UCBL - L1 PCSI - UE Math 2

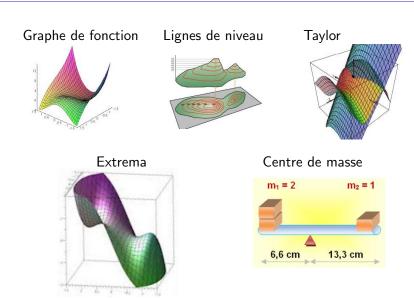
Fonctions de plusieurs variables, dérivés, intégrales

Alessandra Frabetti

Institut Camille Jordan, Département de Mathématiques Université Claude Bernard Lyon 1

http://math.univ-lyon1.fr/~frabetti/

But du cours



Programme

Ch. 1 – Fonctions de plusieures variables

- 1.1 Coordonnées polaires, cylindriques, sphériques
- 1.2 Ensembles ouverts, fermés, bornés, compacts
- 1.3 Fonctions de deux ou trois variables
- 1.4 Graphes et lignes de niveau
- 1.5 Opérations, composition et changement de coordonnées

Ch. 2 – Dérivées, Taylor, extrema locaux

- 2.1 Limites et continuité
- 2.2 Dérivées partielles, gradient, différentielle, Jacobienne
- 2.3 Règle de la chaîne
- 2.4 Dérivées secondes, Hessienne, Laplacien
- 2.5 Polynôme de Taylor
- 2.6 Extrema locaux

Ch. 3 – Intégrales multiples

- 3.1 Intégrales de Riemann (rappels de TMB)
- 3.2 Intégrales doubles
- 3.3 Intégrales triples
- 3.4 Aire, volume, moyenne, centre de masse

Prérequis

- 1. Espaces vectoriels et vecteurs de \mathbb{R}^2 et \mathbb{R}^3 (produits scalaire, vectoriel et mixte).
- Applications linéaires et matrices (produit, détérminant, matrice inverse).
- Géométrie cartesienne du plan et de l'espace (droites, coniques, plans, quadriques).
- Dérivées et intégrales des fonctions d'une variable (graphes, dérivées, points critiques, extrema, Taylor, primitives).
- 5. Équations différentielles du 1er ordre.

Chapitre 1 Fonctions de plusieures variables

- Ch. 1 Fonctions de plusieures variables
 - 1.1 Coordonnées polaires, cylindriques, sphériques
 - 1.2 Ensembles ouverts, fermés, bornés, compacts
 - 1.3 Fonctions de deux ou trois variables
 - 1.4 Graphes et lignes de niveau
 - 1.5 Opérations, composition et changement de coordonnées
- Ch. 2 Dérivées, Taylor, extrema locaux

Ch. 3 – Intégrales multiples

1.1 – Coordonnées polaires, cylindriques, sphériques

Ch. 1 – Fonctions de plusieures variables

- 1.1 Coordonnées polaires, cylindriques, sphériques
- 1.2 Ensembles ouverts, fermés, bornés, compacts
- 1.3 Fonctions de deux ou trois variables
- 1.4 Graphes et lignes de niveau
- 1.5 Opérations, composition et changement de coordonnées

Dans cette section:

- Coordonnées cartesiennes et polaires du plan
- Coordonnées cartesiennes, cylindriques et sphériques de l'espace

Coordonnées cartesiennes du plan

On note
$$(O, \vec{i}, \vec{j})$$
 un repère $O \longrightarrow \overrightarrow{i}$ du plan

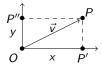
Définition – Soit *P* un point du plan.

• Le coordonnées cartesiennes de P sont le couple $(x, y) \in \mathbb{R}^2$ tel que $\vec{v} = \overrightarrow{OP} = x\vec{\imath} + y\vec{\jmath} \equiv \begin{pmatrix} x \\ y \end{pmatrix}$.

Autrement dit,

$$x = \|\overrightarrow{OP'}\|$$
 et $y = \|\overrightarrow{OP''}\|$

sont les longueurs des projections orthogonales de \vec{v} dans les directions \vec{i} et \vec{j} .



Coordonnées polaires

• Les **coordonnées polaires** de $P \neq O$ sont le couple

$$(\rho,\varphi) \in \mathbb{R}^+ \times \begin{bmatrix} 0,2\pi \end{bmatrix} \quad \text{tel que } \left\{ \begin{array}{l} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{array} \right.$$



On a donc

$$\begin{cases} \rho = \|\overrightarrow{OP}\| = \sqrt{x^2 + y^2} \\ \varphi \quad \text{t. q. } \tan \varphi = \frac{y}{x} \text{ si } x \neq 0 \text{ ou } \cot \varphi = \frac{x}{y} \text{ si } y \neq 0 \\ \left(\text{par ex.} \quad \varphi = \arctan \frac{y}{x} \quad \text{si } x, y > 0 \right) \end{cases}$$

Exercice: coord. polaires ---- cartesiennes

Énoncé – Pour les points suivants du plan, dont on connait les coordonnés polaires, trouver les coordonnées cartesiennes :

$$A \left\{ \begin{array}{l} \rho = 3 \\ \varphi = 5\pi/4 \end{array} \right. \qquad B \left\{ \begin{array}{l} \rho = \sqrt{2} \\ \varphi = 3\pi/4 \end{array} \right. \qquad C \left\{ \begin{array}{l} \rho = 0 \\ \varphi = 3\pi/2 \end{array} \right.$$

Réponse – On dessine chaque point sur un plan, ensuite on calcule les coordonnées cartésiennes avec les formules:

•
$$A$$

$$\begin{cases} x = 3\cos(5\pi/4) = -\frac{3\sqrt{2}}{2} \\ y = 3\sin(5\pi/4) = -\frac{3\sqrt{2}}{2} \end{cases}$$

$$A\left(-\frac{3\sqrt{2}}{2}, -\frac{3\sqrt{2}}{2}\right)$$

• B
$$\begin{cases} x = \sqrt{2}\cos(3\pi/4) = \frac{-\sqrt{2}^2}{2} \\ y = \sqrt{2}\sin(3\pi/4) = \frac{\sqrt{2}^2}{2} \end{cases} B(-1,1)$$

•
$$C$$

$$\begin{cases} x = 0 \cos(3\pi/2) = 0 \\ y = 0 \sin(3\pi/2) = 0 \end{cases}$$
 $C(0,0)$

Exercice: coord. cartesiennes ---- polaires

Énoncé – Pour les points suivants du plan en coordonnés cartesiennes, trouver les coordonnées polaires :

$$A(2,3)$$
 $B(2,0)$ $C(0,3)$

Réponse – On dessine chaque point sur un plan, ensuite on calcule les coordonnées cartesiennes avec les formules:

$$\bullet \ A \quad \left\{ \begin{array}{l} \rho = \sqrt{4+9} = \sqrt{13} \\ \cos \varphi = 2/\sqrt{13} \\ \sin \varphi = 3/\sqrt{13} \end{array} \right. \quad \left\{ \begin{array}{l} \rho = \sqrt{13} \\ \varphi = \arctan\left(\frac{3}{2}\right) \end{array} \right.$$

$$\bullet \ B \quad \left\{ \begin{array}{l} \rho = \sqrt{4+0} = 2 \\ \cos \varphi = 2/2 = 1 \\ \sin \varphi = 0/2 = 0 \end{array} \right. \quad \left\{ \begin{array}{l} \rho = 2 \\ \varphi = \arctan 0 = 0 \end{array} \right.$$

$$\bullet C \quad \begin{cases} \rho = \sqrt{0+9} = 3\\ \cos \varphi = \frac{0}{3} = 0\\ \sin \varphi = \frac{3}{3} = 1 \end{cases} \quad \begin{cases} \rho = 3\\ \varphi = \pi/2 \end{cases}$$

Coordonnées cartesiennes de l'espace

On note $(O, \vec{\imath}, \vec{j}, \vec{k})$ un repère $\vec{\vec{k}} \xrightarrow{\vec{j}}$ de l'espace.

Définition – Soit *P* un point de l'espace.

• Les coordonnées cartesiennes de P sont le triplet $(x, y, z) \in \mathbb{R}^3$

tel que
$$\vec{v} = \overrightarrow{OP} = x\vec{i} + y\vec{j} + z\vec{k} \equiv \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
.

Autrement dit,

$$x = \|\overrightarrow{OP}'\|, \quad y = \|\overrightarrow{OP}''\| \quad \text{et} \quad z = \|\overrightarrow{OP}'''\|$$

sont les longueurs des projections orthogonales de \vec{v} dans les directions $\vec{\tau}$, \vec{j} et \vec{k} .

Coordonnées cylindriques

• Les coordonnées cylindriques de $P \neq O$ sont le triplet $(\rho, \varphi, z) \in \mathbb{R}^+ \times [0, 2\pi[\times \mathbb{R} \quad \text{tel que}]$

$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \\ z = z \end{cases}$$

Si $(x, y, z) \neq (0, 0, 0)$ on a donc

$$\begin{cases} \rho = \|\overrightarrow{OQ}\| = \sqrt{x^2 + y^2} \\ \varphi \quad \text{tel que} \quad \begin{cases} \cos \varphi = \frac{x}{\rho} \\ \sin \varphi = \frac{y}{\rho} \end{cases} \\ z = z \end{cases}$$

Coordonnées sphériques

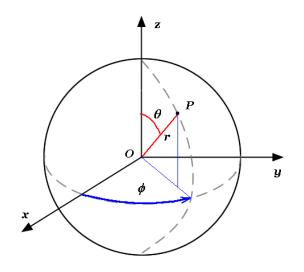
• Les coordonnées sphériques de $P \neq O$ sont le triplet $(r, \theta, \varphi) \in \mathbb{R}^+ \times]0, \pi[\times[0, 2\pi[$ tel que

$$\begin{cases} x = r \cos \varphi \sin \theta \\ y = r \sin \varphi \sin \theta \\ z = r \cos \theta \end{cases}$$

Si $(x, y, z) \neq (0, 0, 0)$ on a donc

$$\begin{cases} r = \|\overrightarrow{OP}\| = \sqrt{x^2 + y^2 + z^2} \\ \varphi \quad \text{tel que} \quad \begin{cases} \cos \varphi = \frac{x}{\sqrt{x^2 + y^2}} \\ \sin \varphi = \frac{y}{\sqrt{x^2 + y^2}} \end{cases} \\ \theta = \arccos \frac{z}{\sqrt{x^2 + y^2 + z^2}} \end{cases}$$

Coordonnées de l'espace



Exercice: coord. cylindriques → cartesiennes

Énoncé – Pour les points suivants, dont on connait les coordonnés cylindriques, trouver les coordonnées cartesiennes :

$$A \left\{ \begin{array}{l} \rho = 3 \\ \varphi = \pi/3 \\ z = 2 \end{array} \right. \quad B \left\{ \begin{array}{l} \rho = \sqrt{2} \\ \varphi = \pi/4 \\ z = -3 \end{array} \right.$$

Réponse – On dessine chaque point sur un plan, ensuite on calcule les coordonnées cartesiennes avec les formules:

• A
$$\begin{cases} x = 3\cos(\pi/3) = \frac{3}{2} \\ y = 3\sin(\pi/3) = \frac{3\sqrt{3}}{2} \end{cases} A(\frac{3}{2}, \frac{3\sqrt{2}}{2}, 2)$$

$$z = 2$$

• B
$$\begin{cases} x = \sqrt{2}\cos(\pi/4) = \frac{\sqrt{2}^2}{2} = 1\\ y = \sqrt{2}\sin(\pi/4) = \frac{\sqrt{2}^2}{2} = 1\\ z = -3 \end{cases}$$
 B $(1, 1, -3)$

Énoncé – Pour les points suivants, dont on connait les coordonnées sphériques, trouver les coordonnées cartesiennes :

$$C \left\{ \begin{array}{l} r = \sqrt{2} \\ \theta = 3\pi/4 \\ \varphi = \pi/2 \end{array} \right. \qquad D \left\{ \begin{array}{l} r = 1 \\ \theta = \pi/6 \\ \varphi = \pi/3 \end{array} \right.$$

Réponse – On dessine chaque point sur un plan, ensuite on applique les formules:

$$\bullet \ \, C \quad \left\{ \begin{array}{l} x = \sqrt{2} \ \cos(\pi/2) \ \sin(3\pi/4) = 0 \\ y = \sqrt{2} \ \sin(\pi/2) \ \sin(3\pi/4) = 1 \\ z = \sqrt{2} \ \cos(3\pi/4) = -1 \end{array} \right. \quad C \left(0, 1, -1 \right)$$

•
$$D$$

$$\begin{cases} x = \cos(\pi/3) & \sin(\pi/6) = \frac{1}{4} \\ y = \sin(\pi/3) & \sin(\pi/6) = \frac{\sqrt{3}}{4} \end{cases} D(\frac{1}{4}, \frac{\sqrt{3}}{4}, \frac{\sqrt{3}}{2}) \\ z = \cos(\pi/6) = \frac{\sqrt{3}}{2} \end{cases}$$

Exo: cartesiennes → cylindriques et sphériques

Énoncé – Pour les points suivants en coordonnées cartesiennes, trouver les coordonnées cylindriques et sphériques:

$$A = (-1, 1, 1)$$
 $B(3, 0, 0)$ $C(0, 1, 1)$

Réponse -

$$\bullet \ A \ \begin{cases} \rho = \sqrt{1+1} = \sqrt{2} \\ \tan \varphi = -1 \\ r = \sqrt{1+1+1} = \sqrt{3} \\ \cos \theta = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} \end{cases} \ \begin{cases} \rho = \sqrt{2} \\ \varphi = 3\pi/4 \\ z = 1 \end{cases} \ \begin{cases} r = \sqrt{3} \\ \theta = \arccos \frac{\sqrt{3}}{3} \\ \varphi = 3\pi/4 \end{cases}$$

• B
$$\begin{cases} \rho = \sqrt{9+0} = 3 \\ \tan \varphi = \frac{0}{3} = 0 \\ r = \sqrt{9+0+0} = 3 \\ \cos \theta = \frac{0}{3} = 0 \end{cases} \qquad \begin{cases} \rho = 3 \\ \varphi = 0 \\ z = 0 \end{cases} \qquad \begin{cases} r = 3 \\ \theta = \pi/2 \\ \varphi = 0 \end{cases}$$

$$\cos \theta = \frac{0}{3} = 0$$

$$\begin{cases}
\rho = \sqrt{0+1} = 1 \\
\cos \varphi = 0 \\
\sin \varphi = 1 \\
r = \sqrt{0+1+1} = \sqrt{2} \\
\cos \theta = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}
\end{cases}$$

$$\begin{cases}
\rho = 1 \\
\varphi = \pi/2 \\
z = 1
\end{cases}$$

$$\begin{cases}
\rho = 1 \\
\varphi = \pi/4 \\
\varphi = \pi/2
\end{cases}$$

Notations des points

Conclusion -

- Un point géométrique du plan ou de l'espace est noté P.
- Un point <u>en coordonnées</u> dans \mathbb{R}^2 ou \mathbb{R}^3 est noté \vec{x} .

Cela signifie donc (x,y), (ρ,φ) , (x,y,z), (ρ,φ,z) ou (r,θ,φ) selon le contexte.

Dans la suite \mathbb{R}^n est l'un des trois espaces \mathbb{R} , \mathbb{R}^2 ou \mathbb{R}^3 .

1.2 – Ensembles ouverts, fermés, bornés, compacts

Ch. 1 – Fonctions de plusieures variables

- 1.1 Coordonnées polaires, cylindriques, sphériques
- 1.2 Ensembles ouverts, fermés, bornés, compacts
- 1.3 Fonctions de deux ou trois variables
- 1.4 Graphes et lignes de niveau
- 1.5 Opérations, composition et changement de coordonnées

Dans cette section:

- Intervalles, disques, boules
- Bord d'un ensemble
- Ensembles ouverts et fermés
- Ensembles bornés et compacts

Intervalles

Définitions -

ullet Dans $\mathbb R$, on appelle

intervalle ouvert
$$I_a(r) =]a - r, a + r[$$

intervalle fermé
$$\bar{I}_a(r) = [a-r, a+r]$$

bord de l'intervalle
$$\partial I_a(r) = \{a-r, a+r\}$$

Disques

• Dans \mathbb{R}^2 , on appelle

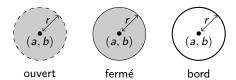
disque ouvert

$$D_{(a,b)}(r) = \{(x,y) \mid (x-a)^2 + (y-b)^2 < r^2\}$$

disque fermé

$$\overline{D}_{(a,b)}(r) = \{(x,y) \mid (x-a)^2 + (y-b)^2 \leqslant r^2\}$$

$$\partial D_{(a,b)}(r) = \{(x,y) \mid (x-a)^2 + (y-b)^2 = r^2\}$$



Boules

• Dans \mathbb{R}^3 , on appelle

boule ouverte

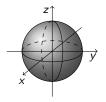
$$B_{(a,b,c)}(r) = \{(x,y,z) \mid (x-a)^2 + (y-b)^2 + (z-c)^2 < r^2\}$$

boule fermée

$$\overline{B}_{(a,b,c)}(r) = \{(x,y,z) \mid (x-a)^2 + (y-b)^2 + (z-c)^2 \le r^2\}$$

bord de la boule (= sphère)

$$\partial B_{(a,b,c)}(r) = \{(x,y,z) \mid (x-a)^2 + (y-b)^2 + (z-c)^2 = r^2\}$$

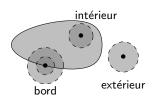


Bord d'un ensemble

Définition – Soit $D \subset \mathbb{R}^n$ un sous-ensemble.

- Un point P est un **point intérieur** à D, s'il existe une boule ouverte B_P contenue dans D.
- Un point P est un **point extérieur** à D il existe une boule ouverte B_P qui n'intersecte pas D.
- Un point $P \in \mathbb{R}^n$ est un **point du bord** de D si <u>toute</u> boule ouverte B_P centrée en P contient à la fois des points de D et de son complémentaire $\mathbb{R}^n \backslash D$.
- Le **bord** de D est l'ensemble des points du bord, noté ∂D .

ATTENTION – Un point de ∂D peut être dans D ou non!



Ensembles ouverts et fermés

Définition – Soit $D \subset \mathbb{R}^n$ un sous-ensemble.

- D est **ouvert** s'il ne contient <u>aucun</u> de ses points de bord.
- *D* est **fermé** s'il contient <u>tous</u> ses points de bord.

Propriété – Le complémentaire d'un ouvert est fermé, le complémentaire d'un fermé est ouvert.

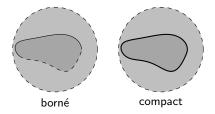
• Par convention, l'ensemble vide \emptyset et \mathbb{R}^n sont à la fois ouverts et fermés dans \mathbb{R}^n .

ATTENTION – Il existe des ensembles qui ne sont <u>ni ouverts ni fermés!</u>

Ensembles bornés et compacts

Définition – Soit $D \subset \mathbb{R}^n$ un sous-ensemble.

- *D* est **borné** s'il existe un disque ouvert *B* qui le contient.
- *D* est **compact** s'il est fermé et borné.

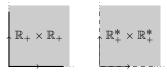


Exemples: non bornés fermés et ouverts

Exemples -

• Droites, demi-droites, plans et demi-plans sont non bornés. Les droites et les plans sont fermés. Les demi-droites et les demi-plans sont fermés s'ils contiennent leurs point ou droite extreme.

• Les quadrants $\mathbb{R}_+ \times \mathbb{R}_+$ et $\mathbb{R}_+^* \times \mathbb{R}_+^*$ sont non bornés. Le premier est aussi fermé. Le deuxième est ouvert dans \mathbb{R}^2 mais ne l'est pas dans \mathbb{R}^3 (car tout le quadrant est son propre bord dans \mathbb{R}^3).



Exemples: bornés ouverts et fermés

 Disques, boules, carrés et cubes pleins sont bornés. Ils sont fermés (et donc compacts) s'ils contiennent leur bord (cercle, sphère ou carré et cube).

• Les couronnes circulaires sont bornées. Dans le plan, elles sont fermées (donc compactes) ou ouvertes selon qu'elles contiennent les circles ou non.

couronne fermée

ni ouverte ni fermée

Exercice

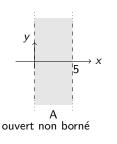
Enoncé – Dessiner les sous-ensembles suivants de \mathbb{R}^2 et dire s'ils sont ouverts, fermés, bornés ou compacts :

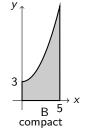
$$A = \{(x, y) \in \mathbb{R}^2 \mid 0 < x < 5\}$$

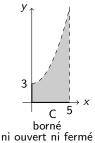
$$B = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 5, \ 0 \le y \le x^2 + 3\}$$

$$C = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x < 5, \ 0 \le y < x^2 + 3\}$$

Réponse -







1.3 – Fonctions de deux ou trois variables

Ch. 1 – Fonctions de plusieures variables

- 1.1 Coordonnées polaires, cylindriques, sphériques
- 1.2 Ensembles ouverts, fermés, bornés, compacts
- 1.3 Fonctions de deux ou trois variables
- 1.4 Graphes et lignes de niveau
- 1.5 Opérations, composition et changement de coordonnées

Dans cette section:

- Fonctions réelles et vectorielles de plusieurs variables
- Domaine et image

Fonctions réelles et vectorielles

Définition - Une fonction de plusieurs variables est une loi

$$f: \mathbb{R}^n \longrightarrow \mathbb{R}^m, \quad \vec{x} \mapsto f(\vec{x})$$

qui associe à un point $\vec{x} \in \mathbb{R}^n$ au plus une valeur $f(\vec{x}) \in \mathbb{R}^m$.

- Pour ce cours, n = 2 ou 3 et m = 1, 2 ou 3.
- Si m=1, la fonction $f:\mathbb{R}^n\longrightarrow\mathbb{R}$ est dite **réelle**.
- Si m > 1, la fonction f est dite **vectorielle**.

Exemples de fonctions de plusieures variables

Fonctions réelles

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}, \ (x, y) \mapsto f(x, y) = x^3 + \sin(xy) + 1$$

Pression = f(Volume, Temperature)

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}, \ (x, y, z) \mapsto f(x, y, z) = x^3z + xyz + \ln(z^2 + 1)$$

Fonctions vectorielles

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3, \ (x,y) \mapsto f(x,y) = (x^2, x+y, y^3)$$

$$g: \mathbb{R}^3 \longrightarrow \mathbb{R}^2, \ (x, y, z) \mapsto g(x, y, z) = (x^2 + z, xz + y)$$

$$h: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, \ (\rho, \varphi) \mapsto h(\rho, \varphi) = (\rho \cos \varphi, \rho \sin \varphi)$$

Attention aux fonctions vectorielles et linéaires !

ATTENTION – Une fonction vectorielle n'est pas linéaire en général !

Une fonction $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ est <u>linéaire</u> si et seulement si, en coordonnée cartesiennes, ses composantes sont des polynômes de degré 1 sans termes constants.

Par exemple:

- f(x, y, z) = (2z x, 0, 3y + 5x z) est linéaire
- $g(x, y, z) = (xz + 5, 3, \sin(y))$ n'est pas linéaire, car contient un polynôme de degré 2 (xz), deux termes constants non nuls (5 et 3) et une fonction non-polynomiale $(\sin(y))$.

Domaine et image

Définition – Soit $f : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ une fonction.

