
Multivariate extremesAnne-Laure Foug�eresLaboratoire de Statistique et Probabilit�esINSA de Toulouse - Universit�e Paul Sabatier11. Introduction.A wide variety of situations concerned with extreme events has an inherentmultivariatecharacter, as pointed out by Coles & Tawn (1991). Let us consider for example theoceanographic context, and focus on the sea-level process. Such a variable can bedivided into several physical components like mean-level, tide, surge and wave, whichare driven by di�erent physical phenomena (see for example Tawn (1992) for details).Moreover, extreme sea conditions leading to damages are usually a consequence ofextreme values jointly in several components. The joint structure of the processes hastherefore to be studied. Another type of dependence which can be of great interest isthe temporal one: High sea levels can be all the more dangerous when they last for along period of time. Therefore, a given variable observed at successive times is likely tocontain crucial information. Other examples of applications have been listed recentlyby Kotz & Nadarajah (2000), concerning among others pollutant concentrations (Joe,Smith & Weissman, 1992), reservoir safety (Anderson & Nadarajah, 1993), or Dutchsea dikes safety (Bruun & Tawn, 1998; de Haan & de Ronde, 1998).Historically, the �rst direction which has been explored concerning multivariate ex-treme events was the modeling of the asymptotic behaviour of componentwise maxima2of independent and identically distributed (i.i.d.) observations. Key early contribu-tions to this domain of research are, among others, the papers of Tiago de Oliveira(1958), Sibuya (1960), de Haan & Resnick (1977), Deheuvels (1978) and Pickands(1981). The general structure of the multivariate extreme value distributions has beenexplored by de Haan & Resnick (1977). Useful representations in terms of max-stabledistributions, regular variation functions, or point processes, have been established.Section 2 is devoted to the asymptotic model for componentwise maxima. The mainresults are sketched in Section 2.2, after a brief summary of the univariate extreme1D�ept. GMM, INSA, 135 Avenue de Rangueil, 31077 Toulouse Cedex 04, France.2Note that results on minima can immediately be deduced using the property that for any variableX, minX = �max(�X). All what follows will just be written for maxima.1



value context. Statistical inference developed in this setup will also be summarized.The limitations of this way of modeling multivariate extreme events will then be en-visaged in Section 3, where we focus on asymptotically independent events. Recentalternatives introduced by Ledford & Tawn (1996, 1997) will be presented. Finally,the problem of how to measure extremal dependence is tackled, and some tools arereviewed. 2. Classical results on componentwise maxima.2.1. Univariate extreme events: Summary.The problem of how to model the tails of a univariate distribution has been widelystudied, and presents a myriad of applications, as recently listed by Kotz & Nadarajah(2000, Sections 1.1, 1.9 and 2.8). The key assumption which underlies all the methodsof modeling is the existence of a domain of attraction for the maxima, that is: IfX1; : : : ;Xn are i.i.d. observations of a random phenomenon with distribution function(d.f.) F , then there exist two sequences (an)n and (bn)n, where an > 0, bn 2 IR, anda nondegenerate d.f. G such thatlimn!1P ( maxXi � bnan � x ) = limn!1F n(an x+ bn) = G(x): (1)The set of d.f. G such that (1) holds is now referred as the Generalized Extreme Value(GEV) family, introduced by von Mises (1954) and Jenkinson (1955). The d.f. G hasthe following parametric form:G(x) = exp(��1 + � x� �� ��1=�+ ) ;where the notation a+ stands for a if a > 0 and 0 otherwise, and where � > 0 and�; � 2 IR. This distribution function was originally called Fr�echet, Weibull, or Gumbeldistribution, depending on whether the shape parameter � is positive, negative orzero (as a limiting case). Fisher & Tippett (1928) exhibited these three types ofdistributions for G, see also Gnedenko (1943).Under the fundamental hypothesis of the existence of a domain of attraction forthe maxima, two main ways of modeling extreme events have emerged: Firstly, modelsfor block maxima, based on the representation (1), where the asymptotic distributionof the (renormalized) maxima is considered as an approximation for the distribution of2



