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Introduction

Les statistiques sont rencontrées dans de très nombreux domaines. Pour n’en citer que
quelques uns :

— en sciences humaines, la réalisation et l’étude de sondages permettent par exemple
d’analyser le positionnement politique d’une population et de prédire les résul-
tats à de futures élections ; des études statistiques (notamment avec le recensement)
offrent aussi une vision des données socio-économiques de la population : niveau
de vie, satisfaction globale, etc,

— en économie, les prévisions économétriques (quelle sera la croissance du PIB au
prochain semestre?) sont indispensables,

— en biologie, le diagnostic déduit d’un test sanguin par exemple est souvent issu de
développements statistiques ; par exemple une femme enceinte effectuant un test
sur la trisomie verra apparaître des p-valeurs (cf le cours sur les tests),

— les études des données météorologiques ou sismographiques font appel aux statis-
tiques,

— un ingénieur est confronté de manière très importante aux statistiques : évaluation
de la performance d’une méthode développée, contrôle de la qualité de compo-
sants, étude de la fiabilité d’un système, analyse de la sensibilité d’un code infor-
matique, etc.

L’idée de la statistique est de fournir des méthodologies rigoureuses d’études des don-
nées en présence d’incertitude. Cette incertitude peut avoir diverses sources : les mesures
sont entachées d’erreur (contrairement à une pensée communément répandue, ceci est
quasi-systématique, même avec des appareils considérés comme fiables), elles sont issues
de phénomènes inconnus que l’on souhaiterait éventuellement modéliser pour mieux les
comprendre et surtout les mesures ne sont en général pas exhaustives : on n’a accès à des
données que sur une partie de la population et l’on voudrait déduire de nos observations

1



des résultats généraux pour l’intégralité de la population. Par exemple, si vous mesurez
la performance d’un code en terme de temps de calcul :

— le temps de calcul mesuré par votre ordinateur peut être incertain en raison par
exemple de tâches subalternes qu’effectue votre ordinateur,

— vous ne pouvez pas lancer indéfiniment votre code et vous allez devoir en déduire
sa performance générale pour la comparer à un ancien code (peut-être votre code
est-il plus rapide pour certains jeux de paramètres et pas pour d’autres : qu’en est-il
globalement?)

— votre code est complexe et vous ne savez pas quels paramètres sont les plus cri-
tiques. . .

Dans de tels contextes, le but des statistiques est multiple : premièrement décrire les
observations, résumer les données à votre disposition ; deuxièmement essayer de com-
prendre les phénomènes sous-jacents en introduidant des modèles permettant d’analyser
ces phénomènes ; cette modélisation permet dans un troisième temps de faire des prédic-
tions sur le comportement du système étudié dans des contextes non encore observés et
de mettre en place des procédures d’aide à la décision.

Nous allons dans ce cours développer les méthologies qu’offre la statistique pour répon-
dre à ces différents points. Dans un premier temps, nous allons définir le contexte dans le-
quel sont développées ces techniques. Le fondement de la statistique étant d’analyser des
données en présence d’incertitude, ces incertitudes sont modélisées en faisant appel à la
théorie des probabilités. Nous faisons donc dans un premier temps quelques (très) brefs
rappels de probabilité, afin de rafraîchir le cours de l’année dernière. Dans un second
temps, nous présentons quelques éléments dits de statistique descriptive, permettant de
décrire un jeu de données. Nous développerons ensuite des outils de modélisation : es-
timation ponctuelle et intervalles de confiance, puis des tests permettant de prendre des
décisions au vu de cette modélisation et de vérifier la justesse de cette modélisation.
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CHAPITRE 1

RAPPELS DE PROBABILITÉ

Ce chapître reprend brièvement quelques éléments de la théorie des probabilités que
vous avez vu auparavant. Nous essayons de redonner les principaux outils qui serviront
dans ce cours de manière informelle. Nous vous renvoyons à votre cours de probabilité
pour des définitions plus rigoureuses.

1.1 Variable aléatoire

Une variable aléatoire X désigne le résultat d’une expérience aléatoire, telle le résultat
d’un lancer de dé, la durée de vie d’une clef usb, l’intention de vote aux prochaines élec-
tions, etc. Il existe différents types de variables :

Les variables quantitatives. Parmi celles-ci, on peut distinguer les variables discrètes,
qui ont un nombre fini de modalités, des variables continues :

— discrètes : résultat d’un tirage de dé, nombre de bugs dans un programme,
nombre de contrôles dans le tramway sur une année. . .

— continues : âge d’un étudiant, durée de vie d’un système, taux d’un compo-
sant chimique dans une solution. . .

Les variables qualitatives. Par exemple la couleur des yeux d’une personne, le résultat
à la question « Aimez-vous les repas au resto U? » ou « Pour qui allez-vous voter
aux prochaines élections? »

La première démarche à faire face à un problème donné est d’identifier quelle est la va-
riable aléatoire que l’on va considérer et de quel type est cette variable. Ensuite, nous
allons essayer de caractériser cette variable.
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1.1. VARIABLE ALÉATOIRE

1.1.1 Loi de probabilité

La loi de probabilité d’une variable aléatoire X permet de déterminer comment se répartit
X.

Dans le cas d’une variable discrète, notons X = {e1, e2, . . .} l’ensemble des valeurs prises
par X. Alors pour caractériser la loi de X on donne l’ensemble des valeurs de P(X = ei),
pour i = 1, 2, . . .

Si la variable est quantitative, discrète ou continue, on peut caractériser la loi de X par la
fonction de répartition :

F : R → [0, 1]

x 7→ P(X 6 x)

Rappelons qu’alors pour tout (a, b), P(X ∈ [a, b]) = F(b)− F(a).

Dans le cas des variables aléatoires continues, on manipule aussi souvent la fonction de
densité f , dérivée de F : pour tout (a, b), P(X ∈ [a, b]) =

∫
[a,b] f (x)dx.

Nous verrons dans ce cours comment évaluer ces grandeurs ou ces fonctions caractéri-
sant la loi d’une variable à partir d’observations.

1.1.2 Moments et quantiles

Cette section ne concerne que les variables quantitatives.

Espérance

L’espérance est définie par{
EX =

∫
x f (x)dx si on a une variable continue,

EX = ∑i xiP(X = xi) si on a une variable discrète.

C’est la valeur que l’on s’attend à avoir en moyenne lorsqu’on répéte un très grand
nombre de fois l’expérience (voir la loi des grands nombres en section suivante).
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CHAPITRE 1. RAPPELS DE PROBABILITÉ

Prenons un exemple. Nous jouons à un jeu de pile ou face. Introduisons X = 11{on obtient f ace}.
X suit une loi de Bernoulli de paramètre 1/2 : P(X = 0) = P(X = 1) = 1/2. Nous avons
alors EX = 1/2. Si nous lançons 1000 fois une pièce nous nous attendons à avoir environ
1000 ∗EX = 500 fois face.

Plus généralement,{
Eϕ(X) =

∫
ϕ(x) f (x)dx si on a une variable continue,

Eϕ(X) = ∑i ϕ(xi)P(X = xi) si on a une variable discrète.

Rappelons aussi qu’on a la linéarité de l’espérance :

E[X + Y] = EX +EY,

E[aX] = aEX pour tout a ∈ R.

Variance et écart-type

La variance d’une variable aléatoire X est

Var(X) = E[(X−EX)2] = E[X2]− (EX)2.

L’écart-type se définit ensuite comme la racine de la variance :

σ(X) =
√

Var(X).

Ces grandeurs sont des indicateurs de dispersion : elles mesurent l’écart entre les valeurs
prises par X et son espérance EX.

Rappelons les modalités de manipulation de la variance :

Si X et Y sont indépendantes Var(X + Y) = Var(X) + Var(Y).

Pour tout réel a, Var(aX) = a2Var(X).

Remarque : L’espérance est le moment d’ordre 1, la variance est le moment centré d’ordre
2. Il existe des moments (centrés ou non) d’ordre p pour tout p ∈ N∗ mais qui ne sont pas
présentés ici.
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1.1. VARIABLE ALÉATOIRE

FIGURE 1.1 – Trois densités de loi normale avec différentes valeurs de l’espérance et de
la variance.

Quantiles

Le quantile d’ordre α est le réel qα tel que P(X 6 qα) = α. Par exemple le quantile d’ordre
25%, aussi appelé premier quartile, est le réel q0.25 tel que P(X 6 q0.25) = 25%.

Prenons un exemple. Soit X le niveau sonore en décibels d’une voiture. Les autorités ont
décidé de taxer les voitures les plus sonores. Elles voudraient taxer 5% des voitures. Alors
le seuil qu’elles doivent prendre est le quantile d’ordre 95%, noté q0.95 : une voiture ayant
un niveau sonore supérieur à q0.95 décibels sera taxée, mais pas une voiture de niveau
inférieur.

La notion de quantile est très utilisée en statistique, comme nous le verrons par la suite.

1.1.3 Convergences

Nous rappelons ici trois notions de convergence ainsi que deux théorèmes fondamentaux
de manière très succinte. Nous vous renvoyons à votre cours de probabilité pour plus de
détails et pour d’autres types de convergence.
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CHAPITRE 1. RAPPELS DE PROBABILITÉ

Convergence en loi

Soit (Xn)n∈N une suite de variable aléatoire de fonction de répartition (FXn) et soit X
variable aléatoire de fonction de répartition F. On dit que (Xn)n converge en loi vers X et

on notera (Xn)n
loi−→

n→∞
X si la suite de fonction (FXn) converge simplement vers F en tout

point de continuité de F.

Cela signifie que si n est grand, la variable aléatoire Xn se comporte comme X.

Rappelons le théorème de la limite centrale :

Théorème 1.1. Soient X1, X2, . . . Xn i.i.d. (indépendants et identiquement distribués). Suppo-
sons que m = EXi et σ2 = Var(Xi) soient finis. Notons Xn = 1

n ∑n
i=1 Xi. Alors,

√
n

Xn −m
σ

loi−→
n→∞
N (0, 1).

Ce théorème justifie l’importance de la loi normale dans la modélisation statistique :
quelque soit la loi des variables aléatoires considérées, leur moyenne se comporte asymp-
totiquement comme une loi normale. Par exemple, le fait que souvent les résidus dans les
modèles de physique soient considérés comme suivant des lois normales est dû au fait
qu’on peut les considérer comme la somme de petits phénomènes non pris en compte.

Convergence presque sûre

Soient (Xn)n∈N et X des variables aléatoires. On dit que (Xn)n converge presque sûrement
vers X et on notera (Xn)n

p.s.−→
n→∞

X si P ({w, Xn(w)→ X(w)}) = 1.

La convergence presque sûre implique la convergence en loi.

La loi forte des grands nombres nous dit :

Théorème 1.2. Soient X1, X2, . . . Xn i.i.d. Notons Xn = 1
n ∑n

i=1 Xi et m = EXi. Alors,

Xn
p.s.−→

n→∞
m.

Ce résultat est assez intuitif : plus on réalise une expérience un grand nombre de fois,
plus la moyenne observée est proche de la moyenne théorique.
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1.2. LOIS USUELLES

Convergence L2

Soient (Xn)n∈N et X des variables aléatoires. On dit que (Xn)n converge en moyenne

quadratique vers X et on notera (Xn)n
L2

−→
n→∞

X si E
(
(Xn − X)2)→ 0.

Le principal intérêt de cette convergence est qu’elle est plus facile à étudier en pratique.
La convergence en moyenne quadratique implique la convergence en loi, mais aucune
implication ne peut être établie avec la convergence presque-sûre.

1.2 Lois usuelles

Nous ne présentons pas ici les lois de manière exhaustive, uniquement quelques unes
des lois les plus usuelles.

1.2.1 Variables discrètes

Uniforme discrète U (N)

— Plage des valeurs : {1, . . . , N}
— Fonction de masse : P(X = k) = 1/N

— Espérance : (N + 1)/2 et Variance : (N2 − 1)/12

— Interprétation : Expérience avec N issues équiprobables possibles.

Bernoulli B(p)

— Plage des valeurs : {0, 1}
— Fonction de masse : P(X = 0) = 1− p et P(X = 1) = p

— Espérance : p et Variance : p(1− p)

— Interprétation : Expérience qui n’a que 2 issues possibles (ticket gagant ou per-
dant)

Binomiale B(n, p)

— Plage des valeurs : {0, . . . , n}
— Fonction de masse : P(X = k) = Ck

n pk(1− p)n−k

— Espérance : np et Variance : np(1− p)
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CHAPITRE 1. RAPPELS DE PROBABILITÉ

— Interprétation : Somme de n Bernouillis indépendantes. Nombre de succès
dans n tirages si chaque tirage a une probabilité p d’être gagnant (nombre
de tickets gagnats parmi n)

Géométrique G(p)

— Plage des valeurs : {1, . . . ∞}
— Fonction de masse : P(X = k) = p(1− p)k−1

— Espérance : 1/p et Variance : (1− p)/p2

— Interprétation : Nombre de tirages nécessaires pour obtenir un succès (nombre
de tickets à acheter pour en avoir 1 gagant)

Hypergéométrique H(N, n, p)

— Plage des valeurs : {0, . . . , ∞}

— Fonction de masse : P(X = k) =
Ck

NpCn−k
N(1−p)

Cn
N

— Espérance : np et Variance : np(1− p)N−n
N−1

— Interprétation : Il y a N tickets et chaque ticket a une probabilité p d’être ga-
gnant. On choisit au hasard n tickets. Combien sont gagnants?

Pascal P(r, p)

— Plage des valeurs : {r, . . . , ∞}
— Fonction de masse : P(X = k) = Cr−1

k−1 pr(1− p)k−r

— Espérance : r/p et Variance : r(1− p)/p2

— Interprétation : On a observé r succès. Sachant que la probabilité d’avoir un
succès est p, combien de réalisations y a-t-il eu?

Poisson P(λ)
— Plage des valeurs : {0, . . . ∞}
— Fonction de masse : P(X = k) = e−λ λk

k!

— Espérance : λ et Variance : λ

— Interprétation : Loi des évènements rares : nombre de fois où un évenement
ayant une faible probabilité de se réaliser va être observé sur un très grand
nombre d’expériences.
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1.2. LOIS USUELLES

1.2.2 Variables continues

Uniforme U ([a, b])

— Plage des valeurs : [a, b]

— Densité : f (x) = 1
b−a 11[a,b](x) où 11 désigne la fonction indicatrice (11A(x) = 1 si

x ∈ A et 0 sinon).

— Espérance : (a + b)/2 et Variance : (b− a)2/12

Normale, Gaussienne, Laplace-Gauss N (m, σ2)

— Plage des valeurs : R

— Densité : f (x) = 1√
2πσ2 exp

(
−(x−m)2

2σ2

)
— Espérance : m et Variance : σ2

— Interprétation : le loi des moyennes (et des erreurs), avec le théorème de la
limite centrale.

Exponentielle E(λ)
— Plage des valeurs : R+

— Densité : f (x) = λe−λx11R+(x)

— Espérance : 1/λ et Variance : 1/λ2

— Interprétation : la loi des durés de vie ou de réalisations de tâches.

Nous renvoyons à la fiche distribuée pour d’autres lois : Weibull, Gamma, etc.

1.2.3 Quelques rappels spécifiques à la loi de Gauss et aux lois dérivées

La loi de Gauss, ou loi normale, a été rappelée ci-dessus. Cette loi est fondamentale en
raison du théorème de la limite centrale, qui justifie qu’elle soit si fréquente en modélisa-
tion.

Propriété fondamentale :
Si X ∼ N (m, σ2), alors aX + b ∼ N (am + b, a2σ2) et X−m

σ ∼ N (0, 1).

Cette propriété permet quelque soient les paramètres de la loi normale considérée de se
ramener à une loi dite centrée-réduite N (0, 1). Ainsi, dans les tables statistiques, seule
la loi centrée-réduite est donnée, et vous devrez utiliser cette propriété afin de vous y
ramener.
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CHAPITRE 1. RAPPELS DE PROBABILITÉ

Nous donnons maintenant les principales lois obtenues lors de manipulations de la loi
normale. Ces lois apparaissent notamment dans le théorème de Fisher donné ci-après,
qui est particulièrement utile dans le cadre de ce cours.

Loi du χ2 :
Si X ∼ N (0, 1), alors X2 ∼ χ2

1.
Si X1, . . . , Xn indépendantes et de même loi χ2

1, alors ∑n
i=1 X2

i ∼ χ2
n.

Loi de Student :
Si U ∼ N (0, 1) et Z ∼ χ2

n, et si U et Z sont indépendantes, alors U
Z/
√

n ∼ St(n).

Théorème 1.3. Théorème de Fisher
Soient X1, . . . , Xn indépendantes et de même loi N (m, σ2). Posons X̄n = 1

n ∑n
i=1 Xi et S′n

2 =
1

n−1 ∑n
i=1(Xi − Xn)2. Alors :

• Xn ∼ N (m, σ2/n),

• 1
σ2 ∑n

i=1(Xi −m)2 ∼ χ2
n,

• (n−1)S′n
2

σ2 ∼ χ2
n−1,

• Xn et S′n
2 sont indépendantes,

• Xn−m
S′n/
√

n ∼ St(n− 1).

