

Algebraic functions and their integrals

4060 Abelian integrals

4070 Periodic functions of several variables ; general theta functions

Geometry

Geometry of conics and quadrics

7210 Metrical and projective properties of conics

Algebraic curves and surfaces of degree higher than the second

7610 Metrical and projective properties of algebraic plane curves of degree higher than the
second

7640 Algebraic surfaces of degree higher than the second

7640G [Généralités]

7640F3 Surfaces, 3rd degree

7640C Configurations

764027 Configurations [avec mots-clés comprenant « 27 straight lines » ]

7650 Special algebraic surfaces

Transformations and General Methods for algebraic configurations

8010 Collineation ; duality

8020 Other algebraic transformations

8075 Special configurations of points, lines or other elements. Space partitioning.

8080 Line geometry. Connexes, complexes, congruences ; higher elements of space

8100 Algebraic configurations in hyperspace

1. Entre cette section et la précédente représentées ici, en existe une autre, appelée Algebra and
Theory of Numbers.
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Je donne à présent un extrait de la classification du Jahrbuch. Dans la période concer-
née, cette classification bouge un peu, surtout lors du passage entre le premier et le
deuxième numéro de la revue, où les sections de géométries analytique et synthétique sont
interverties 2. Les deux seuls articles concernés par le premier numéro sont classifiés dans
sa section IX, « Synthetische Geometrie », chapitre 1, « Allgemeines » ; pour les différencier
des suivants, les numéros IX-1 correspondant ont été mis en italiques dans le tableau des
références bibliographiques.

À part ce changement, les autres entrées sont toutes quasiment stables, à ajout ou
suppression de mots près. Ces modifications ont été indiquées entre crochets. Enfin, j’ai
écrit deux fois la section II-3 car outre l’ajout de « Gruppentheorie », l’ordre des mots est
renversé à partir de l’année 1901 : la version la plus nouvelle est indiquée par les numéros
II-3’.

Jahrbuch über die Fortschritte der Mathematik

I. Geschichte und Philosophie

1. Geschichte

II. Algebra

1. Gleichungen [(Allgemeine Theorie. Besondere algebraische und transcendente
Gleichungen.)]

2. Theorie der Formen

3. Elimination und Substitution, Determinanten, [Invarianten, Covarianten und]
symmetrische Functionen

3’. Substitutionen und Gruppentheorie, Determinanten, Elimination und symme-
trische Funktionen

VII. Functionentheorie

2. Besondere Functionen

VIII. Reine, elementare und synthetische Geometrie

2. Kontinuitätsbetrachtungen (Analysis Situs [Topologie])

5. Neuere synthetische Geometrie

IX. Analytische Geometrie

1. Coordinaten [Lehrbücher, Koordinaten, Prinzipien. Weitere Literatur]

3. Analytische Geometrie des Raumes

5. Verwandtschaft, eindeutige Transformationen, Abbildungen

2. Le changement majeur dans la classification de la géométrie a lieu en 1916. Voir [Folta & Nový 1965,
p. 16].
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Annexe C

Les recherches de Jordan sur le lien
entre les fonctions hyperelliptiques et
les vingt-sept droites

Cette annexe consiste en des explications détaillées des recherches de Jordan sur l’équa-
tion de division des périodes des fonctions hyperelliptiques et ses liens avec l’équation
aux vingt-sept droites présentées dans le Traité des substitutions et des équations algé-
briques, [Jordan 1870b]. Pour mieux comprendre certains points que Jordan mobilise dans
ces recherches, je commence par quelques commentaires à leur sujet.

C.1 Prolégomènes

Dans cette première section, j’introduis les intégrales et fonctions hyperelliptiques, leurs
périodes, ainsi que les groupes de monodromie et le « groupe abélien » qui sont en rapport
avec ces objets.

C.1.1 Intégrales abéliennes, intégrales hyperelliptiques

Niels Abel présente en 1826 un mémoire à l’Académie des Sciences — il ne sera publié
que 15 ans plus tard, [Abel 1841] — portant sur des fonctions qui ont ensuite été qua-
lifiées d’abéliennes 1 : ce sont des intégrales indéterminées de la forme

∫
f(x, y) dx, où f

est une fonction rationnelle en deux variables et où x et y sont liés par une équation
algébrique χ(x, y) = 0. Voyons tout de suite quelques exemples fondamentaux.

Les intégrales abéliennes comprennent plusieurs fonctions usuelles, comme le logarithme

1. Le sujet des intégrales abéliennes est très vaste ; je me restreins ici à ce qui se rattache directement
aux travaux de Jordan sur les fonctions hyperelliptiques. Pour plus de détails sur ces questions, voir [Brill
& Noether 1892-93 ; Houzel 1978 ; Krazer & Wirtinger 1920].

333



334 ANNEXE C

ou les fonctions circulaires réciproques 2. Les intégrales elliptiques sont aussi des intégrales
abéliennes particulières, correspondant à χ(x, y) = y2 − P (x), où P est un polynôme (sé-
parable) de degré 3 ou 4. Enfin, les intégrales hyperelliptiques 3 sont les intégrales abéliennes
obtenues avec χ(x, y) = y2−∆2(x), où ∆2 est un polynôme de degré supérieur à 5 ; ce degré
est égal à 6 dans les intégrales hyperelliptiques considérées par Jordan. Plus précisément,
les intégrales introduites par Jordan dans le Traité sont de la forme∫

µ+ νx

∆(x)
dx,

où µ et ν sont des constantes et ∆2 = x6 + ax5 + · · ·+ f = (x−m0)(x−m1) · · · (x−m5).

Comme le souligne [Houzel 1978], la définition même d’intégrale abélienne n’était pas
précise à l’époque d’Abel, car l’équation χ(x, y) = 0 ne permet pas toujours de définir y
comme fonction uniforme (ou, en termes plus actuels, univaluée) de x : par exemple,
pour les intégrales hyperelliptiques, y correspond à la racine carrée d’un polynôme. Une
telle fonction est multiforme, c’est-à-dire qu’à une valeur de x peut correspondre plusieurs
valeurs 4 de y. Un point de vue plus tardif a été de considérer que l’intégration doit se
faire le long d’un chemin sur la surface de Riemann attachée à l’équation χ(x, y) = 0

— ce point de vue est présenté dans plusieurs manuels d’analyse de la fin du xixe siècle,
comme [Jordan 1894 ; Appell & Goursat 1895].

Dans le cadre des intégrales elliptiques, Leonhard Euler avait montré un théorème
d’addition : si I désigne une telle intégrale, alors pour tous x et y, il existe une relation de
la forme

I(x) + I(y) = I(z) + F (x, y),

où z est une fonction algébrique de x et de y, et où F (x, y) est une fonction rationnelle ou
le logarithme d’une fonction rationnelle de x et y. Dans son mémoire, Abel avait généralisé
ce théorème pour les intégrales abéliennes :

Si l’on a plusieurs fonctions dont les dérivées peuvent être racines d’une même équation
algébrique dont les coefficients sont des fonctions rationnelles d’une même variable, on
peut toujours exprimer la somme d’un nombre quelconque de semblables fonctions par
une fonction algébrique et logarithmique, pourvu qu’on établisse entre les variables des
fonctions en question un certain nombre de relations algébriques. [Abel 1841, p. 177]

2. En effet, Log x =

∫
dx

x
, ce qui correspond à f(x, y) = 1/x et χ(x, y) = 0 ; Arcsinx =

∫
dx√

1− x2
,

qui correspond cette fois à f(x, y) = 1/y et χ(x, y) = x2 + y2 − 1.
3. Ces intégrales sont parfois également appelées intégrales « ultraelliptiques ». [Brill & Noether 1892-

93] distinguent les deux épithètes en attribuant à « ultraelliptique » le cas où le polynôme ∆2 est de degré 5
ou 6 et à « hyperelliptique » le cas où ce degré est supérieur à 6. Cette distinction ne semble pas avoir été
systématique ; par exemple, dans [Jordan 1870b], Jordan emploie le terme « hyperelliptique » pour ∆2 de
degré 6.

4. L’exemple plus simple χ(x, y) = y2−x est peut-être aussi plus parlant : la fonction x 7→
√
x n’admet

pas de détermination univaluée pour tous les nombres complexes.
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Autrement dit, si I désigne une intégrale abélienne, alors, si x1, x2, . . . , xm sont des nombres
complexes vérifiant un certain système d’équations algébriques, on a

I(x1) + I(x2) + · · ·+ I(xm) = F (x1, x2, . . . , xm),

où F est une fonction algébrique et logarithmique en ses m variables 5

C.1.2 Jacobi et le problème d’inversion

Les « fonctions elliptiques » avaient été définies au début du xixe siècle comme fonctions
inverses des intégrales elliptiques : si P est un polynôme de degré 3 ou 4, alors on définit
une fonction elliptique λ par

u =

∫ x

0

dx√
P (x)

⇐⇒ x = λ(u).

Cette inversion ne peut se faire dans un premier temps que sur un intervalle réel, mais
le théorème d’Euler sur l’addition des intégrales elliptiques a pour conséquence que la
quantité λ(u+u′) s’exprime rationnellement en fonction de λ(u) et λ(u′), ce qui permet de
prolonger la fonction elliptique λ sur l’ensemble des nombres complexes (exceptés quelques
points isolés). En outre, il avait été montré que les fonctions elliptiques possèdent deux
périodes indépendantes 6. Cela signifie qu’il existe ω, ω′ tels que ω/ω′ 6∈ R et tels que pour
tout u et tous entiers p, q, on a λ(u+ pω + qω) = λ(u).

Le problème d’inversion des intégrales abéliennes consiste, de façon analogue, à définir
des fonctions abéliennes, réciproques des intégrales abéliennes. Je me bornerai ici à décrire
le cas des fonctions hyperelliptiques 7. C’est à Jacobi qu’on attribue le succès de cette
inversion, traitée dans deux articles de 1832 et 1835, [Jacobi 1832 ; Jacobi 1835]. Dans la
fin de ce paragraphe, les notations de Jacobi des intégrales et fonctions hyperelliptiques
seront légèrement modifiées afin de les faire coïncider avec celles de Jordan.

Dans son article de 1832, Jacobi pose

Φ0(x) =

∫ x

0

dx√
X

et Φ1(x) =

∫ x

0

x dx√
X
,

5. Pour plus de renseignements sur le théorème d’Abel, voir [Houzel 1978, p. 72-78].
6. En termes actuels, une fonction elliptique est une fonction doublement périodique et méromorphe

sur C, avec un pôle simple en chaque point du réseau des périodes Zω ⊕ Zω′.
7. Pour le problème d’inversion des intégrales abéliennes générales, voir par exemple [Krazer & Wir-

tinger 1920]. Je ne parlerai pas non plus de la résolution de l’inversion des intégrales hyperelliptiques par
Göpel et Rosenhain, via l’introduction de fonctions thêta à deux variables.
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où X désigne un polynôme de degré 5 ou 6. Il inverse alors le système u = Φ0(x) + Φ0(y)

v = Φ1(x) + Φ1(y)

afin d’exprimer x et y comme fonctions de u et v : x = λ0(u, v)

y = λ1(u, v).

Comme dans le cas des fonctions elliptiques, cette inversion n’est valable a priori que loca-
lement, mais tout comme le théorème d’Euler avait permis le prolongement des fonctions
elliptiques, celui d’Abel va servir au prolongement de λ0 et λ1. En effet, une conséquence
de ce théorème est que les quantités λ(u + u′, v + v′) et λ1(u + u′, v + v′) s’expriment al-
gébriquement en fonction de λ(u, v), λ(u′, v′), λ1(u, v) et λ1(u′, v′). Les fonctions λ0 et λ1

se prolongent ainsi sur l’ensemble des couples de nombres complexes (exceptés quelques
points isolés) ; ce sont des fonctions hyperelliptiques.

Dans son mémoire de 1835, Jacobi met l’accent sur la périodicité des fonctions hyperel-
liptiques. Plus précisément, il commence par y montrer qu’une fonction d’une seule variable
complexe ne peut pas avoir trois périodes (indépendantes) ou plus. Comme il prouve par
ailleurs qu’une fonction λ supposée provenir d’une inversion d’une intégrale hyperelliptique
strictement calquée sur celle des intégrales elliptiques, à savoir

x = λ(u) ⇐⇒ u =

∫ x

0

f(x)√
X

dx

avec f polynôme de degré inférieur à 6, admet nécessairement quatre périodes indépen-
dantes, il en déduit l’impossibilité d’une telle inversion. L’inversion des intégrales hyperel-
liptiques se fait donc bien comme précédemment, avec des fonctions de deux variables, et
non pas avec des fonctions d’une variable 8. Ces fonctions possèdent ainsi quatre périodes
par rapport à chacune des variables 9 : il existe P1, . . . , P4, Q1, . . . , Q4 tels que pour tous u
et v et tous entiers p1, q1, p2, q2, λ0(u+ δ1P1 + ε1P2 + δ2P3 + ε2P4, v + δ1Q1 + ε1Q2 + δ2Q3 + ε2Q4) = λ0(u, v)

λ1(u+ δ1P1 + ε1P2 + δ2P3 + ε2P4, v + δ1Q1 + ε1Q2 + δ2Q3 + ε2Q4) = λ1(u, v).

8. En faisant référence à ce problème d’inversion, [Houzel 2002, p. 191] écrit : « une des caractéristiques
essentielles des mathématiques du vingtième siècle comparées à celles du siècle précédent est le passage à
plusieurs variables pour un certain nombre de problèmes que le dix-neuvième siècle avait abordés dans le
cas d’une seule variable ; [...] le passage à plusieurs variable était inévitable et [...] ne résulte pas d’un pur
souci de généralisation. »

9. Prendre des intégrales hyperelliptiques définies par un polynôme de degré 2g + 1 ou 2g + 2 conduit
à des fonctions hyperelliptiques méromorphes sur Cg, ayant 2g périodes indépendantes.
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Dans le Traité de substitutions et des équations algébriques, Jordan introduit d’emblée
les périodes des fonctions hyperelliptiques avec des chemins d’intégration. Ce point de vue
c’est pas celui de Jacobi 10, mais plutôt celui de Victor Puiseux, qui sera vu un peu plus
tard dans cette annexe. Avant cela, continuons encore avec les travaux de Jacobi sur les
fonctions hyperelliptiques.

