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SUMMARY

A bivariate extreme value distribution with fixed marginals is generated by a one-
dimensional map called a dependence function. This paper proposes a new nonparametric
estimator of this function. Its asymptotic properties are examined, and its small-sample
behaviour is compared to that of other rank-based and likelihood-based procedures. The
new estimator is shown to be uniformly, strongly convergent and asymptotically unbiased.
Through simulations, it is also seen to perform reasonably well against the maximum
likelihood estimator based on the correct model and to have smaller L,, L, and L, errors
than any existing nonparametric alternative. The n* consistency of the proposed estimator
leads to nonparametric estimation of Tawn’s (1988) dependence measure that may be
used to test independence in small samples.

Some key words: Asymptotic theory; Copula; Dependence function; Extreme value distribution; Nonparametric
estimation.

1. INTRODUCTION

Management of environmental resources often requires the analysis of multivariate
extreme values. Optimal reservoir management for water resource systems, for example,
requires evaluation of probabilities of peak flow events from neighbouring basins. As a
result of the regional nature of hydrological phenomena, extreme events typically exhibit
some form of dependence that calls for multivariate data modelling. In applications of
this type, the analyst may only have access to componentwise maxima or may prefer to
restrict attention to such data to avoid dealing with the strong dependence that typically
exists between successive measurements taken over time.

Concentrating on the bivariate case from now on, suppose that (X;, ¥;),...,(X,, Y,)
form a random sample of pairs whose components represent the largest values of two
characteristics observed over the same period of time. According to Pickands (1981), such
data may be appropriately modelled by a distribution function L(x, y)= C{F(x), G(y)}
with marginals F(x) and G(y) and copula

log(u
Clu, v) = pr{F(X) <u, G(Y) <v} =exp| log(uv)A4 86 , (1)
log(uv)
defined for all 0<u, v<1 in terms of a convex function 4 on [0, 1] satisfying
max(t, 1 —t) < A(t)<1 for all 0<t<1. Thus C depends only on the one-dimensional
dependence function A. This generator is tied to many interesting aspects of the model,
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as described by Tawn (1988) and A. Khoudraji, who shows, in an unpublished 1995
Université Laval doctoral dissertation, that Kendall’s and Spearman’s nonparametric mea-
sures of dependence are respectively given by

T= Jl t(l_t)dA’(t) —IZJI{A(t)+1}‘2dt—3
) > PEE '

Examples of parametric forms for 4 were given by Hutchinson & Lai (1990, Ch.9).
Tawn (1988) showed how estimation would proceed for some of these families, given a
random sample of extreme value data. Smith, Tawn & Yuen (1990) also considered esti-
mators of A" and A", but the latter has the disadvantage of not being always well defined.
Both of these papers suggest that nonparametric estimators of A giving the shape of the
dependence function may be used as an exploratory tool for parametric model selection
and assessment.

The classical nonparametric estimator of A4 is that of Pickands (1981). Its asymptotic
properties were established by Deheuvels (1991), who proposed a variant that corrects its
endpoint bias. Noting that Pickands’ estimator is not convex, Tiago de Oliveira (1989)
suggested another procedure that was largely ignored in the subsequent literature because
of its obvious weaknesses. Finally, Smith et al. (1990) adapted the kernel method for
density estimation to produce smooth estimates of A based on Pickands’ proposal.
However, the behaviour of their estimators is not fully understood, even in large samples.

This paper proposes a new nonparametric estimator of 4, studies its asymptotic proper-
ties, and compares its small-sample behaviour with that of its major competitors. It is
shown that this estimator, defined explicitly by (5), is asymptotically unbiased and uni-
formly, strongly consistent for A. The limiting distribution of the associated process on
[0, 1] is also exhibited. In addition, simulation results are reported which indicate that
the new estimator has smaller L,, L, and L, errors than alternative estimators of Pickands
(1981) and Deheuvels (1991) in different experimental conditions. Comparisons with the
kernel based method of Smith et al. (1990) were also made, but ultimately had to be
ignored, because of inherent numerical problems. Additional comparisons are presented
between the nonparametric estimators and the method of maximum likelihood based on
correct and incorrect parametric models exhibiting various degrees of asymmetry.