• Le **domaine (de définition)** de f est l'ensemble des points de \mathbb{R}^n pour lesquels f est bien définie:

$$D_f = \left\{ \vec{x} \in \mathbb{R}^n \mid \text{il existe } f(\vec{x}) \in \mathbb{R}^m \right\}$$

• L'**image** de f est l'ensemble des valeurs de f :

$$I_f = f(D_f) = \left\{ \vec{y} \in \mathbb{R}^m \mid \text{il existe } \vec{x} \in \mathbb{R}^n \text{ tel que } \vec{y} = f(\vec{x}) \right\}$$

Exemples: domaine et image

•
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
, $(x, y) \mapsto f(x, y) = \sqrt{x^2 + y^2 - 1}$

$$D_f = \left\{ (x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \geqslant 1 \right\}$$

= complémentaire du disque $D_O(1)$
(fermé non borné)

$$I_f = [0, +\infty[=\mathbb{R}_+$$

•
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
, $(x, y) \mapsto f(x, y) = \sqrt{1 - x^2 - y^2}$

$$D_f = \left\{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leqslant 1 \right\}$$
= disque fermé $\overline{D}_O(1)$ (compact)

$$I_f=[0,1]$$

car
$$x^2 + y^2 \geqslant 0 \Longleftrightarrow 0 \leqslant 1 - x^2 - y^2 \leqslant 1$$

 $\Longleftrightarrow 0 \leqslant \sqrt{1 - x^2 - y^2} = f(x, y) \leqslant 1$

•
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
, $(x, y) \mapsto f(x, y) = \ln(x^2 + y^2 - 1)$

$$D_f = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 > 1\}$$

$$I_f = \mathbb{R}$$

•
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
, $(x,y) \mapsto f(x,y) = \ln(1-x^2-y^2)$

$$D_f = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$$
= disque ouvert $D_O(1)$

(ouvert borné)
$$I_f = \operatorname{In}]0,1] =]-\infty,0] = \mathbb{R}^-$$

= complémentaire du disque $\overline{D}_{O}(1)$

(ouvert non borné)

•
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $(x,y) \mapsto f(x,y) = \left(\frac{1}{x^2}, -\frac{1}{y^2}\right)$

$$D_f = \{(x, y) \in \mathbb{R}^2 \mid x \neq 0, y \neq 0\}$$

= plan privé des deux axes de coordonnées
(ouvert non borné)

$$I_f = \mathbb{R}_0^+ imes \mathbb{R}_0^- = 4^{eme}$$
 quadrant privé de son bord

•
$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$
, $(x, y, z) \mapsto f(x, y, z) = \left(\sqrt{x^2 - z^2}, -\sqrt{y^2 + z^2}\right)$

$$D_f = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 - z^2 \geqslant 0\}$$

= cône délimité par les deux plans $z = \pm x$
(fermé non borné)

$$I_f = \mathbb{R}^+ imes \mathbb{R}^- = 4^{eme}$$
 quadrant

Exercice

Énoncé – Dessiner le domaine de définition et l'image des fonctions suivantes et déterminer la nature du domaine (ouvert, fermé, borné, compact).

•
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
, $(x,y) \mapsto f(x,y) = \frac{\ln(x^2 + y^2 + 1)}{x^2 + y^2}$.
Réponse : $D_f = \{(x,y) \in \mathbb{R}^3 \mid x^2 + y^2 + 1 > 0, \ x^2 + y^2 \neq 0\}$
 $= \mathbb{R}^2 \setminus \{(0,0)\} = \text{plan moins l'origine}$ (ouvert non borné)

La condition $x^2+y^2+1>0$ est vérifiée pour tout $(x,y)\in\mathbb{R}^2$ et la condition $x^2+y^2\neq 0$ est vérifiée si $(x,y)\neq (0,0)$.

$$I_f = \mathbb{R}_+^* =]0, +\infty[$$
 (ouvert non borné)

car $x^2+y^2>0$ implique $x^2+y^2+1>1$ et par conséquent $\ln(x^2+y^2+1)>0$, et le quotient de deux nombres positifs est positif.

•
$$g: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $(x,y) \mapsto g(x,y) = \left(\frac{\ln(x^2+1)}{y^2}, \frac{\ln(y^2+1)}{x^2}\right)$

Réponse :

$$\begin{split} D_g &= \left\{ (x,y) \in \mathbb{R}^2 \mid x^2+1>0, \ y \neq 0, \ y^2+1>0, \ x \neq 0 \right\} \\ &= \mathbb{R}^* \times \mathbb{R}^* = \text{plan priv\'e des deux axes de coordonn\'ees} \\ & \text{(ouvert non born\'e)}. \end{split}$$

En effet, les conditions $x^2+1>0$ et $y^2+1>0$ sont vérifiées pour tout $(x,y)\in\mathbb{R}^2$

$$I_g = \mathbb{R}_+^* imes \mathbb{R}_+^* = 1^{er}$$
 quadrant privé de son bord (ouvert non borné)

Les conditions $x \neq 0$ et $y \neq 0$ impliquent $x^2 > 0$ et $y^2 > 0$, et par conséquent $\ln(x^2 + 1) > 0$ et $\ln(y^2 + 1) > 0$.

1.4 – Graphes et lignes de niveau

Ch. 1 – Fonctions de plusieures variables

- 1.1 Coordonnées polaires, cylindriques, sphériques
- 1.2 Ensembles ouverts, fermés, bornés, compacts
- 1.3 Fonctions de deux ou trois variables
- 1.4 Graphes et lignes de niveau
- 1.5 Opérations, composition et changement de coordonnées

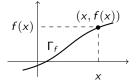
Dans cette section:

- Graphe des fonctions d'une variable (rappel)
- Graphe des fonctions de plusieures variables
- Lignes de niveau

Graphe des fonctions d'une variable

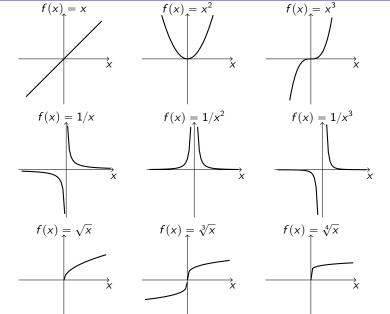
Rappel – Le **graphe** de $f : \mathbb{R} \longrightarrow \mathbb{R}$ est l'ensemble

$$\Gamma_f = \left\{ (x, y) \in \mathbb{R}^2 \mid x \in D_f, \ y = f(x) \ \right\} \subset \mathbb{R}^2.$$

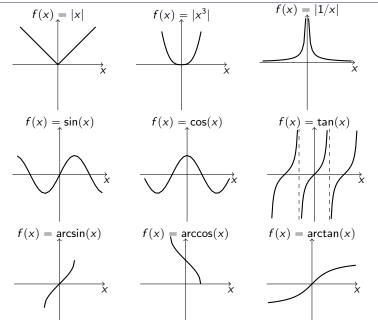


Le graphe des fonctions usuelles d'une variable est à connaître par cœur.

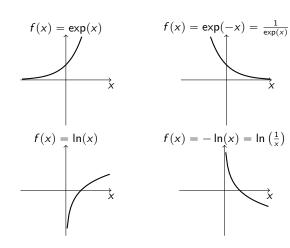
Graphes à connaître ! $f(x) = x \qquad f(x)$



D'autres graphes à connaître !



D'autres encore... ouf!



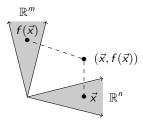
Graphe des fonctions de plusieures variables

Définition – Le graphe de $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ est l'ensemble

$$\Gamma_f = \left\{ (\vec{x}, \vec{y}) \in \mathbb{R}^{n+m} \mid \vec{x} \in D_f, \ \vec{y} = f(\vec{x}) \ \right\} \subset \mathbb{R}^{n+m}.$$

PROBLÈME – Ce graphe est difficile à dessiner si n + m > 3!

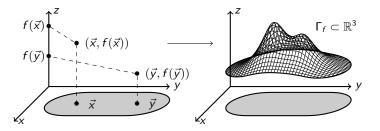
Regardons n = 2 et m = 1.



Graphe des fonctions réelle de deux variables

Le **graphe de** $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ est l'ensemble

$$\Gamma_f = \left\{ (x, y, z) \in \mathbb{R}^3 \mid (x, y) \in D_f, \ z = f(x, y) \ \right\} \subset \mathbb{R}^3.$$



Exemple: graphe d'une fonction de deux variables

Exemple -

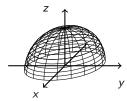
•
$$f(x,y) = \sqrt{1 - x^2 - y^2} = z$$

 $\implies D_f = \overline{D}_0(1)$ et $I_f = [0,1]$

Notons que

$$z^2 = 1 - x^2 - y^2$$
, c.-à-d. $x^2 + y^2 + z^2 = 1$, et $z \ge 0$.

Ainsi Γ_f demi-sphère



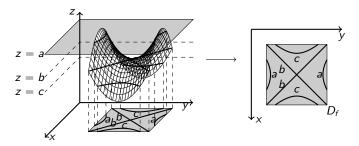
Lignes de niveau

Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ de domaine $D_f \subset \mathbb{R}^2$ et d'image $I_f \subset \mathbb{R}$.

Définition – Pour tout $a \in \mathbb{R}$, la **ligne de niveau** a est la projection sur D_f de $\Gamma_f \cap \{z = a\}$, c'est-à-dire

$$L_a(f) = \{(x, y) \in D_f \mid f(x, y) = a\}.$$

À noter que $L_a(f) = \emptyset$ si $a \notin I_f$.



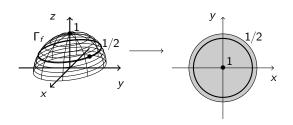
Exemple: lignes de niveau

Exemple -

•
$$f(x,y) = \sqrt{1-x^2-y^2} = z$$
, $D_f = \overline{D}_0(1)$, $I_f = [0,1]$

Pour tout $a \in [0,1] = I_f$ on a

$$L_a(f) = \left\{ (x, y) \in \overline{D}_O(1) \mid \sqrt{1 - x^2 - y^2} = a \right\}$$
= cercle centré en $(0, 0)$ de rayon $\sqrt{1 - a^2}$



Exercice

Énoncé – Trouver le domaine, l'image et la nature des lignes de niveau de la fonction

$$f(x,y) = \frac{x-y}{x+y}.$$

Dessiner les lignes de niveau pour les valeurs a=-2,-1,0,1,2. En déduire le graphe de f.

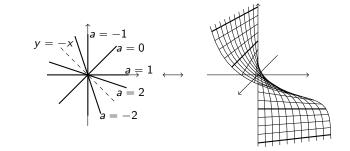
Réponse -

$$D_f = \left\{ (x,y) \in \mathbb{R}^2 \mid y \neq -x \right\} = \mathbb{R}^2 \setminus \text{la bissectrice}$$
 du 2^{eme} quadrant

 $I_f=\mathbb{R}$, alors pour tout $a\in\mathbb{R}$ on a

$$L_a(f) = \left\{ (x, y) \in D_f \mid \frac{x - y}{x + y} = a \right\}$$
= droite d'équation $(a - 1)x + (a + 1)y = 0$

$$\begin{split} L_a(f) &= \text{droite d'équation} \quad (a-1)x + (a+1)y = 0 \\ a &= 0 \quad \Longrightarrow \quad y = x \\ a &= 1 \quad \Longrightarrow \quad y = 0 \qquad \qquad a = -1 \quad \Longrightarrow \quad x = 0 \\ a &= 2 \quad \Longrightarrow \quad y = -\frac{1}{3}x \qquad \qquad a = -2 \quad \Longrightarrow \quad y = -3x \\ \Gamma_f &= \left\{ (x,y,z) \in \mathbb{R}^3 \mid y \neq x, \ z = \frac{x-y}{x+y} \right\} \\ &= \text{union de droites tournantes (sans l'axe } Oz) \end{split}$$



1.5 – Opérations, composition et changement de coordonnées

Ch. 1 – Fonctions de plusieures variables

- 1.1 Coordonnées polaires, cylindriques, sphériques
- 1.2 Ensembles ouverts, fermés, bornés, compacts
- 1.3 Fonctions de deux ou trois variables
- 1.4 Graphes et lignes de niveau
- 1.5 Opérations, composition et changement de coordonnées

Dans cette section:

- Somme et produit de fonctions
- Composition de fonctions
- Changement de coordonnées

Somme et produit de fonctions

Définition – Soient $f, g : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ deux fonctions et $\lambda \in \mathbb{R}$. On définit les fonctions suivantes:

somme:
$$(f+g)(\vec{x}) = f(\vec{x}) + g(\vec{x}), \quad D_{f+g} = D_f \cap D_g;$$

zéro: $0(\vec{x}) = (0,...,0), \quad D_0 = \mathbb{R}^n;$
opposée de f : $(-f)(\vec{x}) = -f(\vec{x}), \quad D_{-f} = D_f;$
produit de f par λ : $(\lambda f)(\vec{x}) = \lambda f(\vec{x}), \quad D_{\lambda f} = D_f.$

Si f et g sont des fonctions <u>réelles</u> (m = 1):

produit:
$$(fg)(\vec{x}) = f(\vec{x})g(\vec{x}), \quad D_{fg} = D_f \cap D_g;$$

un:
$$1(\vec{x}) = 1$$
, $D_1 = \mathbb{R}^n$;

inverse de
$$f$$
: $\left(\frac{1}{f}\right)(\vec{x}) = \frac{1}{f(\vec{x})}, \quad D_{1/f} = \left\{\vec{x} \in D_f \mid f(\vec{x}) \neq 0\right\}.$

Exemples: somme et produit de fonctions

Exemple -

Propriétés des opérations

Proposition – Les opérations d'addition, produit par scalaire et multiplication entre fonctions à plusieurs variables ont les mêmes proprietés que leurs analogues entre fonctions à une variable (elles sont commutatives, associatives et distributives).

En particulier, l'ensemble des fonctions à plusieurs variables $\mathcal{F}(\mathbb{R}^n,\mathbb{R}^m)$ muni de l'addition et du produit <u>par</u> scalaire est un espace vectoriel sur \mathbb{R} de dimension infinie.

Composition de fonctions

Définition – Données deux fonctions

$$f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$
 et $g: \mathbb{R}^m \longrightarrow \mathbb{R}^p$

on définit la **composée de** f **et** g comme la fonction

$$g \circ f : \mathbb{R}^n \longrightarrow \mathbb{R}^p$$

obtenue en calculant g sur les valeurs obtenues par f:

$$\mathbb{R}^{n} \xrightarrow{f} \mathbb{R}^{m} \xrightarrow{g} \mathbb{R}^{p}$$

$$\vec{x} \mapsto f(\vec{x}) \mapsto (g \circ f)(\vec{x}) = g(f(\vec{x}))$$

Le domaine de $g \circ f$ est l'ensemble

$$D_{g \circ f} = \left\{ \vec{x} \in D_f \mid f(\vec{x}) \in D_g \right\}.$$

Exemples: cas usuels de fonctions composées

Fixons $f: \mathbb{R}^2 \to \mathbb{R}, \ (x, y) \mapsto f(x, y) = x^2 - y.$

• Si
$$g: \mathbb{R} \to \mathbb{R}, \ z \mapsto g(z) = \exp z$$

alors $g \circ f : \mathbb{R}^2 \to \mathbb{R}$ se trouve en posant z = f(x, y):

$$(g \circ f)(x, y) = g(f(x, y)) = g(x^2 - y) = \exp(x^2 - y)$$

• Si
$$h: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(u, v) \mapsto h(u, v) = (h_1(u, v), h_2(u, v))$
= $(2u, u + v)$

alors
$$f \circ h : \mathbb{R}^2 \to \mathbb{R}$$
 se trouve en posant
$$\begin{cases} x = h_1(u, v) \\ y = h_2(u, v) \end{cases} :$$
$$(f \circ h)(u, v) = f(h(u, v)) = f(2u, u + v) = 4u^2 - (u + v)$$

• Si
$$\gamma : \mathbb{R} \to \mathbb{R}^2$$
, $t \mapsto (\gamma_1(t), \gamma_2(t)) = (\cos t, \sin t)$

alors $f \circ \gamma : \mathbb{R} \to \mathbb{R}$ se trouve en posant $\left\{ \begin{array}{l} x = \gamma_1(t) \\ y = \gamma_2(t) \end{array} \right.$

$$(f \circ \gamma)(t) = f(\gamma(t)) = f(\cos t, \sin t) = \cos^2 t - \sin t$$

Changement de variables

Un changement de variable s'écrit comme une composée !

Proposition – Si $\vec{y} = f(\vec{x})$ est une fonction des variables $\vec{x} = (x_1, ..., x_n)$, son expression comme fonction de nouvelles variables $\vec{u} = (u_1, ..., u_n)$ est donnée par la fonction composée

$$\tilde{f}=f\circ h,$$

οù

$$h: \mathbb{R}^n \longrightarrow \mathbb{R}^n, \ \vec{u} \mapsto h(\vec{u}) = \vec{x}$$

est l'application qui décrit le changement de variables des $(x_1,...,x_n)$ vers les $(u_1,...,u_n)$.

Autrement dit, on a

$$\vec{y} = f(\vec{x}) = f(h(\vec{u})) = \tilde{f}(\vec{u}).$$

Changements en polaires, cylindriques, sphériques

• Changement en coordonnées polaires:

$$f(x, y) = f(h(\rho, \varphi)) = \tilde{f}(\rho, \varphi)$$

avec
$$h: [0, \infty[\times [0, 2\pi[\longrightarrow \mathbb{R}^2, h(\rho, \varphi) = (\rho \cos \varphi, \rho \sin \varphi)]])$$

• Changement en coordonnées cylindriques:

$$f(x, y, z) = f(h(\rho, \varphi, z)) = \tilde{f}(\rho, \varphi, z)$$

avec
$$h: [0, \infty[\times [0, 2\pi[\times \mathbb{R} \longrightarrow \mathbb{R}^3] h(\rho, \varphi, z) = (\rho \cos \varphi, \rho \sin \varphi, z)]$$

• Changement en coordonnées sphériques:

$$f(x, y, z) = f(h(r, \theta, \varphi)) = \tilde{f}(r, \theta, \varphi)$$

avec
$$h: [0, \infty[\times [0, 2\pi[\times [0, \pi] \longrightarrow \mathbb{R}^3] + h(r, \theta, \varphi) = (r \cos \varphi \sin \theta, r \sin \varphi \sin \theta, r \cos \theta)]$$

Exemple: passage en coordonnées polaire

Exemple – On veut exprimer la fonction

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}, \ (x,y) \longmapsto f(x,y) = x^2 + y^2 + 2x$$

en coordonnées polaires.

Pour cela il suffit de faire la composée $f \circ h$ où

$$h(\rho,\varphi) = (\rho\cos\varphi,\rho\sin\varphi)$$

c'est-à-dire à remplacer x et y dans f par $\rho\cos\varphi$ et $\rho\sin\varphi$.

On obtient

$$\begin{split} \tilde{f}(\rho,\varphi) &= f(\rho\cos\varphi,\rho\sin\varphi) \\ &= (\rho\cos\varphi)^2 + (\rho\sin\varphi)^2 + 2\rho\cos\varphi \\ &= \rho^2 + 2\rho\cos\varphi. \end{split}$$

Exercice

Énoncé – Exprimer la fonction

$$f(x, y, z) = \left(\sqrt{x^2 + y^2}, z^2\right)$$

en coordonnées cylindriques et sphériques.

Réponse - En coordonnées cylindriques :

$$\tilde{f}(\rho, \varphi, z) = f(\rho \cos \varphi, \rho \sin \varphi, z) = (\rho, z^2)$$

En coordonnées sphériques :

$$\tilde{\tilde{f}}(r,\theta,\varphi) = f(r\cos\varphi\sin\theta, r\sin\varphi\sin\theta, r\cos\theta)
= (r\sin\theta, r^2\cos^2\theta)$$

Chapitre 2 Dérivées, Taylor, extrema locaux

Ch. 1 – Fonctions de plusieures variables

- Ch. 2 Dérivées, Taylor, extrema locaux
 - 2.1 Limites et continuité
 - 2.2 Dérivées partielles, gradient, différentielle, Jacobienne
 - 2.3 Règle de la chaîne
 - 2.4 Dérivées secondes, Hessienne, Laplacien
 - 2.5 Polynôme de Taylor
 - 2.6 Extrema locaux

Ch. 3 – Intégrales multiples

2.1 – Limites et continuité

Ch. 2 – Dérivées, Taylor, extrema locaux

- 2.1 Limites et continuité
- 2.2 Dérivées partielles, gradient, différentielle, Jacobienne
- 2.3 Règle de la chaîne
- 2.4 Dérivées secondes, Hessienne, Laplacien
- 2.5 Polynôme de Taylor
- 2.6 Extrema locaux

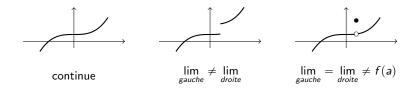
Dans cette section:

- Rappels sur les fonctions d'une variable
- Limites de fonctions
- Fonctions continues

Rappels sur les fonctions d'une variable

Rappel – Si $f : \mathbb{R} \longrightarrow \mathbb{R}$ est une fonction d'une variable, avec domaine D_f , on dit que:

- la limite de f en un point $a \in D_f \cup \partial D_f$ est la valeur $\lim_{x \to a} f(x)$ à laquelle tend f(x) quand x s'approche de a;
- f est continue en un point $a \in D_f$ si $\lim_{x \to a} f(x) = f(a)$.



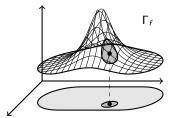
Limites des fonctions

Définition – Soit $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ une fonction de plusieurs variables, de domaine D_f .

• La limite de f en un point $\vec{a} \in D_f \cup \partial D_f$ est la valeur à laquelle tend $f(\vec{x})$ quand \vec{x} s'approche de \vec{a} par tous les chemins possibles dans D_f .

On la note

$$\lim_{\vec{x}\to\vec{a}}f(\vec{x}).$$



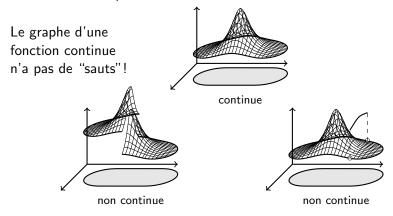
La limite peut ne pas exister, mais si elle existe elle est unique.

Fonctions continues

• La fonction f est **continue en** $\vec{a} \in D_f$ si

$$\lim_{\vec{x}\to\vec{a}}f(\vec{x})=f(\vec{a}).$$

• La fonction f est **continue sur le sous-ensemble** $D \subset D_f$ si f est continue en tout point de D.



Quelles fonctions sont continues?

Théorème – Toutes les fonctions de plusieurs variables obtenues comme <u>somme</u>, produit ou composée de fonctions continues d'une variable <u>sont continues</u>.

Quelques fonctions continues -

- Les fonctions polynomiales de plusieurs variables sont continues sur \mathbb{R}^n .
- Les fractions rationnelles, les racines, les exponentielles et les logarithmes, les fonctions circulaires, les fonctions hyperboliques et leurs réciproques sont continues sur leur domaine de définition.