C.1.3 Division des fonctions hyperelliptiques

En 1835, Jacobi pose le problème de la division des fonctions hyperelliptiques 11 : étant
donnés des nombres complexes u et v ainsi qu’un entier n, il s’agit de déterminer les
quantités x = λ0(u, v) et y = λ1(u, v) en fonction de xn = λ0(nu, nv) et yn = λ1(nu, nv).
Il montre que xn et yn sont les deux solutions d’une équation quadratique

Unz
2 − U ′nz + U ′′n = 0,

où Un, U ′n et U ′′n sont des fonctions rationnelles en x, y,
√
X(x) et

√
X(y). Inversement,

si xn et yn sont supposés connus, les quantités x et y sont solutions du système Unx
2
n − U ′nxn + U ′′n = 0

Uny
2
n − U ′nyn + U ′′n = 0.

L’élimination d’une des deux inconnues donne lieu à une équation, dite équation de la
division des fonctions hyperelliptiques.

Toujours dans son article de 1835, Jacobi conjecture que l’équation de la division est
de degré n4 et que dans le cas particulier où xn = yn = 0 et où n est impair, elle se ramène
à une équation de degré 1 + n + n2 + n3 et à des équations de degré (n− 1)/2 résolubles
par radicaux. Dans ce cas particulier, l’équation en question prend le nom d’équation de
division des périodes des fonctions hyperelliptiques.

Une dizaine d’années plus tard, Charles Hermite démontre ces conjectures dans [Her-
mite 1846], en prouvant notamment que les solutions x, y du problème de division sont de
la forme

x = λ0

(
u+

I

n
, v +

J

n

)
et y = λ1

(
u+

I

n
, v +

J

n

)
,

où I et J sont des combinaisons linéaires à coefficients entiers des périodes. Dans le cas de la
division des périodes où u = v = 0, ces solutions sont donc les λ0 (I/n, J/n) et λ1 (I/n, J/n)

pour toutes les combinaisons linéaires à coefficients entiers I, J des périodes.

10. Voir la note 6 de [Krazer & Wirtinger 1920, p. 614].
11. Un problème analogue existe également pour les fonctions elliptiques : si λ est une telle fonction, le

problème de division consiste à déterminer λ(u) en fonction de λ(nu).
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C.1.4 Périodes alla Puiseux

En 1850 et 1851, Victor Puiseux publie deux articles consacrés à l’étude de fonc-
tions u(z) définies implicitement par des équations algébriques f(u, z) = 0, [Puiseux 1850 ;
Puiseux 1851]. L’idée sur laquelle se construisent ces articles est qu’une fonction définie de
cette sorte est en général multiforme 12 car, si l’on veut qu’elle soit continue, les valeurs
qu’elle prend en un point z dépendent du chemin suivi jusqu’à ce point. Dans la suite de
cette section, je ne détaillerai pas l’ensemble des travaux de Puiseux et me contenterai de
relever ce qui sera utile pour en comprendre les grandes lignes, notamment pour ce qui
concerne les intégrales hyperelliptiques 13.

Regardons le premier exemple pris par Puiseux, à savoir l’équation u2−z = 0. Pour un z
donné, elle définit les deux racines carrées u1, u2 de z ; intéressons-nous à l’une des deux.
Si on définit u1 par u1(reit) =

√
reit/2 en choisissant à chaque fois t ∈ [−π , π], alors cette

fonction n’est pas continue 14. En effet, si t tend vers π− ou −π+, alors z tend à chaque fois
vers −r, mais u1 tend une fois vers

√
reiπ/2 = i

√
r et l’autre fois vers

√
re−iπ/2 = −i√r.

Une solution proposée par Puiseux est de poser u1(reit) =
√
reit/2 pour tout t, de fixer

une valeur initiale de u1, par exemple u1(1) = 1, puis de déterminer les autres valeurs
de u1 par continuité. Dans ce cas, u1 devient une fonction multiforme : cherchons u1(i)

avec cette définition. À partir de z = 1, on peut d’une part faire varier z le long du quart
de cercle paramétré par t ∈ [0 , π/2] 7→ eit et dans ce cas, u1(i) = eiπ/4. Mais on peut
d’autre part également faire varier z le long des trois quarts de cercle t ∈ [0 ,−3π/2] 7→ eit ;
alors u1(i) = e3iπ/4 = −eiπ/4. On trouve ainsi deux valeurs différentes pour u1(i).

Retour au cas général. Si une fonction continue u1 définie par une équation f(u, z) = 0

par la méthode précédente peut prendre plusieurs valeurs en un point z suivant le chemin
qu’à parcouru z depuis une origine fixée c, alors l’intégrale d’une telle fonction dépend
également du chemin d’intégration. Reprenons l’exemple précédent et essayons d’évaluer
l’intégrale

∫ i
0 u1(z) dz. Comme avant, on peut aller de 0 à i soit en suivant le quart de cercle

dans le sens trigonométrique, soit en suivant les trois quarts de cercle complémentaires dans
le sens horaire. Dans le premier cas, l’intégrale vaut∫ i

0
u1(z) dz =

∫ π/2

0
eiθ/2ieiθ dθ =

2

3
(e3iπ/4 − 1),

12. Ou « multivaluée », c’est-à-dire qu’à une valeur de départ peut correspondre plusieurs valeurs d’ar-
rivée.
13. Voir [Goldstein 2011a, p. 250-257], où les mémoires de Puiseux sont mis en relation avec les travaux

de Hermite. On y trouvera aussi d’autres références, en particulier [Brill & Noether 1892-93, p. 197-202]
pour une description poussée des articles de Puiseux.
14. Elle n’est même pas bien définie si l’on prend l’intervalle fermé [−π , π]. Je laisse ces détails de côté,

le but ici étant simplement de faire comprendre de quoi parlent les mémoires de Puiseux. Bien entendu, il
s’agit de problèmes liés à l’absence de détermination d’un logarithme sur tout le plan complexe.
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alors que dans le second cas, elle vaut∫ i

0
u1(z) dz =

∫ −3π/2

0
eiθ/2ieiθ dθ =

2

3
(−e3iπ/4 − 1).

De façon générale, la fonction
∫ z
c u1(z) dz est donc également multiforme :

Comme l’a remarqué M. Cauchy 15, la notation
∫ k
c
u1dz n’offre un sens déterminé

qu’autant qu’on donne, outre les limites c et k, le chemin CMK par lequel le point
mobile Z est supposé aller de C à K. À la vérité, tant que le chemin CMK, en se
déformant, ne franchit aucun des points A, A′, A′′, etc., pour lesquels l’équation

f(u, z) = 0

a des racines égales ou infinies 16, l’intégrale
∫ k
c
u1dz conserve la même valeur [...] ; mais

s’il vient à franchir quelques-uns de ces points, l’intégrale pourra changer et acquérir
un nombre limité ou illimité de valeurs différentes. [Puiseux 1850, p. 430]

Puiseux consacre une grande partie de ses deux articles à déterminer les différentes valeurs
que peut prendre une telle intégrale suivant les chemins d’intégration.

Une origine des chemins d’intégration C étant choisie une fois pour toutes, Puiseux
définit le contour élémentaire relatif au point A(i) : il s’agit d’un « contour fermé infiniment
petit [...] qui entoure le point [A(i)], en ne faisant autour de ce point qu’une circonvolution »,
et relié à l’origine par un segment (parcouru dans les deux sens). Il appelle ensuite intégrale
élémentaire la valeur Ai de l’intégrale

∫
u1 dz prise le long du contour élémentaire relatif

à A(i).
Dans le cas particulier des intégrales hyperelliptiques

∫
(α + βz)/

√
P dz, où P est un

polynôme de degré 6, Puiseux montre qu’il existe quatre quantités p′, . . . , p(4) distinctes
telles que tout changement de chemin d’intégration entraîne l’augmentation de l’intégrale
hyperelliptique de multiples entiers de ces quantités. Ces dernières sont appelées périodes 17

et valent
p′ = A−A′

p′′ = A−A′′

p′′′ = A−A′′′

p(4) = A−A(4).

Puiseux raccorde ses résultats à ceux de Jacobi :

15. À la fin du mémoire de 1850, Puiseux veille à bien distinguer les résultats qu’il a établis de ceux qui
reviennent à Cauchy, comme par exemple la « véritable idée qu’on doit se faire d’une intégrale prise entre
des limites imaginaires et de ses valeurs multiples » [Puiseux 1850, p. 478-479].
16. Autrement dit, les points A,A′, . . . sont les points d’affixe z, z′, . . . tels que l’équation f(u, z(m)) = 0

admet des racines multiples ou infinies. Dans l’exemple u2 − z = 0, il n’y a qu’un point A, c’est l’origine
du plan O.
17. Puiseux définit plus généralement les périodes d’une intégrale

∫
u1 dz en [Puiseux 1850, p. 438].
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On retrouve ainsi pour les fonctions [hyperelliptiques λ0 et λ1] le caractère de qua-
druple périodicité signalé par M. Jacobi. [Puiseux 1850, p. 464]

Signalons encore que Puiseux démontre que les intégrales élémentaires sont liées par la
relation A − A′ + A′′ − A′′′ + A(4) − A(5) = 0, qui sera utilisée par Jordan dans le Traité.
Puiseux clôt son mémoire de 1850 en soulignant la concordance de ses travaux avec ceux de
Hermite, tout en mettant en avant son approche par les chemins d’intégration imaginaires :

Je dois dire encore que les résultats auxquels je suis arrivé concordent avec ceux ob-
tenus par M. Hermite dans un travail dont l’extrait se trouve au tome XVIII des
Comptes Rendus (séance du 17 juin 1844) 18. Par une heureuse généralisation de la
marche qu’a suivie M. Jacobi pour les fonctions abéliennes, l’auteur obtient les expres-
sions des périodes des fonctions inverses des intégrales de différentielles algébriques ;
mais, pour bien comprendre la signification de ces résultats, il me semble nécessaire
de prendre pour point de départ la définition donnée par M. Cauchy des intégrales
prises entre des limites imaginaires : c’est à ce point de vue seulement qu’on peut se
rendre compte des valeurs multiples de l’intégrale. [Puiseux 1850, p. 480]

Continuons encore sur ces questions autour de valeurs de fonctions définies par des équa-
tions f(u, z) = 0 avec ce que Jordan appelle les groupes de monodromie de ces équations.

C.1.5 Groupe de monodromie

La notion de groupe de monodromie intervient lors de l’étude d’équations qui sont de
la forme f(u, z) = 0, où u est l’inconnue et z un paramètre 19. La citation suivante de
Joseph Bertrand, que j’emprunte à [Goldstein 2011a, p. 250], montre l’idée sous-jacente à
cette notion et en souligne les liens avec les travaux de Puiseux :

Ch. Sturm [...] m’aborda un jour par cette question que personne avant Puiseux ne
s’était proposée : « Si vous suivez le long d’un contour fermé la racine d’une équation
dont un paramètre représente un point du contour, qu’obtiendrez-vous en revenant au
point de départ ? » — « Je retrouverai ma racine, répondis-je sans hésiter. » — « Eh
bien, non ! vous ne la retrouverez pas : ce Puiseux le démontre. [...] » [Bertrand 1884,
p. 231]

Reprenons pour exemple l’équation u2 − z = 0, où u est l’inconnue et z le paramètre.
Si l’on pose z = reit, les deux racines de l’équation sont

u1(reit) =
√
reit/2 et u2(reit) = −√reit/2.

18. Il s’agit de [Hermite 1844].
19. Tout comme Jordan, je ne présente ici que le cas où il n’y a qu’un paramètre en jeu et me contente

d’indiquer que ce suit s’étend mutatis mutandis au cas où il y a plusieurs paramètres.
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Faisons décrire à z un cercle complet autour de 0, dans le sens trigonométrique ; autrement
dit, faisons varier t de 0 à 2π dans les formules précédentes. Lorsque t = 0, on a

u1(rei0) =
√
r et u2(rei0) = −√r,

alors que quand t = 2π, on a

u1(re2iπ) = −√r et u2(re2iπ) =
√
r.

Les deux racines ont donc été échangées après que z a décrit le cercle un cercle. Si l’on
faisait faire à z un tour supplémentaire, alors il y aurait un nouvel échange, qui équivaudrait
donc à laisser u1 et u2 invariantes par un chemin consistant en deux tours autour de 0.

Plus généralement, lorsque z parcourt un chemin fermé, les racines de l’équation f(u, z)

sont permutées entre elles. Une fonction de z qui reprend les mêmes valeurs à chaque fois
que z reprend la même valeur est appelée fonction monodrome de z — dans l’exemple
précédent, on peut voir que la fonction u1 + u2 est monodrome. Cette notion permet à
Jordan d’énoncer :

Théorème. — Soit f(u, z) = 0 une équation dont les coefficients contiennent un para-
mètre indéterminé z. On peut déterminer entre les racines de cette équation un groupe
de substitutions H tel, que toute fonction rationnelle des racines et de z monodrome
par rapport à z soit invariable par les substitutions de H (indépendamment de toute
valeur particulière donnée à z), et réciproquement. [Jordan 1870b, p. 277]

Le groupe H ainsi défini est le groupe de monodromie 20 de l’équation f(u, z) par rapport
à z. Dans la démonstration de ce théorème, Jordan montre en particulier que le groupe de
monodromie est formé des permutations de racines provenant de toutes les lois de variations
possibles de z.

Par exemple, pour l’équation u2−z = 0, il est aisé de voir que le groupe de monodromie
par rapport à z est formé de l’identité et de la transposition correspondant à l’échange des
racines u1 et u2 : en termes modernes, les lacets entourant 0 avec un indice pair induisent
l’identité tandis que ceux avec indice impair induisent la transposition. La fonction u1 +

u2 est monodrome par rapport à z et est effectivement invariante par la transposition
échangeant u1 et u2.

Dans le Traité, Jordan montre un résultat permettant de relier groupes de monodromie
et groupe algébrique d’une équation : le groupe de monodromie de f(u, z) par rapport
à z est (en termes modernes) un sous-groupe distingué du groupe algébrique de l’équa-
tion f(u, z) = 0, où le paramètre z est considéré comme une quantité adjointe. Dans
l’exemple de u2− z, il y a même égalité entre groupe de monodromie et groupe algébrique.