The problem considered here must be distinguished from situations considered by Coles
& Tawn (1991, 1994) and by Joe, Smith & Weissman (1992), in which one attempts to
determine the dependence structure of extreme events, based on a sample of data that are
merely in the domain of attraction of a bivariate extreme value distribution. In that
context, a point process representation theorem of de Haan (1985) and Resnick (1987,
Ch. 5) leads to a threshold method which, though not directly related to model (1),
nonetheless depends on the estimation of 4 or its derivatives.

Motivation for the introduction of the new estimator is given in § 2. Asymptotic con-
siderations described in §3 then lead to the statement of the paper’s main result,
Proposition 4-1, and to an operational definition of the proposed estimator in § 4. Next,
simulation results comparing the small-sample behaviour of this new estimator with
alternatives are reported in § 5. Finally, § 6 exploits the speed of convergence of the pro-
posed estimator to construct a test of independence based on an estimation of coefficient
2{1 — A1)} of Tawn (1988). Strategies for circumventing the hypothesis of known
marginals are mentioned in the discussion. Mathematical developments are relegated
to appendices.
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2. MOTIVATION

Since the marginal distributions of L are assumed known, the estimation of 4 can be
based on the pairs (U;, V;) = {F(X;), G(Y;)} (1 <i< n), which form a random sample from
copula (1). The starting point of this investigation is the following proposition, which
implies that 4 can be expressed as a function of H(z) = pr(Z; < z), the distribution function
of the pseudo-observations Z; = log(U;)/log(U;V;) (1 <i<n).

PROPOSITION 2:1. Let C(u, v) be an extreme value copula with generator A. The distri-
bution function of the random variable Z =1og(U)/log(UV) is given by

H(z)=z+z(1—2z)D(2),
where D(z) = A'(z)/A(z) and A'(z) denotes the right derivative of A for all 0 <z < 1.
The proof of this proposition stems from the easily checked formula
pr(U <u, Z < z) = H(z)u'@P=,

As a consequence of this result, one gets

A ‘HE -z
A~ P £z(1—z) Z

for arbitrary choices of 0 <s <t < 1. Since 4(0)= A(1) =1, one may write

A(t) =exp { J.t IZJ((IZ)__Z; dz} =exp { — Jl 1;{((12)—_2; dz} .

Let H, be the empirical distribution function of Z,, ..., Z,. Replacing H by H, in the
above expressions yields two possible nonparametric estimators for 4, denoted by

'H _ lHn _
Ag(t)=exp{L #iz)_T)Zdz}, Aﬁ(t)=exp{— £ TiZ)—T)ZdZ}'

The asymptotic properties of these two preliminary estimators are studied in the follow-
ing section. This will lead us, in § 4, to estimate log A4 by

log 4, (1) = p(t) log A7(t) + {1 — p(1)} log 4, (1), (2)

where p(t) is an appropriate weight function. The performance of 4, as an estimator of
A will then be compared to that of its competitors in § 5.

3. ASYMPTOTIC PROPERTIES OF THE TWO PRELIMINARY ESTIMATORS

Before looking at the asymptotic behaviour of log A for i =0, 1, one should note that
they are both unbiased estimators of log A4 for all sample sizes, since H, is itself unbiased
for H. This fact is formally stated below for log A2, together with its limiting behaviour
as an estimator of log 4 and as a process on [0, 1].

PROPOSITION 3-1. The statistic log A2 is an unbiased and uniformly, strongly consistent
estimator of log A. That is, one has E(log A%)=1log A for all n>1 and

sup |log A%(t) —log A(t)| -0

te[0,1]

almost surely. In addition, the process n*(log A2 —log A) is asymptotically Gaussian with
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Zero mean and covariance matrix

(uAv)— Hu)H(v)
To(s, t) = JJ w(l—u)(1—0) dv du.

