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1. INTRODUCTION.

A wide variety of situations concerned with extreme events has an inherent multivariate
character, as pointed out by Coles & Tawn (1991). Let us consider for example the
oceanographic context, and focus on the sea-level process. Such a variable can be
divided into several physical components like mean-level, tide, surge and wave, which
are driven by different physical phenomena (see for example Tawn (1992) for details).
Moreover, extreme sea conditions leading to damages are usually a consequence of
extreme values jointly in several components. The joint structure of the processes has
therefore to be studied. Another type of dependence which can be of great interest is
the temporal one: High sea levels can be all the more dangerous when they last for a
long period of time. Therefore, a given variable observed at successive times is likely to
contain crucial information. Other examples of applications have been listed recently
by Kotz & Nadarajah (2000), concerning among others pollutant concentrations (Joe,
Smith & Weissman, 1992), reservoir safety (Anderson & Nadarajah, 1993), or Dutch
sea dikes safety (Bruun & Tawn, 1998; de Haan & de Ronde, 1998).

Historically, the first direction which has been explored concerning multivariate ex-
treme events was the modeling of the asymptotic behaviour of componentwise maxima?
of independent and identically distributed (i.i.d.) observations. Key early contribu-
tions to this domain of research are, among others, the papers of Tiago de Oliveira
(1958), Sibuya (1960), de Haan & Resnick (1977), Deheuvels (1978) and Pickands
(1981). The general structure of the multivariate extreme value distributions has been
explored by de Haan & Resnick (1977). Useful representations in terms of max-stable
distributions, regular variation functions, or point processes, have been established.
Section 2 is devoted to the asymptotic model for componentwise maxima. The main
results are sketched in Section 2.2, after a brief summary of the univariate extreme
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value context. Statistical inference developed in this setup will also be summarized.
The limitations of this way of modeling multivariate extreme events will then be en-
visaged in Section 3, where we focus on asymptotically independent events. Recent
alternatives introduced by Ledford & Tawn (1996, 1997) will be presented. Finally,
the problem of how to measure extremal dependence is tackled, and some tools are
reviewed.

2. CLASSICAL RESULTS ON COMPONENTWISE MAXIMA.

2.1. Univariate extreme events: Summary.

The problem of how to model the tails of a univariate distribution has been widely
studied, and presents a myriad of applications, as recently listed by Kotz & Nadarajah
(2000, Sections 1.1, 1.9 and 2.8). The key assumption which underlies all the methods
of modeling is the existence of a domain of attraction for the maxima, that is: If
Xq,..., X, are i.1.d. observations of a random phenomenon with distribution function
(d.f.) F, then there exist two sequences (a,), and (b,),, where a,, > 0, b, € IR, and
a nondegenerate d.f. G such that

lim P {L <z } = lim F"*(a,x + b,) = G(x). (1)

n—0oo a?’L n—0oo

The set of d.f. GG such that (1) holds is now referred as the Generalized Extreme Value
(GEV) family, introduced by von Mises (1954) and Jenkinson (1955). The d.f. GG has

the following parametric form:

Gla) = eXp{_OHx_M)-ug}?

o+

where the notation a; stands for a if @ > 0 and 0 otherwise, and where ¢ > 0 and
i, & € IR. This distribution function was originally called Fréchet, Weibull, or Gumbel
distribution, depending on whether the shape parameter ¢ is positive, negative or
zero (as a limiting case). Fisher & Tippett (1928) exhibited these three types of
distributions for G, see also Gnedenko (1943).

