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In this article we develop statistical extreme-value theory as a method to validate and improve experi-
ments with extremal responses, and to extrapolate and compare results. Our main motivation is corrosion
tests performed at Volvo Car Company. Localized, or “pitting,” corrosion can limit the usefulness of alu-
minum, magnesium, and other new lightweight materials and makes judicious choice of alloys and surface
treatments necessary. Standard methods for evaluating corrosion tests are based on weight loss due to cor-
rosion and ANOVA. These methods fail in two ways. The first is that it usually is not weight loss but the
risk of perforation (i.e., the depth of the deepest pit) that is of interest. The second is that the standard
ANOVA assumption of homogeneity of variances typically is not satisfied by pit depth measurements,
and that normality does not give credible extrapolation into extreme tails.
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1. INTRODUCTION

In this article we develop methods to validate and improve
experiments with extremal responses, and to extrapolate and
compare treatments. Our main application is to corrosion exper-
iments at Volvo Car Company, and the methods were developed
for this purpose as an engineering tool for routine use.

Making cars lighter is important for reducing fuel consump-
tion, and is a central challenge for the automotive industry.
Localized corrosion (also called “pitting” or “galvanic” or
“bimetallic” corrosion) limits the use of new lightweight ma-
terials, such as magnesium or aluminum alloys. Thus a key is-
sue is to reduce pitting corrosion via coating, surface treatment,
choice of alloy, or use of isolating washers.

Standard methods for evaluating corrosion test are based on
weight loss due to corrosion and ANOVA. These methods fail
in two ways. The first is that it usually is not weight loss,
but rather the risk of perforation (i.e., the depth of the deepest
pit) that is of interest (see, e.g., Isacsson, Strom, Rootzén, and
Lunder 1997). The second is that the standard ANOVA assump-
tion of homogeneity of variances typically is not satisfied by
pit depth measurements, and normality does not give credible
extrapolation into extreme tails. Extreme-value (EV) statistics
has appeared as a theoretically well-founded alternative way
to analyze data on pitting corrosion (see, e.g., Shibata 1996).
This approach has been suggested by Aziz (1956) and Gumbel
(1958), and many subsequent authors. Much of this work was
developed and promoted by Kowaka (1994). Likelihood, gen-
eralized Pareto, and EV distribution methods for analysis and
extrapolation were proposed in a series of articles by Scarf,
Laycock, and Cottis (see, e.g., Scart and Laycock 1994 and ref-
erences therein). However, the literature does not seem to in-
clude advice on how to check experimental conditions or how
to compare corrosion-reducing treatments.

Another application is to the fatigue limit, that is, the “thresh-
old stress for nonpropagation of the cracks” (Murakami and
Beretta 1999). For metallic materials, this threshold stress is
determined by the size of the largest nonmetallic inclusion or
defect (Murakami and Usuki 1989; Takahashi and Sibuya 1996;

Murakami and Beretta 1999). A further application could be to
experiments with synthetic portfolios of financial instruments,
where risks are evaluated from historical extreme price fluctua-
tions over a number of time intervals.

This article reports on the first part of a continuing effort,
where the distant goal is a full theory of design and analy-
sis of experiments with EV-distributed responses. Presumably
such a theory would also be likelihood-based, and incorporate
results from this article, but would in particular add covariate
models for the entire experiment (see, e.g., Stephenson’s recent
R program on covariate models for extreme values, available
at http://cran.us.r-project.org/, package “evd”). We in fact al-
ready tried this approach in a pitting corrosion setting (Isacsson
et al. 1997); however, we now believe that substantial further
development is needed before such a theory can be widely use-
able. This development should include improvement and better
understanding of numerical routines and extensive experience
with and analysis of properties of estimators and tests. It should
also include much better understanding of the effects of dif-
ferent choices of parameterization, and the ability of models
to respect the stochastic monotonicity implied by the nonre-
versibility of the corrosion process.

In this article, analysis is based on block maxima. In a com-
plementary method, the peaks over threshold method, analysis
uses not only maxima, but also all values exceeding a large
threshold (or a predetermined number of the largest values)
(see, e.g., Coles 2001). It is reasonably straightforward to trans-
late our methods to the peaks over thresholds setting. The main
changes would be to replace Gumbel distributions with ex-
ponential distributions and EV distributions with generalized
Pareto distributions. However, in corrosion testing, measuring
the pits is a major part of the experimental effort and the part
that experimenters like the least. Hence the choice of methods is
determined by measurement convenience and not by statistical
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consideration. At Volvo, engineers find it easier to quickly lo-
cate the deepest pit and then measure it carefully. rather than to
make careful measurements of several pits. some of which sub-
sequently turn out to be too shallow to be included in the analy-
sis. Hence the block maxima method is the Volvo standard. and
we have chosen to present our methods in this setting.

