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Abstract: The authors examine the asymptotic behaviour of conditional threshold exceedance probabilities
for an elliptically distributed pair (X,Y") of random variables. More precisely, they investigate the lim-
iting behaviour of the conditional distribution of Y given that X becomes extreme. They show that this
behaviour differs between regularly and rapidly varying tails.

Le comportement extréme des lois elliptiques bivariées

Résumé : Les auteurs s’intéressent au comportement asymptotique de probabilités conditionnelles de dé-
passement d’un seuil pour une paire (X,Y") de variables aléatoires de loi elliptique. Plus précisément, ils
étudient le comportement limite de la loi conditionnelle de Y sachant que X devient extréme. Ils montrent
que ce comportement differe suivant que les queues de la loi sont a variations réguliéres ou rapides.

1. INTRODUCTION

Multivariate extreme events are common in finance, insurance, hydrology and climatology,
among other fields. Multivariate extreme value theory is generally regarded as the standard
tool for modeling such events, despite the fact that several authors have recently pointed out
their possible limitations; see, e.g., Bruun & Tawn (1998), Heffernan & Tawn (2004), Maulik &
Resnick (2004), or Abdous, Fougéres & Ghoudi (2004a).

In practice, extreme-value models perform well provided that the data satisfy the so-called
asymptotic tail dependence property (see, e.g., Sibuya 1960; Joe 1993). Specifically, a bivari-
ate random vector (X,Y") with marginal distributions F'x and Fy is said to be tail dependent
whenever

A= lim P{Fy(Y) >u|Fx(X) >u} >0,

when this limit exists, in which case A € (0, 1) is called the (upper) tail dependence coefficient.

In recent years, tail dependence has been heavily investigated, particularly in financial con-
texts, where its applications are numerous; see, e.g., Embrechts, McNeil & Straumann (2002),
Schmidt (2002) or Frahm, Junker & Szimayer (2003). Nevertheless, the notion is somewhat
limiting, as both components in the definition of A are required to become extreme at the same
rate.

A more general point of view on tail dependence has recently been proposed in Heffernan &
Tawn (2004) and Abdous, Fougéres & Ghoudi (2004a). Given an arbitrary random pair (X,Y)
on IR?, Heffernan and Tawn focus on the limiting form of P(Y <y | X = ) as z — oo.

In this paper, however, we will follow Abdous, Fougéres & Ghoudi (2004a) in considering

0(z,y) =P(Y <y| X >=x)

as the main measure of interest. More precisely, we will focus on the limiting behaviour of
the probability 6(z, y), when = becomes extreme, while y is either fixed or becomes extreme at
various possible rates, so that the limit of 6(z, y) when  — oo is nondegenerate.

One argument for working with 6(z, y) instead of P(Y < y| X = z) is that it is a natural
generalization of the tail dependence coefficient. Moreover, in finance and risk management, this
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function is related to contagion and stress testing concepts. Contagion formalizes the fact that
1—6(z,y) > P(Y > y), where X and Y denote two positively dependent market returns. As
for stress tests, they measure the influence of large movements in financial markets on portfolio
values. Both notions are thus related to the conditional distribution of a portfolio value given
unexpected activities in the financial market.

Proposition 3.2 of Abdous, Fougéres & Ghoudi (2004a) shows that a simple relation links
O(z,y) and P(Y < y|X = z) wheny — oo, sothaty = &£(x) — oo as z — oo, with
differentiable. In the regular cases where X and Y have densities fx and fy respectively, one
obtains

Ty (y)
fx(z)

The aim of this paper is to investigate the possible nondegenerate limiting behaviours of
O(z,y) as x — oo, in the specific case where (X,Y") follows a bivariate elliptical distribu-
tion. This is of special interest, given that elliptical distributions provide a wide range of tail
behaviours and are commonly used in financial and risk models, where the Value-at-Risk (VaR)
is a coherent risk measure as used by Artzner, Delbaen, Eber & Heath (1999). Important special
cases of elliptical distributions include the multivariate Student distributions and the regular cen-
tered Gaussian mixtures. See Abdous, Genest & Rémillard (2004) for additional properties of
this class of dependence models.

Background material is reviewed in Section 2. Explicit formulas for 6(z, y) as ¢ — oo are
then given in Section 3, both when y becomes extreme at a suitable rate, as well as when y is
fixed. These formulas are then illustrated in Section 4, where they are used to provide estimates
of O(x, y) for given values of = and y. Conclusions and a discussion are presented in Section 5.
Proofs are relegated to the Appendix.

T—r00

lim 0(z,y) = IlLrI;O{P(Y <y|X=ux)- E@)P(X >z|Y = y)}

2. PRELIMINARIES

The following background information is excerpted from Fang, Kotz & Ng (1990); see also
Schmidt (2002). Let X and Y be random variables with cumulative distribution functions F'x
and Fy, means px and uy, and standard deviations o x and oy, respectively. When its joint
distribution is elliptical, the pair (X, Y") can then be represented in the form

(X,Y) = (,le,,u,y) +R(UxDU1,Uy{pD Ui ++1—p?v1—D? UZ})

Here, p is Pearson’s correlation between X and Y'; furthermore, Uy, Uz, D and R are mutually
independent random variables, R and D are positive, D? ~ Beta(1/2,1/2), and

P(U; =1)=P(U; = -1)=1/2, i=1,2.