the maxima over a �xed (large enough) number of observations. Statistical inferencein the GEV parametric family has been largely studied, see for example a review inKotz & Nadarajah (2000), Sections 2.2 to 2.6. Secondly, threshold methods havebeen considered, based on the asymptotic form of the distribution of excesses overa given threshold: More precisely, two avenues have been exploited: the �rst one,referred to as the \peaks over threshold" (POT) method, is based on the generalizedPareto approximation. If the d.f. of a random variable (r.v.) X is in the domainof attraction of a GEV distribution with parameters (�; �; �), then the conditionaldistribution function of exceedances has the following propertyP (X > u+ x j X > u) � �1 + � xe� ��1=�+ ; u!1where e� = � + �(u � �). This approach is due to Balkema & de Haan (1974) andPickands (1975), and has been widely studied (see Leadbetter, Lindgren & Rootz�en(1983), for example). Davison & Smith (1990) make a review of the statistical prop-erties of this method, and focus also on the problem of the choice of the threshold.The second way of using threshold models is to approximate the point process as-sociated to observations greater than u by a nonhomogeneous Poisson process withintensity measure of (x;1) given by (1 + � (x� �)=� )�1=�+ . This has been studiedby Pickands (1971) and Smith (1989). Adapted methods have also been developedwhen extremes of dependent sequences are of interest, which is actually the usual casewhen considering notably environmental data. See for example Leadbetter, Lindgren& Rootz�en (1983), Smith (1989), Davison & Smith (1990). Besides, the non station-ary frame has been explored by Leadbetter, Lindgren & Rootz�en (1983) and H�usler(1986), among others. We refer to Coles (2001) for a review of practical methodologieswhen dealing with such data. For an introduction to univariate extreme value theorywith applications to insurance and �nance, see Embrechts, Kl�uppelberg & Mikosch(1997). 2.2. Multivariate extreme value distributions.As mentioned in the Introduction, exploration of how to model multivariate extremeevents began with the study of the limiting behaviour of componentwise maxima.All the theory developed is based, as in the univariate case, on the existence of adomain of attraction. Denote in bold-face elements x = (x1; : : : xd) of IRd. If Xi =(Xi;1; : : :Xi;d); i = 1; : : : ; n, are i.i.d. random vectors of dimension d with d.f. F , one3



assumes that there exist IRd-sequences (an)n and (bn)n, where an;j > 0 and bn;j 2 IRfor all j = 1; : : : ; d, and a d.f. G with non-degenerate margins such thatP �( maxi=1;:::;nXi � bn)=an � x� = F n(an x+ bn)! G(x); (2)when n!1. The d.f. G is then called a multivariate EV distribution function, andone says that F is in the (multivariate) domain of attraction of G (for the maxima).Note in particular that the univariate margins of G are EV distributions.Example 1 (i) Consider the multivariate normal d.f. FN , with all univariate marginsequal to N (0; 1), and with all its correlations less than 1 ( IEXiXj < 1, for all i; j =1; � � � ; d). Such a distribution is in the domain of attraction of the independence withunivariate Gumbel margins (Sibuya, 1960). Indeed, one has thatF nN (anx+ bn)! G(x) = dYj=1 expf�e�xjg:The norming constants are respectively equal to an = (2 log n)�1=2 and bn = bn1,where bn = (2 log n)1=2�1=2(log log n+log 4�)=(2 log n)1=2, and 1 = (1; � � � ; 1) (see forexample Resnick (1987), Example 2).(ii) Next consider the Archimedean d.f. F�, with all univariate margins uniformlydistributed on [0; 1], introduced by Genest & MacKay (1986a, 1986b), and de�ned byF�(x) = ��18<: dXj=1 �(xj)9=; ;where � is a function de�ned on (0; 1] such that �(1) = 0 and (�1)jdj��1(t)=dtj � 0;for all j = 1; � � � ; d. Moreover, assume that �(1 � 1=t) is a regularly varying functionat in�nity with index �m, for somem � 1. Recall that a function  : (0;1)! (0;1)is said to be regularly varying at in�nity with index �, denoted  2 RV�, if and only iflimt!1  (st)= (t) = s� for all s > 0 (e.g., Bingham, Goldie & Teugels , 1989). Thesedistributions are in the domain of attraction of the logistic EV distribution (see furtherin Example 2), namely :F n� (x=n+ 1)! exp264�8<: dXj=1(�xj)m9=;1=m375 ;for all x < 0, where 0 = (0; � � � ; 0). This last result is due to Genest & Rivest (1989).4