Under the fundamental hypothesis of the existence of a domain of attraction for
the maxima, two main ways of modeling extreme events have emerged: Firstly, models
for block maxima, based on the representation (1), where the asymptotic distribution
of the (renormalized) maxima is considered as an approximation for the distribution of



the maxima over a fixed (large enough) number of observations. Statistical inference
in the GEV parametric family has been largely studied, see for example a review in
Kotz & Nadarajah (2000), Sections 2.2 to 2.6. Secondly, threshold methods have
been considered, based on the asymptotic form of the distribution of excesses over
a given threshold: More precisely, two avenues have been exploited: the first one,
referred to as the “peaks over threshold” (POT) method, is based on the generalized
Pareto approximation. If the d.f. of a random variable (r.v.) X is in the domain
of attraction of a GEV distribution with parameters (p,o,§), then the conditional
distribution function of exceedances has the following property
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P X>u+a|X>u) ~ (1—|—§§) /&7 U — 00
+
where & = o 4+ &(u — p). This approach is due to Balkema & de Haan (1974) and
Pickands (1975), and has been widely studied (see Leadbetter, Lindgren & Rootzén
(1983), for example). Davison & Smith (1990) make a review of the statistical prop-
erties of this method, and focus also on the problem of the choice of the threshold.
The second way of using threshold models is to approximate the point process as-
sociated to observations greater than u by a nonhomogeneous Poisson process with
intensity measure of (x,00) given by (1 +¢& (z —pu)/o );1/5‘ This has been studied
by Pickands (1971) and Smith (1989). Adapted methods have also been developed
when extremes of dependent sequences are of interest, which is actually the usual case
when considering notably environmental data. See for example Leadbetter, Lindgren
& Rootzén (1983), Smith (1989), Davison & Smith (1990). Besides, the non station-
ary frame has been explored by Leadbetter, Lindgren & Rootzén (1983) and Hiisler
(1986), among others. We refer to Coles (2001) for a review of practical methodologies
when dealing with such data. For an introduction to univariate extreme value theory
with applications to insurance and finance, see Embrechts, Klippelberg & Mikosch
(1997).

2.2, Multivariate extreme value distributions.

As mentioned in the Introduction, exploration of how to model multivariate extreme
events began with the study of the limiting behaviour of componentwise maxima.
All the theory developed is based, as in the univariate case, on the existence of a
domain of attraction. Denote in bold-face elements x = (x1,...24) of Re. If X, =
(Xit,... Xig),i =1,...,n, are i.i.d. random vectors of dimension d with d.f. F', one



assumes that there exist IR%-sequences (a,), and (by),, where a,; >0 and b,; € R
forall 7 =1,...,d, and a d.f. G with non-degenerate margins such that

P {(Erllax X; — by)/a, < x} — F(a,x 4 by) = G(x), (2)
when n — oco. The d.f. GG is then called a multivariate E'V distribution function, and
one says that F'is in the (multivariate) domain of attraction of (i (for the maxima).
Note in particular that the univariate margins of G are EV distributions.

Example 1 (i) Consider the multivariate normal d.f. Fjr, with all univariate margins
equal to M'(0,1), and with all its correlations less than 1 ( IEX;X; < 1, for all 7,5 =
L,---,d). Such a distribution is in the domain of attraction of the independence with

univariate Gumbel margins (Sibuya, 1960). Indeed, one has that
d
Fi(anx+by,) = G(x) = [] exp{—e"™}.
j=1

The norming constants are respectively equal to a, = (2log n)_1/2 and b, = b,1,
where b, = (2logn)'/? —1/2(log log n +log 47)/(2log n)'/?, and 1 = (1,---,1) (see for
example Resnick (1987), Example 2).

(ii) Next consider the Archimedean d.f. Fj, with all univariate margins uniformly

distributed on [0, 1], introduced by Genest & MacKay (1986a, 1986b), and defined by

Fy(x) = ¢~ {Z:qb(l‘j)} 7

where ¢ is a function defined on (0, 1] such that ¢(1) = 0 and (—1)'d?¢=1(¢)/d# > 0,
for all j =1,---,d. Moreover, assume that ¢(1 — 1/t) is a regularly varying function
at infinity with index —m, for some m > 1. Recall that a function ¢ : (0, 00) — (0, 00)
is said to be regularly varying at infinity with index p, denoted ¢» € RV, if and only if
limyeo 0(st)/20(t) = s” for all s > 0 (e.g., Bingham, Goldie & Teugels , 1989). These
distributions are in the domain of attraction of the logistic EV distribution (see further
in Example 2), namely :

s
J=1

; 1/m
Fj(x/n+1) = exp { {Z(—%)m}

for all x < 0, where 0 = (0,---,0). This last result is due to Genest & Rivest (1989).
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Even if the parametric character of the univariate EV family of distributions is now
lost in the multivariate context, as a subset of the max-infinite divisible distributions,
a specific structure still remains. The results sketched here are essentially due to de
Haan & Resnick (1977), and are for example presented in Galambos (1987), Resnick
(1987, Chap. 5) or Kotz & Nadarajah (2000, Chap. 3).