20. Le groupe de monodromie d’une équation avait déjà été introduit par Hermite en 1851, suite aux
travaux de Puiseux. Mais le terme « monodromie » semble être apparu avec Jordan. Voir [Goldstein 2011a,
p. 255-256].
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C.1.6 Groupe abélien

L’étude (par Jordan) de l’équation de division des fonctions hyperelliptiques fait inter-
venir à de nombreuses reprises des substitutions particulières, que Jordan nomme « abé-
liennes » et qui forment un groupe appelé « abélien ». Ce groupe est défini et étudié dans le
paragraphe VIII du chapitre II, livre II « Des substitutions linéaires », du Traité des sub-
stitutions et des équations algébriques. Dans cette section sont présentées la définition 21 et
les principales propriétés de ce groupe telles que Jordan les énonce dans ledit paragraphe,
en ajoutant çà et là des éclaircissements en termes modernes.

Comme dans le Traité, la lettre p désignera dans la suite de cette section un nombre
premier. Jordan entame son paragraphe sur le « groupe abélien » de la façon suivante :

Dans ses importantes recherches sur la transformation des fonctions abéliennes, M.
Hermite 22 a dû résoudre le problème suivant :

Soient x1, y1, . . . , xn, yn; ξ1, η1, · · · , ξn, ηn deux suites de 2n indices, répartis en n cou-
ples dans chacune d’elles ; et soit donnée la fonction

ϕ = x1η1 − ξ1y1 + . . .+ xnηn − ξnyn.

Trouver, parmi les substitutions du groupe linéaire du degré p2n, celles qui, étant opé-
rées à la fois sur chacune des deux suites d’indices qui entrent dans la fonction ϕ,
multiplieront cette fonction par un simple facteur constant (abstraction faite des mul-
tiples de p). [Jordan 1870b, p. 171]

Jordan indique que ces substitutions forment un groupe qu’il baptise groupe abélien, les
substitutions le formant étant qualifiées d’abéliennes 23. Il écrit ensuite qu’une substitution

21. Jordan donne en fait deux définitions différentes du groupe abélien. Nous nous contentons d’exposer
la première de ces définitions : c’est celle qui apparaît naturellement dans l’étude de l’équation de division
des fonctions hyperelliptiques. D’après Jordan, c’est également celle-ci qui s’est dégagée en premier dans
le temps (voir la note 22).
22. Dans sa Notice destinée à sa candidature à l’Académie des Sciences, Jordan attribue explicitement

la découverte du groupe abélien à Hermite : « Groupe découvert par M. Hermite dans ses recherches
sur la transformation des fonctions abéliennes. » Dans sa préface des Œuvres complètes d’Hermite, Émile
Picard écrit à ce sujet : « la notion importante de substitution abélienne, telle qu’elle est utilisée par M.
Jordan, trouve son point de départ dans une importante remarque du Mémoire sur la transformation des
fonctions abéliennes », [Hermite Œuvres, p. xxv] — le mémoire en question est [Hermite 1855]. Au sujet
des transformations des fonctions abéliennes, voir par exemple [Houzel 1978, p. 84-85].
23. En termes modernes, le groupe abélien est donc le sous-groupe du groupe linéaire GL(F2n

p ) formé
des transformations g pour lesquelles il existe m ∈ F∗p tel que

∀X,Ξ ∈ F2n
p , ϕ(gX, gΞ) = mϕ(X,Ξ).

Matriciellement, une matrice S ∈ GLn(Fp) est abélienne s’il existe m ∈ F∗p tel que

tSAS = mA,

où A désigne la matrice de la forme bilinéaire alternée ϕ dans la base canonique (A est diagonale par blocs,

tous les blocs diagonaux étant égaux à

(
0 1

−1 0

)
). Ainsi, le groupe abélien est le groupe Sp2n(Fp)oF∗p.
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linéaire S donnée sous la forme

S =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 a′1x1 + c′1y1 + . . .+ a′nxn + c′nyn

y1 b′1x1 + d′1y1 + . . .+ b′nxn + d′nyn
...

...

xn a
(n)
1 x1 + c

(n)
1 y1 + . . .+ a

(n)
n xn + c

(n)
n xn

yn b
(n)
1 x1 + d

(n)
1 y1 + . . .+ b

(n)
n xn + d

(n)
n xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
est abélienne et multiplie ϕ par m lorsque les relations

∑
ν

a(ν)
µ d(ν)

µ − b(ν)
µ c(ν)

µ ≡ m,∑
ν

a(ν)
µ d

(ν)
µ′ − b

(ν)
µ′ c

(ν)
µ ≡ 0, µ 6= µ′∑

ν

a(ν)
µ b

(ν)
µ′ − b(ν)

µ a
(ν)
µ′ ≡ 0,∑

ν

c(ν)
µ d

(ν)
µ′ − d(ν)

µ c
(ν)
µ′ ≡ 0,

sont toutes satisfaites 24 (donc pour tous les indices µ et µ′ compris entre 1 et n).

Parmi les substitutions abéliennes, Jordan distingue celles qui laissent ϕ invariante,
c’est-à-dire celles pour lesquelles m = 1 ; ces substitutions forment un sous-groupe H
de G 25. Jordan montre que ce sous-groupe est engendré par les substitutions Lµ, Mµ

24. Pour vérifier cela, on peut utiliser une notation matricielle plus moderne : si on pose

S =



a′1 c′1 . . . a′n c′n

b′1 d′1 . . . b′n d′n
...

...
...

...

a
(n)
1 c

(n)
1 . . . a

(n)
n c

(n)
n

b
(n)
1 d

(n)
1 . . . b

(n)
n d

(n)
n


alors la transformation linéaire représentée par S multiplie ϕ par m si, et seulement, si tSAS = mA (voir
la note 23). On voit ensuite facilement que cette condition est équivalente à celles annoncées par Jordan.
Par exemple, si on note T 1, . . . , Tn les blocs 2×2 formant la première colonne de S, pour que tSAS = mA,
il faut que

n∑
ν=1

tT ν
(

0 1

−1 0

)
T ν = m

(
0 1

−1 0

)
.

Mais tT ν

(
0 1

−1 0

)
T ν = (a

(ν)
1 d

(ν)
1 − b(ν)

1 c
(ν)
1 )

(
0 1

−1 0

)
, ce qui amène par conséquent à la condition

suivante :
∑
ν a

(ν)
1 d

(ν)
1 − b(ν)

1 c
(ν)
1 ≡ 0.

25. Dans un langage actuel, H est donc le groupe symplectique Sp2n(Fp).
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et Nµ,ν (avec 1 6 µ, ν 6 n) définies par

Lµ = | . . . , xµ, yµ, . . . . . . . . . . . . . . . , xµ + yµ, yµ, . . . . . . . . . . . . |

Mµ = | . . . , xµ, yµ, . . . . . . . . . . . . . . . , yµ ,−xµ, . . . . . . . . . . . . |

Nµ,ν = | . . . , xµ, yµ, . . . xν , yν . . . . . . , xµ + yν , yµ, . . . xν + yµ, yν . . . |,

où sont omis, comme dans le Traité, les couples de variables laissées inaltérées. Grâce à ces
substitutions, Jordan démontre que l’ordre de H est

Ωn = (p2n − 1)p2n−1(p2n−2 − 1)p2n−3 · · · (p2 − 1)p

et que, si p est impair, les facteurs de composition de H sont Ωn/2 et 2 — la démonstration
contient en particulier le fait que ce que nous notons actuellement PSp2n(Fp) est simple
pour p impair et n > 2.

Jordan prouve de plus que le groupe abélien est d’ordre (p − 1)Ωn, qu’il est engendré
par les substitutions Lµ, Mµ, Nµ,ν précédentes jointes à la substitution

U = |x1, y1, . . . , xn, yn rx1, y1, . . . , rxn, yn|,

où r est une racine primitive de la congruence rp−1 ≡ 1, et enfin que ses facteurs de
composition sont les facteurs premiers de p− 1 ainsi que ceux de H.

C.2 Équation de la division

Dans cette section est présenté le travail de Jordan sur l’équation de la division des
fonctions hyperelliptiques. Dans le Traité des substitutions et des équations algébriques,
le paragraphe concernant les fonctions hyperelliptiques est partagé en deux parties. La
première correspond à ce qui est détaillé dans la présente section. Quant à la seconde,
consacrée à la trisection des périodes, elle sera vue dans la section suivante.

C.2.1 Rappels et notations de Jordan

Au début de son paragraphe sur les fonctions hyperelliptiques, Jordan pose ses nota-
tions. Il définit ainsi un polynôme

∆2(x) = (x−m0)(x−m1) . . . (x−m5) = x6 + ax5 + · · ·+ f

ainsi que les intégrales hyperelliptiques qui y sont attachées :

u =

∫ x

0

µ+ νx

∆(x)
dx+

∫ y

0

µ+ νy

∆(y)
dy et v =

∫ x

0

µ′ + ν ′x
∆(x)

dx+

∫ y

0

µ′ + ν ′y
∆(y)

dy.
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Il rappelle que si x et y varient de sorte que leur valeur finale, ainsi que celle de ∆(x)

et ∆(y), soient identiques à leur valeur initiale, alors les fonctions u et v sont augmentées
de multiples entiers de leurs périodes respectives — P1, P2, P3, P4 pour u ; Q1, Q2, Q3, Q4

pour v. Ces périodes sont données par

P1 = A0 −A1 Q1 = B0 −B1

P2 = A1 −A2 Q2 = B1 −B2

P3 = A3 −A4 Q3 = B3 −B4

P4 = A4 −A5 Q4 = B4 −B5,

où les Ai et les Bi sont les intégrales élémentaires, qui sont les valeurs respectives des
intégrales ∫

µ+ νx

∆(x)
dx et

∫
µ′ + ν ′x

∆(x)
dx

calculées le long du chemin élémentaire Ci relatif au point critique mi. Ces intégrales
élémentaires vérifient enfin les équations

A0 −A1 +A2 −A3 +A4 −A5 = B0 −B1 +B2 −B3 +B4 −B5 = 0.

Jordan rappelle en outre, en se référant à [Jacobi 1832 ; Jacobi 1835], que les fonctions
hyperelliptiques définies par x = λ0(u, v) et y = λ1(u, v) possèdent respectivement les
périodes P1, . . . , P4 et Q1, . . . , Q4 comme périodes. De plus, les quantités

λ0(u1 + u2 + · · · , v1 + v2 + · · · ) et λ1(u1 + u2 + · · · , v1 + v2 + · · · )

sont les racines d’une équation du second degré dont les coefficients sont des fonctions
rationnelles en les λi(ur, vr) et ∆(λi(ur, vr)) et symétriques par rapport aux symboles λ0

et λ1.

C.2.2 Formation de l’équation de la division

Comme l’écrit Jordan, il découle des propriétés rappelées dans le paragraphe précédent
que λ0(u, v) et λ1(u, v) sont les solutions d’une équation du second degré X dont les
coefficients sont rationnels en les quantités λ0 (u/n, v/n), λ1 (u/n, v/n), ∆ [λ0 (u/n, v/n)],
∆ [λ1 (u/n, v/n)], et symétriques par rapport aux symboles λ0 et λ1. Jordan poursuit :
« Réciproquement, substituons dans l’équation X la valeur de λ0(u, v), et celle de λ1(u, v),
supposées connues. Nous obtiendrons deux équations algébriques X0, X1, qui serviront à
déterminer λ0 (u/n, v/n) et λ1 (u/n, v/n) », [Jordan 1870b, p. 355].

Pour expliquer ce dernier point, reprenons les notations de Jacobi décrites plus haut et
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mettons ainsi X sous la forme

U
(
λ0

(u
n
,
v

n

)
, λ1

(u
n
,
v

n

)
,∆
[
λ0

(u
n
,
v

n

)]
,∆
[
λ1

(u
n
,
v

n

)])
z2 + U ′z + U ′′ = 0,

où les arguments de U ′ et U ′′ ont été omis pour plus de clarté. Substituer z par λ0(u, v)

donne l’équation

U
(
λ0

(u
n
,
v

n

)
, λ1

(u
n
,
v

n

)
,∆
[
λ0

(u
n
,
v

n

)]
,∆
[
λ1

(u
n
,
v

n

)])
λ0(u, v)2+

+ U ′λ0(u, v) + U ′′ = 0

Un point important que Jordan ne mentionne pas à cet endroit, mais plus tard pour
une autre démonstration, est que ∆ [λ0 (u/n, v/n)], ∆ [λ1 (u/n, v/n)] peuvent s’exprimer
rationnellement en fonction des λi(u, v), ∆(λi(u, v)) et λi(u/n, v/n). L’équation peut donc
se mettre sous la forme

V
(
λ0

(u
n
,
v

n

)
, λ1

(u
n
,
v

n

)
, λ0(u, v), λ1(u, v),∆(λ0(u, v)),∆(λ1(u, v))

)
λ0(u, v)2+

+ V ′λ0(u, v) + V ′′ = 0.

Remplaçons λ0 (u/n, v/n) et λ1 (u/n, v/n) par deux inconnues x et y :

V (x, y, λ0(u, v), λ1(u, v),∆(λ0(u, v)),∆(λ1(u, v)))λ0(u, v)2 + V ′λ0(u, v) + V ′′ = 0.

On ainsi obtient l’équation X0 mentionnée par Jordan. De même, l’équation X1 s’écrit

V (x, y, λ1(u, v), λ0(u, v),∆(λ1(u, v)),∆(λ0(u, v)))λ1(u, v)2 + V ′λ1(u, v) + V ′′ = 0.

La symétrie en les symboles λ0, λ1 évoquée précédemment implique que si (α0, α1) est un
couple de solutions de ce système, alors (α1, α0) est également solution.