Even if the parametric character of the univariate EV family of distributions is nowlost in the multivariate context, as a subset of the max-in�nite divisible distributions,a speci�c structure still remains. The results sketched here are essentially due to deHaan & Resnick (1977), and are for example presented in Galambos (1987), Resnick(1987, Chap. 5) or Kotz & Nadarajah (2000, Chap. 3).Let us �rst assume for convenience that the univariate extreme value margins followunit Fr�echet distributions (with d.f. de�ned for all y > 0 by �1(y) = e�1=y). Thisstandardization leads to a separation of the marginal behaviour and the dependencepart of the distribution. There is no loss of generality in assuming speci�c margins,as stated in Proposition 5.10 by Resnick (1987). Note that in the case of unit Fr�echetmargins, normalization sequences (an;j) and (bn;j) can be shown to be respectivelyequal to an;j = n and bn;j = 0, for all j = 1; : : : ; d.The following characterizations of the multivariate EV distributions can then beobtained (see for example Proposition 5.11 of Resnick, 1987). The set E denotes hereE = [0;1]d n f0g. The symbol W is used for supremum. The function 11 is de�ned by11z2C = 1 if z 2 C, and 0 otherwise, and jj � jj denotes any norm on IRd.Theorem 1 The following assertions are equivalent:[C1] G is a multivariate EV distribution with unit Fr�echet margins.[C2] There exists a �nite measure S on B = fy 2 E : jjyjj = 1g such that for each x= (x1; : : : ; xd) 2 E, one has thatG(x) = exp8<:� ZB d_j=1 wjxj dS(w)9=; ;with ZB wj dS(w) = 1; for all j = 1; : : : ; d: (3)[C3] There exists a non homogeneous Poisson process Pk 11(tk;jk)2 � on [0;1) � Ewith intensity measure � de�ned, for t > 0 and B � E, by �([0; t]�B) = t��(B),where for all A � B and r > 0,�� (y 2 E : jjyjj > r ; yjjyjj 2 A) = S(A)r ; (4)5



and S is a �nite measure such that (3) holds andG(x) = P 0@ _tk�1 jk � x1A = exp (���f(0;x]cg) :Remark 1 Conditions (3) secure that the margins are all unit Fr�echet distributed.Equation (4) shows that the measure �� composed with the application T�1 de�nedfrom T : E ! (0;1] � B; y 7! (jjyjj;y=jjyjj), is a product measure of a simplefunction of the \radial" component and a measure S of the \angular" component.More precisely, one has �� � T�1f(r;1)�Ag = S(A)=r for all A � B; r > 0, so that��f(0;x]cg = �� � T�1(Tf(0;x]cg) = ZTf(0;x]cg 1r2 dS(w)dr: (5)Moreover, writing T ((0;x]c) = f(r; w) 2 (0;1)� B : rw 2 (0;x]cg= f(r; w) 2 (0;1)� B : r > d̂j=1 xjwj g;and using this last expression in (5) leads to��f(0;x]cg = ZB d_j=1 wjxj dS(w):The measure S is often called spectral measure, and �� is the exponent measure. Finally,without going into the proof, note that the key result leading to Theorem 1 is that theEV distributions coincide with the max-stable distributions. Assuming unit Fr�echetmargins, these distributions are of the form G(x) = exp(���f(0;x]cg), for all x 2 E,where �� is a measure satisfying the homogeneity property t��(tB) = ��(B), for allt > 0 and B a Borel set of E.Example 2 (i) A particular and important case is the case of independence. Itcorresponds in the representation [C2] to a measure S which is concentrated on fei; i =1; � � � ; dg, where ei = (0; � � � ; 0; 1; 0; � � � ; 0) are the vectors of the canonical basis of IRd(see for example Corollary 5.25 of Resnick, 1987).(ii) Several parametric families of bivariate and multivariate EV distributions havebeen proposed by Tawn (1988), Coles & Tawn (1991), Joe (1990) and Tawn (1990),among others. See Kotz & Nadarajah (2000) for a recent review of these existing6