The description of the method is given in the context of pit
corrosion. Section 2 summarizes some basic tools for EV mod-
eling. and Section 3 discusses pit corrosion on magnesium and
the Volvo experiment. Section 4 describes the method and an-
alyzes the magnesium corrosion dataset. Section 5 deals with
some statistical and modeling issues that arise. and Section 6
contains our conclusions. Some technical issues are relegated
to appendixes.

2. STATISTICAL EXTREME VALUE THEORY

Statistical EV theory models and analyzes data obtained as
the maxima of many (approximately) independent and iden-
tically distributed (iid) underlying variables. Useful recent in-
troductions to the area have been provided by Coles (2001).
who gave an up-to-date account of statistical methods. and
Embrechts. Kliippelberg. and Mikosch (1997). who presented
the basic theory from an econometric perspective.

The central result of extreme value theory is that the natural
model for maxima is the EV distribution (sometimes also called
the generalized EV distribution) with distribution function

x— =W
Gx) = exp[—{ 14 & l }
a

where o > 0, i, & € R, and the formula is valid for 1 + &(x —
wn)/o > 0. The parameters 1, o, and & are the location, scale.
and shape parameters. For & = 0, the formula should be inter-
preted as the limiting (as & — 0) Gumbel distribution G(x) =
exp[—exp{—(x — u)/o}], and for & negative, the distribution
has a finite upper bound. This model is supported by two re-
lated basic properties:

e The EV distribution is obtained as the only possible limit
(under linear normalization) of the distribution of the max-
imum of # iid random variables as 1 — oc.

e The EV distribution is the only one that is stable under
change of block size. that is. such that if maxima over
smaller iid blocks have this distribution. then maxima over
bigger blocks have the same distribution,

Several methods for estimating the EV parameters have been
proposed (see, e.g.. Hosking, Wallis, and Wood 1985: Johnson.
Kotz. and Balakrishnan 1994, vol. 2. chap. 22). Maximum
likelihood estimation in particular gives good results when the
sample size is not too small (see Sec. 5 and App. B for fur-
ther discussion) and is much more general and flexible than the
competitors. In this article we use maximum likelihood estima-
tion and the delta method for confidence intervals throughout
(see. e.g.. Coles 2001. p. 33).

We consistently use suitably adapted and modified versions
of so-called “Gumbel plots,” which illustrate the adequacy of
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the EV fit and provide easy graphical interpretation and extrap-
olation of results. If X, ..., X, are iid observations, then the
Gumbel plot shows the graph

{X(,-,.—]og<—log : )> i=l,...., n,
n+1,

where X(j) <--- < X, denote the observations ordered in as-
cending order. The values are scattered around a straight line if
they come from a Gumbel distribution. The distribution func-
tion of the fitted EV distribution is also shown in the plots, and
appears as a convex curve if the estimated shape parameter £ is
negative, a straight line for the Gumbel case where £ = 0, and
a concave curve if &€ > ().

3. PIT CORROSION

In this section we give a rapid sketch of galvanic corrosion,
then describe the Volvo magnesium corrosion experiment.

Galvanic corrosion is the consequence of an oxidation—
reduction reaction. This reaction is caused by the potential
difference created when two different metals are in electri-
cal contact and in contact with an electrolyte to form a “eal-
vanic cell.” The rate and amount of corrosion depends strongly
on environmental factors. such as temperature and the precise
composition of the solution, and also on the geometry of the
galvanic cell and on surface structure and treatments. Important
gaps still remain in the basic chemical knowledge of the cor-
rosion mechanism. Hence the automotive industry must resort
to experimentation and experience to enable the manufacture of
sufficiently corrosion-resistant cars.

In particular. sophisticated experimentation systems. such as
climate chambers. have been developed. These chambers make
possible laboratory tests with carefully controlled conditions of
humidity. salinity. and temperature and complement field tests
n an important way.

The following laboratory experiment performed at Volvo Car
Company is typical of many similar datasets. Circular plates of
the magnesium alloy Mg AZ91D were combined with three
different types of bolt—untreated steel bolts (denoted “Fe™).
black-chromated zine-steel bolts (denoted “Fe/Zn C47). and
JS500 zinc-coated steel bolts (denoted “Zn JS5007)—to torm
an experimental assembly [Fig. 1(a)]. The plates were covered
with synthetic dirt (89% washed sea sand. 9% kaolin. % active
carbon. 1% sodium chloride). and the assemblies were placed in
a climate chamber. Then they were exposed to climate cycling
according to the “Volvo indoor corrosion test™ protocol. with-
out acid rain: that is. the temperature was kept constant at 35°C.
and the humidity was cycled between 50% and 95% twice a
day (Isacsson et al. 1997). These conditions are aimed at accel-
erating the corrosion process from years to a matter of weeks.
A basic and very difficult problem is to make this acceleration
uniform for different surface treatments and alloys. and to make
the translation from laboratory experiments to reality.