Ces résultats servent à établir les intervalles de confiance et les procédures de test dans le
cas d’un échantillon issu d’une loi normale.

Loi de Fisher-Snedecor :
Si X ∼ χ2

n et Y ∼ χ2
m, et si X et Y sont indépendantes, alors X/n

Y/m ∼ F (n, m).

Cette loi est utile dans les tests de comparaison de variances.

L’expression explicite des densités de ces lois n’est pas à connaître (sauf pour la loi nor-
male). Des tables statistiques et des logiciels permettent de les manipuler.
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CHAPITRE 2

ELÉMENTS DE STATISTIQUE DESCRIPTIVE

Le but est de décrire des observations x1, x2, . . . xn à notre disposition afin d’analyser leur
structure et d’en extraire les informations pertinentes.

2.1 Variables discrètes

Nous supposons ici que la variable considérée est à valeurs dans un ensemble dénombra-
ble. En pratique, comme on dispose d’un nombre fini d’observations, on peut considérer
en général qu’il y a un nombre fini de modalités. Notons e1, e2, . . . ek les k valeurs obser-
vées.

Nous considérons dans un premier temps le cas d’une variable qualitative. Aucun indi-
cateur numérique n’est alors possible, mais des diagrammes permettent une meilleure
lisibilité des données. Nous nous intéressons ici aux résultats de l’élection européenne de
2019. Les résultats obtenus sont les suivants :

Partis RN LREM-Modem EELV LR LFI PS DLF

Scores 0.2331 0.2241 0.1347 0.0848 0.0631 0.0619 0.0351

Partis Generation.s UDI PCF PA GE-MEI-MdP UPR Autres

Scores 0.0327 0.0250 0.0249 0.0217 0.0182 0.0117 0.029

Source : https: // www. interieur. gouv. fr/ Elections/ Les-resultats/ Europeennes/ elecresult_
_europeennes-2019

Seuls les partis ayant obtenu un score supérieur à 1% sont détaillés.
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2.1. VARIABLES DISCRÈTES

Afin de visualiser comment se répartissent les observations parmi ces valeurs, deux dia-
grammes sont possibles :

• Le diagramme en bâtons consiste à associer à chaque modalité un bâton de lon-
gueur proportionnelle au nombre de fois où la modalité est observée.
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FIGURE 2.1 – Diagramme en bâtons.

L’ordre choisi dans cet exemple pour les modalités respecte les mouvances sur
la scène politique (classique gauche-droite). Essayez en général dans un tel dia-
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gramme de donner un ordre cohérent.

R

A partir du vecteur des scores, on obtient le diagramme en bâtons avec la
commande

plot(scores,type=’h’)

Si les données ne sont pas regroupées mais contiennent toutes les valeurs
individu par individu, on retrouve les scores (proportions modalité par mo-
dalité) avec

table(x)

• Le diagramme sectoriel ou camembert consiste à partitionner un disque en asso-
ciant à chaque modalité une aire proportionnelle au nombre de fois où la modalité
est observée.
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LREM−Modem
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FIGURE 2.2 – Diagramme sectoriel

Dans le cas présent de partis politique, il arrive que l’on considère des demi-disques.
Ceci est en général à éviter dans les autres contextes. Notons par ailleurs que le dia-
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2.1. VARIABLES DISCRÈTES

gramme sectoriel est en général particulièrement bien adapté pour les répartitions
de budget.

FIGURE 2.3 – Diagramme sectoriel budgétaire
Source : https: // europa. eu/ european-union/ about-eu/ eu-budget/

R

A partir du vecteur des scores, on obtient le diagramme sectoriel avec

pie(scores)

Prenons maintenant l’exemple suivant : afin d’étdier un traitement à l’epilepsie, on me-
sure le nombre de crises d’epilepsie chez 59 patients durat une durée de 2 semaines.

Nombre de crises 0 1 2 3 4 5 7 8 9 12 13 14 15 16
Nombre de patients 7 2 4 8 9 7 5 5 1 2 1 1 1 1
Nombre de crises 21 22 25 29 63
Nombre de patients 1 1 1 1 1

Ces données sont issues de Thall, P. F. and Vail, S. C. (1990) Some covariance models
for longitudinal count data with over-dispersion. Biometrics 46, p. 657-671 et reprises
dans Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S., Fourth
Edition. Springer. Elles sont disponible dans le paquet MASS de R.
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CHAPITRE 2. ELÉMENTS DE STATISTIQUE DESCRIPTIVE

Nous considérons ici comme variable aléatoire d’intérêt le nombre de crises d’epsilepsie
survenue durant la période. Cette variable aléatoire est discrète et quantitative. Contrai-
rement au cas précédent où la variable était qualitative. Concernant la représentation
graphique, la repésentation adaptée est un diagramme en bâtons, construit de manière
identique à ce qui précède : en abscisse les modalités de la variable et en ordonnée les
fréquences observées pour chacune d’elles.
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FIGURE 2.4 – Diagramme en bâtons.

Cette variable étant quantitative, nous avons de plus accès à des indicateurs numériques
permettant de résumer les observations. Notons xi le nombre de crises du patient i, i =
1, . . . , n avec n = 59.

Indicateurs de tendance

— Moyenne empirique, xn = 1
n ∑n

i=1 xi. Lorsque les données sont rangées : pour
chaque modalité (ei)i=1,...,k, il y a ni individus, alors x̄i = 1

n ∑k
i=1 niei. C’est

un indicateur usuel que vous rencontrez fréquemment. Il donne une valeur
centrale pour l’échantillon.

— Médiane empirique, q̃50%. C’est la valeur telle que 50% des individus aient une
modalité inférieure à q̃50%, et 50% aient une modalité supérieure. Pour calculer
la médiane empirique, on commence par ordonner l’échantillon : x(1) 6 x(2) 6
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2.1. VARIABLES DISCRÈTES

· · · 6 x(n). Si n est impair, nous avons q̃50% = x((n+1)/2). Si n est impair, nous
savons que q̃50% est compris entre x((n)/2) et x((n+1)/2). Par convention, nous

choisirons le milieu : q̃50% =
(

x((n)/2) + x((n+1)/2)

)
/2.

Il est intéressant de comparer les valeurs de la moyenne et de la médiane. Prenons
l’exemple des salaires en France d’après l’étude de l’INSEE en 2007. La moyenne
des salaires par an par individu est de 33 100 euros. La médiane des salaires par an
par individu est de 27 630 euros. On observe que la médiane est significativement
inférieure à la moyenne. Cela signifie qu’un petit nombre de français a un salaire
très élevé, comparativement au niveau moyen. En général, on interprète les écarts
entre moyenne et médiane comme suit : si les valeurs sont comparables, la distribu-
tion est symétrique. Si la moyenne est nettement plus élevée, un petit nombre d’in-
dividus admet des valeurs très supérieures à la majorité, et si la moyenne est nette-
ment plus faible, un petit nombre d’individus admet des valeurs très inférieures à
la majorité

Nous pourrions généraliser la médiane empirique aux quantiles empiriques, mais
ceci n’apporterait pas beaucoup dans cet exemple. Nous introduirons cette notion
pour l’exemple des variables continues où elle semble plus adaptée.

Indicateurs de dispersion

— Variance empirique, s2
n = 1

n ∑n
i=1 x2

i − xn
2. Ou encore s2 = 1

n ∑k
i=1 nie2

i − xn
2.

Cette grandeur mesure la dispersion des données par rapport à la moyenne.
Nous verrons ultérieurement que la variance est très utilisée en théorie car
nous connaisons beucoup de propriétés sur son estimation. Mais en pratique,
vous ne pouvez pas interpréter une variance : si vous considérer des mètres,
la variance est en mètres2, des secondes, elle est en secondes2, etc. Mieux vaut
regarder, pour l’interprétation, l’écart-type empirique.

— Ecart-type empirique, sn. Il a même unité que la variable considérée. S’il est
grand cela signifie que les données sont très dispersées, s’il est faible que
la variabilité entre les individus est relativement faible. Pour déterminer si
l’écart-type est grand ou non, on regarde le coefficient de variation empirique,
cvn = sn

xn
. Si cvn > 0.25 on considère que la variabilité est forte et si cvn < 0.25

on considère que la variabilité est raisonnable.

Dans l’exemple considéré ici, le nombre de crises d’epilepsie vérifie :
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moyenne empirique médiane empirique
7.035 4

variance empirique écart-type empirique coefficient de variation empirique
91.534 9.567 1.31

La moyenne est relativement faible compte-tenu de la plage de valeurs, ce qui s’explique
par une faible proportion d’individus ayant des valeurs élevées. Par ailleurs, la médiane
est plus faible que la moyenne, ce qui est dû à une asymétrie de la distribution : les
valeurs sont plus étalées vers le haut.

On peut considérer la variabilité comme très forte. Ceci est justifié par le graphique, qui
montre une forte dispersion des valeurs.

R

Moyenne empirique, médiane empirique, variance empirique et écart-type empi-
rique sont obtenus respectivement par

moyenne <- mean(x)
mediane <- median(x)
variance <- mean(x^2)-mean(x)^2
ecart_type <- sqrt(variance)

Attention si les données sont regroupées (proportions modalité par modalité) les
fonctions ci-dessus ne sont plus valables. Si e est le vecteur des modalités et f est
le vecteur des fréquences d’observation de ces modalités, la moyenne se calculera
par exemple par

moyenne <- sum(e*f)

2.2 Variables continues

La station de Lyon-Bron a enregistré entre 1921 et 1992 les températures moyennes sui-
vantes :
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2.2. VARIABLES CONTINUES

Mois janvier février mars avril mai juin juillet août septembre
Lyon 2,51 4,01 7.55 10.58 14.55 18.15 20.76 20.13 17.11
Mois octobre novembre décembre
Lyon 12.14 6.82 3.2

TABLE 2.1 – source : BLANCHET, 1993, Le climat de Lyon et sa région, Bulletin Mensuel de
la Société LINEENE de Lyon

2.2.1 Histogrammes

Lorsqu’on observe des données x1 . . . xn issues d’une variable aléatoire continue, le moy-
en usuel de représentation est l’histogramme. L’idée est de regrouper les valeurs dans des
classes ([aj−1; aj[)j=1...k. On peut ensuite associer à chaque classe le nombre nj d’observa-
tions (xi)i=1,...,n appartenant à la classe [aj−1; aj[. On est ramenés à un tableau en effectifs
de la forme :

Classe [a0; a1[ [a1; a2[ . . . [ak−1; ak[ total
Effectif n1 n2 . . . nk n
Fréquence f1 f2 . . . fk 1

Les fréquences sont données par fi =
ni
n . Lorsqu’il y a de nombreuses observations, les

données sont souvent déjà regroupées en classes.

Une question qui se pose est comment choisir les classes? Combien en prendre et quelles
bornes aj donner? En général, le nombre de classes est choisi selon la Règle de Sturges :
k est l’entier le plus proche de 1 + log2(n). Ensuite, les bornes extrêmes a0 et ak peuvent
être données par

a0 = min
i=1...n

xi − 0.025(max xi −min xi) et ak = max
i=1...n

xi − 0.025(max xi −min xi).

Enfin, les deux choix les plus usuels de classes sont les classes de même largeur et les
classes de même effectif. Nous verrons par la suite comment construire de telles classes.

Afin de faciliter la lecture du tableau obtenu, nous optons pour une représentation gra-
phique : un histogramme.

Définition 2.1. Un histogramme est la juxtaposition de rectangles de bases ([aj−1; aj[)j=1...k

et d’aire égale à la fréquence f j associée. La hauteur du jème rectangle est donc égale à
f j

aj−aj−1
.
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Nous voulons faire l’histogramme des températures moyennes de Lyon. On commence
par trier les données : 2.51, 3.2, 4.01, 6.82, 7.55, 10.58, 12.14, 14.55, 17.11, 18.15, 20.13, 20.76.
La règle de Sturges inciterait à faire 5 classes mais pour des raisons d’ordre pratique,
nous choisissons ici d’en faire 6. Les bornes extrêmes des classes sont ensuite a0 = 2.55 et
ak = 21.45.

Création d’un histogramme avec 6 classes de même largeur

Nous souhaitons dans un premier temps réaliser un histogramme avec des classes de
même largeur. Soit ` la largeur de chaque classe : aj = aj−1 + `. Alors il est immédiat que
ak − a0 = k `, donc que ici ` = (21.45− 2.55)/6 = 3.19.

Nous obtenons donc les classes suivantes : [2.05-5.25[, [5.25-8.44[, [8.44-11.64[, [11.64-
14.83[, [14.83-18.02[, [18.02-21.22[. Ces classes constituent les bases des rectangles de l’his-
togramme. Nous aimerions ensuite déterminer la hauteur des rectangles. Rappelons que
l’aire est proportionnelle à la fréquence f j. Ainsi, la hauteur du jème rectangle vaut hj =

f j/(aj − aj−1). Lorsque les classes ont même largeur `, la hauteur vaut hj = f j/`. Nous
obtenons ainsi :

classes [2.05-5.25[ [5.25-8.44[ [8.44-11.64[ [11.64-14.83[ [14.83-18.02[ [18.02-21.22[
effectifs 3 2 1 2 1 3
fréquences 0.25 0.17 0.08 0.17 0.08 0.25
largeurs 3.19 3.19 3.19 3.19 3.19 3.19
hauteurs 0.078 0.052 0.026 0.052 0.026 0.078

La représentation graphique associée est donnée en Figure 2.5.

Création d’un histogramme avec 6 classes de même fréquence

Nous allons maintenant construire l’histogramme avec 6 classes de même fréquence.
Nous manipulons 6 classes et 12 observations donc si les classes ont mêmes fréquences,
cela signifie qu’il y a 2 observations par classes. La borne de chaque classe est donnée
par le milieu entre les observations que l’on veut séparer (qu’on a bien entendu prélable-
ment triées). On obtient ainsi les classes : [2.05-3.61[, [3.61-7.19[, [7.19-11.36[, [11.36-15.83[,
[15.83-19.14[, [19.14-21.22[.
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FIGURE 2.5 – Histogramme de la température moyenne à Lyon avec 6 classes de même
largeur

FIGURE 2.6 – Histogramme de la température moyenne à Lyon avec 6 classes de même
fréquence

De même, la hauteur du jème rectangle de l’histogramme vaut f j/(aj − aj−1), mais ici les
largeur des classes n’étant pas identiques, il faut calculer cette hauteur pour chacune des
classes. Ce qui nous donne :

22



CHAPITRE 2. ELÉMENTS DE STATISTIQUE DESCRIPTIVE

classes [2.05-3.61[ [3.61-7.19[ [7.19-11.36[ [11.36-15.83[ [15.83-19.14[ [19.14-21.22[
effectifs 2 2 2 2 2 2
fréquences 0.17 0.17 0.17 0.17 0.17 0.17
largeurs 1.55 3.58 4.18 4.47 3.31 2.08
hauteurs 0.107 0.047 0.040 0.037 0.050 0.080

La représentation graphique associée est donnée en Figure 2.6.

R

L’histogramme est obtenu en R avec la fonction hist,

hist(x, breaks=10) # histogramme avec 10 classes de largeur identiques
hist(x, breaks=c(a0,a1,a2,a3,a4,a5)) # avec les classes a( i−1)−a(i)

Si breaks n’est pas specifié, c’est la règle de Sturges qui est appliquée.

Remarquons que les tableurs usuels (Microsoft Office, Libre Office) ne savent pas faire un
“vrai" histogramme. En effet ils prennent une hauteur et non une aire proportionnelle à
la fréquence. Ceci peut avoir des conséquences importantes quand les bases ne sont pas
de même largeur !

Les histogrammes sont en fait des estimateurs de la fonction de densité de probabilité :
on approxime la densité à l’aide de fonctions constantes par morceaux. Ce principe se gé-
néralise avec des droites par morceaux, des polynômes, etc. En général, un histogramme
avec classes de même fréquence rend mieux compte visuellement de la forme de la dis-
tribution.

2.2.2 Indicateurs numériques

Afin de mieux comprendre l’intérêt des indicateurs numériques, nous allons les exploiter
dans la comparaison de la température de 2 villes. Nous allons comparer les distributions
des températures de Lyon et de Brest :

Mois J F M A M J J A S O N D
Lyon 2.51 4.01 7.55 10.58 14.55 18.15 20.76 20.13 17.11 12.14 6.82 3.2
Brest 7.94 8.01 8.42 9.64 12.08 14.45 16.67 17.72 15.64 12.8 10.29 8.97

Les indicateurs numériques associés sont les suivants :
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Lyon Brest
Moyenne empirique 11.46 11.89
Médiane empirique 11.36 11.19
Variance empirique 40.81 11.43
Ecart-type empirique 6.39 3.38
Coefficient de variation empirique 0.56 0.28

La moyenne indique que la température est globalement plus élevée à Brest qu’à Lyon,
mais la différence semble faible. La médiane étant plus faible pour Lyon, nous avons
envie de dire que globalement les températures sont comparables dans les deux villes.
Cependant les écarts-types montrent que la variation des températures au cours de l’an-
née est nettement plus importante à Lyon. Pour affiner ce constat, nous regardons les
quantiles des distributions. Ces grandeurs donnent en effet une vision plus fine de la
façon dont s’étalent les données.