parametric models. One of the most classical is the so-called logistic model, proposedby Gumbel (1960), and de�ned for x > 0 byG�(x) = exp8><>:�0@ dXj=1 x��j 1A1=�9>=>; ; (6)for some parameter � � 1. The limit case � = 1 corresponds to the independencebetween the variables. Di�erent asymmetric generalizations of this family have beenproposed, see for example the nested logistic model (Coles & Tawn, 1991).In the bivariate case, the family of EV distributions can be represented in a di�erentway. Indeed, Pickands (1981) has shown that a bivariate d.f. G is an EV d.f. withunit Fr�echet margins if and only ifG(x) = exp��� 1x1 + 1x2�A� x2x1 + x2�� ; (7)where A is a convex function, A : [0; 1]! [1=2; 1], such that max(t; 1� t) � A(t) � 1for all 0 � t � 1. See also Sibuya (1960) and Tiago de Oliveira (1975, 1980) for otherbivariate representations. The measure S de�ned in representation [C2] is thus relatedto the function A by the followingA(t) = ZBmaxftw1; (1� t)w2g dS(w):Hence, except for the margins, the d.f. G is characterized by a one-dimensional func-tion A, referred as the \dependence function". Particular examples for A are A(t) = 1,for all 0 � t � 1, which corresponds to the independence for G, or A(t) = max(t; 1� t)corresponding to total positive dependence. The logistic model de�ned in (6) corre-sponds to A�(t) = expft� + (1� t)�g1=�, for 0 � t � 1 and � � 1.At this stage, it is of practical importance to examine what the di�erent charac-terizations yield when formulated from a d.f. F belonging to a speci�c domain of at-traction. As before, one considers i.i.d. observations Xi = (Xi;1; : : :Xi;d); i = 1; : : : ; n;which are assumed to have unit Fr�echet margins. In practice, when the margins haveunknown distributions, one may for example transform the observations Xi;j, (i =1; : : : ; n; and j = 1; : : : ; d) into the pseudo-observations Zi;j = 1= logfn=(Ri;j � 1=2)g,where Ri;j is the rank of Xi;j among X1;j; : : : ;Xn;j . Such a transformation, suggestedin Joe, Smith & Weissman (1992), ensures the Zi;j to be in the univariate domain of7



attraction of a unit Fr�echet distribution. Refer also to Mason & Huang's work for theestimation of the dependence function using ranks only (see Huang, 1992, or Drees &Huang, 1998). We use the same notations as in Theorem 1.Theorem 2 The following statements are equivalent:[D1] The d.f. F of the Xi's (i = 1; : : : ; n) is in the domain of attraction of a multi-variate EV distribution G with unit Fr�echet margins.[D2] limt!1 � logF (tx)� logF (t1) = limt!1 1� F (tx)1� F (t1) = � logG(x)� logG(1) = ��([0;x]c)��([0;1]c) ; where themeasure �� is de�ned in Theorem 1.[D3] limt!1 t P (jjXijj > t ; XijjXijj 2 A) = S(A); for each A Borel set of B and i =1; : : : ; n, where S is de�ned in Theorem 1.[D4] The point process associated with fX1=n; : : : ;Xn=ng converges weakly to a nonhomogeneous Poisson process on E with intensity measure ��.Remark 2 Note that expression [D3] is also equivalent to[D30] limt!1P fXi = jjXijj 2 A j jjXijj > tg = S(A)=S(B):Formulation [D3] clearly suggests a simple nonparametric way to estimate the mea-sure S associated with an EV d.f. G from observations that are in the domain ofattraction of G. If a sample (X1; : : : ;Xn) is available from F , then, provided thatt is a well chosen function of n which ensures convergence, a natural candidate toestimate S is deduced from the empirical measure of the (jjXijj=t;Xi=jjXijj)'s, that is1=n Pni=1 11f(jjXijj=t;Xi=jjXijj) 2 � g. More precisely, such a convergence is achievedas soon as t = n=kn, where (kn)n is a sequence of integers such that kn ! 1 andn=kn ! 1 when n ! 1 (Resnick, 1986, Proposition 5.3). An estimator of S cantherefore be obtained using the observationsXi such that jjXijj > n=kn. From a practi-cal point of view, it is usually more convenient to replace the condition fjjXjj > n=kngby fjjXjj > jjXjj[kn]g, where jjXjj[kn] denotes the (n � kn + 1)th order statistic of thejjXjji's. Both conditions are asymptotically equivalent (see for example Appendix 3of Cap�era�a & Foug�eres, 2000); the second one o�ers the advantage of keeping a �xed8