2.2 - Dérivées partielles, gradient, différentielle, Jacobienne

Ch. 2 – Dérivées, Taylor, extrema locaux

- 2.1 Limites et continuité
- 2.2 Dérivées partielles, gradient, différentielle, Jacobienne
 - 2.2.1 Dérivées partielles
 - 2.2.2 Dérivées directionnelles
 - 2.2.3 Gradient
 - 2.2.4 Différentielle
 - 2.2.5 Matrice Jacobienne
 - 2.2.6 Resumé sur les dérivées
- 2.3 Règle de la chaîne
- 2.4 Dérivées secondes, Hessienne, Laplacien
- 2.5 Polynôme de Taylor
- 2.6 Extrema locaux

2.2.1 – Dérivées partielles

Ch. 2 – Dérivées, Taylor, extrema locaux

- 2.1 Limites et continuité
- 2.2 Dérivées partielles, gradient, différentielle, Jacobienne
 - 2.2.1 Dérivées partielles
 - 2.2.2 Dérivées directionnelles
 - 2.2.3 Gradient
 - 2.2.4 Différentielle
 - 2.2.5 Matrice Jacobienne
 - 2.2.6 Resumé sur les dérivées
- 2.3 Règle de la chaîne
- 2.4 Dérivées secondes, Hessienne, Laplacien
- 2.5 Polynôme de Taylor
- 2.6 Extrema locaux

Dans cette section:

- Rappels sur les fonctions d'une variable
- dérivées partielles
- fonctions (continûment) différentiables

Rappels sur les fonctions d'une variable

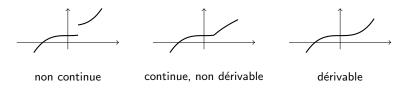
Rappel – Si $f : \mathbb{R} \longrightarrow \mathbb{R}$ est une fonction d'une variable, la **dérivée** de f en $x \in D_f$ est la limite

$$f'(x) := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

si elle existe et est finie. Dans ce cas, f est **dérivable en** x. La fonction f est **dérivable sur** $D \subset D_f$ si elle est dérivable en tout point $x \in D$.

Propriété – Une fonction dérivable est continue.

Le contraire est faux:



Dérivées partielles

Définition – Soit $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ une fonction.

• Les **dérivées partielles de** f **en** $\vec{x} \in D_f$ sont les limites

$$\frac{\partial f}{\partial x_i}(x_1,...,x_n) = \lim_{h \to 0} \frac{f(x_1,...,x_i+h,...,x_n) - f(x_1,...,x_n)}{h}$$

pour i = 1, ..., n (si ces limites existent).

• Les dérivées partielles de f sont les fonctions

définies sur l'ensemble de points \vec{x} où les dérivées $\frac{\partial f}{\partial x_i}(\vec{x})$ existent.

Fonctions (continûment) différentiables

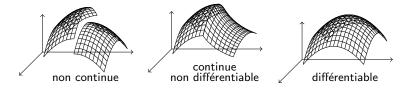
• La fonction f est (continûment) différentiable sur $D \subset D_f$, ou de classe C^1 sur D, si toutes les dérivées partielles

$$\frac{\partial f}{\partial x_i}: D \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

existent et sont des fonctions <u>continues</u> en tout point $\vec{x} \in D$.

Propriété – Une fonction différentiable est continue.

Le contraire est faux: le graphe d'une fonction différentiable n'a pas de "sauts" et en plus ne change pas son allure "brusquement"!



Exemples de fonctions différentiables

Exemples –

• Pour $f(x, y) = xy^2 + 3x$ on a

$$\frac{\partial f}{\partial x}(x,y) = y^2 + 3$$
 et $\frac{\partial f}{\partial y}(x,y) = 2xy$

qui sont continues sur \mathbb{R}^2 , donc f est C^1 sur \mathbb{R}^2 .

• Pour
$$g(x, y, z) = \begin{pmatrix} xy^2 + 3x \\ z^2 \end{pmatrix}$$
 on a
$$\frac{\partial g}{\partial x} = \begin{pmatrix} y^2 + 3 \\ 0 \end{pmatrix}, \qquad \frac{\partial g}{\partial y} = \begin{pmatrix} 2xy \\ 0 \end{pmatrix} \quad \text{et} \qquad \frac{\partial g}{\partial z} = \begin{pmatrix} 0 \\ 2z \end{pmatrix}$$

donc g est C^1 sur \mathbb{R}^3 .

• Pour
$$h(r,\theta,\varphi) = \varphi^2 + r\sin\theta$$
 on a
$$\frac{\partial f}{\partial r} = \sin\theta, \qquad \frac{\partial f}{\partial \varphi} = 2\varphi \qquad \text{et} \qquad \frac{\partial f}{\partial \theta} = r\cos\theta$$

donc h est C^1 sur $[0, \infty[\times[0, 2\pi[\times[0, \pi].$

2.2.2 – Dérivées directionnelles

Ch. 2 – Dérivées, Taylor, extrema locaux

- 2.1 Limites et continuité
- 2.2 Dérivées partielles, gradient, différentielle, Jacobienne
 - 2.2.1 Dérivées partielles
 - 2.2.2 Dérivées directionnelles
 - 2.2.3 Gradient
 - 224 Différentielle
 - 2.2.5 Matrice Jacobienne
 - 2.2.6 Resumé sur les dérivées
- 2.3 Règle de la chaîne
- 2.4 Dérivées secondes, Hessienne, Laplacien
- 2.5 Polynôme de Taylor
- 2.6 Extrema locaux

Dans cette section:

- Dérivées directionnelles
- Croissance et décroissance des fonctions réelles

Dérivées directionnelles

Soit $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ différentiable sur un ensemble $D \subset \mathbb{R}^n$.

Définition – Pour tout vecteur $\vec{v} = (v_1, ..., v_n) \in \mathbb{R}^n$, on appelle **dérivée directionnelle de** f **dans la direction** \vec{v} la fonction

$$\begin{array}{cccc}
\partial_{\vec{v}}f: & D & \longrightarrow & \mathbb{R}^m \\
\vec{x} & \longmapsto & \partial_{\vec{v}}f(\vec{x}) = v_1 \frac{\partial f}{\partial x_1}(\vec{x}) + \dots + v_n \frac{\partial f}{\partial x_n}(\vec{x})
\end{array}$$

Nota -

Dérivées partielles = dérivées directionnelles dans la direction des vecteurs

$$\vec{e_i} = (0, ..., 1, ..., 0),$$

où 1 est en *i*ème position,

$$\frac{\partial f}{\partial x_i} = \partial_{\vec{e_i}} f \qquad .$$

Exemples de dérivées directionnelles

Exemples – Cherchons la dérivée directionnelle des fonctions suivantes, dans la direction d'un vecteur générique \vec{v} .

$$f(x,y) = xy^2 + 3x$$

La fonction $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ a dérivées partielles

$$\frac{\partial f}{\partial x}(x,y) = y^2 + 3$$
 et $\frac{\partial f}{\partial y}(x,y) = 2xy$.

Alors, pour tout vecteur de direction $\vec{v} = (u, v) \in \mathbb{R}^2$, la dérivée directionnelle de f est la fonction

$$\partial_{\vec{v}}f:\mathbb{R}^2\longrightarrow\mathbb{R}$$

qui vaut, au point $(x, y) \in \mathbb{R}^2$,

$$\partial_{\vec{v}}f(x,y)=(y^2+3)\,u+2xy\,v.$$

•
$$g(x, y, z) = (xy^2 + 3x, yz^2)$$

La fonction $g:\mathbb{R}^3\longrightarrow\mathbb{R}^2$ a dérivées partielles

$$\frac{\partial g}{\partial x} = \begin{pmatrix} y^2 + 3 \\ 0 \end{pmatrix}, \quad \frac{\partial g}{\partial x} = \begin{pmatrix} 2xy \\ z^2 \end{pmatrix} \quad \text{et} \quad \frac{\partial g}{\partial z} = \begin{pmatrix} 0 \\ 2yz \end{pmatrix}.$$

Pour tout $\vec{v} = (u, v, w) \in \mathbb{R}^3$, la dérivée directionnelle $\partial_{\vec{v}}g : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ vaut donc

$$\partial_{\vec{v}}g(x,y,z) = \begin{pmatrix} y^2 + 3 \\ 0 \end{pmatrix} u + \begin{pmatrix} 2xy \\ z^2 \end{pmatrix} v + \begin{pmatrix} 0 \\ 2yz \end{pmatrix} w$$
$$= \begin{pmatrix} (y^2 + 3) u + 2xy v \\ z^2 v + 2yz w \end{pmatrix}.$$

À noter que si on écrit $g=(g_1,g_2)$, on a

$$\partial_{\vec{v}}g = (\partial_{\vec{v}}g_1, \partial_{\vec{v}}g_2) : \mathbb{R}^3 \longrightarrow \mathbb{R}^2.$$

•
$$h(r, \theta, \varphi) = \varphi^2 + r \sin \theta$$

La fonction $h: [0, \infty[\times[0, 2\pi[\times[0, \pi] \longrightarrow \mathbb{R} \text{ a dérivées partielles}]])$

$$\frac{\partial h}{\partial r} = \sin \theta, \quad \frac{\partial f}{\partial \varphi} = 2\varphi \quad \text{et} \quad \frac{\partial f}{\partial \theta} = r \cos \theta,$$

donc pour tout $\vec{v} = (u, v, w) \in \mathbb{R}^3$, la dérivée directionnelle de h est

donc pour tout
$$\vec{v} = (u, v, w) \in \mathbb{R}^3$$
, la dérivée directionnelle de h est la fonction

la fonction
$$\partial_{\vec{v}}h: [0,\infty[\times[0,2\pi[\times[0,\pi]\longrightarrow\mathbb{R}$$

 $\partial_{\vec{v}}h(r,\theta,\varphi) = \sin\theta \, u + 2\varphi \, v + r\cos\theta \, w.$

Croissance et décroissance des fonctions réelles

Théorème – Soit $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ une fonction <u>réelle</u> de classe C^1 sur $D \subset \mathbb{R}^n$. Pour tout $\vec{x} \in D$ et tout $\vec{v} \in \mathbb{R}^n$, on a:

- Si $\partial_{\vec{v}} f(\vec{x}) > 0$ alors f est <u>croissante</u> au point \vec{x} dans la direction de \vec{v} .
- Si $\partial_{\vec{v}} f(\vec{x}) < 0$ alors f est <u>décroissante</u> au point \vec{x} dans la direction de \vec{v} .

De plus:

- forte croissance \iff grande dérivée positive
- forte décroissance \iff grande dérivée négative

Nota – On ne peut rien dire sur la croissance de f si $\partial_{\vec{v}} f(\vec{x}) = 0$!

Exercice

Énoncé – La fonction $f(x,y) = xy^2 + 3x$ est-elle croissante ou décroissante au point (3,1), dans les directions (1,1), (1,2), (1,-1) et (1,-2) ?

Réponse – Pour tout vecteur $\vec{v} = (u, v)$, on a

$$\partial_{\vec{v}} f(x, y) = (y^2 + 3) u + 2xy v$$

et donc

$$\partial_{\vec{v}} f(3,1) = 4u + 6v$$

d'où

- $\partial_{(1,1)} f(3,1) = 10$ \Rightarrow f croissante en direction (1,1)
- $\partial_{(1,2)} f(3,1) = 16 \implies f$ croissante en direction (1,2)
- $\partial_{(1,-1)}f(3,1) = -2 \implies f$ décroissante en dir. (1,-1)
- $\partial_{(1,-2)}f(3,1) = -8 \implies f$ décroissante en dir. (1,-2)

Énoncé (suite) – Parmi ces quatre directions, quelle est celle de plus forte croissance et celle de plus forte décroissance ?

Réponse – Pour comparer la croissance d'une fonction en différentes directions, il faut calculer les différentes dérivées directionnelles avec des vecteurs ayant tous la même longueur, par exemple 1.

Directions croissantes -

•
$$\|(1,1)\| = \sqrt{2}$$
 \Rightarrow $\partial_{\frac{1}{\sqrt{2}}(1,1)} f(3,1) = \frac{10}{\sqrt{2}}$

•
$$\|(1,2)\| = \sqrt{5}$$
 \Rightarrow $\partial_{\frac{1}{\sqrt{5}}(1,2)} f(3,1) = \frac{16}{\sqrt{5}}$

$$\mbox{Or} \quad \ \frac{10}{\sqrt{2}} < \frac{16}{\sqrt{5}} \quad \mbox{car} \quad \ (10\sqrt{5})^2 = 500 < (16\sqrt{2})^2 = 512.$$

Ainsi, au point (3,1), le fonction f croit plus rapidement dans la direction (1,2).

Directions décroissantes -

•
$$\|(1,-1)\| = \sqrt{2}$$
 \Rightarrow $\partial_{\frac{1}{\sqrt{2}}(1,-1)} f(3,1) = -\frac{2}{\sqrt{2}}$

•
$$\|(1,-1)\| = \sqrt{2}$$
 \Rightarrow $O_{\frac{1}{\sqrt{2}}(1,-1)}f(3,1) = -1$

•
$$||(1,-2)|| = \sqrt{5}$$
 $\Rightarrow \partial_{\frac{1}{\sqrt{5}}(1,-2)} f(3,1) = -\frac{8}{\sqrt{5}}$

Ainsi, au point (3,1), le fonction f décroit plus rapidement dans la direction (1, -2).

On a $-\frac{2}{\sqrt{2}} > -\frac{8}{\sqrt{5}}$ car ceci se vérifie ssi $\frac{2}{\sqrt{2}} < \frac{8}{\sqrt{5}}$,

ce qui est vrai car $(2\sqrt{5})^2 = 20 < (8\sqrt{2})^2 = 128$.

2.2.3 - Gradient

Ch. 2 – Dérivées, Taylor, extrema locaux

- 2.1 Limites et continuité
- 2.2 Dérivées partielles, gradient, différentielle, Jacobienne
 - 2.2.1 Dérivées partielles
 - 2.2.2 Dérivées directionnelles
 - 2.2.3 Gradient
 - 224 Différentielle
 - 2.2.5 Matrice Jacobienne
 - 2.2.6 Resumé sur les dérivées
- 2.3 Règle de la chaîne
- 2.4 Dérivées secondes, Hessienne, Laplacien
- 2.5 Polynôme de Taylor
- 2.6 Extrema locaux

Dans cette section:

- Gradient des fonctions réelles
- Interpretation géométrique du gradient

Gradient d'une fonction réelle

Définition – Soit $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ une fonction <u>réelle</u> différentiable sur $D \subset D_f$.

• Le gradient de f en un point $\vec{x} \in D$ est le vecteur de \mathbb{R}^n

$$\overrightarrow{\operatorname{grad}} f(\vec{x}) \equiv \overrightarrow{\nabla} f(\vec{x}) = \frac{\partial f}{\partial x_1}(\vec{x}) \ \vec{e_1} + \dots + \frac{\partial f}{\partial x_n}(\vec{x}) \ \vec{e_n} = \begin{pmatrix} \frac{\partial f}{\partial x_1}(\vec{x}) \\ \vdots \\ \frac{\partial f}{\partial x_n}(\vec{x}) \end{pmatrix}$$

où le symbole $\overrightarrow{\nabla}$ se lit **nabla**.

• Le **gradient de** f est la fonction <u>vectorielle</u>

$$\overrightarrow{\operatorname{grad}} f \equiv \overrightarrow{\nabla} f = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix} : D \subset \mathbb{R}^n \longrightarrow \mathbb{R}^n$$

Pour tout $\vec{v} \in \mathbb{R}^n$ on a alors $\partial_{\vec{v}} f = \langle \overrightarrow{\nabla} f, \vec{v} \rangle = \overrightarrow{\nabla} f \cdot \vec{v}$

Exemples de gradient

Exemples -

•
$$f(x,y) = xy^2 + 3x$$
 \Rightarrow $\overrightarrow{\nabla} f(x,y) = \begin{pmatrix} y^2 + 3 \\ 2xy \end{pmatrix}$

Par exemple:
$$\overrightarrow{\nabla} f(0,0) = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$
 et $\overrightarrow{\nabla} f(3,2) = \begin{pmatrix} 7 \\ 12 \end{pmatrix}$.

•
$$f(x, y, z) = \sin(xy) + \ln(x^2 + z^2)$$
 \Rightarrow

$$\overrightarrow{\nabla} f(x, y, z) = \begin{pmatrix} y \cos(xy) + \frac{2x}{x^2 + z^2} \\ x \cos(xy) \\ \frac{2z}{x^2 + z^2} \end{pmatrix}.$$

Par exemple:
$$\overrightarrow{\nabla} f(0, \pi, 1) = \begin{pmatrix} -\pi \\ 0 \\ 2 \end{pmatrix}$$
.

Interprétation géométrique du gradient

Théorème – Soit $f : \mathbb{R}^2 \to \mathbb{R}$ une fonction de <u>deux variables</u>, différentiable sur $D \subset \mathbb{R}^2$. Pour tout $\vec{x} \in D$ on a alors:

- Le gradient $\overrightarrow{\nabla} f(\vec{x})$ est orthogonal à la ligne de niveau $L_a(f)$ avec $a = f(\vec{x})$.
- Le gradient $\overrightarrow{\nabla} f(\vec{x})$ indique la direction de la pente de plus forte croissante du graphe Γ_f en \vec{x} .

Exemple: interpretation géométrique du gradient

Exemple –
$$f(x,y) = \sqrt{1 - x^2 - y^2}$$
 \implies

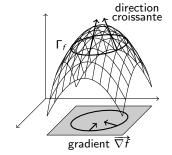
domaine $D_f = \overline{D}_O(1) = \text{disque unitaire fermé}$

ligne de niveau $L_a(f)=$ cercle de rayon $\sqrt{1-a^2}$, où $a\in[0,1]$

f est différentiable sur $D = D_O(1) =$ disque unitaire ouvert, et

$$\overrightarrow{\nabla} f(x,y) = \begin{pmatrix} \frac{-x}{\sqrt{1-x^2-y^2}} \\ \frac{-y}{\sqrt{1-x^2-y^2}} \end{pmatrix} = -\frac{1}{a}(x,y).$$

Pour tout $a \in]0,1[$, ce vecteur est orthogonal au cercle $L_a(f)$ au point (x,y) et est dirigé vers le centre du cercle.



2.2.4 – Différentielle

Ch. 2 – Dérivées, Taylor, extrema locaux

- 2.1 Limites et continuité
- 2.2 Dérivées partielles, gradient, différentielle, Jacobienne
 - 2 2 1 Dérivées partielle
 - 2.2.2 Dérivées directionnelles
 - 2.2.3 Gradien

2.2.4 - Différentielle

- 225 Matrice Jacobienne
- 2.2.6 Resumé sur les dérivées
- 2.3 Règle de la chaîne
- 2.4 Dérivées secondes, Hessienne, Laplacien
- 2.5 Polynôme de Taylor
- 2.6 Extrema locaux

Dans cette section:

- Différentielle des fonctions
- Différentielle des fonctions réelles: dx, dy, dz
- En coordonnées cylindriques et sphériques: $d\rho$, $d\varphi$, dr, $d\theta$

Différentielle d'une fonction en un point

Soit $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ une fonction différentiable sur l'ensemble $D \subset \mathbb{R}^n$. Par définition, pour tout $\vec{x} \in D$, l'application

$$\begin{array}{cccc} \partial_{\bullet} f(x): & \mathbb{R}^n & \longrightarrow & \mathbb{R}^m \\ & \vec{v} & \longmapsto & \partial_{\vec{v}} f(\vec{x}) = \frac{\partial f}{\partial x_1}(\vec{x}) \, v_1 + \dots + \frac{\partial f}{\partial x_n}(\vec{x}) \, v_n \end{array}$$

est linéaire dans la variable \vec{v} .

Définition – Cette application linéaire de \mathbb{R}^n vers \mathbb{R}^m s'appelle différentielle de f au point \vec{x} .

Il est d'usage de la noter $df_{\vec{x}}: \mathbb{R}^n \longrightarrow \mathbb{R}^m$.

En somme, pour tout $\vec{v} = (v_1, ..., v_n) \in \mathbb{R}^n$, on a donc

$$df_{\vec{x}}(\vec{v}) = \frac{\partial f}{\partial x_1}(\vec{x}) v_1 + \cdots + \frac{\partial f}{\partial x_n}(\vec{x}) v_n = \partial_{\vec{v}} f(\vec{x}).$$

Différentielle en un point: cas particuliers

Cas particuliers -

• Si $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ est une fonction <u>réelle</u>, la différentielle $df_{\vec{x}}: \mathbb{R}^n \longrightarrow \mathbb{R}$ s'écrit au moyen du gradient de f:

$$\forall \vec{v} \in \mathbb{R}^n, \quad df_x(\vec{v}) = \langle \overrightarrow{\nabla} f(x), \vec{v} \rangle$$

• Si $f = (f_1, ..., f_m) : \mathbb{R} \longrightarrow \mathbb{R}^m$ est une fonction d'<u>une seule variable</u> x, la différentielle $df_x : \mathbb{R} \longrightarrow \mathbb{R}^m$ vaut:

$$\forall v \in \mathbb{R}, \qquad df_x(v) = \left(f'_1(x) \ v \ , \ldots, \ f'_m(x) \ v\right)$$

Exemples de différentielles

Exemples -

•
$$f(x) = x^2 - x^5$$
 \Rightarrow $f: \mathbb{R} \to \mathbb{R}$

$$\Rightarrow$$
 $df_x : \mathbb{R} \longrightarrow \mathbb{R}$ est donnée par $df_x(v) = (2x - 5x^4) v$.

•
$$f(x,y) = x^2y^3 - 7y$$
 \Rightarrow $f: \mathbb{R}^2 \to \mathbb{R}$

$$\Rightarrow$$
 $df_{(x,y)}: \mathbb{R}^2 \longrightarrow \mathbb{R}$ est donnée par

$$df_{(x,y)}(u,v) = 2xy^3 u + (3x^2y^2 - 7) v.$$

Par exemple:

$$df_{(x,y)}(2,1) = 4xy^3 + 3x^2y^2 - 7$$

 $df_{(1,1)}(u,v) = 2u - 4v$
 $df_{(1,1)}(2,1) = 0$ (quelle coincidence!)

•
$$f(x,y) = \begin{pmatrix} xy^2 \\ y \\ x^2 - y^2 \end{pmatrix} \Rightarrow \begin{cases} f: \mathbb{R}^2 \to \mathbb{R}^3 \\ df_{(x,y)}: \mathbb{R}^2 \to \mathbb{R}^3 \end{cases}$$

$$df_{(x,y)}(u,v) = u \begin{pmatrix} y^2 \\ 0 \\ 2x \end{pmatrix} + v \begin{pmatrix} 2xy \\ 1 \\ -2y \end{pmatrix} = \begin{pmatrix} y^2 u + 2xy v \\ v \\ 2x u - 2y v \end{pmatrix}$$

•
$$f(x, y, z) = \begin{pmatrix} xy^2 \\ yz^3 \end{pmatrix}$$
 \Rightarrow $f: \mathbb{R}^3 \to \mathbb{R}^2$
 $df_{(x,y,z)}: \mathbb{R}^3 \to \mathbb{R}^2$
 $df_{(x,y,z)}(u, v, w) = u \begin{pmatrix} y^2 \\ 0 \end{pmatrix} + v \begin{pmatrix} 2xy \\ z^3 \end{pmatrix} + w \begin{pmatrix} 0 \\ 3yz^2 \end{pmatrix}$

$$= \left(\begin{array}{c} y^2 u + 2xy v \\ z^3 v + 3yz^2 w \end{array}\right)$$

Applications linéaires élementaires

Remarque -

• Les n applications linéaires (pour i = 1, ..., n)

$$dx_i: \mathbb{R}^n \longrightarrow \mathbb{R}, \ \vec{v} = (v_1, ..., v_n) \longmapsto dx_i(\vec{v}) = v_i$$

formant une *base* de l'espace vectoriel $\mathcal{L}(\mathbb{R}^n, \mathbb{R})$.

• Par conséquent, toute application linéaire $L: \mathbb{R}^n \longrightarrow \mathbb{R}$ s'écrit comme *combinaison linéaire* des dx_i :

$$L = a_1 dx_1 + \cdots + a_n dx_n$$
 avec $a_i \in \mathbb{R}$.

• Il n'y a pas n applications linéaires

$$''dx_i'': \mathbb{R}^n \longrightarrow \mathbb{R}^m \quad (\text{pour } i = 1, ..., n)$$

qui forment une base de l'espace vectoriel $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$, parce que cet espace a dimension $n \times m$!