Continuons à suivre Jordan :

On obtiendra donc la même équation finale E, quelle que soit celle des deux incon-
nues qu’on élimine entre les deux équations ci-dessus ; et les racines de cette équation
peuvent se grouper en couples, en réunissant ensemble les deux qui vérifient simulta-
nément les équations X0, X1. [Jordan 1870b, p. 355]

Cette assertion est laissée sans démonstration par Jordan. Vérifions-la dans un langage
plus actuel. Notant P0, P1 les polynômes écrits ci-dessus et définissant les équations X0, X1,
l’équation obtenue en éliminant x (resp. y) correspond au résultant de P0 et P1 par rapport
à x (resp. y) :

Resx(P0, P1) =
∏

α0 tel que
P0(α0,y)=0

P1(α0, y) et Resy(P0, P1) =
∏

α1 tel que
P1(x,α1)=0

P0(x, α1).
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Par conséquent, Resx(P0, P1)(α1) = 0 équivaut à

∃α0,

 P0(α0, α1) = 0

P1(α0, α1) = 0,
c’est-à-dire, par symétrie, à ∃α0,

 P0(α1, α0) = 0

P1(α1, α0) = 0,

ce qui équivaut encore à Resy(P0, P1)(α1) = 0. Les deux polynômes (qu’on peut toujours
supposer unitaires) Resx(P0, P1) et Resy(P0, P1) sont de même degré, sont scindés et ont
mêmes racines : ils sont donc égaux, ce qui démontre la première partie de la proposition
de Jordan. La seconde partie se voit dans notre démonstration : il s’agit de grouper les
racines de E par couples (α0, α1).

En outre, un tel couple est transformé en un autre tel couple par toute substitution
du groupe de E, ce qui montre que l’équation E n’est pas primitive. Jordan en déduit
qu’elle se décompose en équations du second degré lorsqu’on lui adjoint les racines d’une
équation N , dont dépend une fonction symétrique arbitrairement choisie des deux racines
d’un même couple.

Pour voir cela, j’adapte à la situation présent un morceau de preuve de Jordan donné
à un autre endroit du Traité 26. Notons k le corps de base, et α0, α1, α

′
0, α
′
1, . . . , α

(m)
0 , α

(m)
1

les racines de E, regroupées par couples (α
(r)
0 , α

(r)
1 ). L’équation s’écrit ainsi

m∏
r=0

(x− α(r)
0 )(x− α(r)

1 ) = 0.

Soit maintenant une fonction f = f(α0, α1) symétrique en α0, α1, et soient f (r) les fonctions
obtenues à partir de f en y remplaçant α0, α1 par α(r)

0 , α
(r)
1 . Il est aisé de vérifier que toute

fonction symétrique de f, f ′, . . . , f (m) est invariante par chaque substitution du groupe
de E 27. Par conséquent, l’équation N définie par

(x− f)(x− f ′) . . . (x− f (r)) = 0

est rationnelle, c’est-à-dire à coefficients dans k. D’autre part, toute fonction symétrique
en α(r)

0 , α
(r)
1 est rationnelle 28 en f (r), donc (x−α(r)

0 )(x−α(r)
1 ) ∈ k(f (r))[x] : tous les facteurs

du produit
m∏
r=0

(x− α(r)
0 )(x− α(r)

1 ) = 0

sont donc rationnels après adjonction de f, f ′, . . . , f (r), c’est-à-dire après résolution de N .
C’est précisément ce que Jordan avait annoncé.

26. Il s’agit de la preuve de la réciproque du Théorème IV, [Jordan 1870b, p. 259-260].
27. En effet, une telle substitution σ permute entre elles les paires de racines, et la symétrie des fonc-

tions f (r) entraîne que σ permute entre elles les f, f ′, . . . , f (r).
28. Voir [Jordan 1870b, Corollaire II, p. 262].
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L’équation N est celle de la division des fonctions hyperelliptiques ; Jordan montre
ensuite qu’elle est de degré n4. Pour cela, il procède de la façon suivante. Soit une de
ses racines f [λ0 (u/n, v/n) , λ1 (u/n, v/n)]. Les quantités λ0(u, v), λ1(u, v) ainsi que leur
radicaux restent inchangés lorsque u et v sont remplacés respectivement par

u+ p1P1 + q1P2 + p2P3 + q2P4 et v + p1Q1 + q1Q2 + p2Q3 + q2Q4,

où p1, q1, p2 et q2 sont des entiers quelconques. Par conséquent, les expressions

f

[
λ0

(
u+ p1P1 + q1P2 + p2P3 + q2P4

n
,
v + p1Q1 + q1Q2 + p2Q3 + q2Q4

n

)
,

λ1

(
u+ p1P1 + q1P2 + p2P3 + q2P4

n
,
v + p1Q1 + q1Q2 + p2Q3 + q2Q4

n

)]
sont toutes des racines de N . Il y en a autant que de quadruplets (p1, q1, p2, q2) modulo n,
ce qui fait en tout n4 racines 29, que Jordan désigne par les symboles (p1q1p2q2).

Jordan montre enfin que si n est un entier composé, égal à rs, alors la résolution deN re-
vient à la résolution successives de deux équations analogues à N et de degrés respectifs r4

et s4. Je n’en détaille pas ici la preuve, basée sur le fait qu’on peut exprimer les radi-
caux ∆ [λi (u/r, v/r)] rationnellement en fonction de λi(u, v), ∆(λi(u, v)) et λi (u/r, v/r).
Dans toute la suite, Jordan suppose ainsi que la division se fait par un entier n premier.

C.2.3 Groupes de monodromie

Une grande partie du travail de Jordan consiste à déterminer les groupes de monodro-
mie d’équations associées aux fonctions hyperelliptiques. L’idée est de voir comment les
variations des paramètres de ces équations modifient les périodes des fonctions hyperellip-
tiques et donc les racines desdites équations.

Tout d’abord, Jordan regarde le groupe de monodromie de N par rapport aux quan-
tités λ0(u, v), λ1(u, v), ∆(λ0(u, v)) et ∆(λ1(u, v)). Comme il l’a rappelé au début de son
paragraphe sur les fonctions hyperelliptiques, si ces quantités varient de façon quelconque
puis reprennent leurs valeurs initiales, alors u et v sont changées en 30

u′ = u+ δ1P1 + ε1P2 + δ2P3 + ε2P4 et v′ = v + δ1Q1 + ε1Q2 + δ2Q3 + ε2Q4,

où δ1, . . . , ε2 sont des entiers quelconques. Ainsi, la racine (p1q1p2q2) est changée en la
racine (p1 +δ1, q1 +ε1, p2 +δ2, q2 +ε2), et donc le groupe de monodromie cherché est formé

29. À noter que Jordan ne montre pas que toutes les racines sont nécessairement de cette forme.
30. Les notations u′ et v′ sont les miennes et n’apparaissent pas dans le Traité. À partir de maintenant,

j’utiliserai systématiquement des symboles « prime » pour désigner les valeurs finales de certaines quantités,
lorsque d’autres auront parcouru un chemin fermé.
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des substitutions

|p1, q1, p2, q2 p1 + δ1, q1 + ε1, p2 + δ2, q2 + ε2|.

En termes modernes, il s’agit donc du groupe des translations de l’espace F4
n.

Dans un deuxième temps, Jordan adjoint à N sa racine (0000), et note Z l’équation
de degré n4 − 1 ainsi obtenue. Il en cherche le groupe de monodromie Γ par rapport aux
modules m0, . . . ,m5 (je rappelle que ce sont les racines du polynôme ∆2 définissant les
intégrales hyperelliptiques). Pour cela, Jordan indique qu’il va utiliser la même méthode
qu’il a appliquée dans le paragraphe sur les fonctions elliptiques ; il s’agit d’« une méthode
élégante, due à M. E. Mathieu 31 ». Jordan commence par décortiquer le problème : si
les m1, . . . ,m5 restent fixes, alors les variations de m0 sur des chemins fermés induisent
des permutations des racines de Z, qui donnent le groupe de monodromie de Z par rapport
à m0. On obtient de même les groupes de monodromie par rapport à chacun des modules,
et le groupe de monodromie par rapport à tous les modules s’obtient en « combinant entre
elles les substitutions de tous ces groupes partiels 32 », [Jordan 1870b, p. 338].

Jordan explique ensuite que tout déplacement de m0 suivant une courbe fermée peut
se décomposer suivant plusieurs courbes fermées particulières : d’une part, des courbes
enveloppant chacun des autres modules mi sans couper les autres contours élémentaires —
ces courbes sont notées D0i par Jordan —, et d’autre part, une courbe n’entourant aucun
des modules. Pour ce dernier type de courbe, les périodes des fonctions hyperelliptiques
sont inchangées, donc les racines de Z également : ce mouvement de m0 ne contribue donc
pas au groupe de monodromie. La figure suivante représente le déplacement D01 :

O

m0

m1

C0 C1

D01

1

Figure C.1 – Le déplacement D01.

Il reste donc à voir comment un déplacement D0i modifie les périodes.

31. Aucune référence précise n’est donnée par Jordan, mais il s’agit très probablement de [Mathieu 1867].
Dans ce mémoire sur les fonctions elliptiques, Mathieu utilise effectivement des techniques similaires en
tout point à ce que Jordan fait ici. En particulier, Jordan semble avoir repris exactement le même type de
dessins explicatifs. Voir en particulier [Mathieu 1867, p. 283-284] et comparer les figures de [Mathieu 1867,
p. 283] et de [Jordan 1870b, p. 339].
32. [Jordan 1870b, p. 358].
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Comme Jordan, regardons par exemple le déplacement D01, en nous aidant de la fi-
gure C.2, reproduite à partir du Traité. Il faut comprendre qu’au fur et à mesure que m0

C0

C1 C2
C3

C4

C5

m0

H0

H1

m1

m3

m2

m4

m5

1

Figure C.2 – Reproduction de la figure située à [Jordan 1870b, p. 358]. Les chemins
en pointillés sont les déformations des chemins C0 et C1 à la fin du mouvement D01 ;
la notation H0 et H1 de Jordan est ici changée en C ′0, C ′1.

parcourt D01, les chemins C0 et C1 se déforment par continuité, jusqu’à donner les chemins
en pointillés de la figure C.2. Jordan invoque cette figure pour justifier que C0 et C1 sont
changés en 33

C ′0 = C0C1C0C1C0 et C ′1 = C0C1C0.

Pour expliquer cela, je reproduis sur la figure C.3 les chemins C ′0 et C ′1 séparément. Avec

O

m0

m1

C0 C1

⌦1

⌦2

C 0
0

1

O

m0

m1

⌦1

C 0
1

C0

C1

1

Figure C.3 – Les chemins C ′0 et C ′1, sur lesquels j’ai introduit les points Ω1 et Ω2.

les points Ω1 et Ω2 introduits sur cette figure, le chemin C ′0 est la somme des chemins
OΩ1, puis Ω1Ω2, puis Ω2Ω2 en enlaçant m0, puis Ω2Ω1, puis enfin Ω1O, ce qui donne bien
C ′0 = C0C1C0C1C0. On peut s’aider de même du point Ω1 pour voir que C ′1 = C0C1C0.

33. La notation C0C1C0, qui est celle de Jordan, désigne naturellement la concaténation successive des
contours C0, C1 puis C0.
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Il faut ensuite voir comment sont transformées les intégrales élémentaires ; pour cela,
il ne faut pas oublier qu’à chaque fois qu’un contour élémentaire est parcouru, le radi-
cal ∆(x) présent dans l’intégrale hyperelliptique change de signe. Ainsi, seules A0 et A1

sont changées, et deviennent A′0 = A0 −A1 +A0 −A1 +A0 = 3A0 − 2A1

A′1 = A0 −A1 +A0 = 2A0 −A1,

et par conséquent, les périodes P1 et P2 sont changées en P ′1 = A′0 −A′1 = A0 −A1 = P1

P ′2 = A′1 −A′2 = 2A0 −A1 −A2 = 2P1 + P2,

alors que les autres périodes restent inchangées.

Regardons maintenant l’exemple du déplacement D02 — il est un peu plus compliqué
que le précédent et révèle des difficultés qui y étaient restées cachées. La figure C.4 montre
que les chemins C0 et C2 deviennent

C ′0 = C0C1C2C1C0C1C2C1C0 et C ′2 = C1C0C1C2C1C0C1.

O

m0 m1

m2

⌦1

⌦2⌦3

C 0
0

1

O

m0 m1

m2

⌦1

⌦2

C 0
2

1

Figure C.4 – Les chemins C ′0 et C ′2 à l’issue du déplacement D02. On peut s’aider
des points Ω pour les décomposer en fonction des chemins C0, C1 et C2.

Ainsi, A0 et A2 deviennent A′0 = A0 −A1 +A2 −A1 +A0 −A1 +A2 −A1 +A0

A′2 = A1 −A0 +A1 −A2 +A1 −A0 +A1,



352 ANNEXE C

et on calcule ensuite P ′1 = A′0 −A′1 = 3A0 − 5A1 + 2A2 = 3P1 − 2P2

P ′2 = A′1 −A′2 = 2A0 − 3A1 +A2 = 2P1 − P2.

Plus généralement, le déplacement D0µ transforme A0 et Aµ en A′0 = 3A0 − 4A1 + 4A2 − · · ·+ (−1)µ−12Aµ

A′µ = −Aµ + 4Aµ−1 − 4Aµ−2 + · · ·+ (−1)µ−12A0

et laisse les autres intégrales élémentaires inchangées 34. De cela découle que les valeurs
finales P ′1, . . . , P ′4 des périodes s’expriment linéairement en fonction de P1, . . . , P4.

Jordan indique ensuite que les changements dus à un déplacement Dρµ de mρ autour
de mµ s’obtiennent de façon analogue 35. Enfin, pour les périodes Q1, . . . , Q4, leurs valeurs
finales Q′1, . . . , Q′4 s’expriment en fonction de Q1, . . . , Q4 exactement de la même façon
que P ′1, . . . , P ′4 s’expriment en fonction de P1, . . . , P4.

Jordan affirme qu’« après chacun des déplacements considérés, on aura l’identité facile
à vérifier 36 »

P ′1Q
′
2 −Q′1P ′2 + P ′3Q

′
4 −Q′3P ′4 = P1Q2 −Q1P2 + P3Q4 −Q3P4.