Let us first assume for convenience that the univariate extreme value margins follow
unit Fréchet distributions (with d.f. defined for all y > 0 by ¢;(y) = e~'/¥). This
standardization leads to a separation of the marginal behaviour and the dependence
part of the distribution. There is no loss of generality in assuming specific margins,
as stated in Proposition 5.10 by Resnick (1987). Note that in the case of unit Fréchet
margins, normalization sequences (a, ;) and (b, ;) can be shown to be respectively
equal to a,; =nand b,; =0, forall y =1,...,d.

The following characterizations of the multivariate EV distributions can then be
obtained (see for example Proposition 5.11 of Resnick, 1987). The set £ denotes here
E =1[0,00]*\ {0}. The symbol V is used for supremum. The function 1 is defined by
I.ec = 1if 2 € C, and 0 otherwise, and || - || denotes any norm on IR?.

Theorem 1 The following assertions are equivalent:
[C1] G is a multivariate EV distribution with unit Fréchet margins.

[C2] There exists a finite measure S on B ={y € E : ||y|| = 1} such that for each x
= (x1,...,2q) € E, one has that

d .
ngm—/vﬂwm,
Bj:l Ly
with
/Bwde(W) —1, forallj=1,....d. (3)
[C3] There exists a non homogeneous Poisson process 3 p 1, 5e . on [0,00) x E

with intensity measure A defined, fort >0 and B C E, by A([0,t]x B) = tu*(B),
where for all AC B andr >0,

,,L*{yeE;||y||>r-LeA}:S(A), (4)

"yl r



and S is a finite measure such that (3) holds and

G(x)=P ( Vi < X) = exp (—p"{(0,x]}).

th<1

Remark 1 Conditions (3) secure that the margins are all unit Fréchet distributed.
Equation (4) shows that the measure u* composed with the application T~ defined
from T : E — (0,00] x B, y = (||lyll,¥/llyll), is a product measure of a simple
function of the “radial” component and a measure S of the “angular” component.

More precisely, one has p* o T7'{(r,00) x A} = S(A)/r for all A C B,r > 0, so that

PO} = W o T I{OY) = [ ds(w)r (5)

c} 7"2
Moreover, writing 7'((0,x]°) = {(r,w) € (0,00) x B : rw € (0,x]°}

= {(r,w) € (0,00) x B : r> A\ &},

7=1 w]

and using this last expression in (5) leads to
4w
(0.5} = [\ 22 as(w).
Bj:l x]

The measure S is often called spectral measure, and p* is the exponent measure. Finally,
without going into the proof, note that the key result leading to Theorem 1 is that the
EV distributions coincide with the max-stable distributions. Assuming unit Fréchet
margins, these distributions are of the form G(x) = exp(—p*{(0,x]°}), for all x € F,
where p1* is a measure satisfying the homogeneity property tu*(tB) = p*(B), for all
t > 0 and B a Borel set of F.

Example 2 (i) A particular and important case is the case of independence. It
corresponds in the representation [C2] to a measure S which is concentrated on {¢;,i =
1,---,d}, where ¢; = (0,---,0,1,0,---,0) are the vectors of the canonical basis of IR?
(see for example Corollary 5.25 of Resnick, 1987).

(ii) Several parametric families of bivariate and multivariate EV distributions have
been proposed by Tawn (1988), Coles & Tawn (1991), Joe (1990) and Tawn (1990),

among others. See Kotz & Nadarajah (2000) for a recent review of these existing
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parametric models. One of the most classical is the so-called logistic model, proposed

by Gumbel (1960), and defined for x > 0 by

] 1/
Go(X) =expl — (Z_: :1;]_“) ) (6)

for some parameter o > 1. The limit case a = 1 corresponds to the independence
between the variables. Different asymmetric generalizations of this family have been
proposed, see for example the nested logistic model (Coles & Tawn, 1991).