Since H(u A v) > H(u)H(v), it should be observed that I(¢, t) is monotone increasing in
t, so that, in spite of its attractive properties, log A%(¢) is an increasingly unreliable esti-
mator of log A(t) as t — 1. A similar analysis shows that n*(log A1 — log A) is asymptotically
Gaussian with zero mean and covariance matrix

LY H(u A v) — Hu)H(v)
F1(S,t)=££ w(l—u)(l—0) dv du,

and hence that the variance of log A;(¢) is a decreasing function of ¢. This phenomenon
suggests that a combined estimator of the form (2) might be preferable to each of the
log AVs, so long as p(t) gives comparatively more weight to log 4 in the neighbourhood
of i. The following proposition delineates circumstances under which this combined esti-
mator inherits the properties of the log A%s.

PROPOSITION 3-2. Suppose that p is a bounded function on [0, 17]. The statistic log A,
defined in (2) is then an unbiased and uniformly, strongly consistent estimator of log A.
In addition, the process n*(log A, —log A) is asymptotically Gaussian with zero mean and
variance function

I(1) = p*(OTo(t, 1) + {1 — p()} T3 (8, ) + 2p(){1 — p(1)}C(t), (3)

where

Hu){l —H(v)}
(o) = J J uv(l—u)(l—v)d bdu<0

is the asymptotic covariance of n* log A%(t) and n* log AL(t).
It would be natural to choose p(t) so as to minimise the asymptotic variance I'(¢), that
is

I(t, t) — C(¢)

PO =+ nen—2cn OSESD: (4)

In this case, one has 0 < p(t) < 1. However, as the terms on the right-hand side of (4) are
unknown and may be inconvenient to estimate in practice, the simple choice p(t)=1—¢
will be used for simulations reported in § 5.

4. DEFINITION OF A NEW ESTIMATOR

In view of Proposition 3-2, a natural estimator of 4 would be A4, as defined implicitly
by (2).If Zy), ..., Z, stand for the ordered Z;’s, and if

i 1/n
Qz:{n Z(k)/(l_Z(k))} (I<i<n)
k=1
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it is not difficult to see that A, can be written in closed form as

(1-1)Q,~?® if 0<t<Zy,,
A, () =ML =) T mQuTPOQ Y i Zy <t < Zgyyy (1<i<n—1), (5)
tQ, P® if Z,<t<l,

provided that the Z’s are distinct.

This estimator has the property that 4,(0) = 4,(1) =1, provided that p(0)=1—p(1)=1.
It is clearly not unbiased for A, since E(4,) > exp{E(log A,)} = A by Jensen’s inequality;
it may be shown to be asymptotically unbiased, however. The basic properties of 4, are
summarised in the following proposition, which constitutes this paper’s main theoretical
contribution.

PROPOSITION 4-1. Suppose that p is a bounded function on [0, 1]. The estimator A,
defined implicitly by (2) is an asymptotically unbiased estimator of A which is uniformly,
strongly consistent.

Naturally, one could also use Proposition 3-2 to characterise the asymptotic behaviour
of the process (4,/A)"". The fact that, in large samples, log A,(¢) is approximately normal
with mean log A(¢) and variance I'(¢)/n can be exploited to construct pointwise approxi-
mate confidence intervals for log A(t) or A(t). This only requires consistent estimation of
I'(t), which may be obtained by replacing H by H, in (3). The proof that the resulting
estimator is uniformly, strongly convergent is similar to that of Proposition 3-1; the details
are provided by A.-L. Fougéres, in an unpublished 1996 Université Paul-Sabatier doctoral

dissertation.

5. COMPARISONS WITH ALTERNATIVE ESTIMATORS

A Monte Carlo experiment was carried out to compare the small-sample behaviour of
A, with two of its main nonparametric competitors, and with the maximum likelihood
estimator in two parametric models. The purpose of the analysis was to evaluate the
relative precision of these procedures in terms of overall and local fit, as measured by the
L,, L, and L. distances between the true dependence function and its estimate. An
auxiliary objective was to illustrate the effect of fitting true and false parametric models
in different circumstances.

Specifically, estimator A4, with weight function p(t)=1—t was compared with two
nonparametric alternatives, namely the classical estimator of Pickands (1981) and its
variant proposed by Deheuvels (1991). Two maximum likelihood estimators were also
included, based on the following models.