Quantile théorique. Rappelons que le quantile d’ordre α d’une variable aléatoire X est
la grandeur qα telle que P (X 6 qα) = α.

Quantile empirique. Nous noterons q̃α la valeur telle qu’une proportion des individus
égale (au moins) à α ait une modalité inférieure à q̃α. Pour les calculer, on commence
par ordonner l’échantillon : x(1) 6 x(2) 6 · · · 6 x(n). Si nα n’est pas entier, nous
avons q̃α = x([nα]+1) où [y] est la partie entière de y. Si nα est entier, nous prenons :
q̃α = α x(nα) + (1− α) x(nα+1).

La médiane est le quantile d’ordre α = 50%, les quartiles sont les quantiles d’ordre α =

25%, 50%, 75% et les déciles d’ordre α = 10%, 20%, . . . , 90%. Le principe est de découper
la population en tranches de mêmes effectifs.

Exemple :

— Calcul du 1er décile. Nous souhaitons que 10% des observations soient inférieures à
q̃10%. Comme nous avons 12 observations, cela signifie que nous voulons n.10% =

1.2 observations sous q̃10%. Nous prenons donc q̃10% = x(2).

— Calcul de la médiane. Nous voulons que 50% des observations soient inférieures à
q̃50%. Comme nous avons 12 observations, cela signifie que nous voulons n.50% = 6
observations sous q̃50%. Donc q̃50% 6 x(6). Si nous prenons q̃50% > x(7), nous aurons
7 observations au-dessous, donc nous devons prendre x(6) 6 q̃50% < x(7). Toute
valeur vérifiant ces inégalités conviendrait mais par convention, nous choisissons
le milieu : q̃50% = (x(6) + x(7))/2.
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Outre les quantiles, les minima et maxima donnent aussi souvent une information im-
portante sur une distribution.

Pour l’exemple des températures, nous obtenons :

minimum 1er decile 1er quartile médiane 3ème quartile 9ème décile maximum
Lyon 2.51 3.2 6.12 11.36 17.37 20.13 20.76
Brest 7.94 8.01 8.83 11.19 14.75 16.67 17.72

Les extrêmes (minimum et maximum) confirment que l’étalement des températures est
nettement plus important à Lyon et indique que ceci est vrai dans les basses comme dans
les hautes températures. De même les quantiles tendent à montrer que cette dispersion
des températures plus importante est valable sur toute la gamme de température.

R

Pour obtenir le quantile empirique d’ordre α de x :

quantile(x, probs=alpha)

Les quartiles et la moyenne sont également donnés par :

summary(x)

Il existe une représentation graphique associée aux quantiles : le boxplot, ou boîte à mous-
tache dont le principe est décrit par le schéma suivant :

FIGURE 2.7 – Construction d’un boxplot

L’idée est qu’un tel schéma permet de voir si la distribution est asymétrique (étalement
plus grand dans les basses ou les hautes valeurs) et de comparer l’étalement de deux
distributions.

25



2.2. VARIABLES CONTINUES

FIGURE 2.8 – Boxplots des distributions de température à Lyon et à Brest

Dans l’exemple, nous observons que la distribution des températures à Lyon est globale-
ment symétrique tandis que celle de Brest présente un étalement plus important dans les
valeurs élevées. De plus si l’étalement est plus important pour Lyon que pour Brest dans
toutes les gammes de température, cette différence est nettement plus accentuée dans les
basses températures. En conclusion, nous pouvons voir que les deux climats sont très
différents : Lyon a un climat continental avec des températures très variables, avec équi-
répartition des périodes chaudes et des périodes froides ; le climat de Brest est océanique,
avec des températures moins variées.

R

boxplot(x)

donne le boxplot de x avec une convention légèrement différente : la boîte s’étend
du quartile 0.25 au quartile 0.75, avec une barre horizontale pour la médiane, mais
les moustaches s’étendent par défaut jusqu’à la valeur distante de 1.5 fois la dis-
tance interquartile. Les valeurs hors des moustaches sont représentées par des
points.

Nous n’avons eu ici qu’un petit aperçu des techniques de statistiques descriptives. Un
large panel de méthodologies est disponible. La particularité de la statistique descriptive
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est de décrire les données sans chercher à les modéliser : le but est de donner des ou-
tils permettant de représenter et d’analyser les observations sans faire appel aux notions
probabilistes. Cependant, les observations peuvent être vues comme des réalisations de
variables aléatoires. L’intérêt est alors la caractérisation du comportement d’une variable
à l’aide d’une loi de probabilité permet une compréhension plus fine du phénomène, un
contrôle de la précision des grandeurs évaluées, une comparaison avec d’autres gran-
deurs données par la théorie ou observées, etc. La modélisation probabiliste des obser-
vations est très utile. Néanmoins, il faut bien garder alors en mémoire qu’il ne s’agit que
de modèles : nous approchons la réalité à l’aide d’un modèle mathématique, donc nous
la déformons. De plus, ceci nécessite que le modèle choisi corresponde au mieux aux
donnéees.

Dans les chapîtres suivants, nous considérons que nous avons identifié un modèle pour
nos observations. Nous développons les méthodes alors accessibles. Comment le choisir
en pratique? Tout d’abord, les histogrammes ou les diagrammes en bâtons permettent
d’identifier une famille de lois possibles. Ensuite, il existe des outils de statistique des-
criptive, que nous n’avons malheureusement pas présenté ici, permettant de vérifier ra-
pidement notre intuition. Enfin, nous verrons que l’on peut tester si le modèle choisi est
adéquat.
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CHAPITRE 3

ESTIMATION PONCTUELLE ET INTERVALLES

DE CONFIANCE

Soit X la variable aléatoire que nous souhaitons étudier. Nous effectuons pour cela n
réalisations de X. Les résultats de ces réalisations sont des variables aléatoires notées
X1, X2, . . . Xn, qui ont même loi que X. Nous considérerons dans l’intégralité de ce cours
que les mesures sont effectuées de manières indépendantes. On dit alors que les variables
X1, X2, . . . Xn sont i.i.d. : indépendantes et identiquement distribuées.

Nous supposons que, par des méthodes de statistique descriptive, nous avons pu déter-
miner que la loi des variables Xi appartient à une famille de lois paramétrée. Plus précisé-
ment, nous considérons que la fonction de répartition de X appartient à {Fθ , θ ∈ Rd}.

Le but est ici d’estimer la valeur du paramètre θ, c’est-à-dire de déterminer la valeur de
θ la plus vraisemblable pour la loi de X1, X2, . . . Xn. Et une fois cette grandeur estimée,
quelle est la précision de l’approximation réalisée?

Il faudra bien distinguer dans la suite la théorie : on manipule des variables aléatoires
X1, X2, . . . Xn dont on ne connaît pas les réalisations, de la pratique : on a observé n va-
leurs x1, x2, . . . xn, réalisations de X1, X2, . . . Xn et on veut extraire l’information de ces
données. De manière générale, les majuscules désignent des variables aléatoires, donc
des manipulations théoriques, tandis que les minuscules correspondent à des observa-
tions, donc à des valeurs numériques.

3.1 Construction de l’estimation

La première étape est d’abord de définir plus rigoureusement ce qu’est un estimateur :
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Définition 3.1. Une statistique tn est une fonction des observations x1, x2, . . . xn.

Exemples : xn = 1
n ∑n

i=1 xi, min(xi), (2x1 + 3x2, log x6, x2). . .

C’est une réalisation d’une variable aléatoire Tn aussi appelée statistique qui est fonction
des variables X1, X2, . . . Xn.

Exemples : Xn = 1
n ∑n

i=1 Xi, min(Xi), (2X1 + 3X2, log X6, X2). . .

Définition 3.2. Un estimateur d’un paramètre θ est une statistique Tn à valeur dans l’en-
semble des valeurs possibles de θ.

Une estimation de θ est une réalisation d’un estimateur.

Attention car bien souvent on note θ̂n les estimateurs comme les estimations de θ. La
distinction entre la théorie et la pratique n’est donc pas visible mais il faut en garder
conscience.

Cette définition ouvre un très large champ d’estimateurs possibles : un estimateur est
juste une valeur plausible construite à partir des observations. Pour un paramètre donné,
nous pouvons alors construire une infinité d’estimateurs. Prenons l’exemple d’une loi
uniforme.

Exemple : Estimateurs pour la loi uniforme.
Dans un laboratoire d’astrophysique, un capteur reçoit des particules. Les temps (expri-
més en heures) écoulés entre la reception des particules obtenus sont :

75 265 22 402 35 144 346 159 229 62

Le temps entre la ième et de la i + 1ème particule est noté Xi. Les variables X1, . . . Xn sont
indépendantes et de même loi. Au vu de l’histogramme, on décide de modéliser par
une loi uniforme U ([0, θ]). Les physiciens aimeraient accéder à la valeur du paramètre
θ. Il faut donc leur proposer un estimateur : c’est-à-dire une méthode leur permettant
de calculer la valeur de θ la plus plausible au vu de leur données. Mais étant donné la
définition que nous avons donnée, toute valeur positive convient !

Afin de choisir l’estimateur que nous allons considérer, nous allons essayer de donner
des critères mesurant la qualité des estimateurs construits. Nous introduisons alors la
notion de biais.
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Définition 3.3. Soit Tn un estimateur de θ. Le biais de Tn est défini comme

Biais(Tn, θ) = ETn − θ.

Si Biais(Tn, θ) = 0, on dit que Tn est un estimateur sans biais de θ.

FIGURE 3.1 – Densités d’estimateurs respectivement sans biais et biaisé de la valeur -1.

Le biais mesure si l’estimateur Tn considéré a tendance à sous-estimer (biais négatif) ou
sur-estimer (biais positif) la valeur de θ. Nous voyons vite que nous allons chercher en
priorité des estimateurs sans biais de θ car cela signifie qu’en moyenne ils retournent
bien la vraie valeur de θ. Remarquons qu’un estimateur sans biais ne doit pas avoir un
biais nul pour une valeur fixée de θ mais quelque soit la valeur du paramètre que nous
souhaitons évaluer.

Exemple : Estimateurs pour la loi uniforme.
Dans l’exemple ci-dessus, considérons T1 = 500 h. Il est alors évident que T1 est biaisé et
ne peut fournir un bon estimateur.

Quel estimateur proposer alors? L’idée est de regarder quelle opération sur X1, . . . Xn

permet de retrouver θ. Remarquons que si Xi ∼ U ([0, θ]), alors en moyenne Xi vaudra

θ/2 : en effet E[Xi] = θ/2. La moyenne des Xi est donnée par 1
n

n

∑
i=1

Xi. Nous pouvons

alors proposer T2 = 2
n

n

∑
i=1

Xi. Calculons le biais de T2 :

Par linéarité de l’espérance, ET2 = 2
n

n

∑
i=1

EXi.

Comme pour tout i EXi = θ/2, nous avons ET2 = θ.
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Ainsi, T2 est sans biais.

Remarquons par ailleurs que la valeur maximale que peut prendre Xi est θ. Nous pou-
vons donc proposer un autre estimateur qui est T3 = maxi=1,...,n Xi. Etudions la loi de
T3 :

Pour tout x, la fonction de répartition de T3 vaut P(T3 6 x) = P(X1, . . . , Xn 6 x) =
P(Xi 6 x)n car les variables sont indépendantes et identiquement distribuées. Ainsi
P(T3 6 x) =

( x
θ

)n pour x ∈ [0, θ].

En dérivant la fonction de répartition, nous obtenons la densité de T3 :

f (x) = nxn−1θ−n11[0,θ](x).

Nous en déduisons que ET3 = n
n+1 θ. L’estimateur T3 est donc biaisé : il a tendance à

sous-estimer la valeur du paramètre. Mais comme nous connaissons dans quelle mesure
il sous-estime θ, nous sommes à-même de corriger cet écart. En effet par linéarité de
l’espérance, E

[ n+1
n T3

]
= θ. Ainsi, T4 = n+1

n T3 est un estimateur sans biais de θ.

Les estimations obtenues dans l’exemple valent t2 = 347.8h et t4 = 442.2h.

Nous voyons ici que le critère que nous avons défini ne suffit pas à choisir entre les
deux estimateurs T2 et T4 : tous deux sont sans biais, c’est-à-dire d’espérance égale au
paramètre que l’on cherche à estimer. Mais il faut encore que la variabililité autour de
cette moyenne soit faible :

Définition 3.4. Soit Tn un estimateur de θ. L’erreur quadratique de Tn est défini comme

EQM(Tn, θ) = E[(Tn − θ)2] = Biais(Tn, θ)2 + Var(Tn).

Si EQM(Tn, θ) −→
n→∞

0, on dit que Tn est un estimateur de θ convergeant en moyenne qua-
dratique.

Pour un estimateur sans biais, la convergence en moyenne quadratique équivaut à la
convergence vers 0 de la variance, donc à la concentration des valeurs observées au-
tour de l’espérance pour un grand nombre d’observations. L’idée est alors de chercher à
construire de estimateurs sans biais et convergeant en moyenne quadratique.

Remarque : Il existe une borne dite borne de Cramer-Rao donnant la plus petite variance
possible pour un estimateur dans un contexte donné. Pour plus de détails, voir la notion
d’information de Fisher.
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FIGURE 3.2 – Evolution de densités d’estimateurs convergeant en moyenne quadra-
tique.

Exemple : Estimateurs pour la loi uniforme.

Nous avions sélectionné parmi les estimateurs possibles les estimateurs T2 = 2
n

n

∑
i=1

Xi

et T4 = n+1
n maxi=1,...,n Xi. Nous pouvons montrer que Var(T2) = θ2

3n et que Var(T4) =
θ2

n(n+2) . Dans les deux cas, nous avons la variance qui tend vers 0 quand n tend vers
l’infini, donc ces deux estimateurs sont convergeants. Néanmoins, l’estimateur T4 admet
une variance plus faible, donc est préférable à l’estimateur T2. En conclusion, vous pou-
vez proposer aux physiciens d’utilser T4 pour estimer la valeur de θ. L’estimation retenue
est ainsi t4 = 442.2 heures.

Reste maintenant à voir dans un cadre plus général que pour la loi uniforme comment
on peut construire des estimateurs avec de bonnes propriétés, c’est-à-dire sans biais et
convergeants. Il existe de très nombreuses méthodes pour cela. Les deux plus courantes
sont la méthode des moments et la méthode du maximum de vraisemblance. Nous expo-
sons aussi ici le principe de l’estimation bayésienne en raison de son utilisation fréquente,
notamment dans le traitement d’images, mais elle n’est pas à retenir.

3.1.1 Méthode des moments

La méthode des moments est relativement intuitive. Il semble naturel d’estimer les mo-
ments par leur version empirique :

— L’espérance EX correspond à une moyenne théorique et peut être estimée par la
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moyenne observée Xn = 1
n ∑n

i=1 Xi.

— La variance Var(X) = E(X − EX)2 = E(X2) − (EX)2 peut être estimée par la
variance observée S2

n = 1
n ∑n

i=1(Xi − Xn)2 = 1
n ∑n

i=1 X2
i − (Xn)2.

Lorsque l’on souhaite estimer un paramètre θ, on essaie de l’exprimer en fonction de EX
et de Var(X) : θ = g(EX, Var(X)). On sait ensuite que EX et de Var(X) peuvent être
estimés respectivement par Xn et S2

n. On propose donc d’estimer θ par θ̂n = g(Xn, S2
n).

Ce principe se généralise avec l’ensemble des moments d’ordre p, p ∈ N∗.

Exemples :

• Si X1, . . . Xn sont de loi Géométrique de paramètre p, alors, EXi = 1/p. L’estima-
teur des moments de p est donc p̂n = 1/Xn.

• Si X1, . . . Xn sont de loi uniforme sur l’intervalle [a; b] alors, EXi = (a + b)/2 et
Var(Xi) = (b − a)2/12. Par conséquent a = EXi −

√
3Var(Xi) et b = EXi +√

3Var(Xi). Les estimateurs des moments de a et b sont donc ân = Xn −
√

3Sn

et b̂n = Xn +
√

3Sn.

3.1.2 Méthode du maximum de vraisemblance

La vraisemblance d’un modèle et d’un échantillon correspond à la probabilité d’avoir
obtenu cet échantillon lorsqu’on a ce modèle. Ainsi, si on suppose que le modèle est Fθ ,
la vraisemblance des observations x1, . . . , xn s’écrit sous la forme :

L(θ, {x1, . . . , xn}) =
{
Pθ(x1) . . .Pθ(xn) si on a une loi discrète,

fθ(x1) . . . fθ(xn) si on a une loi continue,

avec Pθ et fθ respectivement fonction de masse et densité associées à Fθ . La forme de
produit est justifiée par l’hypothèse que les observations sont indépendantes. (Voir le
cours de probabilité et les rappels de probabilités en début de polycopié.)

Le principe de l’estimation par maximum de vraisemblance est de se dire que plus la pro-
babilité d’avoir obtenu les observations est forte, plus le modèle est proche de la réalité.
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Ainsi, on retient le modèle pour lequel la vraisemblance de notre échantillon est la plus
élevée :

θ̂n = arg max
θ
L(θ, {x1, . . . , xn}).