Différentielle

Définition – Soit $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ une fonction différentiable sur $D \subset \mathbb{R}^n$. L'application

$$\begin{array}{ccc}
D \subset \mathbb{R}^n & ! \longrightarrow & \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) \\
\vec{x} & \longmapsto & df_{\vec{x}}
\end{array}$$

s'appelle **différentielle** de f et est notée df.

Corollaire – Si $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ est une fonction <u>réelle</u>, alors: • La différentielle $df_{\vec{x}}: \mathbb{R}^n \longrightarrow \mathbb{R}$ en $\vec{x} \in D$ s'écrit

$$df_{\vec{x}} = \frac{\partial f}{\partial x_1}(\vec{x}) dx_1 + \cdots + \frac{\partial f}{\partial x_n}(\vec{x}) dx_n.$$

• La différentielle $df:D\longrightarrow \mathcal{L}(\mathbb{R}^n,\mathbb{R})$ s'écrit

$$df = \frac{\partial f}{\partial x_1} dx_1 + \cdots + \frac{\partial f}{\partial x_n} dx_n.$$

Exemples: écriture usuelle des différentielles

Exemples -

• $f(x) = x^2 - x^5$ \Rightarrow $df_x = (2x - 5x^4) dx$.

Par exemple: $df_1 = -3 dx$.

•
$$f(x,y) = x^2y^3 - 7y$$
 \Rightarrow $df_{(x,y)} = 2xy^3 dx + (3x^2y^2 - 7) dy$.

Par exemple: $df_{(1,1)} = 2 dx - 4 dy$.

•
$$f(x, y, z) = x^2 y^3 z - 7yz^2$$
 \Rightarrow $df_{(x,y,z)} = 2xy^3 z \ dx + (3x^2 y^2 z - 7z^2) \ dy + (x^2 y^3 - 14yz) \ dz$

Par exemple: $df_{(1,1,1)} = 2 dx - 4 dy - 13 dz$

2) Pour tout $(x, y) \in D$, on a

$$df_{(x,y)} = \frac{\partial f}{\partial x}(x,y) dx + \frac{\partial f}{\partial y}(x,y) dy$$
$$= \frac{-2x}{1 - x^2 + 5y} dx + \frac{5}{1 - x^2 + 5y} dy$$

3) Ainsi

$$df_{(2,0)} = \frac{-4}{1-4} dx + \frac{5}{1-4} dy = \frac{4}{3} dx - \frac{5}{3} dy$$

et

$$\begin{array}{rcl} df_{(2,0)}(\vec{\imath}) & = & df_{(2,0)}(1,0) = \frac{\partial f}{\partial x}(2,0) = \frac{4}{3} \\ df_{(2,0)}(\vec{\jmath}) & = & df_{(2,0)}(0,1) = \frac{\partial f}{\partial y}(2,0) = -\frac{5}{3} \\ df_{(2,0)}(\vec{v}) & = & df_{(2,0)}(1,1) = \frac{4}{3} - \frac{5}{3} = -\frac{1}{3} \\ df_{(2,0)}(\vec{u}) & = & df_{(2,0)}(3,-3) = \frac{4}{3} \ 3 - \frac{5}{3}(-3) = 4 + 5 = 9 \end{array}$$

Exercice : dx, dy, dz, $d\rho$, $d\varphi$, dr et $d\theta$

Énoncé – On note (x, y, z), (ρ, φ, z) et (r, θ, φ) les coordonnées cartesiennes, cylindriques et sphériques des points de \mathbb{R}^3 . On rappelle que

$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \\ z = z \end{cases} \qquad \begin{array}{l} \rho \in]0, \infty[\\ \varphi \in [0, 2\pi[$$

et

$$\left\{ \begin{array}{ll} x = r\cos\varphi\sin\theta & \qquad r\in]0,\infty[\\ y = r\sin\varphi\sin\theta & \qquad \varphi\in[0,2\pi[\\ z = r\cos\theta & \qquad \theta\in]0,\pi[\end{array} \right.$$

Montrer que

i)
$$\begin{cases} dx = \cos \varphi \ d\rho - \rho \sin \varphi \ d\varphi \\ dy = \sin \varphi \ d\rho + \rho \cos \varphi \ d\varphi \\ dz = dz \end{cases}$$

$$i) \begin{cases} dx = \cos \varphi \ d\rho - \rho \sin \varphi \ d\varphi \\ dy = \sin \varphi \ d\rho + \rho \cos \varphi \ d\varphi \\ dz = dz \end{cases}$$

$$i') \begin{cases} d\rho = \cos \varphi \ dx + \sin \varphi \ dy \\ \rho d\varphi = -\sin \varphi \ dx + \cos \varphi \ dy \\ dz = dz \end{cases}$$

Formules de passage cartésiennes ←→ cylindriques

$$ii) \begin{cases} dx = \cos\varphi \sin\theta \, dr - r\sin\varphi \, \sin\theta \, d\varphi + r\cos\varphi\cos\theta \, d\theta \\ dy = \sin\varphi \, \sin\theta \, dr + r\cos\varphi \, \sin\theta \, d\varphi + r\sin\varphi \, \cos\theta \, d\theta \\ dz = \cos\theta \, dr - r\sin\theta \, d\theta \end{cases}$$

$$ii') \begin{cases} dr = \cos\varphi \, \sin\theta \, dx + \sin\varphi \, \sin\theta \, dy + \cos\theta \, dz \\ r\sin\theta \, d\varphi = -\sin\varphi \, dx + \cos\varphi \, dy \\ rd\theta = \cos\varphi \, \cos\theta \, dx + \sin\varphi \, \cos\theta \, dy + \sin\theta \, dz \end{cases}$$

Formules de passage cartésiennes ←→ sphériques

$$(iii) \begin{cases} dr = \sin \theta \ d\rho + \cos \theta \ dz \\ d\varphi = d\varphi \\ rd\theta = \cos \theta \ d\rho - \sin \theta \ dz \end{cases}$$

$$(iii') \begin{cases} d\rho = \sin \theta \ dr + \cos \theta \ d\theta \\ d\varphi = d\varphi \\ dz = r\cos \theta \ dr - r\sin \theta \ d\theta \end{cases}$$

Formules de passage *cylindriques* ←→ *sphériques*

Réponse – Il suffit d'écrire les différentielles des applications de changement de variables. Par exemple la différentielle du changement de variables *cylindriques* \rightarrow *cartésiennes* donne les formules i):

$$dx = \frac{\partial x}{\partial \rho} d\rho + \frac{\partial x}{\partial \varphi} d\varphi + \frac{\partial x}{\partial z} dz$$

$$= \cos \varphi d\rho - \rho \sin \varphi d\varphi$$

$$dy = \frac{\partial y}{\partial \rho} d\rho + \frac{\partial y}{\partial \varphi} d\varphi + \frac{\partial y}{\partial z} dz$$

$$= \sin \varphi d\rho + \cos \varphi d\varphi$$

$$dz = \frac{\partial z}{\partial \rho} d\rho + \frac{\partial z}{\partial \varphi} d\varphi + \frac{\partial z}{\partial z} dz$$

$$= dz$$

Les formules i') s'obtiennent en inversant le système i). On procède dela même façon our les autres formules.

2.2.5 - Matrice Jacobienne

Ch. 2 – Dérivées, Taylor, extrema locaux

- 2.1 Limites et continuité
- 2.2 Dérivées partielles, gradient, différentielle, Jacobienne
 - 2 2 1 Dérivées partielle
 - 2.2.2 Dérivées directionnelles
 - 2.2.3 Gradient
 - 2.2.4 Différentielle
 - 2.2.5 Matrice Jacobienne
 - 2.2.6 Resumé sur les dérivées
- 2.3 Règle de la chaîne
- 2.4 Dérivées secondes, Hessienne, Laplacien
- 2.5 Polynôme de Taylor
- 2.6 Extrema locaux

Dans cette section:

- Rappel sur les applications linéaires et les matrices
- Matrice Jacobienne et déterminant Jacobien
- Jacobien des changements de variables

Rappels sur les applications linéaires et les matrices

Rappel – Toute application linéaire $L: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ se représente come une matrice $A = (a_{ij}) \in \mathcal{M}_{mn}(\mathbb{R})$ (avec m lignes et n colonnes) telle que, pour tout $\vec{v} = (v_1, ..., v_n) \in \mathbb{R}^n$, on a

$$L(\vec{v}) = A \ \vec{v} \quad \text{(produit matrice par vecteur)}$$

$$= \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} & v_1 + \cdots + a_{1n} & v_n \\ \vdots \\ a_{m1} & v_1 + \cdots + a_{mn} & v_n \end{pmatrix} \in \mathbb{R}^m$$

Matrice Jacobienne

Définition – Soit $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ une fonction diff. sur D.

• La matrice Jacobienne de f est la matrice $J_f \in \mathcal{M}_{mn}$ associée à df, c'est à dire telle que

$$df_{\vec{x}}(\vec{v}) = J_f(\vec{x}) \ \vec{v}$$
 pour tout $\vec{x} \in D$ et tout $\vec{v} \in \mathbb{R}^n$.

Si $(f_1,...,f_m)$ sont les composantes de f, on a alors

$$J_{f}(\vec{x}) = \begin{pmatrix} \frac{\partial f_{1}(\vec{x})}{\partial x_{1}} & \cdots & \frac{\partial f_{1}(\vec{x})}{\partial x_{n}} \\ \vdots & \cdots & \vdots \\ \frac{\partial f_{m}(\vec{x})}{\partial x_{1}} & \cdots & \frac{\partial f_{m}(\vec{x})}{\partial x_{n}} \end{pmatrix} \in \mathcal{M}_{mn}(\mathbb{R}).$$

• Si la matrice Jacobienne est carrée (n = m), son détérminant $\operatorname{Jac} f = \det J_f$ s'appelle **Jacobien de** f.

Exemples de matrices Jacobiennes

Exemples -

• Si $f: \mathbb{R}^2 \longrightarrow \mathbb{R}, \ (x,y) \mapsto f(x,y) = x^2y$

on a

$$J_f(x,y) = \left(\frac{\partial f(x,y)}{\partial x} \quad \frac{\partial f(x,y)}{\partial y}\right) = \left(2xy \quad x^2\right) \in \mathcal{M}_{12}(\mathbb{R})$$

une matrice ligne.

• Si
$$\gamma: \mathbb{R} \longrightarrow \mathbb{R}^2: t \mapsto \gamma(t) = (\gamma_1(t), \gamma_2(t)) = (2t, t^3 + 1),$$

on a

$$J_g(t) = \begin{pmatrix} \gamma_1'(t) \\ \gamma_2'(t) \end{pmatrix} = \begin{pmatrix} 2 \\ 3t^2 \end{pmatrix} \in \mathcal{M}_{21}(\mathbb{R})$$

une matrice colonne, c'est-à-dire un vecteur.

• Si
$$h: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 $(u,v) \mapsto h(u,v) = (h_1(u,v),h_2(u,v)) = (u^2v,3u),$ on a

et

 $J_h(u,v) = \begin{pmatrix} \frac{\partial n_1}{\partial u} & \frac{\partial n_1}{\partial v} \\ \frac{\partial h_2}{\partial u} & \frac{\partial h_2}{\partial u} \end{pmatrix} = \begin{pmatrix} 2uv & u^2 \\ 3 & 0 \end{pmatrix} \in \mathcal{M}_{22}(\mathbb{R})$

 $\operatorname{Jac} h(u, v) = \frac{\partial h_1}{\partial u} \frac{\partial h_2}{\partial v} - \frac{\partial h_2}{\partial u} \frac{\partial h_1}{\partial v} = -3u^2$

 $\operatorname{Jac} g(z) = g'(z) = \cos z \in \mathbb{R}$

 $g: \mathbb{R} \longrightarrow \mathbb{R}, \ z \mapsto g(z) = \sin z$

on a
$$J_g(z) = \Big(g'(z)\Big) = \Big(\cos z\Big) \in \mathcal{M}_{11}(\mathbb{R})$$

et

Exemple: Jacobien des changements de variables

• Polaires : $h(\rho, \varphi) = (\rho \cos \varphi, \rho \sin \varphi)$

$$J_h(\rho,\varphi) = \begin{pmatrix} \cos\varphi & -\rho\sin\varphi \\ \sin\varphi & \rho\cos\varphi \end{pmatrix}$$
$$\operatorname{Jac} h(\rho,\varphi) = \rho\cos^2\varphi + \rho\sin^2\varphi = \rho$$

• Cylindriques : $h(\rho, \varphi, z) = (\rho \cos \varphi, \rho \sin \varphi, z)$

$$J_h(\rho, \varphi, z) = \begin{pmatrix} \cos \varphi & -\rho \sin \varphi & 0\\ \sin \varphi & \rho \cos \varphi & 0\\ 0 & 0 & 1 \end{pmatrix}$$
$$\operatorname{Jac} h(\rho, \varphi, z) = \rho \cos^2 \varphi + \rho \sin^2 \varphi = \rho$$

• **Sphériques**: $h(r, \theta, \varphi) = (r \cos \varphi \sin \theta, r \sin \varphi \sin \theta, r \cos \theta)$

$$J_h(r,\theta,\varphi) = \begin{pmatrix} \cos\varphi\sin\theta & -r\sin\varphi\sin\theta & r\cos\varphi\cos\theta \\ \sin\varphi\sin\theta & r\cos\varphi\sin\theta & r\sin\varphi\cos\theta \\ \cos\theta & 0 & -r\sin\theta \end{pmatrix}$$

$$\operatorname{Jac} h = \cos \theta \left(-r^2 \sin^2 \varphi \sin \theta \cos \theta - r^2 \cos^2 \varphi \sin \theta \cos \theta \right)$$
$$-r \sin \theta \left(r \cos^2 \varphi \sin^2 \theta + r \sin^2 \varphi \sin^2 \theta \right)$$

$$= -r^{2} \sin \theta \cos^{2} \theta - r^{2} \sin^{3} \theta$$
$$= -r^{2} \sin \theta$$

Exercice

Enoncé – Calculer le gradient, la différentielle et la matrice jacobienne de la fonction $f : \mathbb{R}^3 \longrightarrow \mathbb{R}$ donnée par

$$f(x, y, z) = z \sin(xy).$$

Réponse - On a

$$\overrightarrow{\nabla} f(x, y, z) = \begin{pmatrix} yz \cos(xy) \\ xz \cos(xy) \\ \sin(xy) \end{pmatrix}$$

$$df_{(x,y,z)} = yz \cos(xy) dx + xz \cos(xy) dy + \sin(xy) dz$$

$$J_f(x, y, z) = \left(yz \cos(xy) \quad xz \cos(xy) \quad \sin(xy) \right)$$

Exercice

Énoncé – Calculer la différentielle et la matrice Jacobienne de la fonction $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ donnée par

$$f(x,y,z) = \begin{pmatrix} z \sin x \\ z \sin y \end{pmatrix}.$$

Réponse – Pour tout $\vec{v} = (u, v, w) \in \mathbb{R}^3$, on a

$$df_{(x,y,z)}(u,v,w) = \begin{pmatrix} z \cos x \\ 0 \end{pmatrix} u + \begin{pmatrix} 0 \\ z \cos y \end{pmatrix} v + \begin{pmatrix} \sin x \\ \sin y \end{pmatrix} w$$

$$J_f(x, y, z) = \begin{pmatrix} z \cos x & 0 & \sin x \\ 0 & z \cos y & \sin y \end{pmatrix}$$

2.2.6 – Resumé sur les dérivées

Ch. 2 – Dérivées, Taylor, extrema locaux

- 2.1 Limites et continuité
- 2.2 Dérivées partielles, gradient, différentielle, Jacobienne
 - 2.2.1 Dérivées partielles
 - 2.2.2 Dérivées directionnelles
 - 2.2.3 Gradient
 - 2.2.4 Différentielle
 - 2.2.5 Matrice Jacobienne
 - 2.2.6 Resumé sur les dérivées
- 2.3 Règle de la chaîne
- 2.4 Dérivées secondes, Hessienne, Laplacien
- 2.5 Polynôme de Taylor
- 2.6 Extrema locaux

Dans cette section:

- Resumé sur les dérivées des fonctions réelles
- Resumé sur les dérivées des fonctions vectorielles

Resumé: dérivées des fonctions réelles

Si $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ est une fonction réelle diff. sur $D \subset \mathbb{R}^n$:

- dérivées partielles
 - = fonctions réelles
- dérivées directionelles
 - = fonctions réelles
- gradient
 - = fonction vectorielle
- différentielle
 - = fonction à valeur applications linéaires
- Jacobienne = fonction à valeur matrices ligne

$$\frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_n} : D \longrightarrow \mathbb{R}$$

$$\partial_{\vec{v}}f:D\longrightarrow \mathbb{R}$$

$$\partial_{\vec{v}}f = v_1 \frac{\partial f}{\partial x_1} + \cdots + v_n \frac{\partial f}{\partial x_n}$$

$$\begin{array}{c}
\partial_{\vec{v}}f:D\longrightarrow\mathbb{R} \\
\partial_{\vec{v}}f=v_{1}\frac{\partial f}{\partial x_{1}}+\cdots+v_{n}\frac{\partial f}{\partial x_{n}} \\
\overrightarrow{\nabla}f:D\longrightarrow\mathbb{R}^{n}
\end{array}$$

$$\overrightarrow{\nabla}f:D\longrightarrow\mathbb{R}^{n}$$

$$df: D \longrightarrow \mathcal{L}(\mathbb{R}^n, \mathbb{R})$$
$$df = \frac{\partial f}{\partial x_1} dx_1 + \dots + \frac{\partial f}{\partial x_n} dx_n$$

$$J_f: D \longrightarrow \mathcal{M}_{1n}(\mathbb{R})$$

$$J_f: D \longrightarrow \mathcal{M}_{1n}(\mathbb{R})$$

$$J_f = \begin{pmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \end{pmatrix}$$

Resumé: dérivées des fonctions vectorielles

Si $f = (f_1, ..., f_m) : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ est fonction vectorielle diff. sur D:

- dérivées partielles
 - = fonctions vectorielles

$$\frac{\frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_n} : D \longrightarrow \mathbb{R}^m}{\frac{\partial f}{\partial x_i} = \left(\frac{\partial f_1}{\partial x_i}, ..., \frac{\partial f_m}{\partial x_i}\right)}$$

- dérivées directionelles
 - = fonctions vectorielles
- $\frac{\partial_{\vec{v}} f : D \longrightarrow \mathbb{R}^m}{\partial_{\vec{v}} f = v_1 \frac{\partial f}{\partial y_1} + \dots + v_n \frac{\partial f}{\partial y_n}}$
- gradient " $\overrightarrow{\nabla} f$ " n'est pas défini
- différentielle
 - = fonction à valeur applications linéaires
- Jacobienne

 fonction à valeur dans les matrices

$$df: D \longrightarrow \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$$

mais les " dx_i " n'existent pas

$$J_f: D \subset \mathbb{R}^n \longrightarrow \mathcal{M}_{mn}(\mathbb{R})$$

$$J_f = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_m} & \cdots & \frac{\partial f_m}{\partial x_m} \end{pmatrix}$$

2.3 – Règle de la chaîne

Ch. 2 – Dérivées, Taylor, extrema locaux

- 2.1 Limites et continuité
- 2.2 Dérivées partielles, gradient, différentielle, Jacobienne
- 2.3 Règle de la chaîne
- 2.4 Dérivées secondes, Hessienne, Laplacien
- 2.5 Polynôme de Taylor
- 2.6 Extrema locaux

Dans cette section:

- Dérivée de la somme et du produit de fonctions
- Dérivée de la composée de fonctions
- Transformation des dérivées partielles: $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial y}$, $\frac{\partial}{\partial z}$, $\frac{\partial}{\partial \rho}$, $\frac{\partial}{\partial \varphi}$, $\frac{\partial}{\partial r}$ et $\frac{\partial}{\partial \theta}$

Dérivée de somme de fonctions et produit par scalaire

Proposition – Si $f, g : \mathbb{R}^n \to \mathbb{R}^m$ sont différentiables, on a :

•
$$\frac{\partial (f+g)}{\partial x_i} = \frac{\partial f}{\partial x_i} + \frac{\partial g}{\partial x_i}$$
 pour tout $i = 1, ..., n$

Par conséquent
$$\overrightarrow{\nabla}(f+g)=\overrightarrow{\nabla}f+\overrightarrow{\nabla}g$$
 (si $m=1$),
$$d(f+g)=df+dg,\;\;J_{f+g}=J_f+J_g$$

•
$$\left| \frac{\partial(\lambda f)}{\partial x_i} = \lambda \frac{\partial f}{\partial x_i} \right|$$
 pour tout $i = 1, ..., n$ où $\lambda \in \mathbb{R}$

Par conséquent
$$\overrightarrow{\nabla}(\lambda\,f)=\lambda\,\overrightarrow{\nabla}f$$
 (si m=1),
$$d(\lambda\,f)=\lambda\,df,\quad J_{\lambda\,f}=\lambda\,J_f$$

Dérivée du produit de fonctions

Proposition – Si $f, g : \mathbb{R}^n \longrightarrow \mathbb{R}$ sont des fonctions <u>réelles</u> différentiables, on a la **règle de Leibniz**:

$$\bullet \qquad \frac{\partial (fg)}{\partial x_i} = \frac{\partial f}{\partial x_i} g + f \frac{\partial g}{\partial x_i} \qquad pour tout i = 1, ..., n$$

Par conséquent
$$\overrightarrow{\nabla}(fg) = (\overrightarrow{\nabla}f)g + f(\overrightarrow{\nabla}g),$$

$$d(fg) = (df)g + f(dg),$$

$$J_{fg} = (J_f)g + f(J_g)$$

Exemple: règle de Leibniz

Exemple – Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par $f(x,y) = xy^2 e^{xy}$. Le calcul de la différentielle de f peut se faire directement au moyen de la formule

$$d(xy^2 e^{xy}) = \frac{\partial(xy^2 e^{xy})}{\partial x} dx + \frac{\partial(xy^2 e^{xy})}{\partial y} dy$$

ou en passant par la règle de Leibniz

$$d(xy^{2} e^{xy}) = d(xy^{2}) e^{xy} + xy^{2} d(e^{xy})$$

$$= (y^{2} dx + 2xy dy) e^{xy}$$

$$+ xy^{2} (y e^{xy} dx + x e^{xy} dy)$$

$$= (y^{2} + xy^{3}) e^{xy} dx + (2xy + x^{2}y^{2}) e^{xy} dy$$

Dérivée des fonctions composées

Proposition – Pour deux fonctions

$$f = (f_1, ..., f_m) : \mathbb{R}^n \to \mathbb{R}^m$$
 différentiable en $\vec{x} \in \mathbb{R}^n$
 $g = (g_1, ..., g_p) : \mathbb{R}^m \to \mathbb{R}^p$ différentiable en $\vec{y} = f(\vec{x}) \in \mathbb{R}^m$

la composée $g \circ f : \mathbb{R}^n \to \mathbb{R}^p$ est différentiable en \vec{x} et on a la règle de la chaîne :

$$\bullet \boxed{\frac{\partial (g \circ f)_{j}}{\partial x_{i}}(\vec{x}) = \frac{\partial g_{j}}{\partial y_{1}}(f(\vec{x})) \frac{\partial f_{1}}{\partial x_{i}}(\vec{x}) + \dots + \frac{\partial g_{j}}{\partial y_{m}}(f(\vec{x})) \frac{\partial f_{m}}{\partial x_{i}}(\vec{x})}$$

pour tout i = 1, ..., n et tout j = 1, ..., p, ...