The experiment was performed with nine plates per type of
bolt. Of these. n = 3 assemblies (“replicates™) with each type
of bolt were taken out of the climate chamber after 2 weeks
of exposure. after 4 weeks of exposure. and after 6 weeks of
exposure. Thus in the terminology of design of experiments
(which is somewhat incompatible with corrosion terminology).
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(@)

(b)

Figure 1. Specimens of Magnesium Plates (a) and Numbering of the Sectors in Terms of Their Position Relative to the Vertical Direction (b).

the treatments are the three types of bolt and the three time
points. During the experiment, the plate rested on an inclined
surface, and the orientation of each plate was recorded. After
the end of the exposure, corrosion products were dissolved from
the plates, and each plate was divided into k = 8 sectors. The
maximum pit depth in each sector was measured by direct ra-
diography, using a technology provided by AGFA (DirectRay,
AGFA). The dataset obtained thus consists of an 8 x 27 matrix
of observations of the maximum pit depth in a sector, with the
sectors ordered according to their position relative to the incline
of the plate.

The more general framework is thus as follows: For each spe-
cific treatment (e.g., choice of alloy, surface coating of the bolt,
duration of corrosion exposure), a given number n of experi-
mental assemblies are used. After the experiment is concluded,
the “measurement unit” (e.g., the plate) is divided into & blocks
(e.g., sectors), and the maximum pit depth in each block is mea-
sured. Hence a typical dataset consists of nk measurements of
block maxima for each treatment.

Now, how should we compare the efficiency of the treat-
ments? In the next section we propose a method for analyzing
such datasets.

4. METHOD AND DATA ANALYSIS

Recall that the experimental assemblies consisted of cir-
cular magnesium plates (the units) joined to steel bolts that
were treated in different ways. Each treatment was applied to
three assemblies, and each unit was divided into eight sectors
(or blocks). The dataset consists of measurements of the deep-
est pit in each such sector.

The method divides the analysis into three parts: a prelim-
inary study of the data, a separate analysis of each treatment,
and pairwise comparisons of the treatments. Each part com-
prises several steps. For each step similar elements are pro-
vided: a graph, a parametric likelihood ratio (LR) test based on
a Gumbel or an EV model, and randomization tests. The latter
are suggested as a way to corroborate the results in cases where
there is doubt as to whether the sample sizes are large enough
to make the LR tests sufficiently accurate.

In each step we first describe the method for a general situa-
tion, then apply it to the Volvo corrosion experiment.

TECHNOMETRICS, MAY 2006, VOL. 48, NO. 2

Steps 1 and 2: Preliminary Study of the Data

The first two steps check that units are replicates and ho-
mogeneous or, in statistical terms, that the nk observations for
a specific treatment are iid. The experiments are designed to
achieve this, and we expect the measurements to pass the test.
However, if they do not, then this may indicate a need to im-
prove the experimental setup. It also would mean that one can-
not proceed with the following steps in the way outlined here;
modifications are needed.

Step 1: Are Units Homogeneous? For each treatment, ob-
servations from sectors at similar locations are combined into
groups, and the values in the different groups are plotted on
separate lines in a dot diagram. If the groups are well chosen,
then these graphs make it possible to see systematic differences
(“inhomogeneities”) between sectors with different locations.
Next, a Gumbel distribution is fitted to each group of sectors.
Inhomogeneities then correspond to different parameter values
in the different groups. This is checked by an LR test. Sample
sizes for this are often small; if they are below, say, 20, then
it is prudent to corroborate the LR test by randomization tests.
We use three such tests. The first test is based on the Gumbel
LR statistic; the other two tests are completely nonparametric
and are based on statistics measuring location heterogeneity and
dispersion heterogeneity (see Fougeres et al. 2002 for more de-
tails).

Data Analysis. To check whether the pit depths were influ-
enced by the position of the sector relative to the incline of the
plate, the sectors were divided into four groups, as shown in
Figure 1(b). Thus for each set of three replicate plates, there
are four groups of two sectors, with 3 x 2 = 6 pit depths mea-
sured for each group. The Fe bolts (top row in Fig. 2) seem
to have slightly deeper pits at the top of the plate, and the
2 weeks Fe/Zn C4 measurements include two high values in
sector group 3. However, no consistent pattern that would in-
dicate a serious influence of the position of the sectors on the
incline emerges from Figure 2.

This conclusion mainly agrees with the results of the formal
statistical tests reported in Table 1, columns 1-4. The p values
for the more specific parametric LR tests are smaller than those
for the location and dispersion tests. The location and disper-
sion tests measure different kinds of deviations from the null
hypotheses, and the p values also differ.
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gives the 2 weeks data, the second, the 4 weeks data; the third, the 6 weeks data.