En pratique, le problème ci-dessus est compliqué à résoudre directement en raison de la
présence du produit mais il suffit de prendre le logarithme :

θ̂n = arg max
θ

logL(θ, {x1, . . . , xn}).

Pour trouver le maximum, on peut souvent résoudre l’équation du premier ordre :

∂ logL(θ, {x1, . . . , xn})
∂θ

∣∣∣∣
θ=θ̂n

= 0.

La théorie nous dit que la solution de cette équation nous donne un maximum lorsque
les modèles considérés sont « réguliers », ce qui sera le cas dans le cadre de ce cours. On
obtient θ̂n sous la forme θ̂n = g(x1, . . . , xn).

L’estimateur du maximum de vraisemblance est alors θ̂n = g(X1, . . . , Xn) et l’estimation
du maximum de vraisemblance est obtenue en remplaçant x1, . . . , xn par leurs valeurs
numériques dans θ̂n = g(x1, . . . , xn).

Remarque : Il faut toujours raisonner avec x1, . . . , xn sans chercher à remplacer par les
valeurs observées. Cette étape ne doit intervenir qu’à la fin, lorsque l’expression de l’es-
timateur a été établie.

Exemples :

• Si X1, . . . Xn sont de loi Géométrique de paramètre p, alors la fonction de vraisem-
blance du modèle est

L(p, {x1, . . . , xn}) =
n

∏
i=1

p(1− p)xi−1 = pn(1− p)∑ xi−n.

La log-vraisemblance vaut

logL(p, {x1, . . . , xn}) = n log(p) + (∑ xi − n) log(1− p).

L’équation du premier ordre s’écrit

0 =
∂ logL(p, {x1, . . . , xn})

∂p
=

n
p
− ∑ xi − n

1− p
,
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ou encore 1/p = (xn − 1)/(1− p) dont la solution est p = 1/xn. L’estimateur du
maximum de vraisemblance de p est donc p̂n = 1/Xn.

• Si X1, . . . Xn sont de loi uniforme sur l’intervalle [a; b] alors, la fonction de vraisem-
blance du modèle est

L(a, b, {x1, . . . , xn}) =
1

(b− a)n

n

∏
i=1

11[a,b](xi).

Nous sommes dans un cas particulier où il n’est pas nécessaire de passer par le lo-
garithme et la dérivée (et même où cela n’est pas adapté). En effet, il est net que le
maximum est atteint pour â = min Xi et b̂ = max Xi. Ce sont donc les estimateurs
du maximum de vraisemblance de a et b.

• Si X1, . . . Xn sont de loi normaleN (m, σ2). La fonction de vraisemblance du modèle
est

L(m, σ2, {x1, . . . , xn}) =
n

∏
i=1

1√
2πσ2

e−
(xi−m)2

2σ2 =
1

(2πσ2)n/2 exp(− 1
2σ2

n

∑
i=1

(xi −m)2).

La log-vraisemblance vaut

logL(m, σ2, {x1, . . . , xn}) =
n
2

log(2πσ2)− 1
2σ2

n

∑
i=1

(xi −m)2.

Les équations du premier ordre s’écrivent

0 =
∂ logL(m, σ2, {x1, . . . , xn})

∂m
=

1
σ2

n

∑
i=1

(xi −m)

0 =
∂ logL(m, σ2, {x1, . . . , xn})

∂(σ2)
=
−n
2σ2 +

1
2σ4

n

∑
i=1

(xi −m)2

La solution de ce système est m = xn et σ2 = 1
n ∑(xi − m)2. Les estimateurs du

maximum de vraisemblance sont donc m̂ = Xn et σ̂2 = S2
n.

De manière générale, l’estimation par la méthode des moments est plus rapide que l’es-
timation par méthode de vraisemblance. Les deux approches donnent parfois le même
résultat mais ce n’est pas toujours le cas, comme le montre par exemple le cas de la loi
uniforme. De plus la méthode du maximum de vraisemblance présente des avantages
théoriques, qui ne seront pas détaillés ici, qui assurent un bon comportement des estima-
teurs.
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3.1.3 Estimation bayésienne

Cette méthode d’estimation est présentée ici dans la mesure où beaucoup d’entre vous
sont amenés à manipuler cette estimation, notamment au cours de stages. Le principe
général de cette estimation est donné mais les fondements théoriques sont éludés et je
m’excuse du manque de rigueur dans la définition des lois et des espaces probabilisés.

Dans l’approche Bayésienne, on suppose que le paramètre θ est lui-aussi issu de la réalisa-
tion d’une variable aléatoire M de loi π0, à valeurs dans Θ. La loi π0 est appelée la loi a
priori.

Ainsi, lorsque nous nous intéressons à la probabilité d’avoir observé x dans le modèle
Fθ , nous regardons en fait la variable aléatoire X |M = θ. Inversement, si nous sommes
intéressé par θ, nous allons étudier la variable aléatoire M|X = x. La loi de M|X = x est
appelée loi a posteriori.

Afin de mieux comprendre comment déterminer la loi a posteriori, écrivons-la dans le
cas de données continues : π(θ|X = x) = fθ(x)π0(θ)

fX(x) avec fθ = fX|M=θ densité associé au
modèle Fθ et fX densité marginale de X définie par fX(x) =

∫
Θ fa(x)π0(a)da.

Généralisons maintenant cette écriture dans le contexte de n variables aléatoires X1, . . . Xn

indépendantes et de même loi. La loi a posteriori s’écrit

π(θ|X1 = x1, . . . Xn = xn) =
fθ(x1) . . . fθ(xn)π0(θ)∫

Θ fa(x1) . . . fa(xn)π0(a)da
.

L’estimateur bayésien de θ est alors défini comme l’espérance conditionnelle de M sa-
chant X1 = x1, . . . , Xn = xn,

θ̂n = E[M|X1 = x1, . . . , Xn = xn] =
∫

Θ
θπ(θ|X1 = x1, . . . Xn = xn)dθ.

Dans la pratique, la loi π0 dépend souvent d’un ou de plusieurs paramètres inconnus. La
loi marginale de X dépendra donc aussi de ces paramètres. Ceux-ci devront être estimés.
Si π0 dépend de paramètres λ alors on estime λ par maximum de vraisemblance,

L(λ, {x1, . . . , xn}) =
∫

Θ
fa(x1) . . . fa(xn)π0(a)da.

On calcule ensuite l’estimateur bayésien en remplaçant λ par son estimation dans la for-
mule de E[M|X1 = x1, . . . , Xn = xn].
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Précisons enfin que l’estimation bayésienne constitue un complément de cours et n’est
pas étudié en séance.

3.2 Estimation de la moyenne et de la variance

Supposons que les variables X1, . . . Xn soient des répliques indépendantes d’une variable
aléatoire X vérifiant EX = m et Var(X) = σ2. Nous définissons alors les estimateurs des
moments m̂n = Xn et σ̂2

n = S2
n.

Il reste à déterminer si la qualité de ces estimateurs est satisfaisante. Rappelons que nous
aimerions qu’ils soient sans biais et convergeants.

• Etude de m̂n

• Biais(m̂n, m) = 1
n ∑n

i=1 EXi − m = 0 Donc m̂n est un estimateur sans biais de
m.

• Var(m̂n) =
1
n2 ∑n

i=1 VarXi car les Xi sont indépendants. D’où Var(m̂n) = σ2/n.
Donc Var(m̂n) −→n→∞

0 et ainsi m̂n est un estimateur de m convergeant en moyenne
quadratique.

• Etude de σ̂2
n

E(σ̂2
n) =

1
n

n

∑
i=1

EX2
i −E(Xn

2
)

= EX2 − E(m̂2
n)

= Var(X) + (EX)2 −Var(m̂n)− (Em̂n)
2

= σ2 + m2 − σ2/n−m2

=

(
1− 1

n

)
σ2

Donc Biais(σ̂2
n , σ2) = − 1

n σ2. L’estimateur σ̂2
n défini n’est pas un estimateur sans

biais de σ2. Nous introduisons alors S′n
2 = n

n−1 S2
n. La statistique S′n

2 est un estima-
teur sans biais de σ2. On peut de plus montrer qu’il est convergeant en moyenne
quadratique.
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BILAN :
Soient X1, . . . , Xn indépendantes et de même loi, tels que EXi = m et Var(Xi) =

σ2, Alors un estimateur sans biais convergeant de m est donné par

m̂n = Xn =
1
n

n

∑
i=1

Xi

et un estimateur sans biais convergeant de σ2 est donné par

σ̂2
n = S′n

2
=

n
n− 1

S2
n,

avec S2
n variance empirique, S2

n = 1
n ∑n

i=1 X2
i − (Xn)2.

Remarquons que si nous suggérons ici d’utiliser la méthode des moments (plus facile
à appréhender), elle ne donne pas nécessairement un estimateur optimal. Dans le cas
d’une loi uniforme considéré auparavant, elle mène par exemple à l’estimateur T2. Or
nous avons construit un estimateur T4 sans biais de plus petite variance, donc préférable
à T2.

R

mean(x) # retourne la moyenne empirique
var(x) # retourne la variance estimee
mean(x^2)-mean(x)^2 # retourne la variance empirique

Ces commandes ne sont valables que pour un vecteur x contenant toutes les obser-
vations x1, . . . , xn.

Il faut bien faire attention à distinguer la variance empirique S2
n de la variance estimée

S′n
2. La première de ces grandeurs est la variance observée sur l’échantillon, et la deuxiè-

me amène une correction pour annuler le biais. Lorsqu’on parle de la variance des obser-
vations, on considère donc S2

n et non S′n
2.

Les logiciels que vous serez amenés à utiliser font cette distinction. Mais attention, si vous
leur demandez la variance d’un échantillon sans préciser ils retournent en général s′n

2.
Pour obtenir s2

n, il faut le plus souvent préciser que vous voulez la variance empirique.
Ainsi sous (Libre ou Microsoft) Office la fonction var retourne s′n

2 et var.p retourne s2
n.

Concrètement, si vous n’avez pas de logiciels, il est en général plus facile de calculer
d’abord S2

n puis d’utiliser la relation S′n
2 = n

n−1 S2
n.
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3.2.1 Application pour la loi normale

Soient X1, . . . , Xn indépendantes et de même loi N (m, σ2). Alors m = EXi et σ2 =

Var(Xi). D’après ce qui précède, nous pouvons estimer m par m̂n = Xn et σ2 par σ̂2
n = S′n

2.

Considérons un exemple.

Exemple : Estimateurs pour la loi normale.
Nous avons demandé aux élèves de 4IF leur temps de sommeil moyen en heure par
nuit en période de projet. Notons Xi les réponses obtenues. Nous avons les indicateurs
numériques suivants :

Nombre de réponses Moyenne Médiane Variance Ecart-type
30 6.36 6 1.80 1.34

Ces résultats sont issus d’un questionnaire anonyme réalisé sur la promotion 2009-2010.
Cependant, afin de vous permettre de retrouver ultérieurement les valeurs lues sur les
tables, nous avons modifié le nombre de réponses obtenues. Toutes nos excuses pour ce
manque de rigueur.

Nous supposons que les Xi sont indépendantes (ceci suppose que les élèves sont sur des
projets différents, ne vivent pas ensemble, etc, donc c’est une hypothèse un peu forte)
et qu’elles suivent une loi normale N (m, σ2). Le paramètre m représente ici le temps de
sommeil moyen pour la promotion. Et le paramètre σ mesure ici la variabilité entre les
individus : si tous les individus disaient dormir autant, on aurait σ = 0.

Afin de savoir si le sommeil d’un étudiant est significativement différent de celui d’un
individu quelconque, les enseignants de IF voudraient comparer le temps de sommeil
moyen et la variabilité à ce qui est observé dans le reste de la population. Dans la po-
pulation française, on observe qu’un individu dort en moyenne 7 heures par nuit et que
l’écart-type est de 1.2 heure.

En appliquant les résultats qui précèdent, m peut être estimer par m̂n = 6.36 heures et σ2

par σ̂2
n = 30

29 1.80 = 1.85heures2.

Remarque : Il n’est pas question ici de voir m = 6.36h ! m reste un paramètre inconnu que
vous n’avez pas mesuré : vous n’avez qu’une estimation et devez en rester conscients.

Nous observons que l’estimation de l’espérance m obtenue est plus petite que la moyenne
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de la population, et que l’estimation de la variance est plus élevée. Cependant, nous
voyons ici les limites d’une estimation ponctuelle : les différences observées ne sont-elles
pas simplement dues au fait que nous n’avons interrogé que 30 étudiants de la promo-
tion? Notre estimation est-elle assez fiable pour en conclure une différence notable? Les
enseignants de IF ne sont pas convaincus et ils sont demandeurs d’une methodologie
plus rigoureuse permettant de répondre si oui ou non la différence observée est signifi-
cative ou uniquement due aux aléas des sondages. La prochaine section aura par consé-
quent pour but de regarder quelle est la précision de notre estimation et de déterminer
dans quelle mesure nous pouvons nous y fier, lors d’une comparaison notamment.

3.2.2 Estimation d’une proportion

Soient X1, . . . , Xn indépendantes et de même loi B(p). Alors m = EXi et ainsi nous pou-
vons estimer p par p̂n = Xn. Remarquons que p est la proportion théorique de succès
que nous cherchons à déterminer. Nous pouvons interpréter p̂n comme la proportion de
succès observés dans l’échantillon.

Considérons un exemple.

Lors du deuxième tour de l’élection présidentielle, un sondage est effectué sur un échan-
tillon de n personnes. On fait l’hypothèse que les réponses des sondés sont indépen-
dantes, et que les sondés ne mentent pas. De plus on ne tiendra compte que des suffrages
exprimés. Sur n = 500 personnes interrogées, 274 ont déclaré qu’elles voteraient pour le
candidat A.

Soit Xi = 1 si la ième personne vote pour le candidat A et 0 sinon. Les variables X1, . . . , Xn

sont supposées indépendantes et identiquement distribuées selon une loi B(p). Le para-
mètre p représente la proportion d’individus votant pour A dans la population totale. Il
peut être estimé par la proportion observée dans l’échantillon : p̂n = 274/500 = 54.8%.

Remarquons que ce modèle est très imparfait : il ne tient pas compte de l’inhomogénéité
de la population et du besoin de représentativité de l’échantillon, ni des changements
d’opinion, des indécis, etc.
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3.3 Intervalles de confiance

Nous avons vu à la section précédente comment estimer une valeur inconnue, c’est-à-
dire comment proposer une valeur plausible pour cette grandeur inconnue. Mais nous
commettons nécessairement une erreur : l’aléatoire fait que nous ne donnons pas exac-
tement la valeur théorique, mais une valeur approchée. Le but est donc maintenant de
donner cette marge d’erreur. Plus précisément nous allons construire un intervalle (ou
une fourchette) dans lequel la grandeur recherchée a une probabilité forte de se trouver.

Définition 3.5. Soit θ un paramètre donné. On appelle intervalle de confiance de niveau
β un intervalle aléatoire [T1, T2] tel que

P (θ ∈ [T1, T2]) = β.

La raison pour laquelle il est précisé que l’intervalle est aléatoire est que les bornes T1 et
T2 de cet intervalle sont des variables aléatoires.

L’idée d’un intervalle de confiance est donc de donner une plage de valeurs possibles
avec un degré de confiance associé. Un intervalle [T1, T2] de niveau 95% pour θ, signifie
qu’il y a une probabilité de 95% que θ soit bien compris entre T1 et T2. Il n’est pas possible
en général de donner un intervalle de longueur finie où l’on peut trouver θ avec une
probabilité de 100%. On se fixe donc un taux d’erreur acceptable (i.e. on admet qu’on
peut se tromper avec une probabilité de 5%, 1%, 0.5%. . .).

Pourquoi l’intervalle de confiance informe-t-il bien sur la précision? Ceci est lié à sa lar-
geur : plus un intervalle est large, plus les valeurs possibles sont étalées et donc moins on
est précis. Nous pouvons remarquer qu’un intervalle de confiance va se rétrécir en fonc-
tion du nombre n d’observations réalisées : plus nous avons d’observations, plus nous
disposons d’information sur la valeur plausible de θ, donc plus nous sommes précis.

Inversement, quand le niveau de confiance augmente, nous devons vérifier que la largeur
d’intervalle augmente. En effet, cela signifie que nous augmentons la probabilité d’être
dans l’intervalle.

3.3.1 Paramètres d’une loi normale

Soient X1, . . . , Xn indépendantes et de même loiN (m, σ2). Nous avons vu précédemment
comment estimer m et σ2. A l’aide du théorème de Fisher, nous pouvons déterminer
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la précision des estimateurs que nous avons construits et nous en déduirons ainsi des
intervalles de confiance.

a. Intervalle pour l’espérance

Nous allons essayer de construire un intervalle de confiance pour le paramètre m. Nous
avons proposé ci-dessus d’estimer m par m̂n = Xn.

Nous souhaitons construire T1 et T2 tels que P (T1 6 m 6 T2) = β. La valeur m̂n étant
considérée comme la plus vraisemblable pour m, nous allons chercher un intervalle cen-
tré en m̂n. Ceci revient à supposer qu’existe a tel que T1 = Xn − a et T2 = Xn + a. Nous
voulons ainsi déterminer a tel que P

(
Xn − a 6 m 6 Xn + a

)
= β.