Par conséquent, on a aussi :

$$d(g \circ f)_{\vec{X}} = dg_{f(\vec{X})} \circ df_X$$
 (composition d'applications linéaires)

$$J_{g \circ f}(\vec{x}) = J_g(f(\vec{x})) \cdot J_f(\vec{x})$$
 (produit de matrices)

La règle de la chaîne dans les cas usuels (1)

Composée à droite –

Si
$$f : \mathbb{R}^2 \longrightarrow \mathbb{R}, \ (x,y) \mapsto f(x,y) = z$$

 $g : \mathbb{R} \longrightarrow \mathbb{R}, \ z \mapsto g(z)$
 $g \circ f : \mathbb{R}^2 \longrightarrow \mathbb{R}, \ (x,y) \mapsto g(f(x,y))$

on a

$$\begin{cases} \frac{\partial(g \circ f)}{\partial x}(x,y) = \frac{dg}{dz}(f(x,y)) \frac{\partial f}{\partial x}(x,y) \\ \frac{\partial(g \circ f)}{\partial y}(x,y) = \frac{dg}{dz}(f(x,y)) \frac{\partial f}{\partial y}(x,y) \end{cases}$$

$$d(g \circ f)_{(X,y)} = \frac{dg}{dz} (f(x,y)) df_{(X,y)}$$
$$J_{g \circ f}(x,y) = \frac{dg}{dz} (f(x,y)) J_f(x,y)$$

Exercice: règle de la chaîne pour la composée à droite

Énoncé – *Soit* $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ une fonction dont on connait

$$\frac{\partial f(x,y)}{\partial x} = 2xy \quad \text{et} \quad \frac{\partial f(x,y)}{\partial y} = x^2 - 2y.$$

Pour
$$F(x,y) = \ln f(x,y)$$
, calculer $\frac{\partial F}{\partial x}$ et $\frac{\partial F}{\partial y}$.

Réponse – Si on pose $g(z) = \ln z$, on a $F = g \circ f$ et donc

$$\frac{\partial F(x,y)}{\partial x} = \frac{dg}{dz}(f(x,y)) \frac{\partial f}{\partial x}(x,y) = \frac{2xy}{f(x,y)}$$

$$\frac{\partial F(x,y)}{\partial y} = \frac{d g}{d z}(f(x,y)) \frac{\partial f}{\partial y}(x,y) = \frac{x^2 - 2y}{f(x,y)}$$

La règle de la chaîne dans les cas usuels (2)

• Composée à gauche -

Si
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}, \ (x,y) \mapsto f(x,y)$$

 $h: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, \ (u,v) \mapsto h(u,v) = (x(u,v),y(u,v))$
 $f \circ h: \mathbb{R}^2 \longrightarrow \mathbb{R}, \ (u,v) \mapsto f(x(u,v),y(u,v))$

on a

$$\begin{cases}
\frac{\partial (f \circ h)}{\partial u}(u, v) = \frac{\partial f}{\partial x} (h(u, v)) \frac{\partial x}{\partial u}(u, v) + \frac{\partial f}{\partial y} (h(u, v)) \frac{\partial y}{\partial u}(u, v) \\
\frac{\partial (f \circ h)}{\partial v}(u, v) = \frac{\partial f}{\partial x} (h(u, v)) \frac{\partial x}{\partial v}(u, v) + \frac{\partial f}{\partial y} (h(u, v)) \frac{\partial y}{\partial v}(u, v)
\end{cases}$$

$$d(f \circ h)_{(u,v)} = df_{h(u,v)} \circ dh_{(u,v)}$$
$$J_{f \circ h}(u,v) = J_f(h(u,v)) \ J_h(u,v)$$

Exercice: règle de la chaîne pour la composée à gauche

Énoncé – Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ une fonction dont on connait

$$\frac{\partial f(x,y)}{\partial x} = 2xy$$
 et $\frac{\partial f(x,y)}{\partial y} = x^2 - 2y$.

Pour $G(u, v) = f(v, uv^2)$, calculer $\frac{\partial G}{\partial u}$ et $\frac{\partial G}{\partial v}$.

Réponse – Si on pose $h(u, v) = (v, uv^2) = (x, y)$, c.à d. $\begin{cases} x = v \\ y = uv^2 \end{cases}$ on a $G = f \circ h$ et donc

$$\frac{\partial G(u,v)}{\partial u} = \frac{\partial f}{\partial x}(v,uv^2) \frac{\partial x}{\partial u}(u,v) + \frac{\partial f}{\partial y}(v,uv^2) \frac{\partial y}{\partial u}(u,v)
= 2v uv^2 \cdot 0 + (v^2 - 2uv^2) \cdot v^2
= (1 - 2u)v^4
\frac{\partial G(u,v)}{\partial v} = \frac{\partial f}{\partial x}(v,uv^2) \frac{\partial x}{\partial v}(u,v) + \frac{\partial f}{\partial y}(v,uv^2) \frac{\partial y}{\partial v}(u,v)
= 2v uv^2 \cdot 1 + (v^2 - 2uv^2) \cdot 2uv
= 4u(1 - u)v^3$$

La règle de la chaîne dans les cas usuels (3)

Composée avec une paramétrisation –

Si
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}, \ (x,y) \mapsto f(x,y)$$

$$\gamma: \mathbb{R} \longrightarrow \mathbb{R}^2, \ t \mapsto \gamma(t) = \big(x(t),y(t)\big)$$

$$f \circ \gamma: \mathbb{R} \longrightarrow \mathbb{R}, \ t \mapsto f\big(x(t),y(t)\big)$$
 on a

$$\frac{d(f \circ \gamma)(t)}{dt} = \frac{\partial f}{\partial x}(\gamma(t)) \dot{x}(t) + \frac{\partial f}{\partial y}(\gamma(t)) \dot{y}(t)$$

$$d(f\circ\gamma)_t=df_{\gamma(t)}\circ d\gamma_t$$

$$J_{f\circ\gamma}(t)=J_f(\gamma(t))\ J_{\gamma}(t)$$

Exercice: règle de la chaîne pour une paramétrisation

Énoncé – *Soit* $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ une fonction dont on connait

$$\tfrac{\partial f(x,y)}{\partial x} = 2xy \quad \text{ et } \quad \tfrac{\partial f(x,y)}{\partial y} = x^2 - 2y.$$

Pour
$$H(t) = f(t^2, 3t)$$
, calculer $\frac{d H(t)}{d t}$.

Réponse – Si on pose
$$\gamma(t)=(t^2,3t)=(x,y)$$
, c.à d. $\begin{cases} x=t^2\\ y=3t \end{cases}$ on a $H=f\circ\gamma$ et donc

$$\frac{d H(t)}{d t} = \frac{d (f \circ \gamma)(t)}{d t}$$

$$= \frac{\partial f}{\partial x}(t^2, 3t) \dot{x}(t) + \frac{\partial f}{\partial y}(t^2, 3t) \dot{y}(t)$$

$$= 2t^2 3t \cdot 2t + (t^4 - 6t) \cdot 3$$

$$= 15t^4 - 18t$$

Exercice

Énoncé – *Soit* $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ *la fonction* $f(x, y) = xy^2$.

1) Soit $g: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction telle que $g'(z) = \sqrt{z}$.

Calculer
$$\frac{\partial g(xy^2)}{\partial x}$$
 et $\frac{\partial g(xy^2)}{\partial y}$.

Réponse – On veut calculer les dérivées de $g \circ f$, donc on applique la règle de la chaîne:

$$\frac{\partial g(xy^2)}{\partial x} = g'(xy^2) \frac{\partial (xy^2)}{\partial x}$$
$$= \sqrt{xy^2} y^2$$
$$\frac{\partial g(xy^2)}{\partial y} = g'(xy^2) \frac{\partial (xy^2)}{\partial y}$$
$$= 2xy \sqrt{xy^2}$$

2) Soit (x,y) = h(u,v) = (x(u,v),y(u,v)) un changement de variables dont on connait la matrice Jacobienne

ables dont on connait la matrice Jacobienne
$$J_h(u,v) = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ v^2 & 2uv \end{pmatrix},$$

et soit $\tilde{f} = f \circ h$. Calculer $\frac{\partial \tilde{f}}{\partial u}(u,v)$ et $\frac{\partial \tilde{f}}{\partial v}(u,v)$.

Réponse – On applique la règle de la chaîne:

$$\frac{\partial \tilde{f}}{\partial u}(u,v) = \frac{\partial f}{\partial x}(h(u,v)) \frac{\partial x}{\partial u}(u,v) + \frac{\partial f}{\partial y}(h(u,v)) \frac{\partial y}{\partial u}(u,v)
= y(u,v)^2 \cdot 0 + 2x(u,v)y(u,v) v^2$$

$$= y(u,v)^{2} \cdot 0 + 2x(u,v)y(u,v) v^{2}$$

$$\frac{\partial \tilde{f}}{\partial v}(u,v) = \frac{\partial f}{\partial x}(h(u,v)) \frac{\partial x}{\partial v}(u,v) + \frac{\partial f}{\partial y}(h(u,v)) \frac{\partial y}{\partial v}(u,v)$$

$$= y(u,v)^{2} \cdot 1 + 2x(u,v)y(u,v) 2uv$$

Réponse (suite)-

En alternative, on peut passer par les matrices Jacobiennes. Puisque

$$J_f \big(x, y \big) = \left(\begin{array}{cc} \frac{\partial f(x,y)}{\partial x} & \frac{\partial f(x,y)}{\partial y} \end{array} \right) = \left(\begin{array}{cc} y^2 & 2xy \end{array} \right),$$

on a

$$\begin{split} J_{\tilde{f}}(u,v) &= J_{f}(h(u,v)) \cdot J_{h}(u,v) \\ &= \left(y(u,v)^{2} \ 2x(u,v)y(u,v) \right) \cdot \left(\begin{array}{cc} 0 & 1 \\ v^{2} & 2uv \end{array} \right) \\ &= \left(y^{2} \cdot 0 + 2xy \cdot v^{2} \quad y^{2} \cdot 1 + 2xy \cdot 2uv \right) \\ &= \left(2v^{2} x(u,v)y(u,v) \quad y(u,v)^{2} + 4uv \, x(u,v)y(u,v) \right) \end{split}$$

3) Soit $\gamma(t) = (x(t), y(t))$ une trajectoire dans \mathbb{R}^2 dépendante du paramètre t. Calculer la dérivée en t de la fonction $t \mapsto f(x(t), y(t))$.

Réponse – On veut calculer la dérivée de la fonction $f \circ \gamma$, donc on applique la règle de la chaîne:

applique la règle de la chaîne:
$$\frac{d f(x(t), y(t))}{dt} = \frac{\partial f}{\partial x} (x(t), y(t)) \dot{x}(t) + \frac{\partial f}{\partial y} (x(t), y(t)) \dot{y}(t)$$

 $= y(t)^2 \dot{x}(t) + 2x(t)v(t) \dot{v}(t)$

Exercice : transformation des dérivées partielles

Énoncé – Soient (x, y, z) les coordonnées cartesiennes des points de \mathbb{R}^3 , (ρ, φ, z) les coordonnées cylindriques et (r, θ, φ) les coordonnées sphériques. On rappelle que

$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases} \quad \text{et} \quad \begin{cases} x = r \cos \varphi \sin \theta \\ y = r \sin \varphi \sin \theta \\ z = r \cos \theta \end{cases}$$

avec

$$\left\{ \begin{array}{l} \rho \in]0, \infty[\\ \varphi \in [0, 2\pi[\end{array} \right. \quad \text{et} \quad \left\{ \begin{array}{l} r \in]0, \infty[\\ \varphi \in [0, 2\pi[\\ \theta \in]0, \pi[\end{array} \right.$$

Montrer que les derivées partielles $\left\{\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\}$, $\left\{\frac{\partial}{\partial \rho}, \frac{\partial}{\partial \varphi}, \frac{\partial}{\partial z}\right\}$ et $\left\{\frac{\partial}{\partial r}, \frac{\partial}{\partial \varphi}, \frac{\partial}{\partial \theta}\right\}$ satisfont aux formules suivantes :

$$\begin{pmatrix} I \end{pmatrix} \begin{cases} \frac{1}{\rho} \frac{\partial}{\partial t} \\ \frac{\partial}{\partial t} \end{cases}$$

$$(i') \begin{cases} \frac{\partial}{\partial x} = \cos \varphi \frac{\partial}{\partial \rho} - \sin \varphi \frac{1}{\rho} \frac{\partial}{\partial \varphi} \\ \frac{\partial}{\partial y} = \sin \varphi \frac{\partial}{\partial \rho} + \cos \varphi \frac{1}{\rho} \frac{\partial}{\partial \varphi} \\ \frac{\partial}{\partial z} = \frac{\partial}{z} \end{cases}$$

$$\frac{\partial}{\partial x}$$

 $(i) \begin{cases} \frac{\partial}{\partial \rho} = \cos \varphi \frac{\partial}{\partial x} + \sin \varphi \frac{\partial}{\partial y} \\ \frac{1}{\rho} \frac{\partial}{\partial \varphi} = -\sin \varphi \frac{\partial}{\partial x} + \cos \varphi \frac{\partial}{\partial y} \\ \frac{\partial}{\partial \varphi} = \frac{\partial}{\varphi} \end{cases}$

$$(ii) \left\{ \begin{array}{rcl} \frac{\partial}{\partial r} & = & \cos\varphi \, \sin\theta \, \frac{\partial}{\partial x} + \sin\varphi \, \sin\theta \, \frac{\partial}{\partial y} + \cos\theta \, \frac{\partial}{\partial z} \\ \\ \frac{1}{r\sin\theta} \frac{\partial}{\partial \varphi} & = & -\sin\varphi \, \frac{\partial}{\partial x} + \cos\varphi \, \frac{\partial}{\partial y} \\ \\ \frac{1}{r} \frac{\partial}{\partial \theta} & = & \cos\varphi \, \cos\theta \, \frac{\partial}{\partial x} + \sin\varphi \, \cos\theta \, \frac{\partial}{\partial y} - \sin\theta \, \frac{\partial}{\partial z} \end{array} \right.$$

$$(ii') \left\{ \begin{array}{ll} \frac{\partial}{\partial x} &=& \cos\varphi\sin\theta \ \frac{\partial}{\partial r} - \sin\varphi \ \frac{1}{r\sin\theta} \frac{\partial}{\partial\varphi} + \cos\varphi\cos\theta \ \frac{1}{r} \frac{\partial}{\partial\theta} \\ \\ \frac{\partial}{\partial y} &=& \sin\varphi\sin\theta \ \frac{\partial}{\partial r} + \cos\varphi \ \frac{1}{r\sin\theta} \frac{\partial}{\partial\varphi} + \sin\varphi\cos\theta \ \frac{1}{r} \frac{\partial}{\partial\theta} \\ \\ \frac{\partial}{\partial z} &=& \cos\theta \ \frac{\partial}{\partial r} - \sin\theta \ \frac{1}{r} \frac{\partial}{\partial\theta} \end{array} \right.$$

$$(iii) \begin{cases} \frac{\partial}{\partial r} = \sin \theta \frac{\partial}{\partial \rho} + \cos \theta \frac{\partial}{\partial z} \\ \frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi} = \frac{1}{\rho} \frac{\partial}{\partial \varphi} \\ \frac{1}{r} \frac{\partial}{\partial \theta} = \cos \theta \frac{\partial}{\partial \rho} - \sin \theta \frac{\partial}{\partial z} \end{cases}$$

$$\frac{1}{r} \frac{\partial}{\partial \theta} = \cos \theta \frac{\partial}{\partial \rho} - \sin \theta \frac{\partial}{\partial z}$$

Réponse – Montrons (i). Pour cela on applique la règle de la chaîne à la composée $\tilde{f} = f \circ h$ où $(x,y,z) = h(\rho,\varphi,z)$ est le changement de variables des coordonnées cylindriques en coordonnées cartésiennes. On a alors:

$$\begin{array}{rcl} \frac{\partial \tilde{f}}{\partial \rho} & = & \frac{\partial f}{\partial x} \frac{\partial x}{\partial \rho} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \rho} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial \rho} \\ & = & \cos \varphi \frac{\partial f}{\partial x} + \sin \varphi \frac{\partial f}{\partial y} \\ \frac{\partial \tilde{f}}{\partial \varphi} & = & \frac{\partial f}{\partial x} \frac{\partial x}{\partial \varphi} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \varphi} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial \varphi} \\ & = & -r \sin \varphi \frac{\partial f}{\partial x} + r \cos \varphi \frac{\partial f}{\partial y} \\ \frac{\partial \tilde{f}}{\partial z} & = & \frac{\partial f}{\partial x} \frac{\partial x}{\partial z} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial z} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial z} \\ & = & \frac{\partial f}{\partial z} \end{array}$$

d'où suivent les formules (i). Les formules (i') en découlent par inversion du système.

• Pour montrer les formules (ii), on applique cette méthode à la composée $\tilde{f}=f\circ h$ où $(x,y,z)=h(r,\theta,\varphi)$ est le changement de variables des coordonnées sphériques en coordonnées cartésiennes. On a alors:

$$\begin{array}{ll} \frac{\partial \tilde{f}}{\partial r} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial r} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial r} \\ &= \cos \varphi \, \sin \theta \, \frac{\partial f}{\partial x} + \sin \varphi \, \sin \theta \, \frac{\partial f}{\partial y} + \cos \theta \frac{\partial f}{\partial z} \\ \\ \frac{\partial \tilde{f}}{\partial \varphi} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial \varphi} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \varphi} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial \varphi} \\ &= -\rho \sin \varphi \, \sin \theta \, \frac{\partial f}{\partial x} + \rho \cos \varphi \, \sin \theta \, \frac{\partial f}{\partial y} \\ \\ \frac{\partial \tilde{f}}{\partial \theta} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial \theta} \\ &= r \cos \varphi \, \cos \theta \, \frac{\partial f}{\partial x} + r \sin \varphi \, \cos \theta \, \frac{\partial f}{\partial y} - r \sin \theta \, \frac{\partial f}{\partial z} \end{array}$$

- On inverse le système (ii) pour obtenir (ii').
- On combine les (i) à (ii') pour obtenir (iii) et (iii').

2.4 - Dérivées secondes, Hessienne, Laplacien

Ch. 2 – Dérivées, Taylor, extrema locaux

- 2.1 Limites et continuité
- 2.2 Dérivées partielles, gradient, différentielle, Jacobienne
- 2.3 Règle de la chaîne
- 2.4 Dérivées secondes, Hessienne, Laplacien
- 2.5 Polynôme de Taylor
- 2.6 Extrema locaux

Dans cette section:

- Dérivées d'ordre supérieur
- Théorème de Schwarz
- Matrice Hessienne
- Laplacien, fonctions harmoniques

Dérivées partielles d'ordre supérieur

Définition – Soit $f: D \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ différentiable. Si les dérivées partielles $\frac{\partial f}{\partial x_i}: D \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ sont à leur tour différentiables, on peut calculer leurs dérivées partielles.

• Pour tout $k \in \mathbb{N}$, les **dérivées partielles d'ordre** k **de** f sont les fonctions qu'on obtient en dérivant f succéssivement k fois:

$$\frac{\partial^k f}{\partial x_{i_1} \cdots \partial x_{i_k}} = \frac{\partial}{\partial x_{i_1}} \cdots \frac{\partial f}{\partial x_{i_k}}.$$

Par exemple, si $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ est fonction de (x, y), on a:

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \frac{\partial f}{\partial x}, \quad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \frac{\partial f}{\partial y}, \quad \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \frac{\partial f}{\partial x}, \quad \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \frac{\partial f}{\partial y}.$$

• La fonction f est **de classe** C^k si ses dérivées d'ordre k existent et sont des fonctions continues. La fonction f est **lisse** ou **de classe** C^{∞} si elle est C^k pour tout $k \in \mathbb{N}$.

Théorème de Schwarz

Théorème – Si les dérivées secondes $\frac{\partial^2 f}{\partial x_i \partial x_j}$ existent et sont continue en un point \vec{x} , pour tout i, j = 1, ..., n, alors

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(\vec{x}) = \frac{\partial^2 f}{\partial x_j \partial x_i}(\vec{x}) \qquad pour \ tout \ i \neq j.$$

Corollaire – Si f est une fonction de classe C^k (ou lisse), alors toutes ses dérivées mixtes jusqu'à l'ordre k (ou ∞) ayant le même nombre de dérivées en chaque x_i , coincident indépendement de l'ordre dans lequel elles sont calculées.

Exemple : dérivées secondes

Exemple -
$$f(x,y) = x^3y^2$$

$$\begin{cases}
\frac{\partial f}{\partial x}(x,y) = 3x^2y^2 & \begin{cases}
\frac{\partial^2 f}{\partial x^2}(x,y) = 6xy^2 \\
\frac{\partial^2 f}{\partial y \partial x}(x,y) = 6x^2y
\end{cases} \\
\frac{\partial f}{\partial y}(x,y) = 2x^3y & \begin{cases}
\frac{\partial^2 f}{\partial x \partial y}(x,y) = 6x^2y \\
\frac{\partial^2 f}{\partial y \partial x}(x,y) = 2x^3\end{cases}$$

L'on constate que les dérivées partielles sont continues (donc f est de classe C^2) et que les dérivées mixtes sont identiques.

Exercice

Énoncé – Soient $F, G : \mathbb{R} \longrightarrow \mathbb{R}$ de classe C^2 et soit $c \in \mathbb{R}^*$. Montrer que le fonction u(x,t) = F(x-ct) + G(x+ct) est solution de l'équation des ondes

$$\frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}(x,t) - \frac{\partial^2 u}{\partial x^2}(x,t) = 0 \qquad pour \ tout \ (x,t) \in \mathbb{R}^2.$$

Réponse – La fonction u est de classe C^2 car composée de fonctions C^2 . On a

$$\frac{\partial u}{\partial x}(x,t) = F'(x-ct) \frac{\partial (x-ct)}{\partial x} + G'(x+ct) \frac{\partial (x+ct)}{\partial x}
= F'(x-ct) + G'(x+ct)
\frac{\partial u}{\partial t}(x,t) = F'(x-ct) \frac{\partial (x-ct)}{\partial t} + G'(x+ct) \frac{\partial (x+ct)}{\partial t}
= -c F'(x-ct) + c G'(x+ct)$$

d'où

Ainsi

 $\frac{\partial^2 u}{\partial x^2}(x,t) = F''(x-ct) \frac{\partial (x-ct)}{\partial x} + G''(x+ct) \frac{\partial (x+ct)}{\partial x}$

 $\frac{\partial^2 u}{\partial x^2}(x,t) = -c F''(x-ct) \frac{\partial (x-ct)}{\partial x} + c G''(x+ct) \frac{\partial (x+ct)}{\partial x}$ $= (-c)^2 F''(x - ct) + c^2 G''(x + ct).$

 $\frac{1}{2^2} \frac{\partial^2 u}{\partial t^2}(x,t) - \frac{\partial^2 u}{\partial x^2}(x,t) = 0.$

= F''(x - ct) + G''(x + ct).

Matrice Hessienne

Définition – Soit $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ de classe C^2 en \vec{x} .

• La **matrice Hessienne** de f en \vec{x} est la matrice carrée de taille n contenant toutes les dérivées secondes de f en \vec{x} :

$$H_{f}(\vec{x}) = \begin{pmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}}(\vec{x}) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(\vec{x}) & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(\vec{x}) \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(\vec{x}) & \frac{\partial^{2} f}{\partial x_{2}^{2}}(\vec{x}) & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}}(\vec{x}) \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(\vec{x}) & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}}(\vec{x}) & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}(\vec{x}) \end{pmatrix}$$

Cette matrice est symétrique par le théorème de Schwarz.