Model 1. The Gumbel or logistic model, whose generator is A4,(t) = {t"+ (1 — )"}/
with r > 1.
Model 2. An asymmetric extension thereof discussed by Tawn (1988), in which

Agpr(O)=1—=B+(B—o)t+{"t"+ p" (1=t }'" (0<o, f<L,r21).

In the first of these models, parameter r is linked to Kendall’s tau through the relation
1 =1—1/r, while, in the second model, a simple algebraic expression for this measure of
dependence does not exist in terms of «, f and r.

For three predetermined sample sizes, n = 25, 50 and 100, data were generated according
to a factorial design. The selected factors and their levels were as follows:
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(i) choice of estimator (4 = A4,, P = Pickands, D = Deheuvels, 1 = 4;, 2= A4;;;);

(ii) presence or absence of symmetry about } in the function A4, as embodied by the
logistic models with parameters (o, f) = (1, 1), in the case of symmetry, and (o, f) =
(0-78, 0-97) otherwise;

(iii) degree of dependence, as measured by Kendall’s tau, with =1, 3,2 correspond-
ing to r=%, 2, 4 and r =142, 258, 50 in the symmetric and asymmetric case
respectively.

These factors were considered fixed, and 500 independent pseudo-random samples of
size n were generated for each treatment. Data were simulated separately in the case of
independence, where the symmetric and asymmetric models coincide. The dependent vari-
able used in each analysis was the logarithm of the L,, L, or L, distance between A and
its estimate. This transformation ensured that the standard hypotheses of the analysis of
variance model were approximately met.

The analysis shows that there exists a significant third-order interaction
(P-value < 0-0001). Table 1 summarises the results of paired comparisons between the five
estimators by level of the other two factors, in the case where n=100. Here, a strict
inequality means that the L, errors are significantly different at the 0-005 level and that
they can be ordered as indicated; the symbol & is used when a difference is not significant
at the selected level. This unusual choice of threshold value is justified by the large number
of observations available for each treatment.

Table 1. Paired comparisons of the log(L,)
error of three nonparametric (A, D, P) and two
maximum likelihood (1,2) estimators of the
generator A of a bivariate extreme value distri-
bution whose marginals are known.

T Symmetric Asymmetric

025 1<A<D=~2<P 1<A<D=2<P
0-50 1<2<A<D<P 2<A<1<D<P
075 1<2<A<D<P 2<A<D<1<P

Comparisons are based on 500 pseudo-random
samples of size 100 from such distributions with various
degrees of dependence and presence or absence of sym-
metry with respect to }. Differences and their direction
are shown only if significant at the 0-005 level.

The results shown in Table 1 are virtually identical to those obtained for other sample
sizes and the two other error functions. When n = 100, for example, the same relations
are valid for log(L,), while for log(L.,) all instances of ~ must be replaced by < on the
first line. These extensive simulations indicate that the new estimator, A, is preferable to
its nonparametric competitors, D and P, in all the situations examined. Although it is
always dominated by a maximum likelihood estimator, as might be expected, it is remark-
able that, more often than not, A ranks second, and typically above the maximum likeli-
hood estimator derived from the incorrect model. This shows the value of using a good
nonparametric estimator as a guide for parametric model selection. Note in passing that,
in situations of weak dependence, maximum likelihood estimation is sometimes unreliable.
In Table 1, this is illustrated in the case where T =1 and the true model is asymmetric:
despite the greater flexibility of model 2, the corresponding estimator is outperformed by
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the simpler, but incorrect maximum likelihood estimate based on the symmetric model,
as well as by the new nonparametric estimator. Figure 1 gives an idea of the size of the
L, error for the nonparametric estimator A4, as a function of ¢ and sample size, for the
symmetric logistic model.

0-08 -
— n =100
\‘\_ n=>50
\,
0-06 - \\ — n=25
L; 0-04 A
0-02 1
0-00 H

00 02 04 06 08 10
T

Fig. 1. Observed L, error of the nonparametric estimator 4 with weight

function p(t)=1—t, based on 500 pseudo-random samples of size 100

from bivariate Gumbel extreme value distributions with different values
of Kendall’s tau.