Rows show, from top to bottom, Fe, Fe/Zn C4, and Zn JS500.

Step 2: Are Units Replicates? The graphical test for system-
atic differences between experimental units (i.e.. if units are
“replicates™) is a Gumbel plot (see Sec. 2) in which each unit
has its own symbol. This is complemented by an LR test of the
hypothesis that the separate parameters for the different exper-
imental units are in fact the same. Because sample sizes were
small (<20). we also performed randomization tests in the same
way as for Step 1.

Data Analysis. Figure 3 presents the Gumbel plots for each
set of three replicate units. The results of LR and randomization

tests are reported in Table 1. columns S and 6. No consistent
pattern that would indicate that units are not replicates is seen.

Comments. The presumption is that the experiment has been
carried out so that sectors are homogeneous and units are repli-
cates. Thus the analysis is aimed only at safeguarding against
gross deviations. In particular. in the subsequent analysis we
use the more flexible EV distribution and do not restrict our-
selves to the Gumbel model. However. sample sizes in Steps
I and 2 typically are too small (less than. say. 20: see App. B)
for successful likelihood estimation of EV parameters, and we
believe that for the present data with values of the shape para-

Table 1. p Values of Tests in Steps 1 and 2

Homogeneous Replicates
LR Randomization-disp  Randomization-loc Randomization-LR LR  Randomization-LR
2 weeks Fe .01 .24 .60 .01 13 12
Fe/zZnC4 .00 27 .26 .00 40 :55
Zn JS500 .37 .66 .38 .39 .16 AT
4 weeks Fe .08 .52 .54 A7 .24 .38
Fe/znC4 .01 .40 71 <17 41 .59
Zn JS500 .13 42 .09 .23 .01 .01
6 weeks Fe .31 .81 .80 .50 .02 .03
Fe/znC4 13 .24 47 52 a2 .44
Zn JS500 .32 .63 41 .40 .30 .34
NOTE: Columns 1-4 test whether sectors are homogeneous; columns 5 and 6 test whether plates with the same treatment are replicates
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Figure 3. Gumbel Plots of Maximum Pit Depths per Sector, for the Three Replicates and the Nine Treatments. Here e is the first sample, Qis
the second sample, and X is the third sample. The first column provides the 2 weeks data; the second, the 4 weeks data; and the third, the 6 weeks

data. The rows show, from top to bottom, Fe, Fe/Zn C4, and Zn JS500.

meter close to 0 (Table 2), LR tests based on approximation by
a Gumbel distribution will detect gross deviations.

Corroboration by graphical and randomization tests may be
prudent. In particular, note that the randomized version of the
LR test gave correct p values regardless of whether or not the
data actually came from a Gumbel distribution. As expected,
the LR test and the randomized LR test led to the same conclu-
sion in most cases. Thus, even for such small sample sizes, the
simpler asymptotic test worked well. (The exception was the
4 weeks Fe/Zn C4 data, for which the Gumbel plot was non-
linear and the randomized LR test would be preferred.) As a
further precaution, we also performed randomized dispersion
and location tests. Generally, these were not as sensitive as the
LR tests. This is probably explained by the role of the model
and indicates that the model-based LR test quantities should be
used.

Table 2. Maximum Likelihood Estimates of & for the Magnesium Data

Fe Fe/Zn C4 Zn JS500
2 weeks .084 (.260) .088 (.148) 130 (.204)
4 weeks .027 (.161) .384 (.205) .091 (.163)
6 weeks —.120 (.167) —.079 (.105) —.098 (.203)
NOTE: Standard deviations are in parentheses.

TECHNOMETRICS, MAY 20086, VOL. 48, NO. 2

Formally, the test of homogeneity uses the assumption that
experimental units are replicates, and correspondingly the test
of whether units are replicates uses the assumption of ho-
mogeneity. However, because of the symmetry of the design,
it seems very unlikely that this “circularity” could hide the gross
deviations that we are interested in guarding against. Of course,
even if deviations are not expected, if they would occur, then
they would invalidate the subsequent analysis and indicate a
need for improvement of the experimental setup.

To proceed, we assume that the analysis in Steps 1 and 2 has
not use given reason to doubt homogeneity and that units are
replicates. For the rest of the analysis, we then pool all of the
observations that stem from the same treatment, and assume
that those observations are 1id.