• Son déterminant s'appelle le **Hessien** de f

$$\operatorname{Hess} f(\vec{x}) = \det H_f(\vec{x})$$

Exemple: matrice Hessienne

Exemple -

Pour $g(x, y, z) = x \sin y + y \sin z$, on a

$$\overrightarrow{\nabla}g(x,y,z) = \begin{pmatrix} \sin y \\ x\cos y + \sin z \\ y\cos z \end{pmatrix}$$

puis

$$H_g(x, y, z) = \begin{pmatrix} 0 & \cos y & 0 \\ \cos y & -x \sin y & \cos z \\ 0 & \cos z & -y \sin z \end{pmatrix}$$

d'où

$$\det H_g(x, y, z) = -\cos y \left(-y\cos y\sin z - 0\right)$$
$$= y\cos^2 y\sin z$$

Exercice

Énoncé – Montrer que le Hessien de la fonction

$$f(x,y) = \sin(x-y)$$

est nul en tout point $(x, y) \in \mathbb{R}^2$.

Réponse – On a

$$\overrightarrow{\nabla} f(x,y) = \begin{pmatrix} \cos(x-y) \\ -\cos(x-y) \end{pmatrix}$$

puis

$$H_f(x,y) = \begin{pmatrix} -\sin(x-y) & \sin(x-y) \\ \sin(x-y) & -\sin(x-y) \end{pmatrix}$$

d'où

$$\det H_f(x,y) = (-\sin(x-y))^2 - (\sin(x-y))^2 = 0$$

Laplacien

Définition – Soit $f: D \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ une fonction C^2 au point $\vec{x} \in D$.

• Le **Laplacien** de f en \vec{x} est la trace de la matrice Hessienne $H_f(\vec{x})$:

$$\Delta f(\vec{x}) = \frac{\partial^2 f}{\partial x_1^2}(\vec{x}) + \dots + \frac{\partial^2 f}{\partial x_n^2}(\vec{x})$$

• La fonction f est dite **harmonique** si

 $\Delta f(\vec{x}) = 0$ en tout point $\vec{x} \in D$.

Interprétation géométrique du Laplacien

Proposition – Soit $f: D \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ de classe C^2 . Si

- C est un carré de taille h × h contenu dans D, et
- $\mu(f,C)$ est la valeur moyenne de f sur C,

alors, pour tout point $(a, b) \in C$, on a

$$\mu(f,C) = f(a,b) + \frac{h^2}{24} \Delta f(a,b) + O(h^4)$$

N.B. Moyenne au Ch.3:
$$\mu(f,C) = \frac{1}{h^2} \iint_C f(x,y) dx dy$$
.

Remarque — Cela signifie que la différence $f(a,b) - \mu(f,C)$ est proportionnelle à $\Delta f(a,b)$, et que la constante de proportionalité ne dépend que de la taille du carré où on calcule la moyenne $\mu(f,C)$.

Exercice

Énoncé – Trouver les valeurs de $c \in \mathbb{R}^*$ pour lesquelles la fonction $u(x,t) = x^2 - c^2t^2$ est harmonique.

Réponse - On a

$$\overrightarrow{\nabla}u(x,t) = \begin{pmatrix} 2x \\ -2c^2t \end{pmatrix}$$

puis

$$H_u(x,t) = \begin{pmatrix} 2 & 0 \\ 0 & -2c^2 \end{pmatrix}.$$

Par conséquent

$$\Delta u(x,t) = 2 - 2c^2,$$

donc $\Delta u(x,t) = 0$ si et seulement si $c = \pm 1$.

Exercice

Énoncé – Soient $f : \mathbb{R} \longrightarrow \mathbb{R}$ une fonction de classe C^2 et $F(x,y) = f(\sqrt{x^2 + y^2})$.

1) Déterminer le Laplacien de F en tout point $(x, y) \neq (0, 0)$.

Réponse – Il s'agit de calculer $\Delta F = \frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial y^2}$. En utilisant la règle de la chaîne on trouve:

$$\frac{\partial F(x,y)}{\partial x} = \frac{\partial f(\sqrt{x^2 + y^2})}{\partial x}
= f'(\sqrt{x^2 + y^2}) \frac{\partial \sqrt{x^2 + y^2}}{\partial x}
= f'(\sqrt{x^2 + y^2}) \frac{x}{\sqrt{x^2 + y^2}}
\frac{\partial F(x,y)}{\partial y} = \frac{\partial f(\sqrt{x^2 + y^2})}{\partial y}
= f'(\sqrt{x^2 + y^2}) \frac{y}{\sqrt{x^2 + y^2}}.$$

Puis, en utilisant aussi la règle de Leibniz, on trouve:

$$\frac{\partial^{2} F(x,y)}{\partial x^{2}} = \frac{\partial}{\partial x} \left(f'(\sqrt{x^{2} + y^{2}}) \frac{x}{\sqrt{x^{2} + y^{2}}} \right)
= \frac{\partial f'(\sqrt{x^{2} + y^{2}})}{\partial x} \frac{x}{\sqrt{x^{2} + y^{2}}} + f'(\sqrt{x^{2} + y^{2}}) \frac{\partial}{\partial x} \left(\frac{x}{\sqrt{x^{2} + y^{2}}} \right)
= f''(\sqrt{x^{2} + y^{2}}) \left(\frac{x}{\sqrt{x^{2} + y^{2}}} \right)^{2} + f'(\sqrt{x^{2} + y^{2}}) \frac{\sqrt{x^{2} + y^{2}} - x \frac{x}{\sqrt{x^{2} + y^{2}}}}{x^{2} + y^{2}}
= f''(\sqrt{x^{2} + y^{2}}) \frac{x^{2}}{x^{2} + y^{2}} + f'(\sqrt{x^{2} + y^{2}}) \frac{y^{2}}{(x^{2} + y^{2})\sqrt{x^{2} + y^{2}}},$$

et de la même façon

$$\frac{\partial^2 F(x,y)}{\partial y^2} = f''(\sqrt{x^2 + y^2}) \frac{y^2}{x^2 + y^2} + f'(\sqrt{x^2 + y^2}) \frac{x^2}{(x^2 + y^2)\sqrt{x^2 + y^2}}.$$

On a donc

$$\Delta F(x,y) = \frac{\partial^2 F(x,y)}{\partial x^2} + \frac{\partial^2 F(x,y)}{\partial y^2}$$

$$= f''(\sqrt{x^2 + y^2}) \frac{x^2 + y^2}{x^2 + y^2} + f'(\sqrt{x^2 + y^2}) \frac{x^2 + y^2}{(x^2 + y^2)\sqrt{x^2 + y^2}}$$

$$= f''(\sqrt{x^2 + y^2}) + f'(\sqrt{x^2 + y^2}) \frac{1}{\sqrt{x^2 + y^2}}.$$

Énoncé (suite) -

2) Trouver les fonctions f telles que $\Delta F(x,y) = \sqrt{x^2 + y^2}$.

Réponse – En termes de f, l'équation s'écrit

$$f''(\sqrt{x^2+y^2}) + f'(\sqrt{x^2+y^2}) \frac{1}{\sqrt{x^2+y^2}} = \sqrt{x^2+y^2}$$

et dépend de la seule variable réelle $r = \sqrt{x^2 + y^2} > 0$.

• Finalement, on doit résoudre l'équation différentielle du 2ème ordre non homogène et à cœfficients non constants

(E)
$$f''(r) + \frac{1}{r} f'(r) = r$$

• Pour cela, on transforme (E) en un système d'équations différentielles du 1er ordre:

$$\begin{cases} f'(r) = g(r) & \text{(E1)} \\ g'(r) + \frac{1}{r} g(r) = r & \text{(E2)} \end{cases}$$

On trouve g avec (E2) puis on reporte dans (E1) et on trouve f.

• Les solutions de (E2) sont de la forme $g = g_0 + g_p$, où g_0 est la solution générale de l'équation homogène associée

(E2*)
$$g_0'(r) + \frac{1}{r} g_0(r) = 0$$

et g_p est une solution particulière de (E2) obtenue par la méthode de la variation de la constante.

• Explicitement, pour tout $\lambda \in \mathbb{R}$, on a

(E2*)
$$g_0(r) = \lambda e^{-\int \frac{1}{r} dr} = \lambda e^{-\ln r} = \lambda e^{\ln(\frac{1}{r})} = \frac{\lambda}{r}$$

• On pose $g_p(r) = \frac{\lambda(r)}{r}$, ce qui donne $g_p'(r) = \frac{\lambda'(r)}{r} - \frac{\lambda(r)}{r^2}$:

(E2)
$$g_p'(r) + \frac{1}{r} g_p(r) = r \Leftrightarrow \frac{\lambda'(r)}{r} = r \Leftrightarrow \lambda'(r) = r^2$$

On peut choisir $\lambda(r) = \frac{r^3}{3}$, d'où $g_p(r) = \frac{r^2}{3}$.

- On a donc $g(r) = g_0(r) + g_p(r) = \frac{\lambda}{r} + \frac{r^2}{3}$ pour tout $\lambda \in \mathbb{R}$.
- Enfin, les solutions de (E) sont celles de (E1) :

(E1)
$$f'(r) = \frac{\lambda}{r} + \frac{r^2}{3} \Leftrightarrow f(r) = \lambda \ln(r) + \frac{r^3}{9} + \mu$$

pour tout $\lambda, \mu \in \mathbb{R}$.

2.5 – Polynôme de Taylor

Ch. 2 – Dérivées, Taylor, extrema locaux

- 2.1 Limites et continuité
- 2.2 Dérivées partielles, gradient, différentielle, Jacobienne
- 2.3 Règle de la chaîne
- 2.4 Dérivées secondes, Hessienne, Laplacien
- 2.5 Polynôme de Taylor
- 2.6 Extrema locaux

Dans cette section:

- Dévéloppement de Taylor
- Approximation et erreur relative

Théorème de Taylor

Théorème de Taylor –

Toute fonction $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ de classe C^k autour d'un point \vec{a} peut être approximée en tout point \vec{x} proche de \vec{a} par un polynôme de degré \vec{k} en $\vec{x} - \vec{a}$, appellé **polynôme de Taylor**, avec coefficients dépendant seulement des dérivées de f en \vec{a} .

Rappel – Si $f : \mathbb{R} \longrightarrow \mathbb{R}$ est une fonction de classe C^2 sur un intervalle $I \subset \mathbb{R}$ qui contient a, alors pour tout $x \in I$ on a

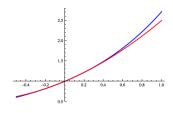
$$f(x) = f(a) + f'(a)(x - a) + \frac{1}{2}f''(a)(x - a)^2 + o((x - a)^2).$$

Par exemple, voici le graphe de

$$f(x) = e^x$$
 (en bleu)

et celui de son polynôme de Taylor de degré 2 en a = 0,

$$P(x) = 1 + x + x^2/2$$
 (en rouge).



Formule de Taylor en deux variables

Théorème de Taylor – Soit $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ une fonction de classe C^2 sur un disque $D \subset \mathbb{R}^2$ qui contient un point (a, b).

Alors, pour tout $(x, y) \in D$, on a

$$f(x,y) = f(a,b) + \frac{\partial f(a,b)}{\partial x}(x-a) + \frac{\partial f(a,b)}{\partial y}(y-b)$$

$$+ \frac{1}{2} \frac{\partial^2 f(a,b)}{\partial x^2}(x-a)^2 + \frac{\partial^2 f(a,b)}{\partial x \partial y}(x-a)(y-b) + \frac{1}{2} \frac{\partial^2 f(a,b)}{\partial y^2}(y-b)^2$$

$$+ o(||(x-a,y-b)||^2)$$

où o(h) est une fonction qui tend vers zéro plus vite de $h \to 0$.

Écritures alternatives:

terme à l'ordre
$$1 = df_{(a,b)}(x-a,y-b) = J_f(a,b) \begin{pmatrix} x-a \\ y-b \end{pmatrix}$$
, terme à l'ordre $2 = \frac{1}{2} \begin{pmatrix} x-a & y-b \end{pmatrix} H_f(a,b) \begin{pmatrix} x-a \\ y-b \end{pmatrix}$.

Exemple

Exemple – Soit
$$f(x, y) =$$

Exemple – Soit $f(x,y) = \frac{x-1}{v-1}$ et (a,b) = (0,0).

On calcule f(0,0) = 1, puis

$$J_f(x,y)=egin{pmatrix} rac{1}{y-1} & -rac{x-1}{(y-1)^2} \end{pmatrix}$$
 d'où $J_f(0,0)=ig(-1$ 1 $ig).$

Enfin

$$H_f(x,y) = \begin{pmatrix} 0 & -\frac{1}{(y-1)^2} \\ -\frac{1}{(y-1)^2} & \frac{2(x-1)}{(y-1)^3} \end{pmatrix}$$

d'où

$$H_f(0,0) = \left(\begin{array}{cc} 0 & -1 \\ -1 & 2 \end{array}\right)$$

Ainsi:
$$\frac{x-1}{y-1} = 1 - x + y - xy + y^2 + o(||(x,y)||^2).$$

Exercice

Énoncé – La pression P d'un gaz parfait est fonction de la temperature T et du volume V selon la loi

$$P(T, V) = nR \frac{T}{V},$$

où n est la quantité de matière (moles) et R est la constante universelle d'un gaz parfait.

On voudrait connaître la pression du gaz qui se trouve à l'état (T,V), mais la mesure de cet état nous donne les valeurs (T_0,V_0) avec une **erreure** relative

$$\left| \frac{T - T_0}{T_0} \right| < 0.005 \%$$
 et $\left| \frac{V - V_0}{V_0} \right| < 0.002 \%$.

Quelle est l'erreure relative induite par cette mesure sur la valeur $P(V_0, T_0)$ de la pression?

Réponse – On cherche une borne supérieur pour $\left|\frac{P-P_0}{P_0}\right|$, où P=P(T,V) et $P_0=P(T_0,V_0)$.

Pour cela, on utilise le dévéloppement de Taylor de P(T, V) à l'ordre 1, autour de (T_0, V_0) :

$$P-P_{0} \simeq dP_{(T_{0},V_{0})}(T-T_{0},V-V_{0})$$

$$= \frac{\partial P}{\partial T}(T_{0},V_{0})(T-T_{0}) + \frac{\partial P}{\partial V}(T_{0},V_{0})(V-V_{0})$$

$$= nR \frac{T-T_{0}}{V_{0}} - nR \frac{T_{0}(V-V_{0})}{V_{0}^{2}}.$$

On a alors

$$\frac{P - P_0}{P_0} \simeq nR \, \frac{T - T_0}{V_0 \, nR \, \frac{T_0}{V_0}} - nR \, \frac{T_0(V - V_0)}{V_0^2 \, nR \, \frac{T_0}{V_0}} = \frac{T - T_0}{T_0} - \frac{V - V_0}{V_0}$$

d'où suit

$$\left|\frac{P-P_0}{P_0}\right| \leqslant \left|\frac{T-T_0}{T_0}\right| + \left|\frac{V-V_0}{V_0}\right| < 0.005\% + 0.002\% = 0.007\%.$$

2.6 - Extrema locaux

Ch. 2 – Dérivées, Taylor, extrema locaux

- 2.1 Limites et continuité
- 2.2 Dérivées partielles, gradient, différentielle, Jacobienne
- 2.3 Règle de la chaîne
- 2.4 Dérivées secondes, Hessienne, Laplacien
- 2.5 Polynôme de Taylor
- 2.6 Extrema locaux

Dans cette section:

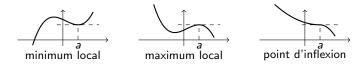
- Rappels sur les fonctions d'une variable
- Extrema locaux
- Points critiques et critère pour trouver les extrema locaux
- Points cols
- Points plats

Rappels sur les fonctions d'une variable

Rappel – Si $f : \mathbb{R} \longrightarrow \mathbb{R}$ est dérivable en a et non constante, la <u>croissance</u> ou <u>décroissance</u> de f en a est décelée par le signe de f'(a) (positif ou négatif).

• Que se passe-t-il si f'(a) = 0 (point critique)?

Si f'(a) = 0, la tangente au graphe de f est horizontale, on est dans l'un des cas suivants:



Pour savoir lequel, on regarde la <u>convexité</u> (*minimum local*) ou la <u>concavité</u> (*maximum local*) donnée par le signe de f''(a) (positif ou négatif).

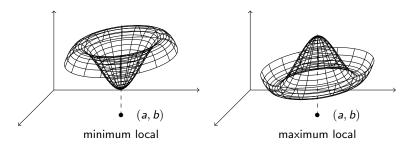
• Que se passe-t-il si f''(a) = 0 (point plat)?

Si f''(a) = 0, on continue à dériver: si <u>la première dérivée non nulle</u> est <u>d'ordre pair</u>, on a un min ou un max local (selon le signe). Si elle est <u>d'ordre impair</u>, on a un point <u>d'inflexion</u>.

Minima et maxima locaux

Définition – Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ une fonction. On dit qu'un point $(a,b) \in D_f$ est un **extremum local** de f s'il est

- soit un **minimum local**: f(a,b) < f(x,y) pour tout (x,y) dans un voisinage de (a,b),
- soit un **maximum local**: f(a,b) > f(x,y) pour tout (x,y) dans un voisinage de (a,b).



Points critiques et critère pour extrema locaux

Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ une fonction de classe C^2 au point (a, b).

Définition –
$$(a, b)$$
 est un **point critique** de f si $\overrightarrow{\nabla} f(a, b) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Proposition – Si(a,b) est un point critique de f, le <u>plan</u> tangent au graphe de f au point (a,b,f(a,b)) est <u>horizontal</u>.

Théorème – Soit (a, b) un point critique de f. Si $\det H_f(a, b) > 0$ alors (a, b) est un <u>extremum local</u>:

- si $\frac{\partial^2 f}{\partial x^2}(a,b) > 0$ ou $\frac{\partial^2 f}{\partial y^2}(a,b) > 0$ ou $\operatorname{tr} H_f(a,b) > 0$ alors (a,b) est un <u>minimum local</u>,
- si $\frac{\partial^2 f}{\partial x^2}(a,b) < 0$ ou $\frac{\partial^2 f}{\partial y^2}(a,b) < 0$ ou $\operatorname{tr} H_f(a,b) < 0$ alors (a,b) est un $\underline{maximum\ local}$.

Exemple de minimum local

Exemple – Montrons que la fonction $f(x,y) = x^2 + y^2$ a exactement un minimum local en (0,0).

• Cherchons d'abord les points critiques:

$$\overrightarrow{\nabla} f(x,y) = \begin{pmatrix} 2x \\ 2y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff (x,y) = (0,0)$$

ainsi (0,0) est le seul point critique de f.

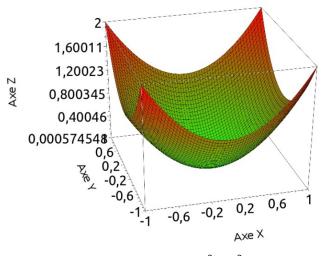
Cherchons sa nature:

$$H_f(x,y) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$
 donc
$$\begin{cases} \det H_f(0,0) = 4 > 0 \\ \frac{\partial^2 f}{\partial x^2}(0,0) = 2 > 0 \end{cases}$$

ainsi (0,0) est un minimum local.

• En effet, le graphe de f est:

Graphe de $f(x, y) = x^2 + y^2$

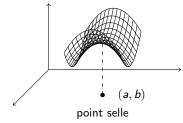


Graphe de
$$f(x, y) = x^2 + y^2$$

Points selle

En un point critique, la fonction f a un plan tangent horizontale. Si le point n'est pas un extremum local, quelle est la forme de f ?

Définition — Soit (a, b) un point critique de la fonction f. Si en (a, b) la fonction f a un minimum dans une direction et un maximum dans une autre, le point (a, b) s'appelle **point col** ou **point selle**:



Théorème – Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ une fonction C^2 et soit (a, b) un point critique de f.

Si $\det H_f(a,b) < 0$ alors (a,b) est un point selle.

Exemple de point selle

Exemple – Montrons que la fonction $f(x, y) = x^2 - y^2$ a exactement un point selle en (0, 0).

• Cherchons d'abord les points critiques:

$$\overrightarrow{\nabla} f(x,y) = \begin{pmatrix} 2x \\ -2y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff (x,y) = (0,0)$$

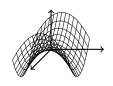
ainsi (0,0) est le seul point critique de f.

• Cherchons sa nature:

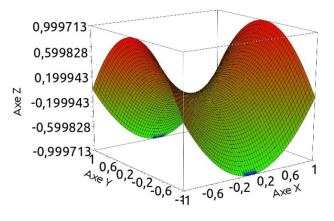
$$H_f(x,y)=egin{pmatrix} 2 & 0 \ 0 & -2 \end{pmatrix} \quad ext{donc} \quad \det H_f(0,0)=-4<0$$

ainsi (0,0) est un point col.

• En effet, le graphe de f est:



Graphe de $f(x, y) = x^2 - y^2$



Graphe de $f(x, y) = x^2 - y^2$

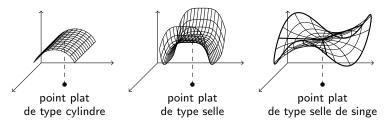
Points plats

Définition – Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ une fonction C^2 et soit (a, b) un point critique de f. Par exclusion, on dit que (a, b) est un **point plat** si

$$\det H_f(a,b)=0$$

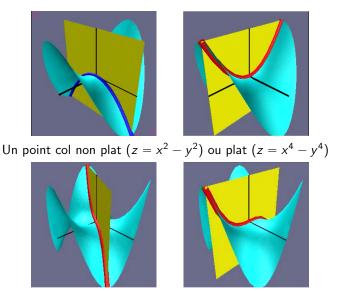
Un tel point se trouve au croisement de directions où f a

- soit au moins une direction plate (cylindre),
- soit un minimum et un maximum au même temps (selle),
- soit des inflexions (selle de singe).



On distingue ces types avec les dérivées d'ordre supérieur à 2.

Points col et points plat



Un point plat à selle de singe $(z = x^3 - 3xy^2)$

Énoncé – Déterminer les points critiques de la fonction

$$f(x,y) = 4(x^2 + y^2) - (x^2 + y^2)^2$$

et, si possible, leur nature.

Réponse – Cherchons d'abord les points critiques:

$$\overrightarrow{\nabla}f(x,y) = \begin{pmatrix} 8x - 4x(x^2 + y^2) \\ 8y - 4y(x^2 + y^2) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff$$

$$\begin{cases} x(2 - x^2 - y^2) = 0 \\ y(2 - x^2 - y^2) = 0 \end{cases} \iff \begin{cases} \text{soit } (x,y) = (0,0) \\ \text{soit } x^2 + y^2 = 2 \end{cases}$$

Par conséquent, f a

- un cercle de points critiques d'équation $x^2 + y^2 = 2$
- et un point critique isolé de coordonnées (0,0).

Cherchons la nature de ces points critiques:

$$H_f(x,y) = \begin{pmatrix} 8-12x^2-4y^2 & -8xy \\ -8xy & 8-12y^2-4x^2 \end{pmatrix}$$

• Pour le point (0,0), on a

$$\det H_f(0,0) = \det \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = 64 > 0 \quad \text{et} \quad \frac{\partial^2 f}{\partial x^2}(0,0) = 8 > 0$$

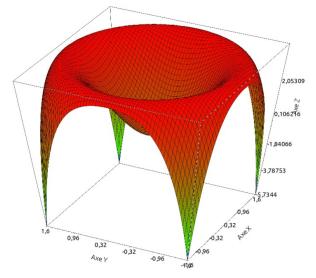
donc (0,0) est un minimum local.

• Pour les points (x, y) tels que $x^2 + y^2 = 2$, on a

$$\det H_f(x,y) = \det \begin{pmatrix} -8x^2 & -8xy \\ -8xy & -8y^2 \end{pmatrix} = 0$$

donc tous les points du cercle $x^2 + y^2 = 2$ sont plats.