Rappelons que d’après le Théorème de Fisher donné en section 1.2.3, nous avons

(i) Xn−m
σ/
√

n ∼ N (0, 1)

(ii) Xn−m
S′n/
√

n ∼ St(n− 1).

L’inconvénient du résultat (i) est qu’il fait intervenir la variance σ2 qui est inconnue.
Utiliser (i) n’est donc pas cohérent (cela le serait si σ2 était connu). Nous allons donc
exploiter (ii).

Réécrivons l’égalité que doit vérifier a : P
(
−a 6 Xn −m 6 a

)
= β. Ceci équivaut à

P
(
− a

S′n/
√

n
6

Xn −m
S′n/
√

n
6

a
S′n/
√

n

)
= β.

Notons Tn−1 = Xn−m
S′n/
√

n . Alors P
(
− a

S′n/
√

n 6 Tn−1 6 a
S′n/
√

n

)
= β, avec Tn−1 suivant une loi

de Student de paramètre n− 1.

Au vu du schéma ci-dessus, nous pouvons voir que a
S′n/
√

n = tn−1,1−β avec tn−1,1−β donné
sur le schéma.

Par conséquent a = tn−1,1−β
S′n√

n et ainsi nous avons

P
(

Xn − tn−1,1−β
S′n√

n
6 m 6 Xn + tn−1,1−β

S′n√
n

)
= β.

L’intervalle de confiance de niveau β recherché est :[
Xn − tn−1,1−β

S′n√
n

; Xn + tn−1,1−β
S′n√

n

]
.
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FIGURE 3.3 – Densité de la loi de Student de paramètre n et définition du quantile tn,α.

On constate en effet que la longueur de cet intervalle diminue lorsque n augmente et
augmente lorsque β augmente (au vu du schéma ci-dessus, tn−1,1−β augmente en fonction
de β).

Exemple : Espérance d’une loi normale.
Reprenons l’exemple précédent où 30 étudiants de 4IF nous avaient donné leur temps
moyen de sommeil sur une nuit en période de projet, que nous supposions issus d’une
loi N (m, σ2). Nous avions obtenu l’estimation de l’espérance m̂n = xn = 6, 36 heures
et l’estimation de la variance σ̂2

n = s′n
2 = 1.85 heures2. Par conséquent l’intervalle de

confiance de niveau 95% = 1− α de m est

IC95%(m) =

[
xn − tn−1,α

s′n√
n

; xn + tn−1,α
s′n√

n

]
=

[
6.36− t29;5%

√
1.85
30

; 6.36 + t29;5%

√
1.85
30

]
La table nous donne t29;5% = 2.045 et par conséquent

IC95%(m) = [5.85; 6.87].

Ceci signifie que la vraie valeur de m appartient à cet intervalle avec une probabilité de
95%.

Les enseignants souhaitaient comparer à la moyenne de la population française qui est
de 7 heures de sommeil par nuit. Nous pouvons constater que 7 n’appartient pas à l’in-
tervalle de confiance donné ci-dessus. Nous pouvons en déduire que la moyenne des
étudiants de IF est significativement différente de la moyenne du reste de la population,
avec une probabilité de se tromper inférieure à 5%.

Peut-on affiner cette probabilité de se tromper? Considérons l’intervalle de confiance
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d’ordre 99%. Nous obtenons

IC99%(m) = [5.68; 7.05].

Comme 7 appartient à cet intervalle, nous ne pouvons affirmer que les moyennes sont
différentes avec un risque de se tromper inférieur à 1%. De même que précédemment,
nous aimerions cependant une méthode permettant de déterminer plus précisésement
quelle est la probabilité de se tromper en affirmant que les deux valeurs sont significati-
vement différentes. Ceci fera l’objet du chapître suivant.

R

Pour obtenir l’intervalle de confiance de l’espérance :

borne_inf <- mean(x) - qt(1-alpha/2, df=n-1) * sd(x)/sqrt(n)
borne_sup <- mean(x) + qt(1-alpha/2, df=n-1) * sd(x)/sqrt(n)

qt(1-alpha/2, df=n-1) est le quantile d’ordre 1− α/2 d’une loi de Student à n− 1
degrés de liberté, et est égal à tn−1,α.
Une autre méthode consiste à utiliser la fonction t.test comme suit :

t.test(x,conf.level = 1-alpha)$conf.int

b. Intervalle pour la variance

Nous allons essayer de construire un intervalle de confiance pour le paramètre σ2. Nous
avons proposé ci-dessus d’estimer σ2 par σ̂2

n = S′n
2.

Nous souhaitons construire T1 et T2 tels que P
(
T1 6 σ2 6 T2

)
= β. De même que pour

l’intervalle de l’espérance, nous allons construire l’intervalle en exploitant le comporte-
ment de l’estimateur.

Rappelons que d’après le Théorème de Fisher donné en section 1.2.3, nous avons

(n− 1)S′n
2

σ2 ∼ χ2
n−1.

Il semble judicieux de faire apparaître la quantité Kn−1 = (n−1)S′n
2

σ2 dans l’égalité recher-
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chée. Nous avons

P
(
T1 6 σ2 6 T2

)
= P

(
1
T2

6
1
σ2 6

1
T1

)
= P

(
(n− 1)S′n

2

T2
6

(n− 1)S′n
2

σ2 6
(n− 1)S′n

2

T1

)
.

Si nous voulons avoir un intervalle centré sur l’estimateur, nous devons prendre T1 et T2

tels que

P
(

Kn−1 6
(n− 1)S′n

2

T2

)
= (1− β)/2

P
(

Kn−1 >
(n− 1)S′n

2

T1

)
= (1− β)/2

avec Kn−1 variable aléatoire de loi χ2
n−1.

FIGURE 3.4 – Densité de la loi du χ2 de paramètre n et définition du quantile zn,α.

Au vu du schéma ci-après, nous pouvons voir que (n−1)S′n
2

T1
= zn−1,(1−β)/2 et (n−1)S′n

2

T2
=

zn−1,1−(1−β)/2 avec zn−1,(1−β)/2 et zn−1,1−(1−β)/2 définis par le schéma.

Par conséquent T1 = (n−1)S′n
2

zn−1,(1−β)/2
et T2 = (n−1)S′n

2

zn−1,1−(1−β)/2
. Nous en déduisons que

P
(

(n− 1)S′n
2

zn−1,(1−β)/2
6 σ2 6

(n− 1)S′n
2

zn−1,1−(1−β)/2

)
= β.

L’intervalle de confiance de niveau β recherché est :[
(n− 1)S′n

2

zn−1,(1−β)/2
;

(n− 1)S′n
2

zn−1,1−(1−β)/2

]
.
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Afin de simplifier l’écriture, on prefère poser α = 1− β. L’intervalle ci-dessus s’écrit alors[
(n− 1)S′n

2

zn−1,α/2
;
(n− 1)S′n

2

zn−1,1−α/2

]
.

Exemple : Variance d’une la loi normale.
Dans l’exemple sur le temps moyen de sommeil en 4IF, l’intervalle de confiance de niveau
95% = 1− α de la variance σ2 est

IC95%(σ
2) =

[
(n− 1)s′n

2

zn−1;α/2
;
(n− 1)s′n

2

zn−1;1−α/2

]

=

[
29.1, 85
z29;2.5%

;
29.1, 85
z29;97.5%

]
La table nous donne z29;2.5% = 45, 72 et z29;97.5% = 16, 05 . D’où

IC95%(σ
2) = [1.17; 3.35].

Ceci signifie que σ2 appartient à cet intervalle avec une probabilité de 95%.

Dans la population française la variance est de 1.44 heures2. La valeur 1.44 appartient
à IC95%(σ

2). Nous ne pouvons donc pas affirmer que la variance en 4IF est significati-
vement différente du reste de la population : si nous affirmons le contraire nous nous
trompons avec une probabilité supérieure à 5%. La différence observée est donc impu-
table aux aléas des réalisations, au fait que les données ne sont pas exhaustives, etc. De
même qu’auparavant, nous aimerions pouvoir évaluer le risque exact de se tromper en
affirmant que les 4IF admettent une variabilité plus forte, ce qui sera fait ultérieurement.

R

Pour obtenir l’intervalle de confiance de la variance :

borne_inf <- (n-1)*var(x) / qchisq(1-alpha/2, df=n-1)
borne_sup <- (n-1)*var(x) / qchisq(alpha/2, df=n-1)

qchisq(1-alpha/2, df=n-1) est le quantile d’ordre 1− α/2 d’une loi du χ2 à n− 1
degrés de liberté, et est égal à zn−1,α/2.
Attention au changement de notation entre le logiciel et le cours !
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Une autre méthode consiste à utiliser la fonction varTest du paquet EnvStats :

library(EnvStats)
varTest(x, conf.level=1-alpha)$conf.int

BILAN
Pour les paramètres une loi normale :

Soient X1, . . . , Xn indépendantes et de même loi N (m, σ2), alors l’estimateur de
m est donné par m̂n = Xn et l’estimateur de σ2 est donné par σ̂2

n = S′n
2. Les

intervalles de niveau 1− α des paramètres m et σ2 valent respectivement :

IC1−α(m) =

[
Xn − tn−1,α

S′n√
n

; Xn + tn−1,α
S′n√

n

]
,

IC1−α(σ
2) =

[
(n− 1)S′n

2

zn−1;α/2
;
(n− 1)S′n

2

zn−1;1−α/2

]
.

Les notations tk,α et zk;β correspondent aux définitions suivantes :

— Si T ∼ St(k), P(|T| > tk,α) = α, soit encore P(T > tk,α) = α/2.

— Si Z ∼ χ2
k , alors P(Z > zk,β) = β.

Remarquons que l’écriture choisie est légérement différente de celle utilisée dans les preu-
ves. La raison est qu’il est en général plus facile de les retenir sous cette forme, notamment
car celle-ci est très similaire à ce qui sera vu ultérieurement pour la construction de tests.

3.3.2 Intervalle pour une proportion

Soient X1, . . . Xn indépendants et de loi de Bernouilli B(p). Une proportion p est estimée
par la proportion observée p̂n = Xn. Remarquons que np̂n suit une loi binomiale B(n, p).
Nous pouvons exploiter ce résultat afin de construire un intervalle de confiance pour le
paramètre p. Cependant, la loi binomiale n’étant pas facile à manipuler, nous optons ici
pour l’utilisation du théorème de la limite centrale. En effet, celui-ci nous assure que

U =
p̂n − p√

p(1− p)/n
loi−→

n→∞
N (0, 1).
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L’inconvénient est que ce résultat étant asymptotique, il mènera à des intervalles de
confiance asymptotiques et non à des intervalles exacts.

Définition 3.6. Soit θ un paramètre donné. On appelle intervalle de confiance asympto-
tique de niveau β un intervalle aléatoire [T1,n, T2,n] tel que

P (θ ∈ [T1,n, T2,n]) −→n→∞
β.

Supposons n suffisamment gand pour que nous ayons l’approximation U ∼ N (0, 1). Au
vu du schéma ci-dessous,

P(−uα 6 U 6 uα) = 1− α,

avec uα quantile de la loi normale centrée réduite défini par le graphique.

FIGURE 3.5 – Densité de la loi de Gauss de paramètres 0 et 1 et définition du quantile
uα.

Nous avons donc l’ínégalité

U2 =
( p̂n − p)2

p(1− p)/n
6 u2

α

vérifiée avec une probabilité 1− α. Ceci équivaut à résoudre(
1 +

u2
α

n

)
p2 −

(
2p̂n +

u2
α

n

)
p + p̂2

n 6 0.

Nous savons que cette inégalité est vérifiée avec une probabilité 1− α. Ainsi le paramètre
p a une probabilité 1 − α d’être solution de cette inéquation, donc d’appartenir à l’en-
semble des valeurs vérifiant l’inégalité. Si nous notons Sα l’ensemble des solutions, nous
avons P(p ∈ Sα) = 1− α. L’ensemble Sα est alors l’intervalle de confiance recherché.

Reste à résoudre l’inégalité donnée ci-dessus. Le discriminant du polynôme vaut

∆ = u2
α(u

2
α/n2 + 4p̂n(1− p̂n)/n).
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Les racines du polynôme en p sont

2p̂n + u2
α/n± uα

√
u2

α/n2 + 4p̂n(1− p̂n)/n
2(1 + u2

α/n)
.

Le polynôme est négatif entre ses racines, donc les solutions de l’inégalité sont données
par l’intervalle[

2p̂n + u2
α/n− uα

√
u2

α/n2 + 4p̂n(1− p̂n)/n
2(1 + u2

α/n)
;

2p̂n + u2
α/n + uα

√
u2

α/n2 + 4p̂n(1− p̂n)/n
2(1 + u2

α/n)

]
.

Nous pourrions exploiter directement cette conclusion. Cependant, nous raisonnons en
asymptotique, c’est-à-dire que nous considérons n grand et que nous acceptons des ap-
proximations (par l’application du théorème de la limite centrale). Nous pouvons donc
essayer de simplifier l’intervalle obtenu. En remarquant que u2

α est négligeable devant n,
nous en déduisons l’intervalle[

p̂n − uα

√
p̂n(1− p̂n)/n ; p̂n + uα

√
p̂n(1− p̂n)/n

]
.

Au vu de notre raisonnement ci-dessus, le paramètre p a une probabilité approximative-
ment de 1− α d’appartenir à cet intervalle, pour n suffisamment grand. Cet intervalle est
donc un intervalle de confiance asymptotique de niveau 1− α pour le paramètre p.

BILAN
Pour une proportion :

Soient X1, . . . , Xn indépendantes et de même loi B(p), alors l’estimateur de p est
donné par p̂n = Xn. L’intervalle asymptotique de niveau 1− α obtenu est :

IC1−α(p) =

[
p̂n − uα

√
p̂n(1− p̂n)

n
; p̂n + uα

√
p̂n(1− p̂n)

n

]
,

où uα est défini comme suit :
Pour tout U ∼ N (0, 1), P(|U| > uα) = α, soit encore P(U > uα) = α/2.

Remarque : Le principe de construction d’un intervalle de confiance est toujours le mê-
me : se ramener à une variable aléatoire faisant intervenir le paramètre d’intérêt dont on
connaisse la loi de manière exhaustive (i.e. aucun paramètre de la loi n’est inconnu). Une
telle variable aléatoire est dite fonction pivotale.
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R

Pour obtenir l’intervalle de confiance asymptotique d’une proportion :

borne_inf <- pn - qnorm(1-alpha/2) * sqrt(pn*(1-pn)/n)
borne_sup <- pn + qnorm(1-alpha/2) * sqrt(pn*(1-pn)/n)

où pn=sum(x)/n est égal à p̂n et qnorm(1-alpha/2) est le quantile d’ordre 1− α/2
d’une loi N (0, 1), et est égal à uα.
Cet intervalle peut aussi être obtenu par :

prop.test(sum(x), n, conf.level=1-alpha)$conf.int

On peut aussi construire un intervalle de confiance non asymptotique (théorie non
détaillée ici) en utilisant que n p̂n suit une loi binomiale. Avec R cet intervalle est
donné par :

binom.test(sum(x), n, conf.level=1-alpha)$conf.int

Exemple : Sur n = 500 personnes interrogées, 274 ont déclaré qu’elles voteraient pour
le candidat A. Si p représente le score de A aux élections, nous estimions p par p̂n =

274/500 = 54.8%. Comme u5% = 1.96, l’intervalle de confiance asymptotique de niveau
95% pour p est IC95%(p) = [50.44%; 59.16%]. Au seuil α = 1%, u1% = 2.5758, est ainsi
l’intervalle est IC99%(p) = [49.07%; 60.53%].

Nous pouvons constater qu’avec une confiance de 95%, la valeur 50% n’appartient pas
à l’intervalle. Cela signifie que dans ce modèle simplifié, nous pouvons affirmer que la
candidat A va gagner avec une probabilité supérieure à 95%. Cependant, nous pouvons
remarquer que la conclusion change avec un degré de confiance de 99% : il y a donc
d’après les intervalles de confiance une probabilité supérieure à 1% que A perde les élec-
tions.

Pour quel degré de confiance a-t-on la borne inférieure exactement égale à 50%? Ceci est
vérifié lorsque

p̂n − uα

√
p̂n(1− p̂n)

n
= 0.5.

Nous pouvons écrire cette équation sous la forme :

uα =
p̂n − 0, 5√

p̂n(1− p̂n)/n
= 2.16.

Par définition de uα cela signifie que pour toute variable aléatoire U de loi N (0, 1), nous
avons P(U 6 2.16) = 1− α/2. Ainsi α = 2(1− P(U 6 2.16)). La lecture de la table de la
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fonction de répartition d’une loi normale centrée réduite nous donne α = 2(1− 0.9846) =
3.08%. Si nous acceptons de nous tromper avec une probabilité supérieure à 3.08%, nous
pouvons affirmer au vu des intervalles de confiance que A va gagner. Nous ne pouvons
pas conclure quant au résultat si nous ne voulons pas nous tromper avec une probabilité
inférieure à 3.08%.