In the bivariate case, the family of EV distributions can be represented in a different
way. Indeed, Pickands (1981) has shown that a bivariate d.f. G is an EV d.f. with

unit Fréchet margins if and only if

G(X)ZGXP{— (xil—l-i)/l(xlaj:m)}a (7)

where A is a convex function, A : [0,1] — [1/2,1], such that max(¢,1 —¢) < A(t) <1
for all 0 <t < 1. See also Sibuya (1960) and Tiago de Oliveira (1975, 1980) for other
bivariate representations. The measure S defined in representation [C2] is thus related
to the function A by the following

A(t) = /B max {twi, (1 — )wy} dS(w).

Hence, except for the margins, the d.f. G is characterized by a one-dimensional func-
tion A, referred as the “dependence function”. Particular examples for A are A(t) =1,
for all 0 <t < 1, which corresponds to the independence for G, or A(t) = max(t,1—1)
corresponding to total positive dependence. The logistic model defined in (6) corre-
sponds to A, (t) = exp{t® + (1 — t)a}l/a, for0<t<1and a>1.

At this stage, it is of practical importance to examine what the different charac-
terizations yield when formulated from a d.f. F' belonging to a specific domain of at-
traction. As before, one considers i.i.d. observations X; = (X;1,... X;4),0 =1,...,n,
which are assumed to have unit Fréchet margins. In practice, when the margins have
unknown distributions, one may for example transform the observations X, ;, (1 =
l,...,n,and j =1,...,d) into the pseudo-observations 7, ; = 1/log{n/(R;; — 1/2)},
where R, ; is the rank of X;; among X ;,..., X, ;. Such a transformation, suggested
in Joe, Smith & Weissman (1992), ensures the Z;; to be in the univariate domain of
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attraction of a unit Fréchet distribution. Refer also to Mason & Huang’s work for the
estimation of the dependence function using ranks only (see Huang, 1992, or Drees &
Huang, 1998). We use the same notations as in Theorem 1.

Theorem 2 The following statements are equivalent:

[D1] The d.f. F of the X;’s (i = 1,...,n) is in the domain of attraction of a multi-

variate BV distribution G with unit Fréchet margins.
—log F'(t 11— F(t —1 *([0,x]°
Do)t OEF0 1P logGlx) (0.0
t—co — log F'(11) t=eo | — F(11) —log Gi(1) ([0, 1]°)

measure p* is defined in Theorem 1.

where the

Xy :
[D3] tli}th{HXZH >t X € A} = S(A), for each A Borel set of B and i =

1,....n, where S ts defined in Theorem 1.

[D4] The point process associated with {Xy/n,..., X, /n} converges weakly to a non
homogeneous Poisson process on E with intensity measure p*.

Remark 2 Note that expression [D3] is also equivalent to
DY) Jm PAX /X € ALK > 1) = S(A)/S(B).

Formulation [D3] clearly suggests a simple nonparametric way to estimate the mea-
sure S associated with an EV d.f. G from observations that are in the domain of
attraction of GG. If a sample (Xy,...,X,,) is available from F', then, provided that
t is a well chosen function of n which ensures convergence, a natural candidate to
estimate S is deduced from the empirical measure of the (||X;||/t,X,/||X;||)’s, that is
Un 3% WX/, X0 /]| XG]]) € - }. More precisely, such a convergence is achieved
as soon as t = n/k,, where (k,), is a sequence of integers such that k, — oo and
n/k, — oo when n — oo (Resnick, 1986, Proposition 5.3). An estimator of S can
therefore be obtained using the observations X; such that ||X;|| > n/k,. From a practi-
cal point of view, it is usually more convenient to replace the condition {||X|| > n/k,}
by {|IX|| > ||X][f.1}, where ||X]|f,] denotes the (n — k, + 1)th order statistic of the
||X]];’s. Both conditions are asymptotically equivalent (see for example Appendix 3
of Capéraa & Fougeres, 2000); the second one offers the advantage of keeping a fixed