Il recompose alors tous les mouvements : un déplacement quelconque de m0, . . . ,m5 est
composé de déplacements D01, . . . , D05, D10, etc., et tous ces déplacements transforment
linéairement P1, . . . , P4 et Q1, . . . , Q4. Par conséquent, un mouvement quelconque des mo-
dules m0, . . . ,m5 transforme également les périodes de façon linéaire avec coefficients en-
tiers :

P ′1 = α′1P1 + β′1P2 + α′′1P3 + β′′1P4, P ′2 = γ′1P1 + δ′1P2 + γ′′1P3 + δ′′1P4,

P ′3 = α′2P1 + β′2P2 + α′′2P3 + β′′2P4, P ′4 = γ′2P1 + δ′2P2 + γ′′2P3 + δ′′2P4,

34. Jordan semble faire une erreur, car il écrit que Aµ est changée en

−2Aµ + 4Aµ−1 − 4Aµ−2 + · · ·+ (−1)µ−1A0,

ce qui ne concorde pas avec les calculs faits pour D01. La formule que nous avons donnée semble correcte :
elle s’applique à D02 et à D03 (je ne retranscris pas ici ces derniers calculs), et elle concorde surtout avec
la suite. Voir la note 36. À noter que pour D03, il est nécessaire d’utiliser la formule A0−A1 + . . .−A5 = 0
afin de montrer que P ′1 = P1 − 2P2 − 2P4 et P ′3 = −2P2 + P3 − 2P4.
35. On peut le faire pour D12 ; effectivement, des considérations tout à fait similaires à ce qui précède

montrent que seuls sont changés C1 et C2. Plus précisément, on a

C′1 = C1C2C1C2C1 et C′2 = C1C2C1,

d’où l’on déduit successivement A′1 = 3A1 − 2A2, A′2 = 2A1 −A2 puis P ′1 = P1 − 2P2 et P ′2 = P2.
36. Je l’ai vérifié, ce qui fastidieux mais sans difficulté. D’ailleurs, cette vérification prouve que la formule

donnée par Jordan pour A′µ est effectivement erronée (voir la note 34).
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et de même pour Q′1, . . . , Q′4. L’invariance de P1Q2 − Q1P2 + P3Q4 − Q3P4 impose alors
les conditions

α′1δ
′
1 − β′1γ′1 + α′2δ

′
2 − β′2γ′2 = α′′1δ

′′
1 − β′′1γ′′1 + α′′2δ

′′
2 − β′′2γ′′2 = 1

α′1δ
′′
1 − γ′1β′′1 + α′2δ

′′
2 − γ′2β′′2 = α′′1δ

′
1 − γ′′1β′1 + α′′2δ

′
2 − γ′′2β′2 = 0

α′1γ
′′
1 − γ′1α′′1 + α′2γ

′′
2 − γ′2α′′2 = β′1δ

′′
1 − δ′1β′′1 + β′2δ

′′
2 − δ′2β′′2 = 0.

Ensuite, remplacer dans la racine (p1q1p2q2) les périodes Pi et Qi par P ′i et Q
′
i, revient à

effectuer sur p1, q1, p2, q2 une substitution∣∣∣∣∣∣ p1, q1

p2, q2

a′1p1 + c′1q1 + a′2p2 + c′2q2, b′1p1 + d′1q1 + b′2p2 + d′2q2

a′′1p1 + c′′1q1 + a′′2p2 + c′′2q2, b′′1p1 + d′′1q1 + b′′2p2 + d′′2q2

∣∣∣∣∣∣
dont les coefficients a′1, . . . , d′′2 sont des entiers congrus à α′1, . . . , δ′′2 modulo n, donc vérifiant
les conditions

a′1d
′
1 − b′1c′1 + a′2d

′
2 − b′2c′2 ≡ a′′1d

′′
1 − b′′1c′′1 + a′′2d

′′
2 − b′′2c′′2 ≡ 1 mod n

a′1d
′′
1 − c′1b′′1 + a′2d

′′
2 − c′2b′′2 ≡ a′′1d

′
1 − c′′1b′1 + a′′2d

′
2 − c′′2b′2 ≡ 0 mod n

a′1c
′′
1 − c′1a′′1 + a′2c

′′
2 − c′2a′′2 ≡ b′1d

′′
1 − d′1b′′1 + b′2d

′′
2 − d′2b′′2 ≡ 0 mod n.

Jordan note H le groupe des substitutions satisfaisant à ces dernières conditions : il s’agit
d’un sous-groupe du groupe abélien 37, et le groupe de monodromie Γ est contenu dans H.

Jordan montre alors que Γ est égal à H, lorsque n est impair. Pour cela, il exhibe les
cinq substitutions suivantes :

S1 = |p1, q1, p2, q2 p1 + 2q1, q1, p2, q2|

S2 = |p1, q1, p2, q2 p1, q1 − 2p1, q1, p2, q2|

S3 = |p1, q1, p2, q2 p1, q1, p2 + 2q2, q2|

S4 = |p1, q1, p2, q2 p1, q1, p2, q2 − 2p2|

S5 = |p1, q1, p2, q2 p1 + 2q1 − 2p2, q1, p2, 2q1 − 2p2 + q2|,

qui appartiennent à Γ car elles proviennent des déplacements D01, D12, D34, D45 et D23

respectivement 38. Il montre ensuite que ces cinq substitutions engendrent le groupe H.
Ce point-là ne sera pas détaillé ici ; il se prouve avec quelques manipulations sur diverses
substitutions 39.

37. Plus précisément, H est, en termes actuels, le groupe symplectique Sp4(Fn). Voir C.1.6.
38. Voir par exemple ce qui précède pour D01 et la note 35 pour D12.
39. Voir [Jordan 1870b, p. 360-361]. Les idées sont les suivantes. Si V ∈ H, on montre qu’il existe U

dérivée de S1, . . . , S5 telle que U(p1) = V (p1). Ensuite, on montre qu’il existe U1 dérivée de S2, . . . , S5 telle
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Enfin, Jordan traite le cas où n = 2. Les substitutions provenant de chacun des dépla-
cements élémentaires des points critiques m0, . . . ,m5 sont alors toutes égales à l’unité, ce
qui prouve que le groupe de monodromie est trivial. Jordan en conclut que « les racines de
l’équation seront toutes des fonctions monodromes dem0, . . . ,m5 », [Jordan 1870b, p. 361].

Jordan passe ensuite à la recherche du groupe de monodromie Γ1 de Z par rapport
aux coefficients a, . . . , f du polynôme ∆2. Pour cela, il remarque d’abord que si ces coef-
ficients varient d’une manière quelconque puis reprennent leurs valeurs initiales, alors les
modules m0, . . . ,m5 suivent certains chemins au terme desquels ils sont permutés entre
eux. Ainsi, le groupe Γ1 contient le groupe de monodromie de Z par rapport à m0, . . . ,m5

(ce qui correspond au cas où ces points reprennent tous leur valeur initiale) ainsi que les
substitutions obtenues par les permutations de ces points entre eux.

Jordan explique le cas particulier de l’échange de mρ et mρ+1 et suppose que le mou-
vement de ces points est tel que « le point mρ+1 passe entre l’origine des coordonnées et
le point mρ », [Jordan 1870b, p. 361]. Comme précédemment, il faut regarder comment
sont transformés les contours élémentaires par ce mouvement. La figure suivante montre à
gauche le déplacement d’échange entre mρ et mρ+1, et à droite les déformations de Cρ et
Cρ+1.

O

m⇢

m⇢+1

C⇢

C⇢+1

1

O

m0

m1

⌦1

C 0
1

C0

C1

1

Figure C.5 – À gauche, le déplacement échangeant mρ et mρ+1. À droite, une repro-
duction de la figure placée en [Jordan 1870b, p. 361] à laquelle a été ajouté le point
Ω1.

Ces derniers deviennent respectivement

C ′ρ = CρCρ+1Cρ et C ′ρ+1 = Cρ.

Ainsi, les intégrales élémentaires modifiées sont les suivantes :

A′ρ = 2Aρ −Aρ+1 et A′ρ+1 = Aρ.

que U1(q1) = V U−1(q1) (et U1(p1) = V U−1(p1) = p1 par construction). On continue ainsi de suite jusqu’à
pouvoir exprimer V comme produit de substitutions dérivées de S1, . . . , S5. L’hypothèse de l’imparité de
n sert ici à pouvoir inverser 2 modulo n, ce qui nécessaire pour trouver les substitutions U et U1.
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Jordan indique alors que les nouvelles périodes se calculent aisément et qu’on peut immé-
diatement en déduire que les substitutions sur les racines (p1q1p2q2) qui y correspondent
appartiennent 40 au groupe H.

Jordan écrit ensuite que toutes les substitutions induites par les diverses permutations
sur m0, . . . ,m5 proviennent de celles induites par les transpositions précédentes 41, échan-
geant mρ et mρ+1. Tout cela lui permet de conclure que le groupe Γ1 est inclus dans le
groupe H.

Si n est impair, comme Γ = H et Γ1 contient Γ, alors les groupes Γ1 etH sont confondus.
Pour clore la partie sur les groupes de monodromie, Jordan traite enfin le cas n = 2. Il
écrit 42 :

Il est évident que Γ1 est isomorphe au groupe I d’ordre Ω = 1.2.3.4.5.6, formé par
toutes les substitutions possibles entre les modules ; et son ordre sera Ω/O, O étant
l’ordre du groupe partiel L formé par celles des substitutions de I qui ont pour cor-
respondante l’unité dans le groupe Γ1 ; en outre L est permutable aux substitutions
de I. [Jordan 1870b, p. 362]

Comme les seuls groupes partiels de I permutables à ses substitutions sont I, le groupe
trivial et le groupe alterné, l’ordre de Γ1 peut être égal à 1, 2 ou Ω. Jordan écarte sans
le prouver les deux premiers cas 43 et conclut que Γ1 est isomorphe sans mériédrie (entre
termes actuels : isomorphe tout court) à I. Jordan fait enfin remarquer que Γ1 se confond
avec H car il y est inclus et car leurs ordres sont égaux 44, mais précise toutefois que « cette
coïncidence fortuite n’aurait plus lieu pour les fonctions hyperelliptiques à plus de quatre
périodes », [Jordan 1870b, p. 362].

Cette remarque achève tout qui a eu trait à la détermination des groupes de monodro-
mie. Résumons tout ce qui y a été fait en ajoutant quelques traductions modernes :

1. Le groupe de monodromie de N par rapport à λ0(u, v), λ1(u, v), ∆(λ0(u, v)) et
∆(λ1(u, v)) est égal au groupe des translations de l’espace F4

n.

40. On peut vérifier que pour ρ = 0, toutes les périodes restent inchangées, donc la substitution corres-
pondante est triviale. Pour ρ = 1, on trouve que P ′1 = P1 − P2, les autres périodes restant inchangées. La
substitution correspondante est

|p1, q1, p2, q2 p1 − q1, q1, p2, q2|,

qui appartient effectivement au groupe H.
41. En effet, le groupe symétrique S6 est engendré par les transpositions (i i+ 1).
42. La traduction en terminologie actuelle de cette phrase est : « Il est évident qu’il existe un morphisme

surjectif ϕ de I sur Γ1, où I = S6 ; et son ordre est Ω/O, où O est l’ordre du noyau de ϕ ; en outre ce
noyau est distingué dans I ». Pour la définition d’« isomorphisme » au sens de Jordan, voir [Jordan 1870b,
p. 56].
43. Il n’est pas difficile de prouver cela. En effet, Γ1 6= {1} car il contient la substitution non triviale σ cor-

respondant à l’échange entre m1 et m2 n’est pas triviale (cf. note 35). De plus, on peut voir que Γ1 6= {1, σ}
en vérifiant que la substitution correspondante à la transposition (m2m3) n’est ni triviale, ni égale à σ.
44. Pour l’ordre de H, voir le paragraphe C.1.6. On a CardH = (24 − 1)23(22 − 1)2 = 6! = Card Γ1.
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2. Le groupe de monodromie Γ de Z par rapport à m0, . . . ,m5 est égal au groupe
symplectique H = Sp4(Fn) si n est impair ; il est trivial si n = 2.

3. Le groupe de monodromie Γ1 de Z par rapport à a, . . . , f est égal au groupe sym-
plectique H = Sp4(Fn) quelle que soit la valeur de n. Dans le cas n = 2, on a un
isomorphisme exceptionnel Sp4(F2) ' S6.

C.2.4 Groupe algébrique

Jordan passe ensuite à la recherche du groupe algébrique de l’équation N en s’aidant
des résultats précédents.

D’abord, le groupe algébrique de l’équation N obtenu en adjoignant les quatre quan-
tités λ0(u, v), λ1(u, v), ∆(λ0(u, v)) et ∆(λ1(u, v)) contient le groupe de monodromie par
rapport à ces quantités, et les substitutions de ce dernier lui sont permutables 45. Jordan
indique, en renvoyant au no 119 du Traité, que cela implique que ce groupe algébrique est
obtenu en combinant les substitutions du groupe de monodromie avec celles du groupe
linéaire G. En termes modernes, le groupe algébrique est donc le groupe affine GA4(Fn).
L’idée du no 119 est la suivante. Soit S une substitution permutable au groupe des trans-
lations (qui est ici le groupe de monodromie). On exprime que pour toute translation T , il
existe une translation T ′ telle que ST = T ′S. En choisissant par exemple T qui translate
seulement la première variable p1 de 1, on aura une égalité de la forme S(p1+1) = S(p1)+r,
d’où l’on déduit que S(p1) est de la forme S(p1) = a1p1 + r′, etc.

Jordan affirme 46 ensuite que l’adjonction de la racine (0000) réduit le groupe algébrique
au groupe linéaire G. Or, le groupe de monodromie Γ1 est un sous-groupe distingué de G,
et Jordan montre que cela implique que G est inclus dans le groupe abélien. Donnons sans
les détailler les étapes de cette preuve : soit T une substitution de G. Alors :

1. Il existe une substitution U de H telle que T1 = TU−1 soit permutable à H et fixe p1.

2. Il existe une substitution U1 dans H et une substitution abélienne V telles que
T2 = T1U

−1
1 V −1 soit permutable à H et fixe p1, p2.

45. Rappelons que le groupe de monodromie par rapport à un paramètre k d’une équation est un sous-
groupe distingué du groupe algébrique de l’équation obtenu en adjoignant k.
46. Jordan n’en donne aucune preuve, et ne fait aucun commentaire à ce propos. La démonstration

semble ne pas être évidente : une étape semblable est faite par Jordan dans le cas des fonctions circulaires
et dans celui des fonctions elliptiques, et il y donne les démonstrations. Par exemple, pour les fonctions
elliptiques (cf. [Jordan 1870b, p. 341-343]), Jordan s’appuie sur leur formule d’addition :

λ(z + t) =
λ(z)λ′(t) + λ′(z)λ(t)

1− k2λ2(z)λ2(t)
,

et mène des calculs assez ardus pour montrer que la partie affine des substitutions considérées est nulle.
Pour les fonctions circulaires, Jordan s’appuie également sur une formule d’addition. On peut donc penser
que c’est également le cas pour les fonctions hyperelliptiques. Je n’ai toutefois pas réussi à prouver ce que
Jordan annonce ici.
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3. Il existe une substitution U2 de H telle que T3 = T2U
−1
2 soit abélienne.