Consequently, the marginal distribution functions can then be seen to satisfy the relation
oxFy ' (v) = oy Fx'(v) forall v € (0,1). Furthermore,

P(Y <y|X>2)=P{Y <(y—py)/oy | X > (z— px)/ox},

where X and Y are the standardized versions of X and Y. It may thus be assumed without loss
of generality that ux = py = 0and ox = oy = 1, as will be done in the sequel.

In the next section it will be seen that in essence, the behaviour of 6(z, y) is ruled by the tail
behaviour of the radius component R. In fact, this behaviour will be shown to differ between the
classes of regularly and rapidly varying tails (Resnick 1987), whose definitions are recalled next.

We say that R has a regularly varying tail with index —a < 0 whenever

P(R > A\x)

PRS2

Hea:
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as ¢ — oo. Furthermore, we say that R has a rapidly varying tail whenever
o ifo< A<,

1 ifA=1,

0 ifA>1,

P(R > Az)

' PR )

as z — oo. We will assume a slightly stronger hypothesis than 4 ., which consists in assuming
the existence of an auxiliary function v such that
P{R >z +ty(z)} 4

+. : _
Hoot I =Rz ¢

See Resnick (1987, p. 26) for further details. This function is positive, continuous and satisfies

lim wlt+ 29t} =1, lim¢'(t)=0, and lim ¥

t— o0 q/)(t) t— o0 tooo £ 0.

The class of distribution functions satisfying X, was introduced by de Haan (1970) as the
T"— varying class. Note finally that the auxiliary function is unique up to asymptotic equivalence,
and that it can be writtenas ¢ (¢t) = {1—H (¢)}/H’(t), where H denotes the distribution function
of R; see, e.g., Resnick (1987, p. 40). Some insight into the reasons for looking at the classes
M, and KL of tails is given in the next section, after Theorem 1.

3. TAIL BEHAVIOUR FOR ELLIPTICAL DISTRIBUTIONS

This section describes how the conditional probability 6(x,y) = P(Y < y| X > z) behaves
when z becomes extreme while y is also extreme or fixed. Theorem 1 tackles the situation where
both z and y become extreme, whereas Theorem 2 deals with the case where y is fixed. The
function ¢ — sign(¢) is defined as

1 ift>0,
sign(t) = 0 ift=0,
-1 ift<0.

THEOREM 1. Let (X,Y) be a bivariate standardized elliptical random variable. A non-
degenerate limit exists for P(Y < y| X > x) as both z, y — oo in either one of the following
circumstances:

(i) R satisfies H, and y ~ px + zz when x — oo, for z € IR. Then

lim P(Y <y|X >z) =

T,y—00
zva+1 sign(p + z) — . voa—+1 1
Ta+1< ) gn(p a) Ta+1{81gn(p+Z)7< p)},
1—p2 lp+ 2| 1—p* \p+z

where T, () is the cumulative distribution function of a univariate Student random vari-
able with v degrees of freedomand 7', (z) = 1 — T, ().

(ii) R satisfies H,andas z — oo,y ~ pz + z+/zt(x) for some z € R. Then one has

lim P(Y <y|X >z) = q><#>,

—00 1— p2

where ® is the standard normal distribution function.
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Remark. Observe that by setting z = 1 — p in Part (i) of Theorem 1, one can recover the for-
mula for the tail dependence coefficient A given by Embrechts, McNeil & Straumann (2002) for
the Student distribution and by Schmidt (2002) in the more general case of elliptical distribu-
tions. The same substitution further exhibits the well-known fact that the regularly varying case
corresponds to asymptotic dependence.

In view of Theorem 1, the extreme-value rate y ~ px + zz produces a nondegenerate limit
(Abdous, Fougéres & Ghoudi 2004a). In cases of asymptotic independence, typically occurring
under HZ,, this rate turns out to be too fast, however. For, it leads to a degenerate limit for
O(z,y) as x — oo. Part (ii) of Theorem 1 precisely exhibits the proper rate to choose, namely
y ~ px + z/x(x). This rate is slower than the extreme-value rate, since ¢ (z)/z — 0 as
T — OQ.

The next theorem states the limiting behaviour of 8(z, y) as * — oo and y remains fixed.

THEOREM 2. Let (X,Y) be a bivariate standardized elliptical random variable. For any fixed
y € R, one has

. 1
(i) Under Hy, lim P(Y <y|X >z) =Tut1 <p ot )
T—00 1— p2

(i) Under #L, lim P(Y <y|X > z) = 1(p < 0) for p # 0 and for p = 0, one has
T—>00

1/2 if lim, o0 x(x) ,
Ilirrgo P(Y <y|X>z)=1 ®(y/VX) if limg oo 29p(x) = A,
{sign(y) +1}/2 if lim,; ,o0 z¢0(z) = 0.