Steps 3-5: Analysis of One Treatment at a Time

Step 3 is to standardize to meaningful units. This means that
results should be presented and discussed in terms of quanti-
ties that are of central interest to the problem at hand, rather
than in terms of, say, the distribution of the deepest pit in a sec-
tor, which has no practical meaning outside of the experiment.
An example of such a quantity could be the distribution of the
deepest corrosion pit on an entire car.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Step 4 is to test whether a Gumbel distribution is sufficient
to describe the data from the separate treatments. It is relevant
only sometimes. A reason to perform this step could be that
experience from similar situations indicates that the Gumbel
model is likely to be suitable. There is also some theoretical
Justification for the Gumbel distribution: the lack of memory
property of the (approximately) exponential tails of individual
variables linked to the Gumbel limit distribution for maxima.

Step 5 makes Gumbel plots and fits an EV distribution with
confidence intervals for each treatment.

Step 3. Standardization to Meaningful Units. The raw data
are the maximum pit depths in the sectors. However, as noted
earlier. sectors are introduced only for the purpose of analysis
and have no intrinsic interest. Thus it is useful to transform ob-
servations and the fitted EV distribution to meaningful units.
This could be the experimental units. Or. as an example, in the
automotive context. the interest is centered on a car as a unit.
and a car may contain several assemblies like the experimental
unit. and the standardization should then be made accordingly.
For the subsequent analysis. all plots and presentations of re-
sults should be made after standardization to meaningful units
whenever possible. It is straightforward to do this standardiza-
tion (see App. A).

Data Analysis. The maximum pit depth per plate is the in-
teresting quantity rather than the maximum pit depth per sector.
We hence standardized to plates as units wherever possible in
the following steps.
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Step 4: EV Fit versus Gumbel Fir. As discussed carlier, in
some situations it may be reasonable to check the fit of the
Gumbel distribution. We use graphics and an LR test of a
Gumbel distribution against a general EV distribution for this.
Of course. for the latter. lack of evidence against the null hy-
pothesis is not in itself positive proof of good fit of the Gumbel
distribution: it just shows that the fit of the EV distribution is no
better.

Data Analysis. Figure 4 contains Gumbel plots with a fit-
ted Gumbel distribution in addition to the EV distribution. for
two treatments chosen to illustrate good and less-good fit of the
Gumbel distribution. Standardization to units is not done in this
plot. because standardization is model-dependent and would
yield different scales on the x-axes for the Gumbel and EV
distributions. Now consider. for example. the 2 weeks Fe data
(Fig. 4. top). For these. the Gumbel model gives very good fit.
in fact with p value equal to .99 in the LR test of the Gumbel
distribution. But the same conclusion does not apply in all the
cases, as for example for the 4 weeks Fe/Zn C4 data (Fig. 4.
bottom). We hence preferred to use the EV distribution for all
the main Gumbel plots in Step 5.

Step 5: Gumbel Plots. Next. EV (or. i preferred. Gumbel)
distributions with separate parameters for each treatment are
fitted. this distribution and the observations are transformed to
meaningful units, and the result is presented as a Gumbel plot.
with confidence intervals obtained by the delta method. Addi-
tional information is inserted by providing the plot with two
different v-scales: the left one shows the probability of the pit
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Figure 4. Gumbel Plots With Gumbel and EV Fits of Maximum Pit Depths per Sector, for the Magnesium Data, With Associated 95% Confidence
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Figure 5. Gumbel Plot With EV Fit Corresponding to the Maximum
Pit Depth per Unit, for the Magnesium Data With JS500 Coated Zinc
Bolts, After 2 Weeks.

depth exceeding the level (in percent) [this is 100(1 —i/(n+1))
for the ith largest observation], and the other one gives its in-
verse, 1/(probability of exceeding). This is the expected num-
ber of units needed to achieve a given depth and is often termed
the “return period.”

Data Analysis. Figure 5 shows one example of the Gumbel
plots with fitted EV distribution and confidence interval for one
of the datasets. The plot is standardized to units (plates) using
the fitted EV distribution.

Comments. The Gumbel plots from Step 5 contain all the
information obtained from statistical analysis performed sep-
arately for each treatment. In particular, the answers to many
basic questions may be read directly from the plots.

For example, the answer to what is the expected number of
perforated units if one has 1,000 units with 1-mm-thick plates
is obtained from Figure 5 by reading that the probability of a
pit depth exceeding 1 mm is .0716 and hence the answer is
1,000 x .0716 = 71.6. Preferably this point estimate should be
complemented by a confidence interval, which in the same way
can be read from the graph as (21,230). However, for such
extreme quantiles, the likelihood function is rather skew, and
profile likelihood intervals (see, e.g., Coles 2001, p. 34) give
a better representation of the real uncertainty than the delta
method (although, of course, they are more computationally
demanding).

Similarly, to find out how thick the plates should be if one
wants the expected number of perforated units out of 1,000
to be at most 40, one reads the x-value corresponding to the
probability 40/1,000 = .04 from the graph and gets the answer
1.12 mm. Again a delta method (or, preferably, a profile like-
lihood) confidence interval can be constructed to quantify the
uncertainty of this estimate; we leave this to the reader.