4. Finalement, T = T3U2V U1U est abélienne 47.

Pour récapituler, Jordan a montré que le groupe algébrique de N obtenu en adjoignant
les quantités λ0(u, v), λ1(u, v), ∆(λ0(u, v)), ∆(λ1(u, v)) et (0000) est inclus dans le groupe
abélien de taille 4 (modulo n).

Ensuite, Jordan adjoint en plus à l’équation de la division les quantités λr (Pρ/n,Qρ/n)

et ∆ [λr (Pρ/n,Qρ/n)], pour tous 0 6 r 6 1 et 0 6 ρ 6 3. Comme précédemment, le groupe
algébrique ainsi obtenu est inclus dans le groupe des translations, mais Jordan montre qu’il
y a à présent égalité. Pour cela, il considère une fonction ϕ des racines de N ; elle s’écrit

ϕ = ψ
[
λ0

(u
n
,
v

n

)
, λ1

(u
n
,
v

n

)]
,

où ψ est une fonction rationnelle et symétrique, à coefficients rationnels en les quantités
adjointes. Jordan note ψδ1,ε1,δ2,ε2 la fonction obtenue à partir de ψ en y remplaçant u
et v par u + δ1P1 + ε1P2 + δ2P3 + ε2P4 et v + δ1Q1 + ε1Q2 + δ2Q3 + ε2Q4. Ainsi, si ϕ
est supposée invariable par toutes les substitutions du groupe algébrique considéré ici,
alors ϕ = ψδ1,ε1,δ2,ε2 pour tous les entiers δ1, . . . , ε2. Donc

ϕ =
1

n4

∑
δ1,...,ε2

mod n

ψδ1,ε1,δ2,ε2

est une fonction symétrique des racines de l’équation de degré n4 dont ψ est solution ; par
conséquent, ϕ est rationnelle. Cela prouve que le groupe de N obtenu par adjonction de la
racine (0000), des quantités λr(u, v), λr (Pρ/n,Qρ/n) et leurs radicaux, est égal au groupe
des translations de F4

n.

Pour finir, Jordan considère le cas où u = v = 0, qui correspond, comme on l’a vu
précédemment, à l’équation de la division des périodes. L’équation N a alors une de ses
racines égale à f(0, 0), qui est rationnelle. Il reste alors une équation de degré n4 − 1, et
puisque les quantités précédemment adjointes sont maintenant nulles, cette équation est
telle que

1. son groupe de monodromie par rapport aux modules m0, . . . ,m5 est Γ,

2. son groupe de monodromie par rapport aux coefficients a, . . . , f est Γ1,

3. son groupe algébrique est contenu dans le groupe abélien.

Dans la section suivante, Jordan s’occupe du cas particulier de la trisection des périodes,
c’est-à-dire u = v = 0 et n = 3. Avant cela, il conclut en faisant remarquer que tout ce qui

47. Remarquer que T n’est pas nécessairement dans le sous-groupe H du groupe abélien.
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précède s’applique mutatis mutandis aux fonctions hyperelliptiques à 2k périodes 48.

C.3 Équation de la trisection des périodes

Nous arrivons à la seconde partie du paragraphe du Traité concernant les fonctions
hyperelliptiques. Comme je l’ai souligné plus haut, la note aux Comptes Rendus de l’Aca-
démie des Sciences, [Jordan 1869a], contient les mêmes résultats. Les quelques différences
dans les preuves seront signalées lorsque ce sera pertinent.

Jordan continue son travail sur l’équation de la division des périodes des fonctions hy-
perelliptiques en considérant le cas particulier n = 3 : il s’agit donc de l’étude de l’équation
de la trisection des périodes. Comme il l’a montré, cette équation, qu’il note à présent 49 E,
est de degré 80 et son groupe est contenu dans le groupe abélien G = Sp4(F3) o F×3 de
cardinal 2Ω2. Dans [Jordan 1869a], Jordan écrit, sans le montrer, que les deux groupes sont
égaux ; mais dans le Traité, aucune preuve de l’inclusion du groupe abélien dans celui de
l’équation n’est donnée. Bien que Jordan ne fasse aucun commentaire à ce sujet, plusieurs
détails mathématiques des démonstrations du Traité nous montrent que Jordan suppose
implicitement que le groupe de l’équation E est effectivement égal au groupe abélien G. Je
signalerai ces détails au fur et à mesure de leur apparition dans la suite de cette annexe.

Le paragraphe du Traité sur la trisection des périodes aboutit au résultat suivant :
l’équation de la trisection se résout à l’aide d’une équation quadratique et d’une équation
identique à celle dont dépendent les vingt-sept droites d’une surface cubique. Afin de
faciliter la compréhension de la démarche de Jordan, je la présente en la scindant en
trois parties. Jordan introduit d’abord une équation auxiliaire E de degré 45. Il en étudie
ensuite le groupe via un certain groupe F de substitutions affines et cela lui permet enfin
de construire vingt-sept fonctions des racines de E ainsi qu’une fonction ϕ de ces vingt-
sept fonctions qui sera identique à la fonction ϕ définie lors de l’étude de l’équation aux
vingt-sept droites.

48. Cela lui permet d’énoncer et de démontrer le théorème suivant : « Un groupe quelconque de degré
q est isomorphe sans mériédrie à un groupe de degré 22k − 1, à substitutions linéaires abéliennes, k étant
le plus grand entier contenu dans (q− 1)/2 ». Autrement dit, ce théorème énonce que tout sous-groupe de
Sq est isomorphe à un sous-groupe de S22k−1 agissant par transformations abéliennes, k étant la partie
entière de (q − 1)/2.
49. Elle avait été notée Z précédemment. Attention donc à ne pas confondre avec l’équation de degré

2n4 que Jordan avait notée E auparavant.
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C.3.1 Une équation auxiliaire

Jordan commence par définir un sous-groupe H du groupe abélien G formé des substi-
tutions abéliennes de la forme 50

|p1, q1, p2, q2 a′1p1 + c′1q1, b
′
1p1 + d′1q1, a

′′
2p2 + c′′2q2, b

′′
2p2 + d′′2q2|.

Il montre que ce groupe H est d’ordre ω = (32 − 1)2(32 − 3)2/2 de la manière suivante :
une substitution de la forme précédente est abélienne si et seulement si 51

a′1d
′
1 − b′1c′1 ≡ a′′2d′′2 − b′′2c′′2 6≡ 0 mod 3.

La condition a′1d′1−b′1c′1 6≡ 0 mod 3 permet de choisir a′1, b′1, c′1, d′1 de (32−1)(32−3) ma-
nières différentes 52. Les coefficients a′1, b′1, c′1, d′1 étant choisis, il reste (32−1)(32−3)/2 fa-
çons de choisir a′′1, b′′1, c′′1, d′′1 puisque l’on doit avoir la congruence a′′2d′′2 − b′′2c′′2 ≡ a′1d′1 − b′1c′1
modulo 3.

Jordan poursuit en définissant la substitution abélienne

I = |p1, q1, p2, q2 p2, q2, p1, q1|

puis le groupe H1 dérivé de H et de I, c’est-à-dire, en d’autres termes, engendré par H et
I. Il affirme que H1 est de cardinal 2ω et que

Une fonction ϕ1 des racines de E, invariable par les substitutions de H1, dépendra
d’une équation E de degré 45. [Jordan 1870b, p. 366]

Détaillons la preuve de ces points : la compréhension de ces points éclairera la suite du
travail de Jordan. Nous adoptons pour ces explications un langage moderne en essayant
toutefois dans l’esprit du Traité.

Pour voir que CardH1 = 2ω, on peut par exemple constater que H1 est la réunion

50. Matriciellement, il s’agit des substitutions abéliennes représentées par les matrices de la forme
a′1 c′1 0 0

b′1 d′1 0 0

0 0 a′′2 c′′2

0 0 b′′2 d′′2


avec a′1, . . . , d′′2 ∈ F3.
51. Voir en effet le paragraphe C.1.6 avec n = 2 et p = 3.
52. En termes modernes, il s’agit de trouver le cardinal de GL2(F3). Pour cela, on peut par exemple

dire qu’une matrice

(
a c

b d

)
à coefficients dans F3 est inversible si et seulement si ses deux colonnes

forment une famille libre. Cela revient à choisir une première colonne non nulle (32 − 1 choix) puis une
seconde colonne non proportionnelle à la première (32 − 3 choix). Ainsi, Card GL2(F3) = (32 − 1)(32 − 3).
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disjointe de H et de I.H. En effet, on a

H =


 M 0

0 N

 , M,N ∈ GL2(F3) et detM = detN

 .

On vérifie immédiatement que

I.H =


 0 M

N 0

 , M,N ∈ GL2(F3) et detM = detN

 ,

puis que H1 = H tI.H. Comme on a évidemment Card(I.H) = CardH = ω, on en déduit
bien que CardH1 = 2ω.

Ensuite, notons k le corps engendré par les coefficients de E et K un corps de décompo-
sition de cette équation : le groupe de E est donc Gal(K/k). Si KH1 désigne le sous-corps
de K fixé par tous les éléments de H1, on sait que l’on a [KH1 : k] = (Gal(K/k) : H1). Si
de plus G = Gal(K/k), alors 53

[KH1 : k] = (G : H1) =
2Ω2

2ω
=

2(34 − 1)33(32 − 1)3

(32 − 1)2(32 − 3)2
= 45.

Une fonction ϕ1 des racines de E invariable par les substitutions de H1 — il faut d’ailleurs
supposer ϕ1 variable par toute autre substitution — est un élément primitif de KH1 ;
elle dépend d’une équation E de degré [KH1 : k] = 45. Cette équation E est donc une
réduite de l’équation de trisection, et la théorie de Galois actuelle nous apprend que son
groupe Gal(KH1/k) est isomorphe à G/H1.

C.3.2 Décompositions de F

Jordan introduit ensuite les substitutions

AαBβCγDδ = |p1, q1, p2, q2 p1 + α, q1 + β, p2 + γ, q2 + δ|

et note F le groupe qu’elles forment 54. Il suppose que A, B, C et D ont leurs exposants
d’échange 55 mutuels congrus à 0, sauf (AB) ≡ −(BA) ≡ (CD) ≡ −(DC) ≡ 1. Il énonce

53. On voit donc ici que Jordan suppose que le groupe de l’équation E est effectivement égal au groupe
abélien G.
54. Le groupe F est donc un sous-groupe du groupe affine GA4(F3) de cardinal 34. Plus précisément, F

est le sous-groupe de GA4(F3) formé des translations.
55. Jordan définit les « exposants d’échange » lors de sa seconde définition du groupe abélien, [Jordan

1870b, p. 180]. Étant données des variables z1, . . . , zn, il note Aµ la substitution induisant l’identité sur
chaque zν , sauf sur zµ, qui est envoyée sur zµ + 1 modulo un nombre premier p. Il écrit alors :

Les substitutions AµAν et AνAµ sont évidemment identiques, quels que soient µ et
ν ; mais, afin de conserver la trace de l’inversion nécessaire pour passer de l’une de
ces formes à la suivante, on posera, au lieu de l’égalité AµAν = AνAµ, la suivante
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ensuite la propriété suivante :

À chaque racine de l’équation E correspondra une décomposition du groupe F en
deux groupes partiels d’ordre 32, tels, que leur combinaison reproduise F , et que les
substitutions de l’un d’entre eux aient leurs exposants d’échange avec les substitutions
de l’autre tous congrus à zéro. [Jordan 1870b, p. 366]

En d’autres termes, une décomposition de F est la donnée de deux de ses sous-groupes
ayant pour ordre 32, disons P et P ′, tels que le groupe qu’ils engendrent est F et tels que
pour tous S, T respectivement dans P et P ′, on ait (ST ) ≡ 0 56.

Pour démontrer la propriété qui vient d’être citée, Jordan donne une première décom-
position de F en posant P1 = (A,B) et P ′1 = (C,D) — ces notations sont celles de
Jordan : elles désignent les sous-groupes engendrés par A et B d’une part, par C et D
d’autre part. Il affirme alors que le groupe H1 est l’ensemble des substitutions abéliennes
qui sont permutables à P1 et P ′1 ou qui les transforment l’un dans l’autre 57. Ensuite, si s

AµAν = 1(AµAν)AνAµ.
Jordan précise que le nombre (AµAν) ainsi introduit est un entier arbitraire (modulo p), qu’il appelle
exposant d’échange de Aµ et Aν . Une règle implicite est que, si par certaines manipulations on obtient
une égalité du type AµAν = 1αAνAµ, alors α ≡ (AµAν) mod p. En découlent par exemple les propriétés
suivantes :

(AµAν) + (AνAµ) ≡ 0 et (AµAµ) ≡ 0.

Enfin, pour deux substitutions S =
∏
µA

mµ
µ et T =

∏
ν A

nν
ν , Jordan indique que l’exposant d’échange

entre S et T est
(ST ) =

∑
µ,ν

mµnν(AµAν).

À noter que Jordan ne définit pas explicitement (ST ), mais il est clair qu’il s’agit d’un entier tel
que ST = 1(ST )TS.
56. Dans [Jordan 1869a], Jordan n’utilise à aucun moment la notion d’exposant d’échange. À la place, il

considère les décompositions de F en deux sous-groupes P et P ′ d’ordre 32 qui engendrent F et tels que
pour toutes substitutions AαBβCγDδ ∈ P et Aα

′
Bβ
′
Cγ
′
Dδ′ ∈ P ′, on ait

αβ′ − α′β + γδ′ − γ′δ ≡ 0 mod 3.

Cette condition est en fait équivalente à celle sur les exposants d’échange. En effet, notons S = AαBβCγDδ

et T = Aα
′
Bβ
′
Cγ
′
Dδ′ . Alors l’exposant d’échange entre S et T est (cf. 55)

(ST ) ≡ αβ′(AB) + βα′(BA) + γδ′(CD) + δγ′(DC) mod 3,

compte tenu de la nullité de (AC), (AD), (BC) et (BD) imposée par la définition de F . Les conditions
sur (AB) et (CD) donnent alors

(ST ) ≡ αβ′ − βα′ + γδ′ − δγ′ mod 3.