number of observations for estimating S. This finally leads to the estimator 5, of 5,

defined for any Borel set A of B, by :

n

1 Xy
) = 1 31 {1 > Xl e €4 - )

=1

A variety of nonparametric estimation techniques have been developed from the
useful representation [D3], referred as “multivariate threshold methods”. The esti-
mators proposed essentially differ from each other in terms of the choice of the norm
and of a function closely related to the mapping T defined in Remark 1. The de-
velopments have been mostly formulated in the bivariate case. See for example de
Haan (1985a), Joe, Smith & Weissman (1992), de Haan & Resnick (1993), Einmahl,
de Haan & Huang (1993), Einmahl, de Haan & Sinha (1997), as well as Capéraa &
Fougeres (2000) for a small-sample study comparing several methods from the previ-
ously cited works. Further interesting references are de Haan & de Ronde (1998), de
Haan & Sinha (1999), Abdous, Ghoudi & Khoudraji (1999) and Einmahl, de Haan
& Piterbarg (2001). Note that no theoretical result has been obtained yet concerning
an optimal choice for the threshold k, in the multivariate setup. In practice, choosing
k, 1s a tricky problem, and usually several values are considered, for which a relative
stability of the estimations is expected. Improving this empirical choice, Abdous &
Ghoudi (2002) proposed recently an interesting and convenient procedure for an opti-
mal threshold selection, based on a double kernel technique (Devroye, 1989). Abdous
& Ghoudi also suggested a unifying approach which includes most of the estimates
previously mentioned. Parametric approaches have been proposed by Coles & Tawn
(1991, 1994) and Joe, Smith & Weissman (1992), among others. These approaches
make use of the point process representation [D4] and of parametric families of multi-
variate EV distributions. Finally, some parametric models based on the representation
[D2] have also been introduced by Ledford & Tawn (1996) and Smith, Tawn & Coles
(1997). Even if traditionally “parametric and nonparametric schools” seem to confront
each other, they present complementary advantages, and nonparametric estimations
can notably be used as a starting point for inference, on which flexible parametric
models can be built.

Remark 3 In the particular case where observations from an EV d.f. G are di-
rectly available, specific techniques which differ from the threshold methods have been
developed in the bivariate case by Pickands (1981), Tawn (1988), Tiago de Oliveira
(1989), Smith, Tawn & Yuen (1990), Deheuvels (1991), Coles & Tawn (1991), Capéraa,



Fougeres & Genest (1997), Hall & Tajvidi (2000), among others. In such a situation
where no selection is needed above a sufficiently high threshold, estimation techniques
are of course much more accurate.

Below we summarize for a simple case the practical estimation of the probability of
an extreme event via multivariate EV models. Given a sample of random vectors
Xt = 1,...,n, with d.f. F, consider the problem of estimating the probability
P(X € A), where A is an exceptional set in which none data have been observed. We
assume that F' is in the domain of attraction of a multivariate EV d.f. G, and again,
for simplicity we deal with known margins and assume that they are unit Fréchet
distributed. If A is the complement of a rectangle, A = (0,nu]°, one may write for
example, using [D2]:

P(XEA):l—F(nu)z—%logG( )——/,L{Ou /\/wfds

Making use of the empirical measure 5, defined in (8), an estimator of P(X € A) is
then given by

& Xy
This is one possible nonparametric way to make use of the multivariate EV model.
The choice of the proportion of data used for the estimation of S is a delicate point in
practice. Dealing with any form of extreme event A is of course not so straightforward,
and needs care. We refer for example to de Haan & de Ronde (1998), or Bruun &
Tawn (1998), for a complete application and evaluation of failure probabilities. Note
that, even if from a theoretical point of view the methods based on multivariate EV
models which have been developed in the literature are available in a d-dimensional
context, the complexity linked to the solution of problems in practice increases rapidly
with the dimension d. Most of the work done in the multivariate context concerns
examples where d = 2 or 3.