Nous venons ici de chercher à évaluer la probabilité avec laquelle nous pouvions affirmer
que p > 50% sans nous tromper. Le but du chapître suivant est de définir une approche
équivalente, généralisable à d’autres hypothèses, qui soit un peu plus rigoureuse.
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CHAPITRE 4

TESTS D’HYPOTHÈSES PARAMÉTRIQUES

Notre but est maintenant de vérifier si une hypothèse est ou non valide. L’idée est que
la prise de décision qui s’ensuit dépend de cette hypothèse. Le premier problème sera
donc de voir quelle hypothèse importe dans la décision à prendre, puis de la formuler
en fonction de paramètres. Par exemple, dans l’exemple du temps de sommeil en IF, les
enseignants veulent savoir si un aménagement de l’emploi du temps est nécessaire et
souhaitent donc savoir si les étudiants dorment assez. En médecine, les médecins sont
à la recherche d’aide au diagnostic : la prise de sang permet-elle de dire si le patient va
développer une maladie? En industrie pharmaceutique, le nouveau médicament déve-
loppé est-il plus performant? Une entreprise cherche à savoir si elle a intérêt à renouveler
son parc informatique, des experts à savoir si un produit vérifie les normes en vigueur,
etc.

Une fois formulée l’hypothèse qui nous intéresse, nous voulons étudier sa vraisemblance.
Nous allons pour cela nous intéresser à la notion de test statistique. Un test est une pro-
cédure qui permet de décider si à partir des observations obtenues nous devons accepter
ou rejeter l’hypothèse concernée. En raison des aléas, un tel test ne peut être catégorique :
il faut accepter de se tromper dans la conclusion, mais en sachant avec quelle probabilité
nous risquons de nous tromper.

Que signifie « se tromper »? Etudions ceci sur un exemple. Dans une exploitation, un ex-
pert mesure sur différents légumes le taux d’un pesticide donné. Il obtient un indicateur
de 16, sachant que la norme à ne pas dépasser est 15. Doit-il interdire la mise en vente des
légumes? L’hypothèse que veut tester l’expert est « la norme est dépassée ». Il y a deux
façons de se tromper dans sa conclusion :

— S’il conclue que la norme est dépassée alors qu’en réalité ce n’est pas le cas mais
que l’écart dans les observations est uniquement dû aux aléas des mesures, alors
l’exploitant agricole aura une sanction financière non justifiée.

— S’il conclue que la norme n’est pas dépassée alors qu’en réalité c’est le cas, alors il
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y a un risque de santé publique pour les consommateurs.

Notons (H0) l’hypothèse que nous souhaitons tester. En fait, lorsque nous testons une
hypothèse (H0), nous testons en réalité si cette hypothèse est plus vraisemblable qu’une
hypothèse alternative (H1). On appelle (H0) l’hypothèse nulle et (H1) l’hypothèse alter-
native. Dans le cadre de ce cours, nous considérerons toujours (H0) et (H1) complémen-
taires. Au vu de l’exemple ci-dessus, on distingue deux types de risque :

— On appelle risque de 1ère espèce le risque de rejeter (H0) à tort.

— On appelle risque de 2ème espèce le risque de ne pas rejeter (H0) à tort.

Idéalement, nous voudrions minimiser ces deux risques simultanément dans notre pro-
cédure de test. Mais ceci n’est pas faisable. Par convention, nous décidons de contrôler le
rique de 1ère espèce.

Remarque : Les conclusions d’un test s’expriment toujours comme “on rejette (H0)" ou
“on ne rejette pas (H0)". La nuance avec “on accepte (H0)" est subtile, mais ceci est dû
au fait que la procédure que nous développerons ne permet pas d’affirmer que (H0) est
réalisée, uniquement de conclure si (H0) est plausible ou non.

Un test de seuil α est un test dont le risque de 1ère espèce vaut α. Autrement dit la proba-
bilité de conclure que (H0) est faux lorsque (H0) est vérifiée vaut α.

Le choix des hypothèses se fait ensuite à partir de la formulation du risque qui nous
intéresse. La personne qui réalise le test veut minimiser le risque de première espèce.
Dans l’exemple ci-dessus, l’expert indépendant veut minimiser le risque d’affirmer que la
norme de pesticides est respectée à tort, en raison du risque pour les consommateurs. Son
hypothèse (H0) est donc « la norme est dépassée ». Un expert mandaté par l’agriculteur
choisira au contraire (H0) « la norme est respectée ».

Prenons un autre exemple. En finance, comment déterminer si une opération financière
doit ou non être lancée? Si (H0) est « l’opération peut être lancée », alors le risque contrôlé
est celui de ne pas lancer l’opération alors qu’elle est rentable : on ne veut pas se priver de
bénéfices et on préfère tenter l’opération, quitte à perdre des sous. (H0) est « l’opération
ne peut pas être lancée », alors le risque contrôlé est celui de lancer l’opération alors
qu’elle n’est pas rentable : on préfère rester prudent et ne pas perdre de sous, quitte à ne
pas en gagner non plus.

Détaillons en quoi consiste plus précisément un test. Nous avons une prise de décision et
un risque associé que nous voudrions contrôler. Comment au vu des données allons-nous
procéder? Les étapes d’un test sont les suivantes :
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1. Formaliser le problème et la décision à prendre.

2. Expliciter le risque que l’on cherche à minimiser. En déduire les hypothèses (H0) et
(H1).

3. Choisir le seuil du risque α selon la gravité des conséquences : plus α est petit plus
le risque associé est petit. On prend en général α inférieur à 5%.

4. Construire une règle de décision, c’est-à-dire une procédure qui permette de dire
si on accepte ou non (H0) au vu des données x1, . . . xn. Cette procédure consiste à
trouver une région critique RCα telle que

— si {x1, . . . xn} ∈ RCα on rejette (H0),

— si {x1, . . . xn} /∈ RCα on ne rejette pas (H0),

5. Les observations x1, . . . xn appartiennent-elles à RCα ? Conclure quant au rejet ou
non-rejet de l’hypothèse (H0).

6. Répondre au problème posé.

Reste à construire la région critique. La région critique est en fait une condition telle que
si nos observations la vérifie, on rejette (H0). Comment déterminer ces conditions? Nous
allons distinguer deux types de tests pour la construction de cette région :

— Les tests paramétriques : les données que nous observons sont modélisées. Notre
hypothèse peut se formuler à l’aide d’un paramètre θ, que notre modèle permet
d’estimer. Nous n’avons pas accès à la vraie valeur de θ mais nous allons prendre
notre décision au vu de son estimation et de sa précision. (Exemples : le degré de
pesticides dans un légume suit une loi normale, d’espérance θ et le test se formulera
sur θ ; la réponse à un sondage est une loi B(p) avec p le score aux élections : le
candidat gagne si p > 50%. . . )

— Les tests non paramétriques : nous voulons tester une hypothèse indépendamment
de toute modélisation préalable de nos données. Par exemple, nous voulons tester
si les données suivent bien une loi normale ou une loi de Poisson, nous voulons
tester si deux variables sont corrélées, etc. Ceci fera l’objet du chapître suivant.

4.1 Test sur un paramètre

Dans cette section, nous nous intéressons aux tests ne faisant intervenir qu’une seule
grandeur estimée. Le but est de comparer un paramètre θ inconnu avec une grandeur
θ0 donnée, soit car elle correspond à une grandeur physique connue que vous souhai-
tez vérifier, soit parce que la comparaison permet d’aider dans la prise de décision qui
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vous intéresse. Afin de réaliser ces tests, nous allons donc devoir estimer le paramètre
θ. La conclusion de notre test dépendra alors de la précision de notre estimation. Plus
nous sommes précis plus nous pouvons rejetter l’hypothèse (H0) formulée de manière
affirmative.

4.1.1 Test sur l’espérance d’une loi normale

Soit X1, . . . Xn n variables aléatoires indépendantes et de même loi N (m, σ2). Les para-
mètres m et σ2 sont inconnus. Nous allons construire le test de (H0) m 6 m0 contre (H1)

m > m0 de risque α.

La première étape consiste à estimer m : d’après ce qui précède, nous proposons d’estimer
m par Xn. La région critique RCα est la zone où l’on considère que l’hypothèse (H1) est
plus vraisemblable que (H0). Il semble logique de chercher RCα sous la forme RCα =

{Xn > cα} avec cα > m0. En effet, étant donné l’erreur commise par l’approximation de
m par Xn, nous n’accepterons m > m0 que si Xn est significativement plus grand. Le seuil
choisi cα sera d’autant plus proche de m0 que notre estimation sera précise.

Par définition du risque, nous avons sup(H0)
P({X1, . . . Xn} ∈ RCα) = α. Donc

sup
m6m0

P(Xn > cα) = α.

Afin de calculer ces probabilités, nous avons besoin de la loi de Xn. De même que pour
la construction des intervalles de confiance, nous utilisons le Théorème de Fisher :

Tn =
Xn −m
S′n/
√

n
∼ St(n− 1).

Alors

P(Xn > cα) = P
(

Tn >
cα −m
s′n/
√

n

)
= 1− FSt(n−1)

(
cα −m
s′n/
√

n

)
,

avec FSt(n−1) fonction de répartition de la loi de Student St(n− 1). Une fonction de répar-

tition est une fonction croissante. Par conséquent 1− FSt(n−1)

(
cα−m
s′n/
√

n

)
est une fonction

croissante de m. Alors

sup
m6m0

1− FSt(n−1)

(
cα −m
s′n/
√

n

)
= 1− FSt(n−1)

(
cα −m0

s′n/
√

n

)
.

Ainsi, nous avons

1− FSt(n−1)

(
cα −m0

s′n/
√

n

)
= P

(
Tn >

cα −m0

s′n/
√

n

)
= α.
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FIGURE 4.1 – Densité de la loi de Student de paramètre n et définition du quantile tn,α.

Au vu du dessin ci-dessus, cα−m0
s′n/
√

n = tn−1;2α avec tn−1;2α défini par le schéma. D’où cα =

m0 +
s′n√

n tn−1;2α. En conclusion la région critique obtenue est

RCα = {Xn > m0 +
s′n√

n
tn−1;2α}.

L’intérêt de cette formulation est sa similitude avec celle des intervalles de confiance.
Cependant, nous pouvons remarquer que la région critique s’écrit aussi :

RCα = {Tn > tn−1;2α}, avec Tn =
Xn −m0

S′n/
√

n
.

Cette écriture présente le grand intérêt que si vous voulez réaliser un test pour différents
seuils, vous calculez la valeur de Tn une seule fois, ce qui allège considérablement le
calcul.

Nous ne redémontrons pas les autres régions critiques ici, car leur construction est iden-
tique à ce qui précède. Au final,
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BILAN
Test sur l’espérance d’une loi normale :

Soient X1, . . . , Xn indépendantes et de même loi N (m, σ2), alors l’estimateur de
m est donné par m̂n = Xn.
Si m = m0, on a

T =
Xn −m0

S′n/
√

n
∼ S t(n− 1).

(H0) (H1) Région critique RCα

m = m0 m 6= m0 {|T| > tn−1;α}

m 6 m0 m > m0 { T > tn−1;2α}

m > m0 m < m0 { T < −tn−1;2α}

Exemple : Reprenons l’exemple du temps de sommeil des 4IF : le temps de sommeil par
nuit en période de projet est supposé suivre une loi N (m, σ2). Après interrogation de 30
étudiants de 4IF, nous avions obtenu xn = 6, 36 heures et s′n

2 = 1.85 heures2. Les ensei-
gnants de 4IF souhaitent savoir si l’espérance de sommeil est significativement inférieure
au temps moyen de sommeil des autres individus de la poulation, qui est de 7 heures.

Les enseignants veulent minimiser le risque de déclarer à tort que les élèves ne dorment
pas assez. Ils posent donc les hypothèses (H0) m > 7 et (H1) m < 7. La région critique de
ce test est RCα = {Tn < −tn−1;2α}, avec Tn = Xn−m

S′n/
√

n . La réalisation de Tn vaut tn = −2.57.
Au seuil α = 5%, nous comparons cette grandeur à t29;10% = 1.699. Nous avons tn <

−t29;10%. Nous sommes dans la région critique RC5%. Alors nous rejettons (H0). Nous
pouvons conclure que les étudiants de 4IF en période de projet dorment significativement
moins que 7 heures.

Avec les mêmes observations, quel risque prendre pour rejeter m < 7? Observons la
conclusion du test lorsque α diminue.

α 5% 2.5% 1% 0.5%
t29;2α 1.699 2.045 2.462 2.756
observations dans RCα oui oui oui non

Nous observons que la conclusion n’est plus la même pour α = 0.5% : nous rejetons (H0)

pour α > 1% et nous ne la rejetons pas pour α 6 0.5%. Ceci signifie que si nous affirmons
que (H1) est valide, la probabilité de se tromper est comprise entre 0.5% et 1%.
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On peut montrer que la valeur critique à partir de laquelle la conclusion du test change
est α = 0.78%.

La notion mise en évidence ici est fondamentale : il s’agit de la p-valeur d’un test. La
p-valeur est la valeur αc du risque telle que, lorsqu’on réalise le test avec un seuil α :{

si α 6 αc on ne rejette pas (H0),

si α > αc on rejette (H0).

Si la p-valeur est petite cela signifie donc que l’on peut rejeter (H0) avec un faible risque
de se tromper. En général, on cherchera donc à avoir une p-valeur petite, de sorte à pou-
voir valider l’hypothèse (H1) avec un faible risque de se tromper.

Remarque : Souvent les logiciels ne donnent que la p-valeur : elle résume à elle seule le
résultat du test pour tous les seuils et donne une information supplémentaire qu’est le
risque maximal que l’on prend en rejetant (H0).

R

Test de (H0) m > m0 contre (H1) m < m0 : la p-valeur est retournée par :

t.test(x, mu=m0, alternative="less")

Test de (H0) m = m0 contre (H1) m 6= m0 : la p-valeur est retournée par :

t.test(x, mu=m0, alternative="two.sided")

Test de (H0) m 6 m0 contre (H1) m > m0 : la p-valeur est retournée par :

t.test(x, mu=m0, alternative="greater")

Lien avec les intervalles de confiance

Etudions le cas du test de (H0) m = m0 et (H1) m 6= m0. La région critique est

RCα = {Xn < m0 −
s′n√

n
tn−1;α ou Xn > m0 +

s′n√
n

tn−1;α}.
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Nous avons

{X1, . . . , Xn} /∈ RCα ⇔ m0 −
s′n√

n
tn−1;α 6 Xn 6 m0 +

s′n√
n

tn−1;α

⇔ Xn −
s′n√

n
tn−1;α 6 m0 6 Xn +

s′n√
n

tn−1;α

⇔ m0 ∈ IC1−α(m),

où IC1−α(m) est l’intervalle de confiance de niveau 1− α construit dans le chapître pré-
cédent. Ainsi, ne pas rejeter (H0), c’est-à-dire considérer que m0 est une valeur plausible
pour m équivaut à vérifier que m0 appartient à l’intervalle de confiance.

Dans le cas d’un test de (H0) m 6 m0 et (H1) m > m0, on peut montrer que ceci équivaut
à regarder si m0 appartient à un intervalle de confiance de la forme [min f ;+∞[. Et tester
(H0) m > m0 contre (H1) m > m0, équivaut à regarder si m0 appartient à un intervalle de
confiance de la forme ]−∞; msup].

Attention : il n’est pas équivalent de tester (H0) m = m0 contre (H1) m 6= m0 ou de
tester (H0) m 6 m0 contre (H1) m > m0. Si nous avons observé une estimation m̂n < m0,
le second test validera systématiquement (H0), pas le premier. Si par contre nous avons
observé m̂n > m0, alors il est équivalent de réaliser le premier test avec un risque α et de
réaliser le deuxième test avec un risque α/2.

4.1.2 Test sur la variance d’une loi normale

Soient X1, . . . Xn n variables aléatoires indépendantes et de même loiN (m, σ2). Les para-
mètres m et σ2 sont inconnus. Nous allons construire le test de (H0) σ2 > σ2

0 contre (H1)

σ2 < σ2
0 de risque α.

Nous estimons σ2 par S′n
2. Nous savons que (n−1)S′n

2

σ2 suit une loi χ2(n − 1). La région
critique RCα étant la zone où l’on considère que σ2 < σ2

0 est plus plausible, la forme de
RCα est : RCα = {S′n

2 < cα} avec cα < σ2
0 . Par définition du risque, nous avons :

α = sup
sous (H0)

P(RCα)

= sup
σ2>σ2

0

P(S′n
2
< cα)

= sup
σ2>σ2

0

P
(

Kn <
(n− 1)cα

σ2

)
avec Kn de loi χ2(n− 1).
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Par croissance des fonction de répartition, nous en déduisons que α = P(Kn < (n−1)cα

σ2
0

).

Au vu du schéma ci-dessous, nous avons donc (n−1)cα

σ2
0

= zn−1;1−α, avec zn−1;1−α défini sur

le schéma. Il vient : cα =
σ2

0
n−1 zn−1;1−α.

FIGURE 4.2 – Densité de la loi du χ2 de paramètre n et définition du quantile zn,α.