In Step 4 we have had difficulties fitting EV distributions for
sample sizes around 10 (e.g., estimation failed 20% of the time
for sample size 8), whereas nonconvergence was rare (< 1%) for
sample size 20 or larger (see App. B). Thus the Gumbel distrib-
ution may be the only viable alternative for small sample sizes;
however, of course it should be used only if it fits reasonably
well.
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Steps 6 and 7: Pairwise Comparisons of Treatments

In Step 6 we check whether pairs of treatments “lead to the
same corrosion mechanism.” Step 7 outlines how pairwise com-
parisons of treatments can be made both graphically and for-
mally by computing confidence intervals. A basic property of
the present model is that one of a pair of treatments may be
preferable in one region, whereas the other one may be best in
another region. Because of this, it is possible for the model to
discern between situations with many shallow pits, and other,
potentially more dangerous, situations with few, but deep, pits.

Step 6: Are the Corrosion Mechanisms the Same? Given two
treatments 1 and 2, the observations for treatment i are sup-
posed to follow an EV distribution with parameter (&, o4, WD),
i=1,2 (cf. Step 4). Let G| and G2 be the distribution functions
for the two treatments and write G;(x) = 1 — Gi(x), i = 1, 2, for
the corresponding tail functions. We interpret “different mech-
anisms” in statistical terms to mean that differences are not just
in location and scale, but also in the shape of the distribution.
On a more qualitative (and, from an engineering viewpoint,
more important) scale, if the shape parameter & of the EV distri-
bution is negative, then there is an upper bound for the possible
pit depths, whereas a zero or positive & means that such a bound
does not exist. (Note that distributions with infinite upper end-
points often give the best description in the range of interest and
should not be ruled out by appealing to finite thickness of the
plate. Doing this would be similar to ruling out normal distri-
butions for weights or heights on the grounds that any normal
distribution gives positive probability to negative values.)

Equality of shape is investigated graphically by Gumbel plots
with fitted EV distributions, where fits are shown both with
the shape parameters assumed equal and with free shape pa-
rameters. It is also checked by LR tests of the hypothesis
sr=568=§.

Data Analysis. The estimates of the shape parameter & were
positive for the 2 and 4 weeks data, corresponding to an un-
bounded distribution, for all types of bolt, whereas the 6 weeks
estimates of the shape parameter are negative and indicate an
upper bound for pit depths (Table 2). This could mean differ-
ent mechanisms for the different time periods, perhaps with a
“transition period” at 4 weeks. This is, of course, quite specu-
lative, however. The tests of equality of shape parameters are
illustrated in Figure 6. The first row in Figure 6 shows an ex-
ample where both treatments had the same exposure time and
where the assumption of equality of the shape parameters does
not change the fit. In the second pair one treatment had 4 weeks
of exposure and the other had 6 weeks of exposure, and the fit
obtained with free parameters looks somewhat different than
obtained when the shape parameters are equal. However, the
LR test did not reject the hypothesis of equality of shape pa-
rameters (Table 3). Nevertheless, in this article we confine our
attention to comparisons for 2 weeks and 6 weeks of exposure.

Step 7: Which Treatment Is Best? This question is answered
here via pairwise comparisons of treatments. Typically, several
or all pairs are compared. This may sometimes lead to consid-
erations of “multiple inference” (see the end of Sec. 5).

Now consider a pair of treatments and assume that previous
analysis has not contradicted that the corrosion mechanisms for
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Shape Parameters Assumed to be Equal (

) or Free (——). Each row shows one pair. (a) and (c) Treatment 1, where the fitted lines are

indistinguishable; (b) and (d) treatment 2. (a) and (b) represent 2 weeks Fe, and 2 weeks Fe/Zn C4; (c) and (d) represent 4 weeks Fe/Zn C4 and

6 weeks Fe/Zn CA4.

the two treatments in the pair are same. It is hence assumed
that & = & = & and that the EV distributions with parame-
ters (§.01. (1. 02. w2) fitted by maximum likelihood in Step 6
are used. Treatment | is better than treatment 2 for a given
pit depth xq if the tail functions satisfy C|(.\‘(;) < Galxy) or.
equivalently. if the ratio of the return periods for treatment |
and for treatment 2 [i.e., Gg(,\'())/él(.\'o)] is >1. (A stronger
statement would be that the ratio is > 1 for all x; however. nei-
ther the present data nor scientific knowledge of the corrosion
process seemed a sufficient basis for such strong conclusions
from the bolt comparisons.) To present the comparisons graph-
ically. we first recalculate to relevant units (cf. Step 3) and then
plot the ratio on a nonlinear scale obtained from a linear scale
for Gg(x())/{al (xp) + (_?3 (x0)}. Finally. two confidence intervals
for the ratio. one obtained by the delta method. and the other ob-