An important point is that both parametric and nonparametric threshold esti-
mation techniques present some problems in the particular case where the data are
asymptotically independent, i.e. when their distribution is in the domain of attraction
of the independence. This limit situation corresponds in the representation [C2] to the
case where S is singular, concentrated on some boundary points of B (see Example
2). Hence parametric methods, as maximum likelihood estimation, face a problem
of non regularity, and nonparametric methods also present less satisfying results, as
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shown via simulations by Capéraa & Fougeres (2000) in the bivariate case. Moreover,
EV models come from componentwise maxima ( max X;i,---, max X;g4), which in

i=1,n i=1,n
practice typically do not correspond to any observation Xj. In case of asymptotic de-
pendence, the componentwise maxima however tend to occur jointly, so EV models are
useful in such a situation. This is not the case anymore in case of asymptotic indepen-
dence. Asymptotic independence seems however to be an important case in practice,
as pointed out by Marshall & Olkin (1983) or de Haan & de Ronde (1998). Indeed,
it actually corresponds to most of the classical families of distributions, as listed in
Marshall & Olkin (1983) or Capéraa, Fougeres & Genest (2000), among others. For
example, see the wind and rain data considered by Anderson & Nadarajah (1993) and
Ledford & Tawn (1996). Some alternatives and refined models have been proposed
in this particular case by Ledford & Tawn (1996, 1997), and will be presented in the

following section.

3. AN ALTERNATIVE MODELING APPROACH.

According to Sibuya (1960), a bivariate pair of r.v. (X7, X3) with common marginal
d.f. Fy is said to have asymptotically independent components if and only if
lim P(Xl >U|X2 >u) :0,
u—)l’pl
where xp, = sup{z € R : Fi(x) < 1}. For the distribution of (Xi, X3) this property
is equivalent to being in the domain of attraction of the independence. This follows
from the next result, which also states how multivariate asymptotic independence in

general actually reduces to the bivariate case (Berman, 1961; see for example Resnick,

1987, Proposition 5.27).

Theorem 3 Let {X,,n > 1} be a sequence of i.i.d. random vectors in R® (d > 2)
with d.f. F. Assume for simplicity that all the univariate margins are the same, with
common d.f. Fy belonging to the uniwariate domain of attraction of Gy. So one has,
for some a, > 0,b, € R, the convergence F{"(a,x +b,) = Gi(x), asn — oo. The
following assertions are then equivalent:

(1) The d.f. F is in the domain of altraction of the independence:

n d
F*a,x +b,1) =P (\/ X; <a,x+ bnl) — H Gh(x;).

=1 7=1
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(ii) Forall1 <k < (< d,

P (\/ Xip < anrp+b,, \ Xip <anze+ bn) — G(a)Gr(2e).
=1

=1
(ii1) For all 1 <k < <d, and xy,x¢ such that Gy(xy), Gi(xe) > 0,

lim n P (X1x > anap + by, Xig > anae +b,) = 0.

n— 0o
(iv) For all1 <k </ <d,

lim P(XLk >t|X17g >t) =0.

t—)l’pl

For simplicity consider the bivariate case of asymptotic independence. Note that
in this case, the probability mass of joint tails, that is of sets of the form {(X; —
bui)/ans > x1 , (X2 —bu2)/anz > 3}, is of lower order than that for sets like
{(X1=bn1)/an1 > x1 0r (Xo—b,2)/an2 > x2}. Therefore, models based on bivariate
extreme value distributions do not provide any satisfying way to estimate such joint
tails.