In other words, Theorem 2 states that the only case where a nondegenerate limit occurs for
fixed y corresponds to a rapidly varying distribution with p = 0 and zy(z) — . In this
specific situation, the two rates arising from Theorem 1 and 2 coincide. This happens in particular
for the normal and the logistic distributions, as shown in Table 1. The table summarizes, for
some classical bivariate elliptical distributions, the tail properties required for the application of
Theorems 1 and 2.

TABLE 1: Index of regular variation « or auxiliary function ¢ for some examples of bivariate elliptical
distributions.

Bivariate distribution Generator g(u)f a  YP(r) limge zp(z)
Student (1 +u/v)~ /2 v —

Logistic e “/(1+e™)? 0o 1/(2z) 1/2

Kotz, s < 1 u* "t exp(—u®) co x'T 00
Normal (Kotz, s = 1) e /2 o 1/z 1

Kotz, s > 1 u* ! exp(—u®) 0ozl 0
Symmetric generalized hyperbolic*  K,_1{y/a(b+u)}/(b+u)*=/? oo 1/y/a o0

1 Recall that the standardized elliptical density function can be written as f(x,y) = Cg{(z2 —2pzy+v3)/(1 —p?)},
in terms of a generator g and a positive constant C. The density of R is given by h(r) = Krg(r2), where K is a
normalizing constant (see, e.g., Fang, Kotz & Ng 1990).

1 K, is the modified Bessel function of the third kind (or MacDonald’s function), s is a real number and a, b are positive
real numbers.



2005 BIVARIATE ELLIPTICAL DISTRIBUTIONS 321

Figure 1 illustrates the various limiting behaviours obtained in Theorem 1. One can see
from panels (a) and (b) that a nondegenerate behaviour is obtained for lim,_,, 6(z,y) when
y ~ (p+ z)z in the Student case. One can also see from panels (c) and (d) that y ~ px +
z+/z(x) inthe normal case. Note also that as the degree of freedom of the Student distribution
increases, one “gets closer to the H 1 -case” described in Theorem 1(ii), and therefore closer to
the discontinuous function 1 g+ when looking at the rate y ~ (p + 2)z.

Figure 2 shows some of the possible asymptotic behaviours described in Theorem 2. There
is only one case which leads to a nondegenerate behaviour of 6(x,y) when y is fixed. This is
illustrated by curve (c) and it occurs under the assumption HI_ for p = 0 and lim, o0 z9(z) =
¢, where 0 < ¢ < 0.

1.0

0.8

Probability
0.6

0.4

0.0

FIGURE 1: Plots of lim; oo P{Y < (p+ 2)z| X > z} in terms of z for (a) a bivariate Student
distribution with p = 0.5 and v = 2; (b) a bivariate Student distribution with p = 0.5 and v = 20 and
plots of lim; oo P{Y < pz + z4/z9p(x) | X > x} interms of z for (c) a bivariate normal distribution
with p = 0.9 and (d) a bivariate normal distribution with p = 0.

4. APPLICATIONS

In practical situations where bivariate random vectors are observed, one often has to evaluate
the probability that one of the components belongs to a specific domain, given that the other is
greater than a fixed value. Whenever the domain of interest does not contain any of the observed
vectors, the classical empirical estimates of this probability either cannot be evaluated or take
degenerate values of 0 or 1. To overcome this deficiency, one can rely on the estimation of the
limits given in Theorems 1 and 2, whenever the distribution can be assumed to be elliptical.
Evaluation of these limits only requires an estimate of the correlation coefficient p, and the tail
index «, or the auxiliary function .

The first two parameters have been widely studied in the literature. As for the estimation
of the auxiliary function 1, it is considered in a forthcoming paper; see Abdous, Fougéres &
Ghoudi (2004b). Practical aspects of Theorem 1 and Theorem 2 when dealing with real data are
investigated therein as well. As an illustration, we will focus hereafter on the regularly varying
case, which requires the estimation of p and « only.

Estimation of p is classic. One can merely use p,,, the empirical version of p. However, in
order to avoid the instability of p,, in heavy-tailed cases, it is advisable to make use of an estimate
based on the relationship p = sin(77/2) that exists between Kendall’s tau and Pearson’s corre-



322 ABDOUS, FOUGERES & GHOUDI Vol. 33, No. 3

lation coefficient for elliptical distributions. See Lindskog (2000) or Hult & Lindskog (2002) for
a discussion of this approach.
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FIGURE 2: Plots of lim, oo P(Y < y | X > z) in terms of y for (a) a bivariate Student distribution with
p = 0.5and v = 2; (b) a bivariate normal distribution with p = —0.9; (c) a bivariate logistic distribution
with p = 0; and (d) a bivariate Kotz distribution with s > 1 and p = 0.

Several options exist for the estimation of the tail index «, but none of them dominates
its competitors universally. The most classic estimator is that of Hill (1975). Its performance
strongly depends on the sample fraction used for the estimation, and many strategies have been
proposed to optimize this choice. We refer for example to the papers of Dekkers, Einmahl &
de Haan (1989), Drees & Kaufmann (1998), Gomes & Oliveira (2001), or Matthys & Beir-
lant (2002), among others. Some graphical methods such as Hill plots have also been proposed;
see, e.g., Resnick & Starica (1997) and Drees, de Haan & Resnick (2000). As reported in the
above references, the bias term remains large in case of light tails, even if the sample frac-
tion is selected optimally. In this paper, we adopt the approach of Huisman, Koedijk, Kool &
Palm (2001). These authors proposed a specific bias correction technique, which presents some
improvement over the previous estimators.