number of observations for estimating S. This �nally leads to the estimator Sn of S,de�ned for any Borel set A of B, by :Sn(A) = 1kn nXi=1 11(jjXijj > jjXjj[kn] ; XijjXijj 2 A ) : (8)A variety of nonparametric estimation techniques have been developed from theuseful representation [D3], referred as \multivariate threshold methods". The esti-mators proposed essentially di�er from each other in terms of the choice of the normand of a function closely related to the mapping T de�ned in Remark 1. The de-velopments have been mostly formulated in the bivariate case. See for example deHaan (1985a), Joe, Smith & Weissman (1992), de Haan & Resnick (1993), Einmahl,de Haan & Huang (1993), Einmahl, de Haan & Sinha (1997), as well as Cap�era�a &Foug�eres (2000) for a small-sample study comparing several methods from the previ-ously cited works. Further interesting references are de Haan & de Ronde (1998), deHaan & Sinha (1999), Abdous, Ghoudi & Khoudraji (1999) and Einmahl, de Haan& Piterbarg (2001). Note that no theoretical result has been obtained yet concerningan optimal choice for the threshold kn in the multivariate setup. In practice, choosingkn is a tricky problem, and usually several values are considered, for which a relativestability of the estimations is expected. Improving this empirical choice, Abdous &Ghoudi (2002) proposed recently an interesting and convenient procedure for an opti-mal threshold selection, based on a double kernel technique (Devroye, 1989). Abdous& Ghoudi also suggested a unifying approach which includes most of the estimatespreviously mentioned. Parametric approaches have been proposed by Coles & Tawn(1991, 1994) and Joe, Smith & Weissman (1992), among others. These approachesmake use of the point process representation [D4] and of parametric families of multi-variate EV distributions. Finally, some parametric models based on the representation[D2] have also been introduced by Ledford & Tawn (1996) and Smith, Tawn & Coles(1997). Even if traditionally \parametric and nonparametric schools" seem to confronteach other, they present complementary advantages, and nonparametric estimationscan notably be used as a starting point for inference, on which 
exible parametricmodels can be built.Remark 3 In the particular case where observations from an EV d.f. G are di-rectly available, speci�c techniques which di�er from the threshold methods have beendeveloped in the bivariate case by Pickands (1981), Tawn (1988), Tiago de Oliveira(1989), Smith, Tawn & Yuen (1990), Deheuvels (1991), Coles & Tawn (1991), Cap�era�a,9



Foug�eres & Genest (1997), Hall & Tajvidi (2000), among others. In such a situationwhere no selection is needed above a su�ciently high threshold, estimation techniquesare of course much more accurate.Below we summarize for a simple case the practical estimation of the probability ofan extreme event via multivariate EV models. Given a sample of random vectorsXi; i = 1; : : : ; n, with d.f. F , consider the problem of estimating the probabilityP (X 2 A), where A is an exceptional set in which none data have been observed. Weassume that F is in the domain of attraction of a multivariate EV d.f. G, and again,for simplicity we deal with known margins and assume that they are unit Fr�echetdistributed. If A is the complement of a rectangle, A = (0; nu]c, one may write forexample, using [D2]:P (X 2 A) = 1 � F (nu) � �1n logG(u) = 1n��f(0;u]cg = 1n ZB d_j=1 wjuj dS(w):Making use of the empirical measure Sn de�ned in (8), an estimator of P (X 2 A) isthen given by 1nkn nXi=10@ d_j=1 Xi;jujjjXi;jjj1A 11fjjXijj > jjXjj[kn]g:This is one possible nonparametric way to make use of the multivariate EV model.The choice of the proportion of data used for the estimation of S is a delicate point inpractice. Dealing with any form of extreme eventA is of course not so straightforward,and needs care. We refer for example to de Haan & de Ronde (1998), or Bruun &Tawn (1998), for a complete application and evaluation of failure probabilities. Notethat, even if from a theoretical point of view the methods based on multivariate EVmodels which have been developed in the literature are available in a d-dimensionalcontext, the complexity linked to the solution of problems in practice increases rapidlywith the dimension d. Most of the work done in the multivariate context concernsexamples where d = 2 or 3.An important point is that both parametric and nonparametric threshold esti-mation techniques present some problems in the particular case where the data areasymptotically independent, i.e. when their distribution is in the domain of attractionof the independence. This limit situation corresponds in the representation [C2] to thecase where S is singular, concentrated on some boundary points of B (see Example2). Hence parametric methods, as maximum likelihood estimation, face a problemof non regularity, and nonparametric methods also present less satisfying results, as10