In order to fill this gap in the bivariate setup, Ledford & Tawn (1996, 1997) pro-
posed joint tail models adapted to the asymptotic independence case. When stated
with unit Fréchet margins, these models are essentially based on the model

L
P(Z1>217Z2>22)N%7 (9)

Z1 %2
when zq, z3 = oo, where ¢;, ¢; > 0 are such that ¢; +¢; > 1, and £ is a bivariate slowly

varying function. Recall that a measurable function £ : x € IR* — £(x) > 0 is called
a multivariate slowly varying function if there exists a positive function A satisfying

A(tx) = A(x) for all x € IR?, ¢ > 0, and such that

. L(x)
am L) A,

for all x € R%. See for example de Haan (1985b), Basrak, Davis & Mikosch (2000)

or Mikosch (2001) for further properties. A measure of extremal dependence is then
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provided by the so-called coefficient of tail dependencen = 1/(c1+¢2) € (0,1]. Asymp-
totic dependence corresponds to n = 1 and L(r,r) — 0 as r — oo, whereas n < 1
implies asymptotic independence. Since because of (9) one has

PT>u+t|T>u)~

Llu+tutt)(utt)™/n . —1/n
L(u,w)u=1/n - ( + u) 7
Ledford & Tawn (1996) suggest to estimate n as the shape parameter of the GPD for
T = min(Zy, Z3). Peng (1999) proposed another estimator of 7, for which he obtained
the asymptotic normality.
Note that (9) is ensured as soon as a second order condition is assumed for (71, Z2),
which strengthens the multivariate domain of attraction condition (2). More precisely,

one assumes the existence of a positive function ¢ and a finite and non-zero function
h such that

t1i>r<£lo % {t P(Z1 > tzy o1 Zy > 1zq9) + log G(z1,29)} = h(z1,22).
As mentioned by de Haan & de Ronde (1998), the function ¢ is then necessarily a
regularly varying function with non positive exponent p (that is ¢ (tu)/¢(t) — u” as
t — oo, for all u > 0). The relation between p and nisp=1—1/n.
Ledford & Tawn (1997) and Bruun & Tawn (1998) implemented different submod-
els from (9), specifying further conditions concerning the form of £. For example,
Bruun & Tawn modelled the joint tails assuming that

P(Zi >, 7o > ) = ao -I-,C*(thz,v)7 (10)

(2122)1/277

for zy, z; large enough, in terms of € (0,1], and ag € IRT. The function L. is defined
by
1/2 1/2
,C*(Zl, 22, V) = (i) + (ﬁ) — (2122)1/2V(21, 22),

z2 21

where V' is an exponent measure as in Theorem 1, V(z1,22) = p*{(0,2z]°}. Bruun
& Tawn used more specifically a parametric model for V. They compared, through
Monte-Carlo simulations and for different degrees of dependence, the behaviour of
three models, namely: the model (10), the bivariate extreme value model with d.f.
F(z1,29) = exp{—V(z1,22)}, and a model based on univariate extreme value models
for the margins. In case of asymptotic independence, the model (10) really outperforms
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the bivariate extreme value model in terms of relative percentage error when estimating
a specific 107 quantile (see Bruun & Tawn (1998), Section 4, for details). The bivariate
extreme value model has actually the tendency to overestimate the probability of
failure when asymptotic independence occurs.

4. MEASURING EXTREMAL DEPENDENCE

One of the main topics strongly connected with multivariate extreme events modeling
is the problem of how to measure the dependence in the extreme observations. A first
way to look at this problem is to use multivariate EV models and to measure the
strength of the dependence in the limiting distribution. Representation [C2] clearly
exhibits that all the dependence is contained in the measure S, but summaries of this
information can be useful. Note in passing that the correlation coefficient is useless in
the EV context, as on the one hand it is not invariant under transformations of the
margins, and on the other hand several cases of univariate EV d.f. may not have a
finite variance, as the Fréchet d.f., for example. Focusing on the EV model, several
measures have been proposed, mainly in the bivariate case. Consider a pair (X7, X3)
from an EV distribution, with common marginal d.f. F. Tiago de Oliveira (see de
Haan, 1985a) proposed as an index of extremal dependence § € [1,2] defined by

P(max(Xy, Xy) <) = Fé’(m)_ (11)

Using Pickands’ representation (7) gives another expression of 6, that is § = 2A(1/2).
Such a measure has been considered by Tawn (1988) for testing independence in the
bivariate EV context (see also Capéraa, Fougeres & Genest, 1997).