In what follows, we rely on a small simulation study to illustrate a way of using Theorem 1 (i)
in practice. Bivariate Student distributions with various degrees of freedom v have been simu-
lated. Without loss of information, we provide in Table 2 below results for two models only,
v = 2 and 20. In both cases, we simulated 1000 samples of size 500. For each sample and
various values of z and y, we evaluated:

e an estimation of the probability 6(z, y) using Theorem 1(i);

e an estimation of the probability (x, y) using the empirical distribution;

o the exact value of 6(z, y), computed by numerical integration;

o the exact value of the limit stated in Theorem 1(i), also computed by numerical integration.

The values of = and y for which the probability is estimated correspond to the 0.975, 0.99,
0.999, 0.9999 and 0.99999 marginal quantiles. Table 2 contains the mean and standard deviation
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obtained from the 1000 samples of bivariate Student distributions with 2 and 20 degrees of free-
dom. Different values of p have also been examined and are not reported here, since they lead to
quite similar performances.

First note that the empirical estimator fails for large quantiles. In particular, when x is the
quantile of order 99.99%, it was only possible to compute it for 4.5% of the simulations. This
proportion drops to around 0.2 % for z is the quantile of order 99.999%. The results also show
that the estimates obtained via Theorem 1 provide an excellent alternative even for extreme quan-
tiles. As outlined in Table 2, the accuracy of these estimates increases with the heaviness of the
tails. A careful look into the simulation details shows that for light tails the loss of accuracy is due
to the poor behaviour of the tail index estimator. This has already been discussed by Huisman,
Koedijk, Kool & Palm (2001).

5. CONCLUSION AND DISCUSSION

In this paper, the extreme behaviour of the conditional distribution associated with a random
pair of elliptical random variables (X,Y") has been considered. The asymptotic behaviour of
0(z,y) =P(Y <y|X > x)asz — oo has been studied, and expressions have been determined
for y, as a function of x, which lead to nondegenerate limit. Such functions y = o(z) differ,
depending on the tail behaviour of the radial component associated with (X, Y"). The estimation
problem connected with the theoretical results obtained has been treated in the regularly varying
case. The rapidly varying case involves the estimation of a less classical tool—namely, the
auxiliary function defined in Section 2—and will be discussed in a subsequent paper; see Abdous,
Fougéres & Ghoudi (2004b). The simulation results highlight the relevance of Theorem 1 as an
alternative way to estimate the probability of extreme events, as required in the financial context
of contagion or stress testing, for example.

Interestingly, Theorem 1 also settles in part a conjecture formulated by Eddy & Gale (1981)
while they were studying the convex hull of a spherically symmetric random vector (X,Y).
They noticed that the random measure associated with this convex hull is related to the extreme
behaviour of the underlying distribution. In particular, in their Theorem 4.1, they identified the
random measure for a special class C of spherical distributions with exponential tails, namely
for survival functions H (r) = P(R > r) of the form r< exp(—r?) for arbitrary real  and for
6 >1.

The key point in their proof consisted of showing that for z € Rand ¢ > 0,

P(X > b, +a,'t,Y <a,'c, 'z
i Pttt 5006 o
where b,, is the solution of H (b,) = 1/n, a, = Bb2~! and ¢,, = {Blog(n)}~'/2. The above
limit can be rewritten as

lim P(X > b, +a,'t,Y <a,'c,'z) P(X > by + a,'t)
1
n—c0 P(X > b, +an't) P(X > b,)

Observe that for the class C, the auxiliary function  is given by (z) = z'~?/3 and the
normalizing sequences satisfy a,,! = (b,,) and a,,'c;;t = 1/b,1(by,) . By definition of +, one
sees that

Y P(X > b, +a,'t) _,

noee  P(X >bn)
Setting z = b,, + a,, 't and exploiting properties of ¢ given in Lemmas 1.2 and 1.3 of Resnick
(1987, pp. 40-41), one obtains

Y P(X > b, +a,'t,Y <a,'c,'z) lim P{X > 2,V < 2y/bpt0(b,)}
i i

m
Yoo P(X > b, + an't) z—00 P(X > )

)

which converges to ®(z) by Theorem 1(ii).
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TABLE 2: Simulation results for two bivariate Student distributions with (v, p) = (2, 0.5) (top) and
(v, p) = (20,0.5) (bottom). In each cell, line 1 provides the average (standard deviation) of the estimation
of 6(x,y) based on Theorem 1(i) with z = y/z — p. Line 2 gives the same information for the empirical
estimate of 6(z, y). Line 3 provides the theoretical value of 6(z, y) (left) and its associated limit given by
Theorem 1(i) (right). Asterisks are used when there are no available results. Values of x and y are chosen
as the marginal quantiles with probability p, where p labels rows and columns.