Ainsi, la nullité de (ST ) équivaut à celle de αβ′ − βα′ + γδ′ − δγ′.
57. Rappelons que pour Jordan, le transformé d’un groupe P par une substitution S est ce que nous

appelons maintenant le groupe conjugué SPS−1 ; une substitution S est dite permutable à P si SPS−1 = P .
Jordan se contente de qualifier la propriété qu’il donne de « claire ». Pour le vérifier, il est commode

d’utiliser un formalisme moderne : pour une application affine ψ, on note Lin(ψ) sa partie linéaire et aff(ψ)
sa partie affine. Si S ∈ H1, alors ou bien S ∈ H, ou bien S ∈ IH (voir la fin du paragraphe C.3.1).
Supposons par exemple que S ∈ H et montrons que SP1S

−1 = P1. La substitution SAS−1 est affine, et
on a {

Lin(SAS−1) = S ◦ Lin(A) ◦ S−1 = S ◦ id ◦S−1 = id

aff(SAS−1) = S(aff(A)) = S(1, 0, 0, 0).
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est une substitution abélienne, Jordan note As, Bs, Cs, Ds les transformées de A, B, C, D
par s ; les transformés Ps = (As, Bs) et P ′s = (Cs, Ds) de P1 et P ′1 par s forment alors une
décomposition de F . Jordan désigne enfin par ϕs la fonction obtenue en faisant opérer s
sur ϕ1 ; cette fonction ϕs est une solution de l’équation E et Jordan écrit :

On a donc obtenu une décomposition de F en deux groupes partiels Ps, P ′s, corres-
pondante à la racine ϕs. [Jordan 1870b, p. 366]

L’étape suivante est de montrer qu’à chaque racine de E correspond une unique décompo-
sition de F , et réciproquement. Jordan procède comme suit.

Si s et t sont deux substitutions abéliennes telles que ϕs = ϕt, alors, puisque ϕs−1t = ϕ1,
la substitution h1 = t−1s appartient 58 à H1. Par conséquent, h1 est permutable à P1 et P ′1
ou les transforme l’un en l’autre (cf. supra) ; et comme s transforme P1, P

′
1 en Ps, P

′
s, la

substitution t = sh−1
1 les transforme en Ps, P ′s ou en P ′s, Ps. Autrement dit, les substitu-

tions s et t donnent la même décomposition de F . Réciproquement, si s et t donnent la
même décomposition de F , alors t−1s transforme la décomposition P1, P

′
1 en elle-même,

donc t−1s est dans H1, et finalement ϕs = ϕt.
Résumons en termes modernes ce qui a été montré jusqu’à présent. Les racines de E

sont de la forme ϕs, où s est une substitution abélienne — il y a plus précisément une
racine ϕs par représentant des classes de G/H1. On peut en outre définir une application

{racines de E } −→ {décompositions de F}

ϕs 7−→ {Ps, P ′s}

et cette application est injective.
Il existe donc au moins autant de décompositions de F que de racines de E , à sa-

voir 45. Jordan montre qu’il est impossible qu’il y en ait plus en raisonnant par l’absurde.

Mais comme S ∈ H, elle est de la forme

(
M 0

0 N

)
, et donc S(1, 0, 0, 0) est de la forme (α, β, 0, 0).

Cela montre que SAS−1 = AαBβ , et donc que SAS−1 ∈ P1. La preuve que SBS−1 ∈ P1 est strictement
analogue ; comme P1 = (A,B), on a bien SP1S

−1 = P1. De la même façon, on voit que SP ′1S−1 = P ′1. Le
cas où S ∈ IH se traite de façon similaire. On a dans ce cas SP1S

−1 = P ′1 et SP ′1S−1 = P1.
Réciproquement, si S est une substitution abélienne telle que l’on ait par exemple SP1S

−1 = P1

et SP ′1S−1 = P ′1, il est aisé, toujours en utilisant parties linéaire et affine, que le fait qu’une substitu-

tion SAαBβS−1 est de la forme Aα
′
Bβ
′
implique que S est elle-même de la forme

(
M 0

M ′ N

)
, puis que

le fait qu’une substitution SCγDδS−1 est de la forme Cγ
′
Dδ′ implique que S est de la forme

(
M 0

0 N

)
,

donc qu’elle appartient à H. Enfin, si S transforme P1 et P ′1 l’un dans l’autre, alors S est de la forme(
0 N

M 0

)
, donc appartient à IH (toujours avec les mêmes arguments).

58. En effet, h1 transforme ϕ1 en ϕh1s−1t = ϕ1. Remarquer que les notations que j’utilise ici diffèrent
de celles Traité, où il est écrit ϕts−1 . Mais rappelons que pour Jordan, la composée de deux substitutions
A et B notée AB correspond à la composée notée aujourd’hui B ◦A.
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En fait, son raisonnement peut être lu tel quel comme une preuve directe de la surjecti-
vité de l’application que nous venons de définir. Le voici : soit P , P ′ une décomposition
quelconque de F . Pour A 6= 1 dans P , il existe une substitution S de P telle que l’ex-
posant d’échange (A S) soit non nul, sinon les exposants d’échange de A avec toutes les
substitutions de A seraient nuls ; mais cela est impossible car si A = AαBβCγDδ avec
par exemple α 6= 0, alors (A B) ≡ α 6≡ 0. Jordan considère alors e = (A S) et définit
la substitution 59 B = Se

−1 . Alors (A B) = 1 et P , étant d’ordre 32, est dérivé de A et
de B : en effet, le groupe engendré par A et B est {A kBl | 0 6 k, l 6 2}. Il est d’ordre 32

et est inclus dans P , donc lui est égal. Jordan indique que de même, P ′ est dérivé de
deux substitutions C et D telles que (C D) = 1, puis conclut : « la substitution linéaire
qui transforme A,B,C,D en A ,B,C ,D est évidemment abélienne 60 », [Jordan 1870b,
p. 367].

Finalement, l’application

{racines de E } −→ {décompositions de F}

ϕs 7−→ {Ps, P ′s}

est bijective, et en particulier, il y a exactement 45 décompositions de F . En outre, l’action
deG/H1 sur les racines de E et sur les décompositions de F est compatible à cette bijection.
Jordan va dans la suite utiliser ce fait pour comprendre l’équation E .

59. Comprendre que l’exposant de S dans cette définition de B est l’inverse de e modulo 3.
60. Reprenons le langage moderne de parties linéaire et affine pour vérifier ce point. Comme les sub-

stitutions A,B,C,D,A ,B,C ,D sont toutes des translations, on a, pour toute substitution linéaire S, la
caractérisation suivante :

SAS−1=A

SBS−1=B

SCS−1=C

SDS−1=D

⇐⇒


S(aff(A))=aff(A )

S(aff(B))=aff(B)

S(aff(C))=aff(C )

S(aff(D))=aff(D)

⇐⇒


S(1, 0, 0, 0)=aff(A )

S(0, 1, 0, 0)=aff(B)

S(0, 0, 1, 0)=aff(C )

S(0, 0, 0, 1)=aff(D)

Ce dernier système permet donc de définir une substitution linéaire (par ailleurs unique) comme voulu. Il
reste alors à voir que S est abélienne. Notons

S =


α α′ α′′ α′′′

β β′ β′′ β′′′

γ γ′ γ′′ γ′′′

δ δ′ δ′′ δ′′′

 .

Les colonnes de S sont aff(A ), . . . , aff(D) ; autrement dit A = AαBβCγDδ, B = Aα
′
Bβ
′
Cγ
′
Dδ′ , etc. Les

conditions abéliennes à vérifier sont du type

αβ′ − α′β + γδ′ − γ′δ ≡ α′′β′′′ − α′′′β′′ + γ′′δ′′′ − γ′′′δ′′

(voir le paragraphe C.1.6). Or cette égalité provient de l’égalité (A B) ≡ (C D) (≡ 1 ; voir la note 55). Les
autres conditions abéliennes proviennent de (BC ) = 0, (A C ) = 0, etc., qui proviennent elles-même du
fait que P , P ′ est une décomposition de F .
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C.3.3 Vers les vingt-sept droites

Jordan donne la liste des quarante-cinq décompositions de F , qu’il présente dans un
tableau (reproduit ci-dessous), où les deux groupes partiels d’une décomposition sont sé-
parés par des points-virgules tandis que les deux substitutions dont chaque groupe partiel
est dérivé sont séparées par des virgules :

A,B ;C,D A,BD2 ;CA,D A,BD ;CA2, D

AD,B ;CB,D AD,BD2 ;CAB,D AD,BD ;CA2B,D

AD2, B ;CB,D AD,BD2 ;CAB,D AD,BD ;CA2B,D

A,BC ;C,DA A,BC2 ;C,DA2 AC2, B ;C,DB

AC2, BC ;C,DAB AC2, BC2 ;C,DA2B AC,B ;C,DB2

AC,BC ;C,DAB2 AC,BC2 ;C,DA2B2 A,BCD ;CD,DA

A,BC2D2 ;CD,DA2 AC2D2, B ;CD,DB AC2D2, BCD ;CD,DAB

AC2D2, BC2D2 ;CD,DA2B ACD,B ;CD,DB2 ACD,BCD ;CD,DAB2

ACD,BC2D2 ;CD,DA2B2 A,BCD2 ;CD2, DA A,BC2D ;CD2, DA2

AC2D,B ;CD2, DB AC2D,BCD2 ;CD2, DAB AC2, BC2D ;CD2, DA2B

ACD2, B ;CD2, DB2 ACD2, BCD2 ;CD2, DAB2 ACD2, BC2D ;CD2, DA2B2

AD,BC2 ;AD2, BC AD,BC2D ;AD2, BCD2 AD,BC2D2 ;AD2, BCD

AC,BD ;AC2, BD2 AC,BCD ;AC2, BC2D2 AC,BC2D ;AC2, BCD2

ACD,BD ;AC2D2, BD2 ACD,BCD2 ;AC2D2, BC2D ACD,BC2 ;AC2D2, BC

ACD2, BD ;AC2D,BD2 ACD2, BC ;AC2D,BC2 ACD2, BC2D2 ;AC2D,BCD

Jordan n’explique pas comment il a trouvé ces décompositions. On peut supposer que
Jordan a établi cette liste en partant de la définition des décompositions et en créant les
groupes partiels à partir de générateurs. Quoi qu’il en soit, Jordan note ensuite 1, 2, . . . , 45

les racines de E de façon correspondante :

1, 2, 3

· · · · · · · · ·

43, 44, 45,

et regarde ensuite comment le groupe abélien G agit sur les racines en regardant comment
il agit sur les décompositions de F . Il prend l’exemple de la substitution

L1 = |p1, q1, p2, q1 p1 + q1, q1, p2, q2|
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qui transforme A, B, C, D en A, AB, C et D respectivement 61. Par conséquent, L1 est
permutable aux deux groupes partiels (A,B) et (C,D) : elle laisse donc la décomposi-
tion (A,B), (C,D) inchangée et fixe ainsi la racine 1.

Jordan traite un autre exemple en regardant en quelle racine est transformée la racine 4

par L1. Cette substitution transforme la décomposition (AD,B), (CB,D) en la décom-
position (AD,AB), (CAB,D). Écrite telle quelle, cette dernière n’apparaît pas dans le
tableau des quarante-cinq décompositions, mais Jordan indique qu’elle est « évidemment
identique » à la décomposition (AD,BD2), (CAB,D) 62. Cela montre ainsi que L1 rem-
place la racine 4 par la racine 5. Jordan écrit ensuite :

Continuant ainsi, on peut écrire sans difficulté les déplacements opérés entre les ra-
cines 1, 2, . . . , 45 par la substitution |p1, q1, p2, q2 p1, 2q1, p2, 2q2| et par les autres
substitutions L1, L2, M1, M2, N1,2 dont G est dérivé 63. [Jordan 1870b, p. 368]

Il affirme alors que chacune de ces six substitutions permute entre elles les vingt-sept
expressions suivantes :

(1, 37, 34, 41, 45), (1, 39, 36, 40, 44), (1, 38, 42, 43, 35),

(10, 37, 7, 21, 32), (11, 37, 4, 25, 30), (15, 34, 3, 24, 33),

(2, 34, 12, 29, 22), (16, 20, 27, 45, 5), (26, 9, 14, 45, 23),

(19, 41, 13, 6, 31), (17, 41, 18, 28, 8), (15, 44, 6, 21, 27),

(26, 8, 44, 25, 12), (17, 36, 3, 23, 32), (2, 36, 13, 30, 20),

(7, 40, 16, 29, 18), (19, 40, 4, 33, 14), (10, 39, 9, 22, 31),

(11, 39, 5, 24, 28), (2, 35, 28, 21, 14), (16, 31, 35, 25, 3),

(19, 42, 12, 5, 32), (15, 42, 18, 30, 9), (7, 43, 26, 24, 13),

(17, 43, 4, 22, 27), (10, 38, 20, 33, 8), (11, 38, 23, 29, 6),

où chaque symbole (α, β, γ, δ, ε) désigne une fonction des racines de E invariable par les
substitutions qui permutent exclusivement entre elles les racines α, β, γ, δ, ε, mais variable

61. Pour le voir, il suffit de vérifier que les parties affines correspondantes sont égales, puisque toutes
les substitutions en question ont l’identité pour partie linéaire. Ainsi, on voit aisément que la partie affine
de L1AL

−1
1 est L1(aff A) = L1(1, 0, 0, 0) = (1, 0, 0, 0) = aff(A) ce qui montre que L1AL

−1
1 = A ; et que

celle de L1BL
−1
1 est L1(aff B) = (1, 1, 0, 0) = aff(AB), ce qui montre que L1BL

−1
1 = AB, etc.

62. Il n’est en effet pas difficile de le vérifier :

(AD,AB) = {Ak+lBlDk, k, l ∈ Z/3Z}

= {ArBlDr−l, r, l ∈ Z/3Z} en posant r = k + l

= {ArBlDr+2l, r, l ∈ Z/3Z}

= (AD,BD2).

63. Voir plus haut la section C.1.6.
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par toute autre substitution 64. Jordan note ensuite a, b, c, d, e, f , g, h, i, k, l, m, n, p, q, r,
s, t, u, m′, n′, p′, q′, r′, s′, t′, u′ ces vingt-sept fonctions et X l’équation du vingt-septième
degré dont elles dépendent.