Alternative measures for bivariate EV distributions are Kendall’s 7 and Spearman’s
p. They are nonparametric measures of dependence, which have the following closed

forms in terms of A (see e.g. Ghoudi, Khoudraji & Rivest, 1998):

/1 =1 a 12/1{A(t) 1} 2d—3

T= = o

o A(l) P o

The definition (11) can clearly be extended by considering § € [1,d] such that
P(max(Xy, -+, Xy) <) = Fé’(m)_

In a more general context than EV distributions, Buishand (1984) considered, for all
r.v. X7, X5 with common d.f. F' and joint d.f. H, the function 0y defined by

P(max(Xy, Xy) <) = FQH(QU)(:I;). (12)
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In the particular case of the EV distribution, such a function is constant, 8y (x) = 0.

Another way to introduce the measure 6 can be deduced from Joe (1993). Indeed,
in the bivariate case he defines the upper tail dependence parameter A for a d.f. H
with univariate marginal d.f. F' as

A= lim BT P(X: > 2|X; > 2), (13)

where (X1, X3) is a random pair from H, and H denotes the survival function defined
by H(x1,75) = P(X, > 21, Xy > x3). Asymptoticindependence is therefore equivalent
to A = 0. The tail dependence parameter of a distribution is linked to the domain of
attraction of this distribution. More precisely, if H is a d.f. belonging to the domain
of attraction of an EV d.f. L, and if X is the tail dependence parameter of H, then A

is also the tail dependence parameter of L (see Joe, 1997, Theorem 6.8). Moreover, as

H(z,x) o log H(x,x)
1 — F(x) log F'(x)

in the neighbourhood of x, it follows from (12) and (13) that

. log H(z,x) -
A== i e Fy A ).
Consider a bivariate d.f. H, with upper tail dependence parameter A\. Assume that H
belongs to the domain of attraction of an EV d.f. L, with univariate margins G, and
with index # in (11). Then Joe’s result above yields for 8, constant:
A=2— lim Op(x)=2—46.
rT—=rp
One should note that the upper tail dependence parameter just depends on the de-
pendence structure, so it can be expressed in terms of the copula, as did actually Joe
(1993). Recall that a copula is a multivariate d.f. with all its univariate margins uni-
formly distributed on [0, 1] (Sklar, 1959). Given a multivariate d.f. H with continuous
univariate margins Fi, - - -, Fy, there exists a unique function C'y associated to H such
that
H(x) = Cu(Fu(er), -, Fa(a).

This function Cp, called the copula of H, does not depend on the margins of H,
and contains therefore all the information relative to the dependence between the
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different components Xy, ---, X,. It is the d.f. of the vector U = (Uy,---,Uy) =
(Fi(X1), -+, Fa(X4)). See for example Kimeldorf & Sampson (1975), Schweizer &
Sklar (1983), or Nelsen (1998), for further details. The upper tail dependence param-
eter defined by (13) is equivalently defined by:

5 1
\ = g CE ) . log Cnlu,u) (14)
usl 1 —u u—r1 log u
In case of asymptotic independence (A = 0), Ledford & Tawn (1996) proposed to
measure the tail dependence via the coefficient n = 1/(¢; 4 ¢) defined from (9). Coles,
Heffernan & Tawn (2000) make use of both measures A and 1 (denoted x and (1+y)/2

respectively) for diagnostics of asymptotic independence on different sets of data.

5. CONCLUSION

The aim of this paper was to present a review of the results obtained in the area of
multivariate extreme events. The models developed in the literature are essentially
based on the limiting behaviour of renormalized componentwise maxima. The struc-
ture of the family of limiting distributions is actually quite rich, and can be studied in
terms of max-stable distributions, as well as via point process representations. Statis-
tical inference methods deduced from this family of EV distributions have also been
reviewed. The limits of the multivariate EV models have been pointed out, especially
in the case of asymptotic independence. Alternative models have been summarized.
Finally, some measures of extremal dependence have been presented. One should note
that this domain of research is currently very active, and promising alternatives have
recently been proposed, for example Heffernan & Tawn (2001).
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