shown via simulations by Cap�era�a & Foug�eres (2000) in the bivariate case. Moreover,EV models come from componentwise maxima ( maxi=1;���;nXi;1; � � � ; maxi=1;���;nXi;d), which inpractice typically do not correspond to any observation Xk. In case of asymptotic de-pendence, the componentwise maxima however tend to occur jointly, so EV models areuseful in such a situation. This is not the case anymore in case of asymptotic indepen-dence. Asymptotic independence seems however to be an important case in practice,as pointed out by Marshall & Olkin (1983) or de Haan & de Ronde (1998). Indeed,it actually corresponds to most of the classical families of distributions, as listed inMarshall & Olkin (1983) or Cap�era�a, Foug�eres & Genest (2000), among others. Forexample, see the wind and rain data considered by Anderson & Nadarajah (1993) andLedford & Tawn (1996). Some alternatives and re�ned models have been proposedin this particular case by Ledford & Tawn (1996, 1997), and will be presented in thefollowing section. 3. An alternative modeling approach.According to Sibuya (1960), a bivariate pair of r.v. (X1;X2) with common marginald.f. F1 is said to have asymptotically independent components if and only iflimu!xF1 P (X1 > u jX2 > u) = 0;where xF1 = supfx 2 IR : F1(x) < 1g. For the distribution of (X1;X2) this propertyis equivalent to being in the domain of attraction of the independence. This followsfrom the next result, which also states how multivariate asymptotic independence ingeneral actually reduces to the bivariate case (Berman, 1961; see for example Resnick,1987, Proposition 5.27).Theorem 3 Let fXn; n � 1g be a sequence of i.i.d. random vectors in IRd (d � 2)with d.f. F . Assume for simplicity that all the univariate margins are the same, withcommon d.f. F1 belonging to the univariate domain of attraction of G1. So one has,for some an > 0; bn 2 IR, the convergence F n1 (an x + bn) ! G1(x), as n ! 1. Thefollowing assertions are then equivalent:(i) The d.f. F is in the domain of attraction of the independence:F n(anx+ bn1) = P  n_i=1Xi � anx+ bn1!! dYj=1G1(xj):11



(ii) For all 1 � k < ` � d,P  n_i=1Xi;k � anxk + bn ; n_i=1Xi;` � anx` + bn!! G1(xk)G1(x`):(iii) For all 1 � k < ` � d, and xk; x` such that G1(xk); G1(x`) > 0,limn!1 nP (X1;k > anxk + bn ; X1;` > anx` + bn) = 0:(iv) For all 1 � k < ` � d, limt!xF1 P (X1;k > t j X1;` > t ) = 0:For simplicity consider the bivariate case of asymptotic independence. Note thatin this case, the probability mass of joint tails, that is of sets of the form f(X1 �bn;1)=an;1 > x1 ; (X2 � bn;2)=an;2 > x2g, is of lower order than that for sets likef(X1� bn;1)=an;1 > x1 or (X2� bn;2)=an;2 > x2g. Therefore, models based on bivariateextreme value distributions do not provide any satisfying way to estimate such jointtails.In order to �ll this gap in the bivariate setup, Ledford & Tawn (1996, 1997) pro-posed joint tail models adapted to the asymptotic independence case. When statedwith unit Fr�echet margins, these models are essentially based on the modelP (Z1 > z1 ; Z2 > z2) � L(z1; z2)zc11 zc22 ; (9)when z1; z2 !1, where c1; c2 > 0 are such that c1+c2 � 1, and L is a bivariate slowlyvarying function. Recall that a measurable function L : x 2 IRd 7! L(x) > 0 is calleda multivariate slowly varying function if there exists a positive function � satisfying�(tx) = �(x) for all x 2 IRd, t > 0, and such thatlimt!1 L(tx)L(t1) = �(x);for all x 2 IRd. See for example de Haan (1985b), Basrak, Davis & Mikosch (2000)or Mikosch (2001) for further properties. A measure of extremal dependence is then12