6. TEST FOR INDEPENDENCE

It is well known that bivariate extreme value distributions are always associated in the
sense of Esary, Proschan & Walkup (1967). Marshall & Olkin (1983), who established
this result, pointed out that in practice the specific case of independence is often encoun-
tered. They listed several families of bivariate distributions that belong to the domain of
attraction of independence; other examples were given by Tawn (1988) and Genest &
Rivest (1989), among others.

Proposition 3-2 can be exploited to construct a test of independence, based on Tawn’s
measure of association, 2{1 — A(})}, for, in the case where A =1 and p(t) =1 —t, formula
(3) reduces to

(1) = 2t(1 = t){n(t) + n(1 — 1) — log() log(1 — 1)},

with n(t)=(1—1t)X;~,*"'/k* This suggests rejecting the null hypothesis at level o
whenever

T,= —{n/y(3)}* log 4,(3) ~ —(n/0-342)* log 4,(3)

exceeds the quantile of order 1 — « of the standard normal distribution. Based on Table 2,
which reports the results of 100 000 replications of the normalised score T,, it would
appear that the asymptotic normal approximation is quite good, even in small samples.
This contrasts with the behaviour of the normalised score statistic for independence in
the logistic model, as considered by Tawn (1988).
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Table 2. Significance level (in percent) for the

test of independence based on statistic T,, as

estimated from 100 000 replications of pseudo-
random samples of size n =25, 50, 100.

Nominal levels
n 10% 5% 2:5%

25 918 401 162
50 953 429 1-88
100 960 455 2:09

7. DISCUSSION

The developments presented here raise at least three additional issues that would deserve
further attention. First, it would be of interest to devise an appropriate estimation pro-
cedure for the optimal weight function involved in the definition of estimator A4,. Secondly,
the assumption of known marginals could be relaxed. Thirdly, multivariate extensions
might be envisaged.

Of these three problems, the question of how to handle the case of unknown marginals
is perhaps the most pressing. Since the parametric form of the extreme value marginals is
known, a rough-and-ready solution along the lines of Gong & Samaniego (1981) would
be to estimate these margins via maximum likelihood and to act as if they were fixed
thereafter. In view of the numerical difficulties associated with the estimation of parameters
in such models (Prescott & Walden, 1980), it is not clear that this solution would be
particularly efficient or reliable in small samples. An alternative would be to use Bayesian
methods, as suggested by Coles & Powell (1996). Another option inspired by recent work
of Genest, Ghoudi & Rivest (1995) would consist of estimating the marginals by their
empirical distribution functions F, and G,, and then computing an estimator of A based
on the pseudo-observations U; = F,(X;) and V; = G,(Y;). Since the latter would then be
functions of the ranks only, this approach would have the merit of being fully nonpara-
metric, but the induced dependence between the U;’s and V;’s would make the mathematical
analysis harder.
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APPENDIX 1
Proof of Proposition 3-1
The unbiasedness of log A%(¢) as an estimator of log A(t) is an immediate consequence of the
fact that E(H,) = H, upon interchanging the order of integration in the expression

"Hy(z)—z
E{log AS(t)} = E{ J;) ;(T—T) dz} .

This application of Fubini’s theorem is justified by the fact that |D(z)| <1 for all 0 <t <1, so that

r jl wﬂ{(x) dz = Jt {2+ (1 —22)D(z)} dz < 0.
0

0 z(1—2) 0
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Next, it must be shown that

S= sup dz| -0

t€[0,1]

J' H,(z) — H(z)
2(1—2)

almost surely as n— oo. If # denotes the support of H and if 0 <« < 1, then
H,(t t 'H(z){1—H(z)} |
S < sup |H,(t) — H(1)]| f [ (=) (Z)}:| (z(1— 2)* 1 dz.
cew HO){1— H()}] 0 z(1—-2)
Observe that the latter integral is finite, since

H(z){1 — H(z)}
z(1—2)

={14+(1—-2)D(2)}{1 —zD(z)} <4, (Al11)

from the boundedness of D. The result then follows from an application of Lai’s theorem, as stated
on p. 410 of Shorack & Wellner (1986), with (t) = {¢t(1 —t)} ~*