Table 3. p Values for LR Tests of Equality of the Shape Parameters
&1 and &, for Pairs of Treatments

Fe Fe/Zn C4 2Zn JS500

w 6w 2w 4w 6w 2w 4w 6w

Fe 2w 8 50 99 36 55 89 98 58
4w 52 78 16 58 69 .78 .63

6w 35 05 82 32 3 .92

Fe/Zn C4 2w 24 35 86 99 46
4w .03 40 26 .09

6w 32 38 .93

Zn JS500 2w .88 .41
4w 47

NOTE: 2w, 2 weeks; 4w, 4 weeks; 6w, 6 weeks

tained from a standard parametric bootstrap are included in the
plot. If these intervals do not include 1 at x = xg. then there is
a statistically significant difference between the treatments for
the pit depth xy.

Data Analvsis. Figure 7 shows estimates of Gg(.\‘())/(_;] (xp)
as a function of the maximum pit depth x. together with
90% confidence intervals calculated with the delta method and
by the parametric bootstrap. In two cases the delta method
and the bootstrap contidence intervals differ markedly. For the
2 weeks data. the confidence bounds throughout included 1. For
two 6 weeks data cases, the confidence bounds did not include 1
for large pit depths. indicating that for plate thicknesses above a
certain value. the magnesium alloy AZ91D was better in com-
bination with the Fe bolts than with the Fe/Zn C4 bolts. In the
same way, the Zn JS500 bolts were found to be better than the
Fe/Zn C4 bolts. The sizes of these effects can be read off the di-
agrams and depend on which thickness one is interested in.

The comparisons were also made using the Gumbel model
instead of the EVs. However. this led to very similar results,
which are not presented here.

Comment. There were large differences between the delta
method and bootstrap confidence bounds in two cases. These
probably were a result of a change of estimated shape parame-
ter from negative to positive in some of the bootstrap samples.
This is an indication that the model is not completely stable and
that moderate changes in data can cause large changes in in-
ferences. One should be cautious in the interpretation of such
cases.
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The confidence bounds in Figure 7 show pointwise intervals,
one for each x-value, and are intended to be used as such. One
is interested in a particular material thickness and wants to read
off the confidence interval for this x-value. Bounds that apply
to all thicknesses simultaneously would be wider, and this dif-
ference could well matter in other applications.

The engineers who performed the experiment had noticed the
presence of increasing quantities of corroded materials, which
could hinder further development of the pits. Step 6 provides
some additional indication of this possibility. Such speculation
should, however, be corroborated by further chemical and phys-
ical knowledge before being taken seriously.

5. SOME STATISTICAL AND MODELING ISSUES

In the literature on localized corrosion, except for work by
Laycock, Scarf, and Cottis (see, e.g., Scarf and Laycock 1994;
Cottis, Laycock, and Scarf 1990), attention has been focused
mainly on Gumbel rather than general EV modeling. In this
article we prefer the more flexible EV family. In particular,
it can indicate whether pits do not continue to grow indefi-
nitely (for & < 0). Of course, this can be synonymous with a
significant cost reduction. A price for this increased flexibility
is that the EV fits require slightly larger sample sizes than the
Gumbel fits. We performed some simulations to compare the

TECHNOMETRICS, MAY 20086, VOL. 48, NO. 2

numerical convergence of the maximum likelihood estimations
in the two models for small sample sizes. One result was that
the numerical maximum likelihood routines that we used (the
S—PLUS routine “nlminb” and the R routine “optim™) did not
converge for the EV distribution in one-fifth of the cases for
sample size 8, and the convergence problems were even worse
for smaller sample sizes (see App. B). This problem was also
observed by Drees, de Haan, and Li (2005, tables 2 and 4), in
a slightly different context.

The first two steps in our method are tests of homogeneity
and replication. Sample sizes in the Volvo experiment are very
small at those steps (n = 6 or 8). That is the reason for using
the Gumbel rather than the EV distribution in these steps, even
in cases where the Gumbel distribution may not fit perfectly.
Further, as discussed earlier, in our experience Gumbel-based
LR tests are more sensitive than nonspecific randomization
tests. The randomized version of the LR test, if available, should
be preferred over the simpler asymptotic LR test, particularly in
cases of imperfect Gumbel fit. The aim of the steps is to provide
rough safeguards to detect whether the experimental conditions
have turned out to not be as intended.

The confidence intervals in this article use the delta method
and, for Figure 7, a parametric bootstrap method. Sometimes—
particularly when extreme quantiles are estimated—the like-
lihood function can be quite asymmetric. Profile likelihood
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methods are then preferable, but these require much heavier
calculations.