provided by the so-called coe�cient of tail dependence � = 1=(c1+c2) 2 (0; 1]. Asymp-totic dependence corresponds to � = 1 and L(r; r) ! 0 as r ! 1, whereas � < 1implies asymptotic independence. Since because of (9) one hasP (T > u+ t j T > u) � L(u+ t; u+ t) (u+ t)�1=�L(u; u)u�1=� � �1 + tu��1=� ;Ledford & Tawn (1996) suggest to estimate � as the shape parameter of the GPD forT = min(Z1; Z2). Peng (1999) proposed another estimator of �, for which he obtainedthe asymptotic normality.Note that (9) is ensured as soon as a second order condition is assumed for (Z1; Z2),which strengthens the multivariate domain of attraction condition (2). More precisely,one assumes the existence of a positive function  and a �nite and non-zero functionh such thatlimt!1 1 (t) ft P (Z1 > tz1 or Z2 > tz2) + logG(z1; z2)g = h(z1; z2):As mentioned by de Haan & de Ronde (1998), the function  is then necessarily aregularly varying function with non positive exponent � (that is  (tu)= (t) ! u� ast!1, for all u > 0). The relation between � and � is � = 1� 1=�.Ledford & Tawn (1997) and Bruun & Tawn (1998) implemented di�erent submod-els from (9), specifying further conditions concerning the form of L. For example,Bruun & Tawn modelled the joint tails assuming thatP (Z1 > z1 ; Z2 > z2) = a0 + L�(z1; z2; V )(z1z2)1=2� ; (10)for z1; z2 large enough, in terms of � 2 (0; 1], and a0 2 IR+. The function L� is de�nedby L�(z1; z2; V ) = �z1z2�1=2 + �z2z1�1=2 � (z1z2)1=2V (z1; z2);where V is an exponent measure as in Theorem 1, V (z1; z2) = ��f(0; z]cg: Bruun& Tawn used more speci�cally a parametric model for V . They compared, throughMonte-Carlo simulations and for di�erent degrees of dependence, the behaviour ofthree models, namely: the model (10), the bivariate extreme value model with d.f.F (z1; z2) = expf�V (z1; z2)g, and a model based on univariate extreme value modelsfor the margins. In case of asymptotic independence, the model (10) really outperforms13



the bivariate extreme value model in terms of relative percentage error when estimatinga speci�c 10�3 quantile (see Bruun & Tawn (1998), Section 4, for details). The bivariateextreme value model has actually the tendency to overestimate the probability offailure when asymptotic independence occurs.4. Measuring extremal dependenceOne of the main topics strongly connected with multivariate extreme events modelingis the problem of how to measure the dependence in the extreme observations. A �rstway to look at this problem is to use multivariate EV models and to measure thestrength of the dependence in the limiting distribution. Representation [C2] clearlyexhibits that all the dependence is contained in the measure S, but summaries of thisinformation can be useful. Note in passing that the correlation coe�cient is useless inthe EV context, as on the one hand it is not invariant under transformations of themargins, and on the other hand several cases of univariate EV d.f. may not have a�nite variance, as the Fr�echet d.f., for example. Focusing on the EV model, severalmeasures have been proposed, mainly in the bivariate case. Consider a pair (X1;X2)from an EV distribution, with common marginal d.f. F . Tiago de Oliveira (see deHaan, 1985a) proposed as an index of extremal dependence � 2 [1; 2] de�ned byP (max(X1;X2) � x) = F �(x): (11)Using Pickands' representation (7) gives another expression of �, that is � = 2A(1=2).Such a measure has been considered by Tawn (1988) for testing independence in thebivariate EV context (see also Cap�era�a, Foug�eres & Genest, 1997).Alternative measures for bivariate EV distributions are Kendall's � and Spearman's�. They are nonparametric measures of dependence, which have the following closedforms in terms of A (see e.g. Ghoudi, Khoudraji & Rivest, 1998):� = Z 10 t(1� t)A(t) dA0(t); � = 12 Z 10 fA(t) + 1g�2 dt� 3:The de�nition (11) can clearly be extended by considering � 2 [1; d] such thatP (max(X1; � � � ;Xd) � x) = F �(x):In a more general context than EV distributions, Buishand (1984) considered, for allr.v. X1;X2 with common d.f. F and joint d.f. H, the function �H de�ned byP (max(X1;X2) � x) = F �H(x)(x): (12)14