La région critique est ainsi donnée par RCα = {S′n
2 <

σ2
0

n−1 zn−1;1−α}, ce qui peut aussi

s’écrire sous la forme RCα = {Kn < zn−1;1−α}, avec Kn = (n−1)S′n
2

σ2
0

.

En raisonnant de même pour les autres tests, nous obtenons :

BILAN
Test sur la variance d’une loi normale :

Soient X1, . . . , Xn indépendantes et de même loi N (m, σ2). L’estimateur de σ2

est donné par σ̂2
n = S′n

2.
Si σ2 = σ2

0 , on a

K =
(n− 1)S′n

2

σ2
0

∼ χ2(n− 1).

(H0) (H1) Région critique RCα

σ2 = σ2
0 σ2 6= σ2

0 {K < zn−1;1−α/2 ou K > zn−1;α/2}

σ2 6 σ2
0 σ2 > σ2

0 {K > zn−1;α}

σ2 > σ2
0 σ2 < σ2

0 {K < zn−1;1−α}

Remarquons que l’équivalence avec les intervalles de confiance établie pour l’espérance
est toujours valable.
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Exemple : Rappelons que 30 étudiants de 4IF avaient donné leur temps moyen de som-
meil sur une nuit en période de projet et que nous avions obtenu xn = 6.36 heures et
s′n

2 = 1.85 heures2. Dans la population, l’écart-type vaut 1,2 heure. Les enseignants de IF
voudraient savoir si la variabilité est plus forte au sein de la promotion de IF que dans
le reste de la population. Ils posent les hypothèses (H0) σ2 6 1, 22 et (H1) σ2 > 1, 22. La

région critique de ce test est RCα = {Kn > zn−1;α}, avec Kn = (n−1)S′n
2

1.22 . La réalisation de
Kn vaut kn = 37.26. Au seuil α = 5%, nous comparons cette grandeur à z29;5% = 42.56.
Nous avons kn < z29;5%. Nous ne sommes pas dans la région critique RC5%. Nous ne
pouvons pas conclure que la variabilité du sommeil au sein de la promotion de 4IF est
significativement plus importante que dans le reste de la population.

(La p-valeur de ce test vaut environ 14%.)

R

Avec R, ces tests nécessitent le paquet EnvStats.
Test de (H0) σ2 > σ2

0 contre (H1) σ2 < σ2
0 : la p-valeur est retournée par

varTest(x, sigma.squared=sigma02, alternative="less")

Test de (H0) σ2 = σ2
0 contre (H1) σ2 6= σ2

0 : la p-valeur est retournée par

varTest(x, sigma.squared=sigma02, alternative="two.sided")

Test de (H0) σ2 6 σ2
0 contre (H1) σ2 > σ2

0 : la p-valeur est retournée par

varTest(x, sigma.squared=sigma02, alternative="greater")

4.1.3 Test sur une proportion

Soient X1, . . . Xn indépendants et de même loi de Bernouilli B(p). Le paramètre p est
estimé par la proportion observée p̂n. De même que pour les intervalles de confiance,
nous choisissons ici une approche asymptotique. (Remarquons que certains logiciels pro-
posent le test non-asymptotique.) Le théorème de la limite centrale nous assure que

U =
p̂n − p√

p(1− p)/n
loi−→

n→∞
N (0, 1).

Construisons la région critique RCα pour le test de (H0) p = p0 contre (H1) p 6= p0 de
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risque α. Nous recherchons la région critique sous la forme

RCα = { p̂n < p0 − cα ou p̂n > p0 + cα} .

Nous avons α = P(RCα sous (H0)). Ainsi, il vient :

α = P
(

U < − cα√
p0(1− p0)/n

ou U >
cα√

p0(1− p0)/n

)
,

avec U = p̂n−p0√
p0(1−p0)/n

loi−→
n→∞
N (0, 1).

FIGURE 4.3 – Densité de la loi de Gauss de paramètres 0 et 1 et définition du quantile
uα.

Asymptotiquement, nous avons U approximativement de loi gaussienne et nous en dédui-
sons ainsi que cα√

p0(1−p0)/n
= uα avec uα quantile de la loi normale centrée-réduite défini

sur le graphique ci-dessus. Ainsi, la région critique obtenue est :

RCα =

{
p̂n < p0 − uα

√
p0(1− p0)/n ou p̂n > p0 + uα

√
p0(1− p0)/n

}
.

Celle-ci s’écrit aussi

RCα = {|U| > uα} avec U =
p̂n − p0√

p0(1− p0)/n
.

Cette région est asymptotique dans la mesure où nous avons utilisé le théorème de la
limite centrale pour l’obtenir.
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BILAN
Test sur une proportion :

Soient X1, . . . , Xn indépendantes et de même loi B(p), alors l’estimateur de p est
donné par p̂n = Xn.
Si p = p0, on a

U =
p̂n − p0√

p0(1− p0)/n
loi−→N (0, 1).

(H0) (H1) Région critique RCα

p = p0 p 6= p0 {|U| > uα}

p 6 p0 p > p0 {U > u2α}

p > p0 p < p0 {U < −u2α}

Ces régions sont asymptotiques.

Remarque : Contrairement à la loi normale, il n’y a pas ici équivalence entre les inter-
valles de confiance et les tests ! Dans les deux cas, nous avons utilisé que

p̂n − p√
p(1− p)/n

loi−→N (0, 1).

Lors de la construction d’un test, le fait de comparer p avec une valeur de référence p0

a permis d’appliquer ce résultat avec p = p0. Dans le cas des intervalles, nous avons
dû réaliser des approximations supplémentaires liées au fait que la variance p(1 − p)
était inconnue. Dans un test, l’approximation est donc moindre, et la source d’erreur plus
faible.

Exemple : Sur n = 500 personnes interrogées lors d’un sondage, nous avions obtenu
un score pour le candidat A de p̂n = 274/500 = 54.8%. Nous aimerions savoir si A va
gagner les élections. Soit p le score de A sur la population. Nous souhaitons donc tester
(H0) p 6 50% contre (H1) p > 50%. La région critique de ce test est

RCα = {U > u2α} avec U =
p̂n − 0.5√

0.5(1− 0.5)/n
.

Plutôt que de réaliser le test pour différentes valeurs de risque, nous cherchons ici direc-
tement la p-valeur. Celle-ci est atteinte lorsque

u2α =
p̂n − 0.5√

0.5(1− 0.5)/n
= 2.15.
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Par définition de u2α, si Φ désigne la fonction de répartition de la loiN (0, 1), nous avons
alors α = 1− Φ(2.15) = 1− 0.9842 = 1.6%. La p-valeur de ce test est donc 1.6%. Nous
constatons en effet que la valeur obtenue est différente de celle que nous avions calculé
pour les intervalles de confiance. Celle donnée ici est plus précise. Cela signifie donc que
si nous acceptons de nous tromper avec une probabilité supérieure à 1.6%, nous pouvons
affirmer que A va gagner les élections. Notons que cette conclusion peut se faire sous
réserve que l’échantillon soit représentatif de la poulation, qu’aucun individu ne change
d’avis ni ne soit indécis, etc.

R

Considérons le test de (H0) p > p0 contre (H1) p < p0. Pour le test asymptotique
décrit ci-dessus, la p-valeur est retournée par

prop.test(sum(x), n, p=p0, alternative="less")

De même que pour l’intervalle de confiance, il existe un test non asymptotique
(théorie non détaillée ici), qui peut s’appliquer en R avec :

binom.test(sum(x), n, p=p0, alternative="less")

Les autres tests ne sont pas détaillés, il suffit de modifier la valeur de alternative.

4.2 Tests de comparaison d’échantillons

Nous souhaitons maintenant comparer un paramètre non pas à une valeur donnée mais
à une valeur inconnue que nous avons estimée. Par exemple, nous souhaitons comparer
l’effet de deux traitements médicaux sur des patients, comparer le nombre de pièces dé-
fectueuses produites par deux machines, comparer des résultats de code après modifica-
tion d’un paramètre, etc. La difficulté supplémentaire par rapport à la section précédente
est que l’imprécision due à l’estimation porte sur les deux grandeurs comparées, et non
plus sur une seule. Nous n’allons pas dans ce cours présenter de tests de comparaison
dans un contexte général, mais nous nous focaliserons sur les cas d’échantillons suivants
des lois gaussiennes et de Bernouilli.
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4.2.1 Comparaison d’échantillons gaussiens indépendants

Soient X1, . . . XnX indépendants et identiquement distribués selon une loi N (mX, σ2
X) et

Y1, . . . YnY indépendants et identiquement distribués selon une loi N (mY, σ2
Y). Nous sup-

posons que les (Xi), (Yj) sont mutuellement indépendants. Nous souhaiterions comparer
mX et mY.

Lorsque les échantillons ne sont pas de grande taille, nous sommes à-même de réaliser
un test lorsque les variances σ2

X et σ2
Y sont égales, mais nous ne pouvons pas effectuer

ce test s’il y a une trop forte disparité des variances. Nous allons donc construire une
procédure en deux étapes, afin de vérifier que le cadre d’étude convient :

1. Test d’égalité des variances.
Nous allons tester (H0) σ2

X = σ2
Y contre (H1) σ2

X 6= σ2
Y. Idéalement, nous voudrions

inverser ces deux hypothèses car le risque qui nous intéresse ici est le risque de
deuxième espèce alors que les tests permettent de contrôler le risque de première
espèce. Le problème est que nous ne pouvons pas échanger les hypothèses : aucune
procédure de test n’est alors accessible.

2. Test sur les moyennes.
Si les échantillons sont de taille supérieure à 100, on peut passer directement à cette
étape sans faire de test sur les variances. Sinon, il faut au préalable vérifier qu’il
est cohérent de supposer les variances égales. Si, au vu de l’étape précédente, cette
hypothèse ne peut être formulée, alors vous répondez que vous ne pouvez pas
conclure.

a. Comparaison des variances

Nous voulons tester (H0) σ2
X = σ2

Y contre (H1) σ2
X 6= σ2

Y. Nous disposons des estimateurs
respectifs de σ2

X et σ2
Y : S′X

2 et S′Y
2. Nous avons vu que les constructions de test précédentes

se faisaient à l’aide d’une fonction pivotale, c’est-à-dire d’une variable aléatoire basée sur
l’estimateur concerné, dont la loi était connue de manière exhaustive. Peut-on construire
une telle fonction pivotale? C’est-à-dire trouver une variable aléatoire faisant intervenir
S′X

2 et S′Y
2 dont nous connaissons la loi ?

Rappelons que d’après le théorème de Fisher, (nX−1)S′X
2

σ2
X

suit une loi χ2(nX− 1) et (nY−1)S′Y
2

σ2
Y

suit une loi χ2(nY − 1). Au vu du rappel sur la loi de Fisher (voir la section 1.2.3 sur la

loi gaussienne et ses dérivées), nous pouvons en déduire que F =
S′X

2

S′Y
2

σ2
Y

σ2
X

suit une loi de
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Fisher de paramètres nX − 1 et nY − 1, F (nX − 1; nY − 1). En particulier, lorsque σ2
X = σ2

Y,

nous avons F =
S′X

2

S′Y
2 ∼ F (nX − 1; nY − 1).

Construisons maintenant la région critique de notre test. La région critique RCα est la
zone où l’on considère que S′X

2 et S′Y
2 sont significativement différentes. La fonction pi-

votale que nous avons construite faisant intervenir le rapport S′X
2

S′Y
2 , nous allons chercher

la région critique sous la forme RCα = { S′X
2

S′Y
2 < c1,α ou S′X

2

S′Y
2 > c2,α} avec c1,α < 1 et c2,α > 1.

Le risque de première espèce vaut

α = Psous (H0)(RCα) = Psous σ2
X=σ2

Y

(
S′X

2

S′Y
2 < c1,α ou

S′X
2

S′Y
2 > c2,α

)
.

Ainsi α = P (F < c1,α ou F > c2,α) avec F ∼ F (nX − 1; nY − 1). Alors, nous posons

c1,α = fnX−1;nY−1;1−α/2

c2,α = fnX−1;nY−1;α/2

avec fn1;n2;β quantile d’ordre 1− β de la loi F (n1; n2), i.e. tel que si F ∼ F (n1; n2), alors
P(F > fn1;n2;β) = β. Ces valeurs vous sont données soit par un logiciel soit par vos tables
statistiques. Ainsi

RCα =

{
S′X

2

S′Y
2 < fnX−1;nY−1;1−α/2 ou

S′X
2

S′Y
2 > fnX−1;nY−1;α/2

}
.

BILAN
Test de comparaison des variances de deux lois normales.

Soient X1, . . . , XnX et Y1, . . . , YnY deux échantillons indépendants de lois respec-
tives N (mX, σ2

X) et N (mY, σ2
Y).

Si σ2
X = σ2

Y, alors

F =
S′X

2

S′Y
2 ∼ F (nX − 1, nY − 1).

(H0) (H1) Région critique RCα

σ2
X = σ2

Y σ2
X 6= σ2

Y {F < fnX−1;nY−1;1−α/2 ou F > fnX−1;nY−1;α/2}

On peut construire les autres tests en utilisant la variable aléatoire F ci-dessus.
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Si vous regardez vos tables, vous n’arriverez pas à trouver les valeurs que vous cherchez.
En effet, en raison de la relation fn1;n2;β = 1/ fn2;n1;1−β vous pouvez retrouver les autres
valeurs. (Cette relation découle de la définition de la loi de Fisher comme quotient : in-
versez le quotient pour la retrouver.) En pratique, afin de ne regarder qu’une fois sur une
table, procédez comme suit :

— Si s′X
2 > s′Y

2 alors, comme fnX−1;nY−1;1−α/2 < 1 quelque soit α, il suffit de comparer
s′X

2

s′Y
2 à fnX−1;nY−1;α/2. Ainsi RCα =

{
s′X

2

s′Y
2 > fnX−1;nY−1;α/2

}
.

— Si s′X
2 < s′Y

2, de même RCα =

{
s′Y

2

s′X
2 > fnY−1;nX−1;α/2

}
.

R

Pour comparer des variances de deux échantillons gaussiens indépendants,

var.test(x, y, mu = m0, ratio = r, alternative = "greater")

réalise le test de (H0) σ2
X/σ2

Y 6 r contre (H1) σ2
X/σ2

Y > r.

b. Comparaison des espérances

Nous souhaitons maitenant construire un test de comparaison des espérances mX et mY.
Ces deux paramètres sont estimés respectivement par XnX et par YnY . Nous avons besoin
pour déterminer la région critique de trouver une variable aléatoire faisant intervenir XnX

et YnY dont nous connaisons la loi. Nous savons que XnX suit une loi gaussienne, comme

somme de gaussiennes indépendantes, et XnX ∼ N (mX, σ2
X

nX
). De même YnY ∼ N (mY, σ2

Y
nY
).

Les variables aléatoires (Xi)i=1,...,nX et (Yj)j=1,...,nY étant indépendantes, XnX et YnY sont in-

dépendantes. Nous en déduisons que XnX −YnY est de loiN
(

mX −mY, σ2
X

nX
+

σ2
Y

nY

)
. Ainsi

U =
XnX −YnY − (mX −mY)√

σ2
X

nX
+

σ2
Y

nY

∼ N (0, 1).

Lorsque les variances σ2
X et σ2

Y sont connues, nous pouvons exploiter ce résultat, mais
nous devons introduire une estimation des variances dans un cadre général. Soit Z =
(nX−1)S′X

2

σ2
X

+
(nY−1)S′Y

2

σ2
Y

. La statistique Z est un estimateur de σ2
X

nX
+

σ2
Y

nY
. Les variables aléa-

toires (nX−1)S′X
2

σ2
X

et (nY−1)S′Y
2

σ2
Y

sont indépendantes et de loi respectives χ2
nX−1 et χ2

nY−1, d’après

le Théorème de Fisher (section 1.2.3). Nous en déduisons que Z suit une loi χ2
nX+nY−2.
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Par définition de la loi de Student, la variable aléatoire T =
√

nX + nY − 2 U√
Z

suit une loi
de Student de paramètre nX + nY − 2. Nous avons

T =
√

nX + nY − 2
XnX −YnY − (mX −mY)√

σ2
X

nX
+

σ2
Y

nY

√
(nX−1)S′X

2

σ2
X

+
(nY−1)S′Y

2

σ2
Y

.

Lorsque nous avons σ2
X = σ2

Y, nous pouvons constater que T s’éscrit :

T =
√

nX + nY − 2
XnX −YnY − (mX −mY)√

1
nX

+ 1
nY

√
(nX − 1)S′X

2 + (nY − 1)S′Y
2

.

Les variances inconnues n’apparaissent donc plus dans l’expression de T. Ceci justifie
la procédure en deux étapes suggérée auparavant : nous commençons par tester l’hypo-
thèse σ2

X = σ2
Y est si celle-ci est validée alors nous pouvons utiliser la variable T.

La variable T suivant une loi de Student, la construction de la région critique est parfai-
tement similaire à ce qui a été vu précédemmment pour le test sur une espérance de la
loi normale. Il suffit de traduire les hypothèse de la forme mX < mY par des hypothèses
sur la différence entre les espérances mX − mY < 0. Les régions critiques obtenues sont
les suivantes :

BILAN
Test de comparaison des espérances de deux lois normales.