Probabilities associated with x

Probabilities
associated 0.975 0.99 0.999 0.9999 0.99999
with y

0617 (0.047) 0444 (0.037) 0255 (0.031) 0211 (0.031) 0.198 (0.030)
0.975 0599 (0.150) 0.447 (0.260) 0.266 (0.416) 0.240 (0.431)  «
0598 0609 0438 0440 0257 0257 0213 0213 0201 0.201

0794 (0.050) 0.617 (0.047) 0.302 (0.032) 0.223 (0.031) 0.202 (0.030)
0.99 0778 (0.125) 0.607 (0.258) 0.305 (0.434) 0.240 (0.431) =
0775 0786 0605 0609 0302 0302 0225 0225 0204 0.204

0971 (0.018) 0.933 (0.031) 0.617 (0.047) 0.304 (0.032) 0.223 (0.031)
0.999 0970 (0.050) 0931 (0.135) 0.618 (0.444) 0.350 (0.476) 0.250 (0.500)
0970 0972 0930 0932 0609 0609 0304 0304 0225 0.225

0.996 (0.004) 0.991 (0.008) 0.932 (0.031) 0.617 (0.047) 0.304 (0.032)
0.9999 0997 (0.015) 0.993 (0.048) 0.943 (0.215) 0.680 (0.471) 0.500 (0.577)
0997 00997 0992 0992 0930 0931 0609 0609 0304 0.304

0999 (0.001) 0.999 (0.002) 0.991 (0.008) 0.932 (0.031) 0.617 (0.047)
0.99999 1.000 (0.003) 1.000 (0.006) 0.996 (0.056) 0.980 (0.141)  «
1000 1.000 0999 0999 0992 0992 0930 0930 0.609 0.609

Probabilities associated with =

Probabilities
associated 0.975 0.99 0.999 0.9999 0.99999
with y

0.870 (0.040) 0.760 (0.048) 0524 (0.050) 0.380 (0.049) 0.294 (0.047)
0.975 0788 (0.121) 0722 (0.226) 0529 (0.461) 0.440 (0.501) 0.400 (0.548)
0788 0985 0718 0924 0537 0621 0381 0373 0266 0232

0940 (0.027) 0.870 (0.040) 0.658 (0.050) 0.490 (0.050) 0.377 (0.049)
0.99 0.887 (0.094) 0.837 (0.188) 0.671 (0.434) 0.560 (0.501) 0.400 (0.548)
0887 00998 0837 0985 0681 0818 0516 0563 0375 0.367

0989 (0.009) 0.970 (0.017) 0.870 (0.040) 0.724 (0.049) 0.583 (0.051)
0.999 0981 (0.041) 0965 (0.092) 0.908 (0.278) 0.820 (0.388) 0.600 (0.548)
0981 1.000 0968 1.000 0904 0985 0794 0892 0651 0715

0.997 (0.003) 0.992 (0.007) 0.953 (0.023) 0.870 (0.040) 0.755 (0.048)
0.9999 0998 (0.014) 0.996 (0.031) 0.978 (0.134) 0.940 (0.240) =«
0998 1.000 0995 1.000 0979 0999 0936 0985 0853 0919

0999 (0.001) 0.997 (0.003) 0.983 (0.012) 0.942 (0.026) 0.870 (0.040)
0.99999 1.000 (0.004) 1.000 (0.004) 0.999 (0.017) *
1000 1.000 0999 1.000 0997 1.000 0985 0999 0953 0.985
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Eddy & Gale (1981) conjectured that their theorem remains true under the more general
Condition 4.2 in their paper. Theorem 1(ii) shows that this is indeed true, provided that the
distribution satisfies the hypothesis . Note that under this setting, b,, is still the solution of

H(bn) = 1/”7 ap = 1/)(bn)71 and ¢, = q/J(bn)/bn
APPENDIX

A. Proof of Theorem 1.

Note that if (X,Y") has an elliptic distribution with correlation p, then (X, —Y) is also ellipti-
cally distributed, but with correlation —p. Therefore, one just needs to establish the proof for
positive p. From now on, assume that p > 0. Using notation given in Section 2, one gets

PY >y|X >z

- m P[RDUl > z; RD{pUr + /1 - p> /(1 - D?)/D?>U,} > y]
_ m P[RD > o RD{p+ V12 /(I D?)/D2 U} >y]

In the last equality, we conditioned on U; and used the fact that U; and U are two indepen-
dent Bernoulli random variables. Conditioning on Us and using the definition of D yields

1

PY>y|X>z) = A1) [/0 P{R > z/u, Rhy(u,p) > y/u} f(u)du

+/0 P{R > x/u, Rh_(u, p) > y/U}f(u) du|,

where f(u) = 1/v1 —u?, u € (0, 1), is the probability density function of D divided by 2/,

ha(u,p)=p++/1—-p2+/1/u2 -1 and A(x):/o P(R > z/u)f(u) du.

Note that /. is decreasing from oo to p and that A (u, p) = 2p — h4 (u, p). It follows that when
p > 0,0nehas hy(u,p) > 0forallu e (0,1),and h_(u, p) > 0forall u > /1 — p2.