In the particular case of the EV distribution, such a function is constant, �H(x) = �.Another way to introduce the measure � can be deduced from Joe (1993). Indeed,in the bivariate case he de�nes the upper tail dependence parameter � for a d.f. Hwith univariate marginal d.f. F as� = limx!xF �H(x; x)1 � F (x) = limx!xF P (X1 > xjX2 > x); (13)where (X1;X2) is a random pair from H, and �H denotes the survival function de�nedby �H(x1; x2) = P (X1 > x1;X2 > x2). Asymptotic independence is therefore equivalentto � = 0. The tail dependence parameter of a distribution is linked to the domain ofattraction of this distribution. More precisely, if H is a d.f. belonging to the domainof attraction of an EV d.f. L, and if � is the tail dependence parameter of H, then �is also the tail dependence parameter of L (see Joe, 1997, Theorem 6.8). Moreover, as�H(x; x)1� F (x) � 2 � logH(x; x)log F (x)in the neighbourhood of xF , it follows from (12) and (13) that� = 2 � limx!xF logH(x; x)log F (x) = 2� limx!xF �H(x):Consider a bivariate d.f. H, with upper tail dependence parameter �. Assume that Hbelongs to the domain of attraction of an EV d.f. L, with univariate margins G, andwith index � in (11). Then Joe's result above yields for �L constant:� = 2� limx!xF �L(x) = 2� �:One should note that the upper tail dependence parameter just depends on the de-pendence structure, so it can be expressed in terms of the copula, as did actually Joe(1993). Recall that a copula is a multivariate d.f. with all its univariate margins uni-formly distributed on [0; 1] (Sklar, 1959). Given a multivariate d.f. H with continuousunivariate margins F1; � � � ; Fd, there exists a unique function CH associated to H suchthat H(x) = CH(F1(x1); � � � ; Fd(xd)):This function CH, called the copula of H, does not depend on the margins of H,and contains therefore all the information relative to the dependence between the15



di�erent components X1; � � � ;Xd. It is the d.f. of the vector U = (U1; � � � ; Ud) =(F1(X1); � � � ; Fd(Xd)). See for example Kimeldorf & Sampson (1975), Schweizer &Sklar (1983), or Nelsen (1998), for further details. The upper tail dependence param-eter de�ned by (13) is equivalently de�ned by:� = limu!1 �CH(u; u)1� u = 2� limu!1 logCH(u; u)log u : (14)In case of asymptotic independence (� = 0), Ledford & Tawn (1996) proposed tomeasure the tail dependence via the coe�cient � = 1=(c1+c2) de�ned from (9). Coles,He�ernan & Tawn (2000) make use of both measures � and � (denoted � and (1+ ��)=2respectively) for diagnostics of asymptotic independence on di�erent sets of data.5. ConclusionThe aim of this paper was to present a review of the results obtained in the area ofmultivariate extreme events. The models developed in the literature are essentiallybased on the limiting behaviour of renormalized componentwise maxima. The struc-ture of the family of limiting distributions is actually quite rich, and can be studied interms of max-stable distributions, as well as via point process representations. Statis-tical inference methods deduced from this family of EV distributions have also beenreviewed. The limits of the multivariate EV models have been pointed out, especiallyin the case of asymptotic independence. Alternative models have been summarized.Finally, some measures of extremal dependence have been presented. One should notethat this domain of research is currently very active, and promising alternatives haverecently been proposed, for example He�ernan & Tawn (2001).ReferencesAbdous, B. & Ghoudi, K. (2002). Nonparametric estimates of multivariate extreme de-pendence functions. Personal communication.Abdous, B., Ghoudi, K., & Khoudraji, A. (1999). Nonparametric estimation of the limitdependence function of multivariate extremes. Extremes, 2, 243-265.Anderson, C. W. & Nadarajah, S. (1993). Environmental factors a�ecting reservoirsafety. In Statistics for the Environment. Barnett, V. & Turkman, K. F., Editors, 163-182,Wiley.Balkema, A. A. & de Haan L. (1974). Residual life time at great age. Ann. Probab. 2,792-804. 16
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