Depending on the setup. prior knowledge (perhaps physical
arguments or statistical evidence from similar situations) can
speak for more specific models with fewer parameters. Possible
candidates are an additive model when the effect of treatment 2
is obtained from treatment |1 by translation. and a multiplica-
tive model when the effects of treatments | and 2 are related by
a multiplicative change of scale. Specifically, additivity means
that the parameters of the underlying EV distributions satisty
the restrictions & = &> and 0| = g». In the multiplicative model
instead & = &. 02 = oy, and > = Apy. for some i > 0.
The parameters of the model are straightforwardly estimated by
maximum likelihood. and goodness of fitis assessed by looking
at Gumbel plots with estimated distribution lines and through
an LR test. In our example., comparisons using the additive and
multiplicative did not lead to more significant results than the
full model.

Here we have assumed so far that the purpose of the experi-
ment was explorative/hypothesis-generating. However, if many
tests or many confidence intervals are used. then the overall sig-
nificance level (which controls the risk that at least one of the
intervals or tests leads to the wrong conclusion) can be much
less than that for the individual comparisons. Accordingly, if
one wants to make formal inference with a controlled over-
all significance level, then multiple inference methods must be
used. In our analysis based on asymptotic normality. Tukey's
method with an infinite number of degrees of freedom is ap-
propriate (see Hsu 1996. p. 119). According to this method.
if one has. say. six different treatments. then one obtains an
overall 5% confidence level for all 6 x 5/2 possible confidence
intervals for pairwise differences by just making all intervals
45% wider than for a single comparison. As further examples,
for 12 treatments. the intervals must be 67% wider. and for
16 treatments. they must be, 75% wider. Similarly, for testing,
treatment as multiple tests with a predetermined level of sig-
nificance gives the corresponding scale changes in the power
function (see Hsu 1996).

6. SUMMARY AND CONCLUSIONS

In this article we have developed a strategy for comparing
treatments with EV-distributed responses and successfully ap-
plied it to an experiment on pit corrosion for magnesium alloys.
This strategy was motivated by needs of the automotive indus-
try. We believe that it is a useful tool for many kinds of corro-
sion problems and in other contexts as well. such as in material
fatigue and some medical and financial settings.

The approach uses graphical methods throughout and is
based on fitting EV distributions and on maximum likelihood
estimation and testing. Different observation schemes—in the
corrosion context measuring all pits deeper than some specitied
threshold—would instead lead to using the peaks over thresh-
olds method and the generalized Pareto models (see. e.g.. Coles
2001). It would be straightforward to translate our method to
such situations,
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APPENDIX A: STANDARDIZATION TO UNITS

The EV distribution is preserved after taking the maximum
of iid variables, as mentioned in Section 2. More precisely, as-
sume that the maximum per block, X, follows a Gumbel dis-
tribution with parameters (1, o), and suppose that the unit of
interest consists of k independent blocks. Then the maximum
per unit, Xy, follows a Gumbel distribution with parameters
(1t + o logk, o). Analogously, if X has an EV distribution with
parameters (&£, o, u), then X; follows an EV distribution with
parameters (£, 0k, u + o /E[KS — 1]). As a consequence, the
results become expressed per unit if the x-axis of the Gumbel
plotis transformed via x > x+o logk or viax — & (x —¢) + .
where ¢ = 1 — o /&, for the EV distribution.

APPENDIX B: PERFORMANCE OF MAXIMUM
LIKELIHOOD ESTIMATION FOR EXTREME
VALUE PARAMETERS

Simulations were performed (with the S-PLUS optimiza-
tion routine “nlminb”) to investigate the small-sample be-
havior of the maximum likelihood estimators in the EV and
Gumbel models (Table B.1). No numerical convergence prob-
lems occurred for the Gumbel distribution. For small sample
sizes, maximum likelihood estimation of the parameters of the
EV distribution sometimes failed. (For more results on the es-
timation errors, see Fougeres et al. 2002.) Simulations were
also made in R. The results were very similar to those in Ta-
ble B.1. In these simulations we used the R routine “fgev” (in
the package “evd,” at http://cran.us.r-project.org/) to call the
R optimization routine “optim.” We asked “fgev” to compute
standard deviation. If one does not ask for standard deviation,
then the percentage of cases where there is convergence be-
comes higher. However, for small sample sizes, such as 5 or 10,
many of the estimates then are so far off as to be useless.

[Received January 2004. Revised April 2005.]

Table B.1. Proportion of Convergent Maximum Likelihood Estimation
in the EV Model

n\& -.25 —.1 0 ol .25
5 452 .520 .536 .536 .506
8 722 .784 .838 .870 .892

10 .818 .896 .932 .952 .964

15 .942 .980 .988 .992 1

20 .996 .988 1 .996 1

NOTE:  For each sample size n and shape parameter &, 500 samples were simulated. The

parameters o and . were equal to 1 and 0
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