To avoid unnecessary repetition of arguments which are common to the proofs of (i) and (ii),
let £( - ) be a positive function. Algebraic manipulations show that

P{Y > pz + 2(z) | X >z} = Ay (z,2,p) + A2(z, 2, p), 1)
where
Ai(z,z,p) = 2A1(x) /OlP[R > max{g, %}]ﬂu) du,
Ao(z,2,p) = 2A1(x) /\;WP[R > max{g, %}]ﬂu) du
T R L
Now set

uy = 1//1+2202(z) /{z2(1 — p?)} and H(z)=1- H(z) =P(R > ).
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Long but straightforward computations yield

A(@,2.0) = 3 = 535 (1= Crlez G 2 0) @
As(z,2,p) = %’(;’)p) 1(z > 0)+D12(z% 1{—pz/l(z) < z <0}
+ 2AB(1x)1(z <0)— D‘;(z%l{z < —pz/l(z)}, (3)
where
B, / (z/u) f(u) du,
Ci(z, z, p) / H { Thj zé p)) }f(u) du,
pr + 2l(z)
Dl(x)z,p) / { (u p) }f(u) dU,
Da(e, 2, 7) / {2 )
and

DS(%Z,P)LWFI{%}J‘(U)du.

*

The proof of (i) or (ii) is completed by studying the asymptotic behaviour of each term in
decompositions (2) and (3). We will start with the proof of (i). Note that in this case,

o)==, u.=1/\/IT2/(1— )

and that H is regularly varying with index —a. Since H (x/u)/H () < 1 forany > 0 and
€ (0, 1), the Dominated Convergence Theorem shows that

2 _ [ = YT /2

T () 5T {(a +2)/2}

where the last equality arises from (1) and (4) of Lemma 1 in Subsection 6.3. The same argument
yields

lim B;/H (x) :/ u® f(u) du.

T—r00

As a consequence, it follows from Lemma 1 that

l'mi*T 2| atl) 1
vt 2A(z) ot 1-p2) 2

The asymptotic behaviour of the term C'; is only needed for z > 0. By the Dominated
Convergence Theorem, we obtain in this case

i A= [ {2222} s
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Using Lemma 1, we see that

o Cilwzp) ‘”1(\/—\/—)%“{ lajplz (pizp>}.

w00 2A(z) lp+ 2|

Concerning the terms D4, D- and Ds, note that D; and D-, are only needed for p+ z > 0, while
Ds is only used for p + z < 0. Similar arguments to those used for C; prove that

LSS Eall A ey BLOIE

lim 21@zp0) #Taﬂ{ [a+1 <;p>}
v—oo 2A(x) lp+ 2|* 1—p* \p+2

lim 22@50) /1 {7Uh(u’p)}af(u)du,

e T (2) Via\ ptz
. DZ(‘T)Z,:O) _ 1 2 / V 1 7p2
zlggo 2A(x)  ptz|e Tap{vatl 0 ’
\/1—p2 a
lim M — / {M} f(u) du
a=ee H(z) u, ptz
and
. Ds(z,z,p) 1 a+1 1
Ihﬁn;o M@ pt e T o114 sign(p + 2) -2 \orz Pl

Collecting the above terms completes the proof of (i).
For (ii), the function ¢(x) corresponds to /x(x) and w, is taken to be equal to

1/V/1+22¢(2) [{z(1 - p?)}

which goes to one as  — oo. Let

= (1/ux —1)/¢(z)

and note that it goes to 22 /(2 — 2p?) as & — oo.

As in the proof of (i), we will examine the asymptotics of each term involved in decomposi-
tions (2) and (3). First, we establish that

i —20__ _
w70 H (z) /() /2
A change of variable 1/u = 1 + ¢3(x)/z in the definition of A yields

A(w H{x + ty(x)}/H (z)

)/V {1+ tp(z) /232t /1 + th(x)/(22)

Next, recall that lim,_,~, ¢'(x) = 0, so for any € > 0, there exists z( such that for z > zg
one has [¢’(x)| < . Since we are interested in the limitas « — oo, it is assumed from now on

that x > xg. Therefore, one has
zt+up(z) zt+up(z)
/ Y'(s)ds / eds

(4)

<

[p{z +up(z)} — P(z)| =

< euyp(x),
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so that for all z > x,
Y(z)
= {z +up(a)}

Proposition 1.4 of Resnick (1987) states that for = greater than some z{,

H(x) = c(:c)exp{ /I: @ du},
where lim,, _,, ¢(xz) = ¢ > 0. For z > Zo = max(xo, x§), and for ¢ > 0,
ix)f fj&?ﬁ} <) [ / e + sw< )} ds] = e""( / 1 i) T it)l/s'

Since ¢(x) converges to some constant ¢ > 0, there exists z3 > 0 such that for z > x5 one
has c{z + ty(z)}/c(z) < 2. Choosing e = 1 leads to