Graphe de $f(x, y) = 4(x^2 + y^2) - (x^2 + y^2)^2$



Graphe de $f(x, y) = 4(x^2 + y^2) - (x^2 + y^2)^2$

Chapitre 3 Intégrales multiples

Ch. 1 – Fonctions de plusieures variables

Ch. 2 – Dérivées, Taylor, extrema locaux

Ch. 3 – Intégrales multiples

- 3.1 Intégrales de Riemann (rappels de TMB)
- 3.2 Intégrales doubles
- 3.3 Intégrales triples
- 3.4 Aire, volume, moyenne, centre de masse

3.1 – Intégrales de Riemann (rappels de TMB)

Ch. 3 – Intégrales multiples

- 3.1 Intégrales de Riemann (rappels de TMB)
- 3.2 Intégrales doubles
- 3.3 Intégrales triples
- 3.4 Aire, volume, moyenne, centre de masse

Dans cette section:

- Subdivisions, somme de Riemann et intégrale de Riemann d'une fonction d'une variable
- Aire sous le graphe d'une fonction
- Primitives et techniques d'intégration

Subdivision, somme et intégrale de Riemann

Rappels – Soit $f : [a, b] \to \mathbb{R}$ une fonction d'une variable:

• **subdivision** de [a, b]: $S_n = \{a = a_0 < a_1 < \cdots < a_n = b\}$

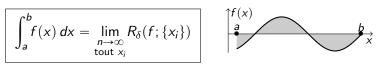
$$\xrightarrow{a = a_0} \xrightarrow{a_1} \xrightarrow{a_2} \xrightarrow{a_3} \xrightarrow{a_4} \xrightarrow{a_5} \xrightarrow{a_n = b}$$

$$\xrightarrow{X_1} \xrightarrow{X_2} \xrightarrow{X_3} \xrightarrow{X_4} \xrightarrow{X_5} \cdots$$

• somme de Riemann de f aux points $x_i \in [a_{i-1}, a_i]$:

$$R_{\delta}(f;\{x_i\}) = \sum_{i=1}^{n} f(x_i) \,\delta.$$

• intégrale de Riemann de f sur [a, b]:



si la limite <u>existe</u>, est <u>finie</u>, et <u>ne dépend pas des x_i </u>.

L'intégrale donne l'aire sous le graphe

Rappels -

- $\int_a^b f(x) dx$ = aire "algébrique" sous le graphe de f
- $\int_{a}^{b} |f(x)| dx = \text{ aire sous le graphe de } f$ (positive)

$$y = f(x)$$
 $|f|$
 $f = |f|$
 $+$
 $+$
 $+$
 $+$
 x

Exemple: L'aire du disque

$$D = \left\{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leqslant 1 \right\}$$

 $\begin{array}{c}
D^{+} \\
\end{array}$

se calcule comme une intégrale:

Aire
$$(D) = 2$$
 Aire $(D^+) = 2 \int_{-1}^{1} \sqrt{1 - x^2} dx$

Primitives et techniques d'intégration

Pour connaître l'intégral, il suffit de connaître une primitive:

- Une **primitive de** f **sur** [a,b] est une fonction F dérivable telle que F'(x) = f(x) pour tout $x \in [a,b]$. On note $F(x) = \int f(x) dx$.
- Théorème fondamental:

$$\int_{a}^{b} f(x) dx = F(b) - F(a) = [F(x)]_{a}^{b}.$$

• Intégration par changement de variable: x = h(t)

$$\int f(x) dx = \int f(h(t)) h'(t) dt,$$

où h est un <u>difféomorphisme</u> (bijection dérivable avec réciproque h^{-1} dérivable).

• Intégration par parties:

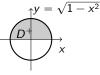
$$\int f(x) \ g'(x) \ dx = f(x) \ g(x) - \int f'(x) \ g(x) \ dx.$$

Problème – Pas d'analogue pour les fonctions de plusieurs variables!

Exemple: aire d'un disque

Aire d'un disque -

$$D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$$



Aire
$$(D) = 2$$
Aire $(D^+) = 2 \int_{-1}^{1} \sqrt{1 - x^2} \ dx$

Calcul par changement de variable: $x = \sin t$ pour $t \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, car $\sqrt{1-x^2} = \cos t$. Alors $dx = \cos t \ dt$ et

Aire (D)
$$= 2 \int_{-\pi/2}^{\pi/2} \cos^2 t \, dt$$
$$= 2 \int_{-\pi/2}^{\pi/2} \frac{\cos(2t) + 1}{2} \, dt$$
$$= \left[\frac{1}{2} \sin(2t) + t \right]_{-\pi/2}^{\pi/2} = \left(0 + \frac{\pi}{2} - 0 + \frac{\pi}{2} \right) = \pi.$$

3.2 – Intégrales doubles

Ch. 3 – Intégrales multiples

- 3.1 Intégrales de Riemann (rappels de TMB
- 3.2 Intégrales doubles
- 3.3 Intégrales triples
- 3.4 Aire, volume, moyenne, centre de masse

Dans cette section:

- Subdivisions des domaines du plan
- Sommes de Riemann des fonctions de deux variables
- Intégrale double
- Volume sous le graphe d'une fonction
- Théorème de Fubini
- Théorème du changement de variables

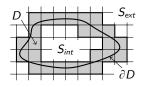
Subdivisions d'un domaine du plan

Soit $D \subset \mathbb{R}^2$ un ensemble <u>borné</u>, avec bord ∂D <u>lisse</u> (au moins par morceaux).

Définition – Pour tout $\delta > 0$, on appelle **subdivision de** D l'ensemble \mathcal{S}_{δ} des carrés K_i de coté δ du plan qui couvrent D dans n'importe quel grillage de pas δ .

En particulier, on considère deux recouvrements:

- ullet un $oldsymbol{\mathrm{\hat{a}}}$ l'extérieur $\mathcal{S}^{\mathrm{ext}}_{\delta}$,
- un à l'intérieur $\mathcal{S}^{int}_{\delta}$.



Puisque D est borné, les subdivisions contiennent un nombre fini de carrés, et on a $\mathcal{S}^{int}_{\delta} \subset \mathcal{S}^{ext}_{\delta}$.

Les carrés dans $\mathcal{S}^{\text{ext}}_{\delta} \backslash \mathcal{S}^{\text{int}}_{\delta}$ couvrent exactement le bord ∂D .

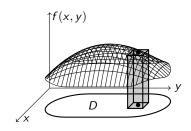
Sommes de Riemann d'une fonction de deux variables

Soit $f: D \longrightarrow \mathbb{R}$ une fonction de deux variables.

Définition – Pour tout choix de points $(x_i, y_i) \in K_i \cap D$, on appelle **sommes de Riemann de** f associées aux subdivisions $\mathcal{S}_{\delta}^{\text{ext/int}}$ et aux points $\{(x_i, y_i)\}$ les sommes

$$R_{\delta}^{\text{ext/int}}(f,\{(x_i,y_i)\}) = \sum_{K_i \in S_{\delta}^{\text{ext/int}}} f(x_i,y_i) \delta^2,$$

où chaque terme $f(x_i, y_i)$ δ^2 représente le **volume algébrique** (= \pm volume) du parallélepipède de base K_i et hauteur $f(x_i, y_i)$.



Intégrale double

Théorème – Si les limites $\lim_{\delta \to 0} R_{\delta}^{\text{ext/int}}(f; \{(x_i, y_i)\})$ existent et elles sont indépendantes du choix des points $(x_i, y_i) \in K_i \cap D$, alors elles coincident.

Définition – Dans ce cas:

• on appelle **intégrale double de** *f* **sur** *D* cette limite:

$$\iint\limits_{D} f(x,y) \ dx \ dy = \lim_{\delta \to 0} R_{\delta}^{\text{ext/int}}(f;\{(x_i,y_i)\}).$$

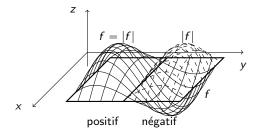
• on dit que f est intégrable sur D selon Riemann si l'intégrale $\iint\limits_D f(x,y) \ dx \ dy \ \text{est finie} \ (= \text{nombre, pas } \pm \infty).$

Proposition – Toute fonction f <u>continue</u> est intégrable selon Riemann sur un ensemble D <u>borné</u> à <u>bord lisse</u> (par morceaux).

Signification géométrique de l'intégrale double

Corollaire -

- $\iint_{\Omega} f(x,y) dx dy = volume$ "algébrique" sous le graphe de f.
- $\iint_{D} |f(x,y)| dx dy = volume sous le graphe de f.$



Exemple 1: volume d'une boule

Volume d'une boule – Le volume de la boule

$$B = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \leqslant 1\}$$

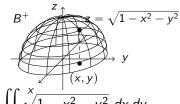
est deux fois le volume de la demi-boule

$$B^+ = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le 1, \ z \ge 0\},\$$

qui se trouve sous le graphe de la fonction

$$z = \sqrt{1 - x^2 - y^2}.$$

On a alors



$$Vol(B) = 2 \iint_{D} \sqrt[x]{1 - x^2 - y^2} \, dx \, dy$$

où
$$D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$$
 est le disque unitaire.

Propriétés des intégrales doubles

Propriétés – 1) Pour tout $\lambda, \mu \in \mathbb{R}$, on a

$$\iint\limits_{D} (\lambda f + \mu g) dx dy = \lambda \iint\limits_{D} f dx dy + \mu \iint\limits_{D} g dx dy.$$

2) Si $D=D_1\cup D_2$ et $D_1\cap D_2=$ courbe ou point ou \varnothing , alors

$$\iint\limits_{D} f(x,y) \, dx \, dy = \iint\limits_{D} f(x,y) \, dx \, dy + \iint\limits_{D} f(x,y) \, dx \, dy.$$

- 3) $\left| \iint_{\Sigma} f(x,y) dx dy \right| \leq \iint |f(x,y)| dx dy.$
- 4) Si $f(x,y) \leq g(x,y)$ pour tout $(x,y) \in D$, alors

$$\iint\limits_{\Omega} f(x,y) \, dx \, dy \leqslant \iint\limits_{\Omega} g(x,y) \, dx \, dy.$$

Théorème de Fubini sur un rectangle

Théorème de Fubini sur un rectangle – Soit $f: D \longrightarrow \mathbb{R}$ une fonction continue et $D = [a, b] \times [c, d]$ un rectangle. Alors on a

$$\iint_{D} f(x,y) dx dy = \int_{a}^{b} \left(\int_{c}^{d} f(x,y) dy \right) dx$$
$$= \int_{c}^{d} \left(\int_{a}^{b} f(x,y) dx \right) dy$$

Notation –
$$\int_{a}^{b} dx \int_{c}^{d} dy f(x, y) = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx$$
Corollaire –
$$\iint_{[a,b]\times[c,d]} f_{1}(x) f_{2}(y) dx dy = \int_{a}^{b} f_{1}(x) dx \int_{c}^{d} f_{2}(y) dy$$

Exemple 2: calcul d'intégrales doubles

Exemples -

$$\oint \int \int x \cos y \, dx \, dy = \int_0^1 x \, dx \int_0^{\pi/2} \cos y \, dy$$

$$= \left[\frac{1}{2}x^2\right]_0^1 \left[\sin y\right]_0^{\pi/2} = \frac{1}{2}$$

$$\oint \int \int (x^2y - 1) \, dx \, dy = \int_{-1}^{1} dx \int_{0}^{1} (x^2y - 1) \, dy$$

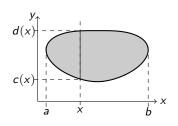
$$= \int_{-1}^{1} dx \left[\frac{1}{2} x^2 y^2 - y \right]_{y=0}^{y=1}$$

$$= \int_{-1}^{1} \left(\frac{1}{2} x^2 - 1 \right) \, dx = \left[\frac{1}{6} x^3 - x \right]_{-1}^{1} = -\frac{5}{3}$$

Théorème de Fubini

Lemme – *Soit* $D \subset \mathbb{R}^2$ *un ensemble borné quelconque.*

- Pour tout $(x, y) \in D$ il existe $a, b \in \mathbb{R}$ tels que $a \le x \le b$.
- Pour tout $x \in [a, b]$ il existe $c(x), d(x) \in \mathbb{R}$ tels que $c(x) \le y \le d(x)$.



Au final:

$$D = \{ (x, y) \in \mathbb{R}^2 \mid x \in [a, b], y \in [c(x), d(x)] \}$$

Théorème de Fubini sur D – Soit $f: D \longrightarrow \mathbb{R}$ une fonction continue, alors

$$\iint\limits_{D} f(x,y) \, dx \, dy = \int_{a}^{b} \left(\int_{c(x)}^{d(x)} f(x,y) \, dy \right) \, dx$$

Alternative -

L'ensemble D est décrit par

$$y$$
 d
 y
 c
 $a(y)$
 $b(y)$

$$D = \{ (x, y) \in \mathbb{R}^2 \mid y \in [c, d], \ x \in [a(y), b(y)] \}$$

Théorème de Fubini sur D -

$$\iint\limits_D f(x,y) \, dx \, dy = \int_c^d \left(\int_{a(y)}^{b(y)} f(x,y) \, dx \right) \, dy$$

Exemple 3: calcul d'intégrale double

Exemple – Soit *D* la partie du plan *xOy* délimitée par l'arc de parabole $y = x^2$ en bas, et la droite y = 1 en haut.

$$y \uparrow y = x$$

$$y = x$$

$$y = 1$$

On peut décrire
$$D$$
 comme
$$D = \{(x,y) \in \mathbb{R}^2 \mid x \in [-1,1], y \in [x^2,1]\}.$$

Par conséquent:

$$\iint_{D} x^{2}y \, dx \, dy = \int_{-1}^{1} x^{2} \, dx \, \int_{x^{2}}^{1} y \, dy$$

$$= \int_{-1}^{1} x^{2} \left[\frac{1}{2} y^{2} \right]_{x^{2}}^{1} dx$$

$$= \int_{-1}^{1} \frac{1}{2} (x^{2} - x^{6}) \, dx$$

$$= \frac{1}{2} \left[\frac{1}{3} x^{3} - \frac{1}{7} x^{7} \right]_{x=-1}^{x=1} = \frac{4}{21}$$

Exemple 4: volume de la boule

Exemple – Rappelons que le volume de la boule unitaire est

$$Vol(B) = 2 \iint_{D} \sqrt{1 - x^2 - y^2} \, dx \, dy$$
où $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}.$

On peut décrire D comme l'ensemble

$$D = \left\{ (x, y) \in \mathbb{R}^2 \mid x \in [-1, 1], \ y \in \left[-\sqrt{1 - x^2}, \sqrt{1 - x^2} \right] \right\}.$$

• Voici donc le calcul du volume de la boule:

$$Vol(B) = 2 \int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \sqrt{1-x^2-y^2} \, dy$$
$$= 2 \int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \sqrt{1-x^2} \sqrt{1-\frac{y^2}{1-x^2}} \, dy.$$

• On pose $\frac{y}{\sqrt{1-x^2}} = \sin t$ pour avoir $\sqrt{1 - \frac{y^2}{1-x^2}} = |\cos t|$.

$$Vol(B) = 2 \int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \sqrt{1-x^2} \sqrt{1-\frac{y^2}{1-x^2}} dy$$

$$= 2 \int_{-1}^{1} dx \int_{-\pi/2}^{\pi/2} \sqrt{1-x^2} \cos t \sqrt{1-x^2} \cos t dt$$

$$= 2 \int_{-1}^{1} (1-x^2) dx \int_{-\pi/2}^{\pi/2} \cos^2 t dt$$

• puisque $2\int_{-\pi/2}^{\pi/2} \cos^2 t \ dt = \pi$ (voir ex. précédent)

• $v = \sqrt{1 - x^2} \sin t$ $dy = \sqrt{1 - x^2} \cos t \, dt$

Vol
$$(B) = \pi \int_{-1}^{1} (1 - x^2) dx = \pi \left[x - \frac{1}{3} x^3 \right]_{-1}^{1} = \frac{4\pi}{3}.$$

Changement de variables

Définition – Un changement de variables

$$(x,y) = h(u,v) = (x(u,v),y(u,v))$$

est un difféomorphisme $h: \tilde{D} \to D: (u, v) \mapsto h(u, v) = (x, y)$, c'est-à-dire une bijection de classe C^1 avec réciproque $h^{-1}: D \to \tilde{D}: (x, y) \mapsto h^{-1}(x, y) = (u, v)$ de classe C^1 .

Théorème – Soit $f: D \to \mathbb{R}$ une fonction des variables (x, y) et (x, y) = h(u, v) un changement de variables. Alors

$$\iint_{D} f(x,y) dx dy = \iint_{\tilde{D}} \tilde{f}(u,v) \left| \det J_{h}(u,v) \right| du dv$$

où
$$\tilde{f}(u,v) = f(h(u,v)), \quad \tilde{D} = \{(u,v) \mid h(u,v) \in D\}$$

et $\det J_h(u,v) = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$ est le Jacobien de h.

Passage en polaire –

 $dx\,dy = \rho\,d\rho\,d\varphi$

Exemple 5: volume d'une boule en polaires

Volume de la boule en coordonnées polaires – On calcul

$$Vol(B) = 2 \iint_{D = \{x^2 + y^2 \le 1\}} \sqrt{1 - x^2 - y^2} \, dx \, dy$$

en coordonnées polaires $(x, y) = h(\rho, \varphi) = (\rho \cos \varphi, \rho \sin \varphi).$

• Puisque $x^2 + y^2 = \rho^2$, on a :

$$\tilde{D} = \big\{ (\rho, \varphi) \in \ \big[0, \infty \big[\times \big[0, 2\pi \big[\ \big| \ \rho \leqslant 1 \big] \big] = \ \big[0, 1 \big] \times \big[0, 2\pi \big[\ \big| \ \rho \leqslant 1 \big] \big\} = \ \big[0, 1 \big] \times \big[0, 2\pi \big[\ \big| \ \rho \leqslant 1 \big] + \big[0, 2\pi \big[\ \big| \ \rho \leqslant 1 \big] \big] + \big[0, 2\pi \big[\ \big| \ \rho \leqslant 1 \big] + \big[0, 2\pi \big[\ \big| \ \rho \leqslant 1 \big] \big] + \big[0, 2\pi \big[\ \big| \ \rho \leqslant 1 \big] + \big[0, 2\pi \big[\ \big| \$$

• on utilise $dx dy = \rho d\rho d\varphi$, $\sqrt{1-x^2-y^2} = \sqrt{1-\rho^2}$ et Fubini:

$$Vol(B) = 2 \int_0^1 \sqrt{1 - \rho^2} \, \rho \, d\rho \, \int_0^{2\pi} \! d\varphi = 4\pi \int_0^1 \sqrt{1 - \rho^2} \, \rho \, d\rho$$

• enfin, on pose $t = 1 - \rho^2$ donc $dt = -2\rho d\rho$:

$$\operatorname{Vol}(B) = -\frac{4\pi}{2} \int_{1}^{0} t^{1/2} dt = 2\pi \int_{0}^{1} t^{1/2} dt = 2\pi \frac{2}{3} \left[t^{\frac{3}{2}} \right]_{0}^{1} = \frac{4\pi}{3}.$$

3.3 – Intégrales triples

Ch. 3 – Intégrales multiples

- 3.1 Intégrales de Riemann (rappels de TMB)
- 3.2 Intégrales doubles
- 3.3 Intégrales triples
- 3.4 Aire, volume, moyenne, centre de masse

Dans cette section:

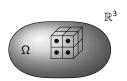
- Subdivisions des solides
- Sommes de Riemann des fonctions de trois variables
- Intégrales triples
- Théorème de Fubini
- Théorème du changement de variables

Intégrale triple

Soit $\Omega \subset \mathbb{R}^3$ un ensemble <u>borné</u> avec bord $\partial \Omega$ <u>lisse</u> (par morceaux), et soit $f:\Omega \longrightarrow \mathbb{R}$ une fonction de trois variables.

Définition -

• On choisit une **subdivision** S_{δ} de Ω en petits <u>cubes</u> K_i de taille δ^3 , avec δ qui tend vers zéro.



• On définit l'**intégrale triple de** f **sur** Ω comme la limite (quand elle existe) de la **somme de Riemann** associée à \mathcal{S}_{δ} et à des points $(x_i, y_i, z_i) \in \mathcal{K}_i \cap \Omega$ quelconque:

$$\iiint\limits_{\Omega} f(x,y,z) \, dx \, dy \, dz = \lim_{\delta \to 0} \sum_{K_i \in \mathcal{S}_{\delta}} f(x_i,y_i,z_i) \, \delta^3.$$

• On dit que f est **intégrable** si son intégrale est finie.

Proposition – Toute fonction f <u>continue</u> est intégrable selon Riemann sur un ensemble Ω <u>borné</u> à <u>bord lisse</u> (par morceaux).

Signification géométrique et propriétés

Signification géométrique – Le graphe de f est une <u>hyper-surface</u> de \mathbb{R}^4 (difficile à dessiner):

- $\iiint_{\Omega} f(x, y, z) dx dy dz = \underbrace{quadri-volume}_{sous \ le \ graphe} \text{ "algébrique"}$
- $\iiint_{\Omega} |f(x,y,z)| dx dy dz = \underline{quadri-volume} \text{ sous le graphe de } f.$

Propriétés – 1) Pour tout $\lambda, \mu \in \mathbb{R}$, on a

$$\iiint\limits_{\Omega} \left(\lambda\,f + \mu\,g\right)\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z = \lambda \iiint\limits_{\Omega} f\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z + \mu \iiint\limits_{\Omega} g\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z.$$

2) Si $\Omega_1 \cap \Omega_2 =$ surface ou courbe ou point ou \emptyset , alors

$$\iiint\limits_{\Omega_1 \cup \Omega_2} f \ dx \ dy \ dz = \iiint\limits_{\Omega_1} f \ dx \ dy \ dz + \iiint\limits_{\Omega_2} f \ dx \ dy \ dz.$$

etc

Théorème de Fubini

Théorème de Fubini – *Soit f* : $\Omega \subset \mathbb{R}^3 \longrightarrow \mathbb{R}$ *continue.*

• Si Ω est un parallélépipède, alors

$$\Omega = [a, b] \times [c, d] \times [e, g]$$

$$\iiint_{\Omega} f(x, y, z) dx dy dz = \int_{a}^{b} dx \int_{c}^{d} dy \int_{e}^{g} dz f(x, y, z)$$

(on intègre dans l'ordre qu'on veut)

ullet Si Ω est un ensemble borné quelconque, alors:

$$\Omega = \{(x,y,z) | x \in [a,b], y \in [c(x),d(x)], z \in [e(x,y),g(x,y)] \}$$

$$\iiint\limits_{\Omega} f(x,y,z) \, dx \, dy \, dz = \int_{a}^{b} dx \int_{c(x)}^{d(x)} dy \int_{e(x,y)}^{g(x,y)} dz \, f(x,y,z)$$

(l'ordre d'intégration est forcé)

Exemple 1: calcul d'intégrales triples

Exemple –
$$\Omega = [0,1] \times [1,2] \times [2,3] \subset \mathbb{R}^3$$

$$\iiint_{\Omega} (x^2 - 2yz) \, dx \, dy \, dz = \int_{2}^{3} dz \, \int_{1}^{2} dy \int_{0}^{1} dx \, (x^2 - 2yz)$$

$$= \int_{2}^{3} dz \, \int_{1}^{2} dy \, \left[\frac{1}{3} x^3 - 2xyz \right]_{x=0}^{x=1}$$

$$= \int_{2}^{3} dz \, \int_{1}^{2} dy \, \left(\frac{1}{3} - 2yz \right) = \int_{2}^{3} \left[\frac{1}{3} y - y^2 z \right]_{y=1}^{y=2} dz$$

$$= \int_{2}^{3} \left(\frac{2}{3} - 4z - \frac{1}{3} + z \right) \, dz = \int_{2}^{3} \left(\frac{1}{3} - 3z \right) \, dz$$

$$= \left[\frac{1}{3} z - \frac{3}{2} z^2 \right]_{2}^{3} = \frac{3}{3} - \frac{27}{2} - \frac{2}{3} + \frac{12}{2}$$

$$= \frac{1}{3} - \frac{15}{2} = -\frac{43}{6}$$

Exemple 2: calcul d'intégrales triples

Exemple – On veut calculer
$$\iiint (1-2yz) dx dy dz$$

où Ω est le cylindre plein de hauteur 3 et de base le disque

$$D = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \leqslant 1, \ z = 0\}.$$

 \bullet D'abord, on décrit explicitement Ω :

$$\Omega = \{(x, y, z) \mid x^2 + y^2 \le 1, \ 0 \le z \le 3 \}
= \{(x, y, z) \mid x \in [-1, 1], \ y \in [-\sqrt{1 - x^2}, \sqrt{1 - x^2}], \ z \in [0, 3] \}$$

• Ensuite on applique Fubini:

$$\iiint_{\Omega} (1 - 2yz) \, dx \, dy \, dz = \int_{0}^{3} dz \iint_{D} (1 - 2yz) \, dx \, dy$$
$$= \int_{0}^{3} dz \int_{-1}^{1} dx \, \int_{-\sqrt{1 - x^{2}}}^{\sqrt{1 - x^{2}}} dy \, (1 - 2yz)$$

Exemple (suite) -

$$\iiint_{\Omega} (1 - 2yz) \, dx \, dy \, dz = \int_{0}^{3} dz \int_{-1}^{1} dx \, \int_{-\sqrt{1 - x^{2}}}^{\sqrt{1 - x^{2}}} (1 - 2yz) \, dy$$
$$= \int_{0}^{3} dz \int_{-1}^{1} \left[y - y^{2}z \right]_{y = -\sqrt{1 - x^{2}}}^{y = \sqrt{1 - x^{2}}} dx$$

$$\int_{\Omega}^{3} dz \int_{-1}^{1} \left[y - y^{2} z \right]_{y = -\sqrt{1 - x^{2}}}^{y = \sqrt{1 - x^{2}}} dx$$

$$= \int_{0}^{3} dz \int_{-1}^{1} \left[\sqrt{1 - x^{2}} - (1 - x^{2})z + \sqrt{1 - x^{2}} + (1 - x^{2})z \right) dx$$

$$= \int_0^3 dz \int_{-1}^1 2\sqrt{1 - x^2} \, dx$$
$$= 3 \int_{-\pi/2}^{\pi/2} 2\cos^2 t \, dt$$
$$= 3\pi$$

Changement de variables

Définition – Un changement de variables

$$\vec{x} = (x, y, z) = h(u, v, w) = (x(\vec{u}), y(\vec{u}), z(\vec{u}))$$

est un <u>difféomorphisme</u> $h: \tilde{\Omega} \to \Omega: \vec{u} \mapsto h(\vec{u}) = \vec{x}$ (bijection C^1 avec réciproque $h^{-1}(\vec{x}) = \vec{u}$ aussi C^1).