To find the asymptotic distribution of the process n*(log A2 — log A), it is necessary to call on a
theorem of Mason and van Zwet (Shorack & Wellner, 1986, p. 501). According to this result, there
exists a probability space on which sit jointly a sequence (Z*) having the same distribution as the
sequence (Z,) and a sequence (B,) of Brownian bridge processes such that, assuming Z¥ = Z,
without loss of generality, one has

n*{H,(2) — H(2)} = B, {H(@)} lyyjn1 - ym tH(E)} + [HE{1 — H}TF 7 0,(n™)
for all 0 <v <4 One may thus write

' H,,(Z) - H(Z)

n* {log A%(t) — log A(t)} = J n* dz

0 z(1—7z2)
*B,{H i VL H .
= j H 1[1/,, 1-1/n] {H(Z)} dz +0 ( v) J [ (Z){Z(l - ij)}] iz

Observe that, because of (A1-1), the second term in this summand is O,(n "), so that the processes
B,{H(2)}
z(1—-2)

have the same asymptotic behaviour. Now as it turns out, their limiting distribution is precisely
that of the process

t—>n*{log A(t) —log A(t)}, t+ f Liym1-1ymH(2)} dz

. J BHE)S . (A12)

z(1—2)

defined in terms of an arbitrary Brownian bridge B. Note that the latter integral exists for all
0 <t <1, because one can write B{H(z)} = W{H(z)} — H(z)W(1) in terms of a Brownian motion
W(t) and W{H(z)} = O[{—2H(z) log H(z)}*] in a neighbourhood of the origin; see for example
Csorgd & Révész (1981, p. 26).

To complete the proof, it remains to show that (A1-2) is a centred Gaussian process with the
desired covariance function. Again, this requires an application of Fubini’s theorem. In the case of
the expectation, this is justified by the fact that

EIBH) | HE - HET?
L A1-2) KE‘C'L 2(1-2)

where { is a A7(0, 1) random variable. A similar argument may also be invoked to handle the
covariance.

dz < o0,
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APPENDIX 2
Proof of Proposition 41
It is immediate from Proposition 3-2 that A, is a uniformly, strongly consistent estimator of A.
To show that it is asymptotically unbiased, fix 0 <t <1 and let

T, = exp[p(1) log A3(t) + {1 — p(1)} log A1(t)]

be a positive random variable based on a single observation from distribution H. Since Z,, ..., Z,
form a random sample from H, it is clear that

lim E{4,(1)} = lim | T{|yn,
where | T; ||, = E(T?) for arbitrary 0 < a < oo.

Suppose for a moment that || T;||, < oo for one such «. It then follows from Exercise 5d of Rudin
(1974, p. 74) that

lim E{4,(1)} = exp{E(log| T;])} = exp[E{log 4,(¢)}] = A(1)

in view of Proposition 3-2.
To show the existence of an appropriate a, first note that

%y ! "po,n(x)—2 "oa(x)—z :|
E(T:)—JO exp[a(t)L—z(l_Z) dz—oc{l—p(t)}J; -2 dz | dH(x)

t 1 —x ap(t) 1 X a—ap(t)
=t j < ) dH(x) + (1 —1t) J <——> dH(x) (A2-1)
X , \U—x

0

and that, in the case where H(x) = x, both summands are clearly finite whenever
max{ap(t), a —oap(t)} < 1.

For any such «, it turns out that E(TY) is finite for any other H, as the following argument shows.
From the properties of A4, there must exist 0 < a < b < 1 such that H(x) < x for x < a and H(x) > x
for x > b. Introduce two auxiliary distribution functions

H H(x)—b
H,(x)= _c(;i)' l[O,a)(x) + 1[a,1](x)> Hy(x) = 1[0,b)(x) -1+ %)b 1[b,1](x)9

and observe that H, is stochastically larger than the uniform distribution on [0, a], while H, is
stochastically smaller than the uniform distribution on [b, 1]. As the integrands in (A2-1) are

monotone, it follows that
a /1 — x\*® a /1 — x\*P®
[ (2 e [ ()"
0 X 0 X

1 a—ap(t) 1 a—ap(t)
(l—b)f <——x ) de(x)sj < al ) dx,
b, \1—x b \1l—x

as an application of Theorem 1.2.2 of Stoyan (1983). The boundedness of E(T?) is now an immediate
consequence of this observation.
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