1/(1+eu) <

ot tha)}) _ 2
H (z) 1+t

fort > 0and z > z. = max(zs,Z). Therefore, the integrand in (4) is bounded by the
integrable function v/2 /{+/t (1+t)}. The Dominated Convergence Theorem and #Z, thus give

lim A(x / £ _dt= \/E 5)
Similar arguments lead to

B, |z1/v/2(1—p%)
lim =———F—— 2/ exp(—u?) du,
v=oo H (z)\/9(x)/x 0

and combining this limit with (5) then yields

lim B /l Ve exp(—u?)du = ® SC N
z~>002A \/_ *p o lfpz 2

The term C is only needed for z > 0 and it will be shown that

lim _G1@:20) ©6)
v=o0 H (z) /() /x

Indeed, observe that for any « > wu,, one has

pr + 2z /xp(r) =
v s D

Whi(wp)
Therefore the integrand in Cy(z, 2, p)/{H (z)y/¥(z)/z } is bounded by the integrand in

x)/ {H (z)\/¢(x)/z }. Since the latter was shown to be bounded by an integrable function,
one can apply the Domrnated Convergence Theorem to obtain (6). Using the same change of
variables as in (4), it suffices to verify that for any ¢ € (O, z/\/2 —2p? )

f_I {prrz\/am/) ) H1+ ty(z)/x}

w=ee H(z)  Lp++/(1—p?){2ty(x) [z + 292 (x) /22}
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Because of HJ, this limit holds as soon as the quantity between square brackets in the
above equation, say Q(z), is such that {Q(z) — =}/ (x) — oo as z — oo. Straightforward
simplifications lead to

Q) —a _ Va/d@) {1+ (@) /z} — 10 2+ BP(x)/e] +pt

¥(z) p+ /(1= p){2t(x) /2 + 292 (2) /2?}

The expression between square brackets is positive for each ¢ € (O, z//2 —2p? ) and as
Y(z)/xz — 0 when z — oo, the proof of (6) is complete. As for the term D5, observe that for
z>0

Dy(z,2,p) _ 1 /1 g{m*z— \mp(x)}f(u)du

2A(x) - 2A(x) Vi—p? pu

m/ H{z + ty(x) + 2/ay(@) } i,
H (z){1 + t(x) /2}V2t /1 + tip(z)/ (22)

As in (5), the integrand is bounded by the integrable function v/2 /{+/# (1 + t)}. Thus, the
Dominated Convergence Theorem yields

lim D2(x) Z,,O)

woo 2A(7) =0

for z > 0. Consider now D; which is only needed for z < 0. Similar arguments to those used in
(6) show that Dy (z, z, p)/{2A(z)} — 0 as z — oco. To complete the proof, note that if p > 0,

the set

{z < —px/l(@)} = {z < —p\/a/(x) }
is empty for « large enough, as z is fixed and lim,_, - /¥ (z) = co. Whereas, if p = 0, observe
that, in the argument used for C, the term {Q(z) — x}/ still goes to infinity. Therefore,

hm Ci(z,2,0)/{H (z)\/¢(z)/x } = 0.
Mimicking the argument, one gets

hm Ds(x,2,0)/{H (z)\/¢(z)/x } = 0.
Once again, collecting the limits of these terms completes the proof. a

B. Proof of Theorem 2.

The proof uses decompositions (2) and (3) with = replaced by —pz/¢(x) + y/£(x). Asin The-
orem 1, one needs to study the asymptotic behaviour of each term involved in these decomposi-
tions.

The proof of (i) will be considered first. Recall that in this case, ¢(x) = z, i.e., z = —p+y/z.
Note that

= V1= p? |1 =2py/a+ 2 /22 = /1—p?
as x — oo. For p > 0 and = > y/p, one gets z < 0 so that one just needs to consider the terms

A, By, D; and Ds. As in the previous theorem, applying the Dominated Convergence Theorem,
we prove that

1
lim B .F_Ix:/ u® f(u) du.
Jm B @) = | s

The terms Dy /H (z) and D3/ H (z) converge to zero, since their integrands are dominated
by an integrable function and lim, . ux = /1 — p?. When p = 0, one has to consider the
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asymptotics of A, By, Cy and D, for y > 0 and the asymptotics of A, B; and D3 for y < 0.
Similar arguments to those used previously show that these quantities converge to 0 as x — oo.
Using Lemma 1 and collecting the terms completes the proof of (i).

To establish (ii), we follow the same procedure. In particular, u, remains the same as in (i)
and for p > 0,

z=—pVa/d(x) +y/Vap(x) <O0.
Therefore one just needs to consider the terms A, By, Dy and D3. The same argument as that
used for the term Bj in the proof of Theorem 1 yields

By 1

A A T 2
The contribution of D; and Ds to the limit is shown to be negligible. As the proofs are quite

similar, only the asymptotic behaviour of D; is given next.
For y > 0 and u between y/1 — p? and u,, one has y/h_(u, p) > z, i.e.,

M) =7 (2)

which by the change of variable 1/u = 1 + t¢(z)/x and the arguments of Theorem 1(ii) shows

that
Dl(x)z,p) * 1

H(x)\/Y(x)/z ~ Jo. (t+1)V2t
The latter converges to zero since ¢, = z(1/u, — 1)/¢¥(z) — oo.