Remarquant que chacune des racines 1, 2, . . . , 45 apparaît dans exactement trois des
fonctions a, b, . . . , u′ (par exemple, 1 apparaît dans a, b et c ; 37 apparaît dans a, d et e),
Jordan forme les produits trois à trois correspondant et note ϕ leur somme. Il observe alors
que

ϕ = abc+ ade+ · · ·+ ls′p

est identique à la fonction ϕ qu’il avait introduite lors de l’étude de l’équation aux vingt-
sept droites.

La dernière étape de Jordan est de montrer que le groupe de l’équation X est égal au
groupe des substitutions qui laissent ϕ invariante. Pour cela, il procède en deux temps.

D’abord, Jordan écrit que si S est une substitution quelconque du groupe abélien G, α
une des racines 1, . . . , 45 et β la racine sur laquelle est envoyée α par S, alors S remplace
une des expressions a, b, . . . , u′ qui contient α par une autre qui contient β ; par conséquent,
la substitutions S permute entre eux les termes 65 de ϕ. Jordan poursuit en indiquant que
toute fonction de a, b, . . . , u′ invariable par les substitutions fixant ϕ est nécessairement
invariable par les substitutions de G et est donc rationnelle 66. Cela signifie exactement
que le groupe de l’équation X est contenu dans celui de la fonction ϕ.

Jordan traite ensuite l’inclusion réciproque par un argument de cardinalité : si l’équa-
tion X est supposée résolue, le groupe G se réduit aux substitutions qui fixent a, b, . . . , u′.
Ces substitutions fixent donc chaque terme abc, . . . , ls′p de ϕ et laissent ainsi invariable
chaque racine 1, 2, . . . , 45, puisque ces dernières sont les racines communes à chaque terme
de ϕ. Ainsi, les substitutions du groupe réduit de G par adjonction de X transforment
chaque décomposition de F en elle-même. Jordan

64. Regardons par exemple où est envoyée la fonction (1, 37, 34, 41, 45) par L1. Il faut regarder sur quelles
racines sont envoyées 1, 37, 34, 41 et 45. On passe à chaque fois par les décompositions de F . On a déjà
vu que L1(1) = 1. Ensuite, la racine 37 est associée à la décomposition (AC,BD), (AC2, BC2). Cette
décomposition est transformée en (AC,ABD), (AC2, ABD2) par L1 (rappelons que cette substitution
transforme A, C, D en elles-mêmes et transforme B en AB). La décomposition ainsi trouvée n’apparaît
pas telle quelle dans le tableau. On procède comme précédemment :

(AC,ABD) = {Ak+lBlCkDl, k, l ∈ Z/3Z} = {ArBlCr+2lDl, r, l ∈ Z/3Z} = (AC,BC2D).

De même, on voit que (AC2, ABD2) = (AC2, BCD2), et donc la racine 37 est envoyée sur la racine 39. De
façon analogue, on montre que L1(34) = 36, L1(41) = 40 et L1(45) = 44. Ainsi, la substitution L1 envoie
la fonction (1, 37, 34, 41, 45) sur la fonction (1, 39, 36, 40, 44).
65. Par exemple, le terme abc est envoyé sur le terme S(a)S(b)S(c). Or, abc apparaît parmi les termes

de ϕ car a, b et c ont la racine 1 en commun. Donc S(a), S(b) et S(c) ont la racine S(1) en commun, et
par conséquent, le produit S(a)S(b)S(c) apparaît dans ϕ.
66. En effet, puisque G est contenu dans le groupe de ϕ, toute fonction des racines de X invariante sous

le groupe de ϕ est invariante sous G : en notations modernes, k(a, . . . , u′)groupe(ϕ) ⊂ k(a, . . . , u′)G. Ensuite,
le fait que toute fonction de racines de X invariable sous G est rationnelle s’explique de la façon suivante :
k(a, . . . , u′) ⊂ KH1 (cf. paragraphe C.3.1) et (KH1)G = KG = k — ici encore, on voit que Jordan suppose
implicitement que G est le groupe de l’équation de la trisection des périodes E ; voir la note 53.
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en déduit immédiatement que ces substitutions se réduisent à celles qui multiplient
tous les indices par un même facteur constant ±1. Donc l’ordre de E, qui était égal à
2Ω2, se trouve réduit à 2 après la résolution de X 67. [Jordan 1870b, p. 369]

Cela lui permet de voir que le groupe de X a pour ordre Ω2, qui est également 68 l’ordre
du groupe de ϕ. Jordan conclut :

L’équation X a donc le même groupe que l’équation aux vingt-sept droites des surfaces
du troisième ordre. [Jordan 1870b, p. 369]

Il indique enfin que, l’équation E ayant pour facteurs de composition 2, Ω/2, 2, ceux de
X sont 2 et Ω2/2. Cette remarque clôt le paragraphe du Traité des substitutions et des
équations algébriques consacré aux fonctions hyperelliptiques.

Jordan a ainsi démontré que le groupe de l’équation de trisection des périodes des
fonctions hyperelliptiques se réduit, après adjonction d’une racine carrée, à un groupe
identique à celui associé à l’équation aux vingt-sept droites.

67. La première partie de cette citation signifie que la résolution deX réduit le groupe abélien G à {± id}.
Dans la seconde partie, on voit encore une fois que Jordan suppose que le groupe de E est exactement G,
qui est bien d’ordre 2Ω2.
68. Jordan ne justifie pas ce dernier point. Mais ϕ est identique dans son écriture à la fonction de vingt-

sept droites, et les relations des racines a, b, . . . , u′ entre elles sont mêmes dans les deux cas — dans le
cas des vingt-sept droites, les termes de ϕ correspondaient aux droites formant un triangle ; les triangles
correspondent ici aux racines 1, . . . , 45. Donc le groupe de la fonctions des vingt-sept droites est le même
que celui de la fonction ϕ introduite ici.
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Annexe D

Relevé des équations de la géométrie

Dans les pages qui suivent se trouvent toutes les occurrences d’équations de la géo-
métrie relevées dans le corpus décrit au chapitre 3. Le ou les statuts de chaque équation
apparai(ssen)t dans la colonne de droite ; un symbole + a été placé lorsque deux équations
de la géométrie se trouvent dans une phrase qui n’a pas été scindée en deux ; un symbole
/ a été placé lorsque deux statuts peuvent être attribués à une même équation.
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Annexe E

Cinq lettres de Jordan à Klein

Cette annexe consiste en la transcription de cinq lettres écrites par Camille Jordan et
adressées à Felix Klein, datées de 1886 et 1887. Ces lettres sont conservées aux archives de
la Niedersächsische Staats- und Universitätsbibliothek Göttingen sous les références Cod.
Ms. F. Klein 10. Je remercie le service des manuscrits de ces archives de m’avoir autorisé
à présenter ici ces lettres.

[Cod. Ms. F. Klein 10 : 13]

Paris, le 26 juillet 1886

L’INGÉNIEUR EN CHEF DES MINES
chargé du service de la 1re section du contrôle

Mon cher ami

Votre aimable lettre m’est arrivée pendant que j’étais en voyage et je ne l’ai trouvée
qu’à mon retour il y a quelques jours, ce qui explique le retard que j’ai mis à vous répondre.

Je n’ai plus à ma disposition qu’un seul exemplaire de mon traité des substitutions,
dont j’ai besoin pour mon usage personnel. Je me suis donc adressé à l’éditeur M. Gauthier
Villars. Il me répond à l’instant que bien que le livre soit épuisé, il lui reste quelques
exemplaires d’occasion et qu’il vient de vous en envoyer un. J’espère donc que vous allez le
recevoir incessamment. Je suis d’autant plus heureux d’avoir pu vous satisfaire que je ne
songe guère pour le moment à une seconde édition. Il me faudrait en effet refondre toute la
première partie. Ce serait un énorme travail, devant lequel je dois reculer, absorbé comme
je le suis par mes fonctions et par la publication de mon cours d’analyse.

Le journal de Liouville que je dirige depuis l’année dernière est en relation d’échange
avec la plupart des autres journaux mathématiques. J’ai toutefois remarqué que les Ma-
thematische Annalen ne figuraient pas sur cette liste. Je l’y ajouterais avec plaisir, si cet
échange vous convenait.
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Ce que vous m’écrivez sur les études de M. Witting m’intéresse vivement. Je suis
persuadé que le rapprochement que j’ai signalé entre la trisection des fonctions elliptiques
et les droites des surfaces cubiques n’est pas dû au hasard et que les deux problèmes doivent
être identiques au fond, et j’aimerais fort qu’on me le montrât.

Je regrette bien que M. Study ait été malade à Paris, sans m’en rien dire ; car il ne me
l’a fait connaître qu’au moment de son départ, et il était déjà en route lorsque je me suis
présenté à son hôtel. Si je l’avais su plus tôt, j’aurais tâché de m’arranger pour qu’il fût
moins abandonné, car il est bien triste d’être malade seul dans une ville étrangère.

Votre bien dévoué
C. Jordan

[Cod. Ms. F. Klein 10 : 14]

Mervans 2 7bre 1886

Mon cher ami

Votre aimable lettre du 8 août m’arrive aujourd’hui seulement par suite d’un voyage
que j’ai fait dans le Tyrol et le nord de l’Italie pendant tout le mois d’août. Je vous suis
bien reconnaissant d’avoir si gracieusement accueilli ma proposition d’échange entre nos
journaux et j’écris à M. Gauthier Villars pour le prier d’envoyer à Teubner les fascicules
déjà parus du volume en cours de publication du journal de Liouville.

Je suis bien aise d’apprendre que vous avez reçu l’exemplaire de mon traité ; mais ne
vous occupez pas du compte ; c’est une bagatelle et j’ai pensé que vous seriez bien aise de
pouvoir offrir ce livre en cadeau à votre séminaire.

M. Schönflies m’a adressé une note sur les groupes de mouvements ; mais la lettre d’envoi
m’est seule parvenue, la note ayant sans doute été conservée à mon domicile à Paris où
elle est arrivée. C’est seulement à mon retour de vacances que je la retrouverai. L’étude
des groupes de mouvements peut en effet être envisagée à un point de vue tout algébrique,
et j’ai été sur le point de la traiter autrefois par cette voie, qui serait probablement plus
courte que celle de la géométrie pure que j’ai adoptée.

Il est sans doute trop tard pour rendre à M. le Dr Kneser le service de l’avertir que son
théorème sur les séries des sous-groupes maxima n’est pas exact, si toutefois l’énoncé que
vous m’en donnez est bien fidèle. On s’en assure aisément sur le groupe des substitutions
de 6 lettres, d’ordre 1 · 2 · · · 6, où l’on peut prendre comme sous-groupe maximum celui
des substitutions qui ne déplacent pas une lettre donnée. Le deuxième facteur de la suite

est alors
1 · 2 · · · 6
1 · 2 · · · 5 = 6. On peut d’autre part diriger les opérations de telle sorte que le

dernier sous-groupe considéré soit formé d’une substitution circulaire ternaire (abc) et le
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précédent de cette substitution jointe à une substitution analogue (def) faite sur les trois
autres lettres. On a dans ce cas une série de facteurs dont les deux derniers sont 3 et 3, les
autres étant manifestement premiers à 3.

L’erreur de Dr Kneser ne doit pas surprendre, s’il a admis comme point de départ le
prétendu théorème sur les facteurs d’imprimitivité qui se trouve dans mon traité ; car il
est manifestement faux ; je l’ai reconnu et rectifié depuis longtemps (dans le journal de M.
Battaglini, si je m’en souviens bien).

Votre tout dévoué
C. Jordan

[Cod. Ms. F. Klein 10 : 15]

29 juin 87

Mon cher ami

Je vous suis bien reconnaissant de la bonne pensée que vous avez de m’envoyer pour
mon Journal votre si intéressant Mémoire sur les 27 droites, et je serai très-heureux de lui
donner l’hospitalité. Je me serais empressé de vous remercier plus tôt si je n’avais pas été
en voyage lorsque votre lettre est arrivée à Paris où je ne l’ai trouvée qu’à mon retour.

Je viens d’entretenir M. Gauthier Villars de votre réclamation au sujet de l’envoi du
Journal, dont les 2e et 3e cahiers (T. III) sont récemment parus. Il m’a promis de vous les
faire parvenir promptement si toutefois la chose n’était déjà faite. Il vous enverra également
le T. I comme vous le désirez ; mais il est inutile que vous m’adressiez en échange votre T. 27,
que je possède déjà à titre d’ancien abonné, et qui pourra vous permettre de faire un
heureux.

Votre bien dévoué
C. Jordan

[Cod. Ms. F. Klein 10 : 16]

28 août 87

Mon cher ami

Merci de l’envoi de votre lettre sur les 27 droites. Elle est non seulement très intéres-
sante, mais admirablement claire, et quoi que vous en disiez, en très-bon style. À peine si
j’ai eu à y faire ça et là quelques retouches tout à fait insignifiantes avant de l’adresser à
Gauthier Villars.
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L’impression du Journal est assez en avance en ce moment, par suite de l’abondance de
matières, et des loisirs que les vacances donnent à l’imprimerie. On termine la composition
du 1er cahier de 1888, et je crains qu’on ne puisse plus y trouver place pour votre lettre,
auquel cas elle commencerait le second cahier. J’espère que vous m’excuserez de ce petit
retard. Suivant votre désir, d’ailleurs conforme à l’usage du journal, on vous enverra les
épreuves à corriger, et un tirage à part de 100 exemplaires.

Votre bien dévoué
C. Jordan

[Cod. Ms. F. Klein 10 : 17]

Mervans 9 7bre 87

Mon cher ami

Je ne suis donc pas le seul à commettre de temps en temps quelques inadvertances et
je prends d’autant plus gaiment mon parti de la vôtre qu’elle est aisée à réparer. J’écris à
Gauthier Villars de vous renvoyer votre lettre pour la modifier. Vous me feriez d’ailleurs
plaisir en me transmettant bientôt votre nouvelle rédaction, le second numéro du Journal
pour 1888, où elle doit paraître, étant actuellement en cours d’impression.

Quant au cahier que vous avez en double, le plus simple me paraît être de les renvoyer
à Gauthier Villars.

Votre bien dévoué
C. Jordan
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