Théorème – Soit $f: \Omega \subset \mathbb{R}^3 \to \mathbb{R}$ une fonction de \vec{x} et $\vec{x} = h(\vec{u})$ un changement de variables. Alors

$$\iiint_{\Omega} f(\vec{x}) \, dx \, dy \, dz = \iiint_{\tilde{\Omega}} f(h(\vec{u})) \, \left| \det J_h(\vec{u}) \right| \, du \, dv \, dw$$

où $\tilde{\Omega} = \{\vec{u} \mid h(\vec{u}) \in \Omega\}$ et $\det J_h(\vec{u})$ est le Jacobien de h.

Passage en coordonnées cylindriques et sphériques -

$$dx dy dz = \rho d\rho d\varphi dz = r^2 \sin \theta dr d\varphi d\theta$$

Exemple 3: intégrale par changement de variables

Exemple – Considérons à nouveau (1-2yz) dx dy dz

où Ω est le cylindre de hauteur 3 et de base le disque D.

• En coordonnées cylindriques, on a $\Omega = \big\{\, (\rho,\varphi,z) \mid \rho \in \,]0,1\big], \ \varphi \in \,[0,2\pi[,\ z \in \,[0,3]\,\big\}$

$$\Omega = \{ (\rho, \varphi, z) \mid \rho \in]0, 1], \ \varphi \in [0, 2\pi[, \ z \in [0, 3]] \}$$

• Puisque $dx dy dz = \rho d\rho d\varphi dz$, on a

$$\iiint_{\Omega} (1 - 2yz) \, dx \, dy \, dz = \int_{0}^{3} dz \int_{0}^{1} \rho \, d\rho \, \int_{0}^{2\pi} (1 - 2\rho \sin \varphi z) \, d\varphi$$
$$= \int_{0}^{3} dz \int_{0}^{1} \rho \, d\rho \, \left[\varphi + 2\rho \cos \varphi z \right]_{\varphi=0}^{\varphi=2\pi}$$

$$= \int_0^3 dz \int_0^1 \left(2\pi + 2\rho z - 2\rho z \right) \rho \, d\rho$$
$$= \int_0^3 dz \int_0^1 2\pi \, \rho \, d\rho = 3 \, \pi \left[\rho^2 \right]_0^1 = 3\pi$$

3.4 – Aire, volume, moyenne, centre de masse

Ch. 3 – Intégrales multiples

- 3.1 Intégrales de Riemann (rappels de TMB)
- 3.2 Intégrales doubles
- 3.3 Intégrales triples
- 3.4 Aire, volume, moyenne, centre de masse

Dans cette section:

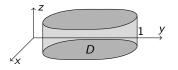
- Aire d'un domaine du plan
- Volume d'un solide
- Quantités totale et moyenne
- Centre de masse et moment d'inértie

Motivation pour la définition générale d'aire

Remarque – Si D est un domaine borné de \mathbb{R}^2 , l'intégrale

$$\iint\limits_{D} dx \ dy$$

représente le volume sous le graphe de la fonction f(x, y) = 1.



Ce solide Ω est un cylindre de hauteur H=1 et de base D:

$$\iint\limits_{\Omega} dx \ dy = \operatorname{Vol}(\Omega) = \operatorname{Aire}(D) \times H = \operatorname{Aire}(D).$$

Aire d'un domaine du plan

Définition – L'aire d'un domaine D borné de \mathbb{R}^2 est

$$Aire(D) = \iint_D dx \, dy$$

Proposition – Si D est la portion du plan sous le graphe d'une fonction $f:[a,b]\to\mathbb{R}$ positive, c'est-à-dire si

$$D = \{(x,y) \mid x \in [a,b], y \in [0,f(x)]\},\$$

alors:
$$\operatorname{Aire}(D) = \int_{a}^{b} f(x) dx$$

• En effet:
$$\iint dx \, dy = \int_a^b dx \, \int_0^{f(x)} dy = \int_a^b f(x) \, dx.$$

Exercice: aire d'un domaine du plan

Énoncé – Calculer l'aire du domaine borné $D \subset \mathbb{R}^2$ délimité par les courbes d'équation $y = x^2 + 2x + 1$ et $y = x^3 + 1$.

Réponse – D'abord on dessine D et on trouve les deux points d'intersection des courbes: (-1,0) et (0,1).

$$y = x^3 + 1$$

$$y = (x+1)$$

$$x$$

On a donc

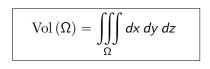
$$D = \left\{ (x, y) \in \mathbb{R}^2 \mid -1 \leqslant x \leqslant 0, \ x^2 + 2x + 1 \leqslant y \leqslant x^3 + 1 \right\}.$$

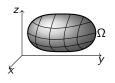
Ensuite on applique Fubini:

Aire (D)
$$= \iint_{D} dx \, dy = \int_{-1}^{0} dx \, \int_{x^{2}+2x+1}^{x^{3}+1} dy$$
$$= \int_{-1}^{0} (x^{3}+1-x^{2}-2x-1) \, dx$$
$$= \left[\frac{1}{4}x^{4} - \frac{1}{3}x^{3} - x^{2}\right]_{-1}^{0} = -\frac{1}{4} - \frac{1}{3} + 1 = \frac{5}{12}$$

Volume d'un solide

Définition – Le **volume** d'un solide Ω borné de \mathbb{R}^3 est





Proposition – $Si \Omega$ est l'espace sous le graphe d'une fonction $f: D \subset \mathbb{R}^2 \to \mathbb{R}^+$, c'est-à-dire si

$$\Omega = \big\{ (x,y,z) \mid (x,y) \in D, \ z \in [0,f(x,y)] \big\},\$$

$$\operatorname{Vol}(\Omega) = \iint_{\Omega} f(x, y) \, dx \, dy$$

• Car
$$\iiint dx \, dy \, dz = \iint dx \, dy \, \int_0^{f(x,y)} dz = \iint f(x,y) \, dx \, dy.$$

Exemple 1: volume d'une boule en sphériques

Volume de la boule en coordonnées sphériques – En coordonnées sphériques, la boule unité *B* s'écrit

$$B = \{(r, \theta, \varphi) \mid r \in [0, 1], \ \theta \in [0, \pi], \ \varphi \in [0, 2\pi[\}.$$

Puisque $dx dy dz = r^2 \sin \theta dr d\varphi d\theta$, on a

$$Vol(B) = \iiint_{B} dx \, dy \, dz$$

$$= \iiint_{[0,1]\times[0,2\pi[\times[0,\pi]]} r^{2} \sin\theta \, dr \, d\varphi \, d\theta$$

$$= \int_{0}^{1} r^{2} \, dr \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} \sin\theta \, d\theta$$

$$= \frac{1}{3} 2\pi \left[-\cos\theta \right]_{0}^{\pi} = \frac{2\pi}{3} (1+1) = \frac{4\pi}{3}.$$

Quantités totale et moyenne

Définition – En physique, si $f: \Omega \longrightarrow \mathbb{R}^+$ représente une concentration de matière (une densité volumique), ou une densité de courant ou d'énergie, alors on appelle

ullet quantité totale de matière / courant / énergie en Ω le nombre

$$\iiint\limits_{\Omega} f(x,y,z)\,dx\,dy\,dz$$

ullet quantité moyenne de matière / courant / énergie en Ω le nombre

$$\frac{1}{\operatorname{Vol}(\Omega)} \iiint_{\Omega} f(x, y, z) \, dx \, dy \, dz$$

Exemple 2: moyenne

Exemple – Un matériau est réparti dans un cube $\Omega = [0, R]^3$ selon la densité volumique $f(x, y, z) = \frac{x+y}{(z+1)^2}$.

• La quantité totale du matériau est alors

$$\begin{split} \iiint_{\Omega} f(x,y,z) \, dx \, dy \, dz &= \int_{0}^{R} dx \, \int_{0}^{R} (x+y) \, dy \, \int_{0}^{R} \frac{1}{(z+1)^{2}} dz \\ &= \int_{0}^{R} \left[xy + \frac{1}{2} y^{2} \right]_{y=0}^{y=R} dx \, \left[-\frac{1}{z+1} \right]_{0}^{R} \\ &= \int_{0}^{R} \left(Rx + \frac{1}{2} R^{2} \right) dx \, \left(1 - \frac{1}{R+1} \right) \\ &= \left[\frac{1}{2} Rx^{2} + \frac{1}{2} R^{2} x \right]_{0}^{R} \, \frac{R}{R+1} = \frac{R^{4}}{R+1}. \end{split}$$

• Puisque $Vol(\Omega) = R^3$, la quantité moyenne est

$$\frac{1}{\operatorname{Vol}(\Omega)} \iiint f(x,y,z) \, dx \, dy \, dz = \frac{1}{R^3} \, \frac{R^4}{R+1} = \frac{R}{R+1}.$$

Barycentre

Définition – Si $\mu:\Omega\longrightarrow\mathbb{R}_+$ denote la *densité de masse* d'un matériau contenu dans Ω , on appelle

• masse totale le nombre $M = \iiint_D \mu(x, y, z) dx dy dz$

La masse (*inertielle*) *M* d'un solide soumis à une force quantifie sa résistence à une *accéleration linéaire*.

ullet centre de masse (ou centre d'inertie, ou barycentre) le point G de coordonnées

$$x_G = \frac{1}{M} \iiint_{\Omega} x \, \mu(x, y, z) \, dx \, dy \, dz$$

$$y_G = \frac{1}{M} \iiint_{\Omega} y \, \mu(x, y, z) \, dx \, dy \, dz$$

$$z_G = \frac{1}{M} \iiint_{\Omega} z \, \mu(x, y, z) \, dx \, dy \, dz$$

Le centre de masse d'un solide sousmis à une force est le point qui se déplace comme comme si le solide y était concentré.

Moment d'inertie

Définition (suite) – Si r(x, y, z) est la distance d'un point (x, y, z) à un point fixé P ou à une droite Δ :

• le moment d'inertie par rapport à P ou à Δ est le nombre

$$\frac{1}{M} \iiint_{\Omega} r^2(x, y, z) \, \mu(x, y, z) \, dx \, dy \, dz.$$

Le moment d'inertie d'un solide sousmis à une force quantifie sa résistence à la rotation autour de P ou Δ (à une accéleration angulaire).

Nota – Un matériau est dit **homogène** si sa densité de masse μ est constante. Dans ce cas, sa masse dedans Ω est donnée par l'intégrale

$$M = \mu \iiint_{\Omega} dx \, dy \, dz = \mu \operatorname{Vol}(\Omega),$$

et les formules du centre de masse et du moment d'inértie se modifient en conséquence.

Exemple 3: centre de masse

Exemple – On cherche à déterminer le centre de masse du demi-cylindre homogène $(\mu=1)$

$$\Omega = \big\{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \leqslant R^2, \ z \in [0, H], \ y \geqslant 0 \big\}.$$

• Il est naturel de travailler en coordonnées cylindriques et d'écrire le demi-cylindre comme

$$\tilde{\Omega} = \big\{ (\rho, \varphi, z) \mid \rho \in [0, R], \ \varphi \in [0, \pi], \ z \in [0, H] \big\}.$$

• Le calcul de la masse totale donne

$$M = \iiint_{\Omega} dx \, dy \, dz = \iiint_{\tilde{\Omega}} \rho \, d\rho \, d\varphi \, dz$$
$$= \int_{0}^{R} \rho \, d\rho \, \int_{0}^{\pi} d\varphi \, \int_{0}^{H} dz = \frac{\pi \, R^{2} H}{2}.$$

• Le centre de masse G a pour coordonnées cartésiennes

$$x_{G} = \frac{1}{M} \iiint_{\Omega} x \, dx \, dy \, dz$$

$$= \frac{1}{M} \iiint_{\Omega} (\rho \cos \varphi) \, \rho \, d\rho \, d\varphi \, dz = \frac{1}{M} \int_{0}^{R} \rho^{2} \, d\rho \, \int_{0}^{\pi} \cos \varphi \, d\varphi \, \int_{0}^{H} dz = 0$$

$$y_{G} = \frac{1}{M} \iiint_{\Omega} y \, dx \, dy \, dz$$

$$= \frac{1}{M} \int_{0}^{R} \rho^{2} \, d\rho \, \int_{0}^{\pi} \sin \varphi \, d\varphi \, \int_{0}^{H} dz = \frac{2}{\pi R^{2} H} \frac{R^{3}}{3} \, 2 \, H = \frac{4R}{3\pi}$$

$$z_G = \frac{1}{M} \iiint_{\Omega} z \, dx \, dy \, dz$$
$$= \frac{1}{M} \int_{0}^{R} \rho \, d\rho \, \int_{0}^{\pi} d\varphi \, \int_{0}^{H} z \, dz = \frac{2}{\pi R^2 H} \frac{R^2}{2} \pi \frac{H^2}{2} = \frac{H}{2}$$

Ainsi
$$G = \left(0, \frac{4R}{3\pi}, \frac{H}{2}\right)$$
.

Exercice 1: quantité totale et moyenne

Énoncé – De la farine s'éparpille au sol selon la densité

$$f(x,y) = \frac{1}{(\sqrt{x^2 + y^2} + 1)^2}, \quad où(x,y) \in \mathbb{R}^2.$$

Trouver la quantité totale et moyenne de farine éparpillée sur un disque D de rayon R > 0 centré en l'origine.

Réponse – En coord. polaires, on a
$$f(\rho, \varphi) = \frac{1}{(\rho+1)^2}$$
 e

$$D = \big\{ \, (\rho, \varphi) \mid \rho \in [0, R], \, \, \varphi \in [0, 2\pi[\, \big\}. \quad \text{ Ainsi:} \,$$

Quantité totale =
$$\iint_{D} \frac{1}{(\rho+1)^{2}} \rho \, d\rho \, d\varphi$$
=
$$\int_{0}^{R} \left(\frac{\rho+1}{(\rho+1)^{2}} - \frac{1}{(\rho+1)^{2}} \right) \, d\rho \, \int_{0}^{2\pi} d\varphi$$
=
$$2\pi \int_{0}^{R} \left(\frac{1}{\rho+1} - \frac{1}{(\rho+1)^{2}} \right) \, d\rho$$
=
$$2\pi \left[\ln(\rho+1) + \frac{1}{\rho+1} \right]_{0}^{R} = 2\pi \left(\ln(R+1) - \frac{R}{R+1} \right).$$

Au final:

Quantité totale = $2\pi \left(\ln(R+1) - \frac{R}{R \perp 1} \right)$.

Puisque
$$\operatorname{Aire}(D) = \iint \rho \, d\rho \, d\varphi = \int_{-R}^{R} \rho \, d\rho \, \int_{-R}^{2\pi} d\varphi = \frac{R^2}{R} \, 2\pi = \pi R$$

 $=\frac{2}{R^2}\left(\ln(R+1)-\frac{R}{R+1}\right).$

Aire $(D) = \iint \rho \, d\rho \, d\varphi = \int_0^R \rho \, d\rho \, \int_0^{2\pi} d\varphi = \frac{R^2}{2} \, 2\pi = \pi R^2,$ on a Quantité moyenne = $\frac{1}{\text{Aire}(D)} \iint_{D} \frac{1}{(\rho+1)^2} \rho \, d\rho \, d\varphi$

Exercice 2: centre de masse

Exercice – Calculer le centre de masse du solide Ω composé de la demi-boule B et du cylindre C suivants:

$$B = \left\{ (r, \theta, \varphi) \mid r \in [0, R], \ \theta \in [\pi/2, \pi], \ \varphi \in [0, 2\pi] \right\}$$

$$C = \left\{ (\rho, \varphi, z) \mid \rho \in [0, R], \ \varphi \in [0, 2\pi], \ z \in [0, R] \right\},$$

et avec la densité de masse $\mu(x, y, z) = z^2$.

Réponse – Puisque $\Omega = B \cup C$, et $B \cap C = \text{courbe}$, le centre de masse G a coordonnées

$$x_G = \frac{1}{M_{\Omega}} \iiint_{\Omega} x \, \mu(x, y, z) \, dx \, dy \, dz$$
 (idem pour y_G et z_G),

où
$$M_{\Omega} = M_B + M_C$$
 et $\iiint_{\Omega} = \iiint_{R} + \iiint_{C}$.

• Les intégrales se calculent: en coordonnées sphériques sur B, où $\mu(r,\theta,\varphi)=r^2\cos^2\theta$, en coordonnées cylindriques sur C, où $\mu(\rho,\varphi,z)=z^2$.

Calcul de la masse de Ω:

$$M_B = \iiint_B r^2 \cos^2 \theta \ r^2 \sin \theta \ dr \ d\varphi \ d\theta$$
$$= \int_0^R r^4 \ dr \ \int_0^{2\pi} d\varphi \ \int_{\pi/2}^{\pi} \cos^2 \theta \sin \theta \ d\theta$$

 $M_C = \iiint z^2 \rho \, d\rho \, d\varphi \, dz$

$$= \int_0^R r^4 dr \int_0^{2\pi} d\varphi \int_{\pi/2}^{\pi} \cos^2 \theta \sin \theta$$

 $= \int_{0}^{R} r^{4} dr \int_{0}^{2\pi} d\varphi \int_{\pi/2}^{\pi} \cos^{2}\theta \sin\theta d\theta$ $=\frac{R^5}{5}2\pi\Big[-\frac{1}{3}\cos^3\theta\Big]^{\pi}_{\pi/2}=\frac{2\pi R^5}{15}$

Au final: $M_{\Omega} = M_B + M_C = \left(\frac{2}{15} + \frac{1}{3}\right) \pi R^5 = \frac{7\pi R^5}{15}$.

 $= \int_{2}^{R} \rho \, d\rho \, \int_{2}^{2\pi} d\varphi \, \int_{2}^{R} z^{2} \, dz = \frac{R^{2}}{2} \, 2\pi \, \frac{R^{3}}{3} = \frac{\pi R^{5}}{3}$

• Puisque
$$\int_{0}^{2\pi} \cos \varphi \, d\varphi = 0$$
 et $\int_{0}^{2\pi} \sin \varphi \, d\varphi = 0$, on a:

$$x_{G} = \frac{1}{M_{\Omega}} \iiint_{\Omega} x \, \mu(x, y, z) \, dx \, dy \, dz$$

$$= \frac{1}{M_{\Omega}} \int_{0}^{R} r^{5} \, dr \, \int_{0}^{2\pi} \cos \varphi \, d\varphi \, \int_{\pi/2}^{\pi} \cos^{2} \theta \sin^{2} \theta \, d\theta$$

$$+ \frac{1}{M_{\Omega}} \int_{0}^{R} \rho^{2} \, d\rho \, \int_{0}^{2\pi} \cos \varphi \, d\varphi \, \int_{0}^{R} z^{2} \, dz = 0$$

$$y_{G} = \frac{1}{M_{\Omega}} \iiint_{\Omega} y \, \mu(x, y, z) \, dx \, dy \, dz$$

$$= \frac{1}{M_{\Omega}} \int_{0}^{R} r^{5} \, dr \, \int_{0}^{2\pi} \sin \varphi \, d\varphi \, \int_{\pi/2}^{\pi} \cos^{2} \theta \sin^{2} \theta \, d\theta$$

$$+ \frac{1}{M_{\Omega}} \int_{0}^{R} \rho^{2} \, d\rho \, \int_{0}^{2\pi} \sin \varphi \, d\varphi \, \int_{0}^{R} z^{2} \, dz = 0$$

Enfin:

 $z_G = \frac{1}{M_O} \iiint z \, \mu(x, y, z) \, dx \, dy \, dz$

 $=\frac{15\pi R^6}{7\pi R^3}\left(-\frac{1}{12}+\frac{1}{4}\right)$

 $=\frac{5R^3}{14}$.

 $= \frac{1}{M_{\Omega}} \int_{0}^{R} r^{5} dr \int_{0}^{2\pi} d\varphi \int_{\pi/2}^{\pi} \cos^{3}\theta \sin\theta d\theta$

 $+\frac{1}{M_{\Omega}}\int_{0}^{R}\rho\,d\rho\,\int_{0}^{2\pi}d\varphi\,\int_{\Omega}^{R}z^{3}\,dz$

 $= \frac{15}{7\pi R^3} \left(\frac{R^6}{6} 2\pi \left[-\frac{1}{4} \cos^4 \theta \right]_{\pi/2}^{\pi} + \frac{R^2}{2} 2\pi \frac{R^4}{4} \right)$

• En conclusion, le barycentre G de Ω a pour coordonnées

$$G = (0, 0, 5R^3/14)$$

Puisque $5R^3/14 > 0$, il se trouve dans la partie cylindrique.

ullet Le barycentre se trouve à l'intérieur de Ω si

$$5R^3/14 \le R$$

c'est-à-dire si $R \leqslant \sqrt{14/5}$.