To complete the proof, it remains to consider the case p = 0. Recall that, in this case, only
the terms By, C; and D3 are needed and that u, = 1/4/1 4 32 /22 converges to 1. Using the
change of variable 1/u = 1 + ¢i(x)/z, one sees that ¢, = x(1/us — 1)/9(x) is such that
tyx)(z) — y*/2 as z — oo. The rest of the proof is divided in three subcases depending on the
limit of x4 ().

Subcase 1: lim,_,~ xtp(x) = co. One sees easily that ¢, — 0. Furthermore, the arguments in
the proof of Theorem 1 show that
Bl Cl(.’E,Z,O) DB(‘T)Z,O)
— , = and —————
H(z)yy(z)/z H(z)y/d(z)/z H(z)\/y(z)/x
are bounded by

/t* 1 v
o
o (t+1)v2t

which converges to zero and yields lim, ., P(Y <y|X > z) =1/2.

Subcase 2: lim, oo z1(z) = A > 0. Note that ¢, — y2/2\. The argument of Theorem 1(ii)
shows that

. By lyl 1
A A ‘P(ﬁ) Ty
For the terms C7 and Ds, one sees that
Q) -z _ [z |y{l+td(@)/a} — Vav(z) /2t + 29P(x) /2
Y(z) Y(z) 2t + 12¢(x) [z
forany t € (0,t,). By the argument of Theorem 1(ii), one gets
_Cl(.’E,Z,O) 50 and _D3($,Z,0) =0
H(z)\/(x)/x H (z)y/¥(x)/x

Collecting these terms completes the proof for this subcase.

— o0
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Subcase 3: lim,_, o z1p(x) = 0. In this case, ¢, — oco. Nevertheless, the limitof {Q(z) — z}/x
as ¢ — oo is still equal to infinity, i.e.,

_Cl(.’E,Z,O) 50 and _D3($,Z,0) —

H (z)/(z)/x H (z)\/(x)/x
Using the technique in the proof of Theorem 1(ii), one verifies easily that

B 1

C. Auxiliary lemma.

This subsection contains the statement and the proof of the auxiliary lemma used in the proofs
of Theorems 1 and 2.

LEMMA L Let0<p<1l,a>0,0<a<b<land —oo < ¢ <d < oo. The following
equalities are then satisfied:

b (e} \/1/&271
O [ o= [ty
o V1—u? 1/02—1

22)—(a42)/2 dz,

(ii)/ab{pqumm}\/_ / (1+

where z;7 = (tv1— 2 — py/1—p?)/(1 = p? — 3);

d (o]
(i) / = VI=AVI= [ e = —tfpa) [+t D,
av1—a% + py/1—p?

where {(p, a) = sign(1 — p* —a?)and z, = £(p,a) TR
— 2 —a

d
00 L [y e ) o)

where T, (z) is the cumulative distribution function of a univariate Student random vari-
able with v degrees of freedom.

Proof. Identity (i) is a result of the change of variable w = 1/v/1 + 22, ie,, 2 = y/1/u? — 1.

In order to get (ii), observe that the function pu + /1 — p2 v/1 — u? is increasing for 0 <
u < p and decreasing for p < u < 1. Note also that

0 < pu+ ﬂm <1
for 0 < u < 1. Now consider the change of variable
pu+/1—p2V1—u? =1/y/1+ 22
withax > 0ifu > pand z <0 foru < p. This yields

u=(p+ay1-p?)/V1+a?

and

:c*(U\/lfuzfp\/lf 2)/( /(1= p* —u?).
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Therefore,

\/17u2:(7p$+\/17p2)/\/1+$2
du:( pr++/1—p ) /(14 z?) 3/2,

Applying the change of variable completes the proof of (ii).

Now consider the term (iii). Observe that the function pu — /1 — p? v/1 — u?2 is increasing
for 0 < u < 1. Note also that

and

lpu —V1—p2V/1—-u?| <1
pu—+1—p2/1—-u2 =0

for u = /1 — p2 . Now consider the change of variable
o VIR VI | = VIT P
withz > 0ifu > /1 — p2 and z < 0 for u < /1 — p2. This gives
= —(uvV1—u? +py/1—-p2)/(1 - p* —u?).

Note that there is an indetermination for u = /1 — p?. The rest of the proof is divided in two

subcases. First subcase a > /1 — p?. In this setting, applying the above change of variable
gives

for 0 < u < 1 and that

“ a du
1 21—
/ﬂ'pu N e

_ /oo (1 + :1:2)7(044»2)/2 dx.
—(avT=aZ+p\/1-p?) /(1—p2—a?)

For the second subcase for a < /1 — p?, the same change of variable yields
e o du
u—/1—pP?V1—u?| ——
/ﬂbﬂ g | V1I-u?
/(a\/la2 +py/1-p?)/(1—p°—a®)

o0

(1 +$2)7(oc+2)/2 dz,

which by symmetry reduces to

7/00 (1+x2)7(a+2)/2dx
(avT=aZ +p/1-p% ) /(1—p2—a2)

= 781gn(1 — p2 _ 0,2) fs?;n(lfpzfa2)(am+0\/§)/(1*02*042)(1 + .’1:2)

Finally the proof of item (iv) is straightforward, provided that one uses the change of variable

z=t/vVa+1.
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