Soient X1, . . . , XnX et Y1, . . . , YnY deux échantillons indépendants de lois respec-
tives N (mX, σ2

X) et N (mY, σ2
Y).

Si σ2
X = σ2

Y et si mX = mY, alors

T =
XnX −YnY

γ

√(
1

nX
+ 1

nY

) ∼ S t(nX + nY − 2) avec γ2 =
(nX − 1)S′X

2 + (nY − 1)S′Y
2

nX + nY − 2
.

(H0) (H1) Région critique RCα

mX = mY mX 6= mY {|T| > tnX+nY−2;α}

mX 6 mY mX > mY { T > tnX+nY−2;2α}

mX > mY mX < mY { T < −tnX+nY−2;2α}
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Remarque sur le test d’égalité des variances. Nous voulons dans le test d’égalité des
variances vérifier que σ2

X = σ2
Y. Nous voulons donc contrôler le risque d’accepter à tort

que ces deux valeurs sont égales. Les hypothèses que nous devrions poser dans le test
sont donc (H0) σ2

X 6= σ2
Y et (H1) σ2

X = σ2
Y. Cependant nous ne pouvons pas réaliser un

tel test. En effet, le risque de première espèce de ce test est supsous (H0)
P(refuser (H0)) ; la

borne supérieure sur l’ensemble des variances vérifiant (H0) est une borne supérieure sur
l’ensemble des variances, étant donné qu’un nombre négligeable de variances ne vérifie
pas l’hypothèse. Nous réalisons donc le test de (H0) σ2

X = σ2
Y et (H1) σ2

X 6= σ2
Y, dans la

mesure où nous savons réaliser ce test et où il s’approche de celui que nous désirerions
faire. Remarquons simplement que dans la majorité des tests que nous réalisons, nous
cherchons une p-valeur faible permettant de rejeter avec un faible risque l’hypothèse
(H0). Dans le cas présent, à l’inverse, nous cherchons une p-valeur élevée pour ne pas
rejeter (H0).

Remarque. Ce test a été développé pour la comparaison d’espérances de lois normales,
mais il est applicable pour des échantillons qui ne sont pas issus de lois normales. Lors-
que les échantillons sont grands (plus de 100 observations), on peut montrer que la va-

riable T =
√

nX + nY − 2
XnX−YnY−(mX−mY)√

1
nX

+ 1
nY

√
(nX−1)S′X

2+(nY−1)S′Y
2

suit toujours une loi de Student à

l’aide du théorème de la limite centrale. Lorsque les échantillons sont de petites tailles,
des tests spécifiques doivent être appliqués.

c. Exemple

Nous voudrions comparer le temps de sommeil des étudiants de 4IF en période de projet
avec celui d’étudiants de BioSciences. Onze étudiants de ce département ont accepté de
répondre. Notons (Xi)i=1,...,nX les temps de sommeil en IF et (Yj)j=1,...,nY les temps de
sommeil en BioSciences. Nous avons :

nX = 30 x̄ = 6.36h s′X
2 = 1.85h2

nY = 11 ȳ = 6.68h s′Y
2 = 1.35h2

Les données de BioSciences sont malheureusement fictives.

Nous souhaitons déterminer si les étudiants de IF dorment significativement moins en
moyenne que les étudiants de BioSciences.

Nous supposons les observations indépendantes et nous supposons que les variables
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X1, . . . XnX sont identiquement distribuées de loi N (mX, σ2
X) et les variables Y1, . . . YnY

sont identiquement distribuées de loiN (mY, σ2
Y). Nous souhaitons réaliser le test de (H0)

mX > mY contre (H1) mX < my. Nous procédons en deux étapes :

1. Test d’égalité des variances.
Nous réalisons ce test avec la plus grande valeur de α possible. Vos tables pre-

mettent de prendre α = 10%. Comme s′Y
2 > s′X

2, nous comparons s′Y
2

s′X
2 = 1.37 à

fnY−1;nX−1;α/2 = f10;29;5% ∈ [2, 16; 2, 24]. Comme s′Y
2

s′X
2 < fnY−1;nX−1;α/2, nous ne pou-

vons pas rejeter (H0) au seuil α = 10%.

2. Test de comparaison des espérances.
Au vu de ce qui précède, nous pouvons supposer que σ2

X = σ2
Y. La région critique

pour le test de (H0) mX > mY contre (H1) mX < my est donc donnée par

RCα = { T < −tnX+nY−2;2α}

avec T =
XnX −YnY

γ

√(
1

nX
+ 1

nY

) où γ2 =
(nX − 1)S′X

2 + (nY − 1)S′Y
2

nX + nY − 2
.

La réalisation de T vaut ici t = −0.392. La lecture de table nous donne tnX+nY−2;α =

t39;5% ∈ [2.021; 2.042]. Nous ne sommes donc pas dans la région critique.

Nous ne pouvons donc pas conclure que les étudiants de IF dorment significative-
ment moins en moyenne que les étudiants de BioSciences.

4.2.2 Comparaison d’échantillons gaussiens appariés

Soient X1, . . . Xn indépendants et identiquement distribués selon une loi N (mX, σ2
X) et

Y1, . . . Yn indépendants et identiquement distribués selon une loi N (mY, σ2
Y). Nous sup-

posons que pour tout i = 1, . . . , n, le couple (Xi, Yi) est mesuré sur le même individu. Les
échantillons (Xi), et (Yj) sont alors dits appariés et ne peuvent être considérés comme
indépendants. Nous souhaiterions comparer mX et mY.

Introduisons Z = X − Y. Alors les variables aléatoires Z1, . . . , Zn sont indépendantes.
Nous supposons que Z suit une loi normale N (m, σ2). (Ceci est une hypothèse car si la
différence de deux lois normales indépendantes est bien une gaussienne, ceci n’est pas
assuré dans un contexte de dépendance.)

71



4.2. TESTS DE COMPARAISON D’ÉCHANTILLONS

Faire un test de comparaison de mX et de mY est équivalent dans ce cadre à comparer la
valeur m à 0. En effet, nous avons m = mX −mY. Nous sommes donc ramenés à un test
sur l’espérance d’une loi normale.

Exemple : Nous voudrions comparer le temps de sommeil des étudiants de 4IF en pério-
de de projet et en temps normal. Pour cela nous avons demandé aux 30 étudiants ayant
participé à l’enquête de donner leur temps moyen de sommeil en dehors des période
de projet. Nous ne donnons ici que les temps donnés par les 10 premiers étudiants pour
illustrer la méthodologie :

Projet 4.5 7 6 6 6 7 6 6 7 5
Normal 6 8 7 7 6 7 8 7 7 7
Projet-Normal -1.5 -1 -1 -1 0 0 -2 -1 0 -2

Notons Z la différence de temps de sommeil entre une période de projet et en temps
normal. Zi correspond à cette différence pour l’étudiant i. Sur les 30 étudiants, nous ob-
tenons une estimation de l’éspérance de Z qui vaut z̄n = −1.06 h et une estimation de la
variance s′n

2 = 1.07 h2. (Les résultats furent de même obtenus sur la promotion 2009-2010,
avec cependant une modification du nombre de réponses données.)

Supposons que Z suive une loi N (m, σ2). Nous souhaitons tester si le sommeil en pé-
riode de projet est significativement plus faible qu’en temps normal. Pour cela, nous
allons réaliser le test de (H0) m > 0 contre (H1) m < 0. La région critique de ce test
est RCα = {Tn < −tn−1;2α}, avec Tn = Xn

S′n/
√

n . La réalisation de Tn est ici tn = −5.63.
Comme tn−1;0,1% = 3.659, nous pouvons rejeter (H0) au seuil de 0.05%. Ainsi nous pou-
vons conclure que les étudiants de 4IF dorment significativement moins en période de
projet qu’en temps normal ! Sous réserve bien entendu que leurs réponses soient justes et
le modèle de loi gaussienne adéquat.
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R

t.test(x, y, mu = m0, paired = FALSE, alternative = "greater")

réalise le test de (H0) mX −mY 6 m0 contre (H1) mX −mY > m0 lorsque les échan-
tillons x et y sont indépendants.

t.test(x, y, mu = m0, paired = TRUE, alternative = "greater")

réalise le test de (H0) mX −mY 6 m0 contre (H1) mX −mY > m0 lorsque les échan-
tillons x et y sont appariés.

4.2.3 Comparaison de 2 proportions

Soient X1, . . . XnX indépendants et identiquement distribués selon une loi B(pX) et Y1, . . .
YnY indépendants et identiquement distribués selon une loi B(pY). Nous supposons que
les (Xi), (Yj) sont mutuellement indépendants. Nous souhaiterions comparer pX et pY :
peut-on construire des test de pX = pY contre pX 6= pY ou de pX 6 pY contre pX > pY ?

Notons respectivement p̂X et p̂Y les estimateurs de pX et de pY dans les échantillons. En
raison de la difficulté de manipulation des lois binomiales, nous utilisons le théorème de
la limite centrale :

p̂X
loi−→

nX→∞
N (pX; pX(1− pX)/nX) et p̂Y

loi−→
nY→∞

N (pY; pY(1− pY)/nY) .

Par indépendance, lorsque nX et nY sont grands, nous avons approximativement

p̂X − p̂Y ∼ N (pX − pY; pX(1− pX)/nX + pY(1− pY)/nY) .

Dans les constructions de régions critiques, nous sommes toujours ramenés à considérer
le cas pX = pY où sera atteinte la borne supérieure du risque. Lorsque pX = pY =

p, nous avons p̂X− p̂Y√
p(1−p)(1/nX+1/nY)

∼ N (0; 1) . Le paramètre p peut être estimé à partir

des deux échantillons par p = nX p̂X+nY p̂Y
nX+nY

. Nous pouvons montrer (ceci est admis ici)
qu’asymptotiquement, pour nX et nY tendant vers l’infini, remplacer p par son estimation
dans la variable aléatoire ci-dessus ne change pas sa distribution. Ainsi, on admet que

U =
p̂X − p̂Y√

p(1− p)(1/nX + 1/nY)

loi−→
nX ,nY→∞

N (0; 1) lorsque pX = pY.
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A partir de ce résultat, les régions critiques peuvent aisèment être établies, en procédant
de manière similaire à ce qui a été fait dans le cas du test sur une proportion, en ramenant
les hypothèses à une comparaison de pX − pY avec 0. Les régions ainsi obtenues sont
données ci-après.

BILAN
Pour deux proportions :
Soient X1, . . . , Xn1 et Y1, . . . , Yn2 deux échantillons indépendants de lois respec-
tives B(p1) et B(p2). Les estimateurs de p1 et p2 sont donnés par p̂1 = Xn1 et
p̂2 = Yn2 .
Si p1 = p2, alors

U =
p̂1 − p̂2√

p(1− p)
(

1
n1

+ 1
n2

) loi−→N (0, 1) avec p =
n1 p̂1 + n2 p̂2

n1 + n2
.

(H0) (H1) Région critique Wα

p1 = p2 p1 6= p2 {|U| > uα}

p1 6 p2 p1 > p2 { U > u2α}

p1 > p2 p1 < p2 { U < −u2α}

Ces régions sont asymptotiques.

Exemple. Sur n = 500 personnes interrogées lors d’un sondage, nous avions obtenu un
score pour le candidat A de p̂n = 274/500 = 54.8%. Nous souhaiterions distinguer deux
catégories d’individus dans ce sondage (par exemple les moins de 30 ans et les plus de 30
ans, les catégories socio-professionnelles qualifiés et les non qualifiées, les hommes et les
femmes, etc). Soit p1 le score de A sur la catégorie C1 dans la population, et p2 son score
sur la catégorie C2. Nous voudrions savoir si le choix dans l’élection est significativement
différent selon les catégories. Nous nous fixons une acceptation de 5% d’erreur dans notre
conclusion.

n1 = 150 personnes interrogées dans le sondage appartiennent à la catégorie C1 et les
n2 = 350 autres appartiennent à la catégorie C2. Dans la catégorie C1, le score du candidat
A dans le sondage vaut p̂1 = 46.67% et dans la catégorie C2, on a observé une proportion
p̂2 = 58.29% de personnes votant pour A.

Nous allons donc effectuer le test de (H0) p1 = p2 contre (H1) p1 6= p2. La région critique
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de ce test au seuil α est RCα = {|U| > uα} avec U = p̂1− p̂2√
p(1−p)

(
1

n1
+ 1

n2

) où p = n1 p̂1+n2 p̂2
n1+n2

.

La réalisation de U vaut u = −2.39. Comme u5% = 1.96, nous concluons que les deux
catégories votent significativement de manière différente.

R

prop.test( c(sum(x), sum(y)), n=c(n1, n2), alternative="greater")

réalise le test asymptotique de (H0) p1 6 p2 contre (H1) p1 > p2.
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CHAPITRE 5

TESTS DU χ2

Les tests du χ2 se placent dans un cadre où les hypothèses ne peuvent être formulées à
l’aide de paramètres. Nous allons nous intéresser en fait à deux types de question :

— Le modèle choisi est-il valide?

— A-t-on indépendance entre deux jeux de donnnées?

L’intérêt de la première question est évident : si votre modèle est faux, toutes vos conclu-
sions seront potentiellement fausses ! La deuxième question permet de répondre à des
interrogations telles que : un médicament a-t-il une influence sur la guérison? Le poids
et la taille d’un individu sont-il liés? etc.

5.1 Test d’adéquation

Le but d’un test d’adéquation est de vérifier que le modèle choisi est cohérent avec les
données, plus exactement nous allons construire une procédure de test afin de vérifier
si l’hypothèse que les observations sont issues d’une loi donnée est valide. Nous allons
dans un premier temps étudier les tests d’adéquation pour des données discrètes puis
pour des données continues.

5.1.1 Variables dicrètes

Soient X1, . . . , Xn n répétitions indépendantes d’une variables aléatoire X, à valeurs dans
{e1, . . . , ek}. Notons Nj la variable aléatoire correspondant au nombre de variable Xi ayant
pour réalisation ej.

Nous voulons construire une procédure permettant de tester (H0) “La variable X admet
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pour fonction de répartition la fonction F∗” contre (H1) “La variable X n’admet pas pour
fonction de répartition la fonction F∗".

Remarque : Dans la majorité des cas, nous voudrions conclure que la fonction F∗ est bien
la fonction de répartition de X. Idéalement, nous aimerions alors échanger les hypothèses
(H0) et (H1) dans la procédure de test mais nous ne savons pas alors comment contrôler
le risque de première espèce. Nous serons donc intéressés par des p-valeurs élevées.

Comment reformuler les hypothèses testées à l’aide des données? Soit p∗j la probabilité
qu’une variable aléatoire ayant pour fonction de répartition F∗ prenne la modalité ej,
pour j = 1, . . . , k. Nous voulons alors tester (H0) “Pour tout j = 1, . . . , k, nous avons
Nj = np∗j ” contre (H1) “Il existe j ∈ {1, . . . , k} tel que Nj 6= np∗j .”.

Exemple. Nous voudrions tester si un dé est truqué ou équilibré. Pour cela, nous lançons
le dé 300 fois et notons les résultats obtenus :

ej 1 2 3 4 5 6
nj 42 43 56 55 43 61

Nous voulons tester (H0) “Le dé est équilibré" contre (H1) “Le dé est truqué". Si le dé
est équilibré, la probabilité d’avoir chacune des faces vaut p∗j = 1/6. La théorie nous dit
ainsi que sur 300 lancers, il devrait y avoir 50 lancers pour chaque face. D’où le tableau :

ej 1 2 3 4 5 6
nj 42 43 56 55 43 61
np∗j 50 50 50 50 50 50

Nous voulons savoir si les observations (deuxième ligne) sont significativement éloignées
de la théorie (troisième ligne).

Revenons sur la construction du test. L’idée est de construire ensuite une notion de dis-
tance à la situation (H0) testée. introduisons

∆2 =
k

∑
j=1

(Nj − np∗j )
2

np∗j
.

La variable ∆2 est appelée distance du χ2. Elle mesure l’écart entre les effectifs observés
{N1, . . . , Nk} et les effectifs théoriques sous (H0) : {np∗1 , . . . , np∗k}. Nous sommes alors
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ramenés à tester si ∆2 est significativement supérieur à 0, ce qui correspondrait à un
écart significatif entre ce qui a été observé et la théorie. Nous cherchons donc une région
critique de la forme RCα = {∆2 > cα} avec cα > 0.

Afin de construire ce test, nous devons étudier la loi de probabilités de ∆2 sous (H0).
Lorsque l’hypothèse (H0) est vérifiée, la probabilité que Xi = ej vaut p∗j . Alors la loi du
vecteur (N1, . . . Nk) est donnée par :

Pour n1, . . . , nk entiers tels que ∑ nj = n,

P((N1, . . . Nk) = (n1, . . . , nk)) = Cn1
n p∗n1

1 Cn2
n−n1

p∗n2
2 . . . Cnk

n−∑j<k nj
p∗nk

k .

Le vecteur (N1, . . . Nk) suit une loi dite multinomiale de paramètres (n, p∗1 , . . . p∗k ). Il en
résulte que ∆2 suit asymptotiquement une loi du χ2 de paramètre k − 1 (ce résultat est
admis).

Nous en déduisons que la région critique asymptotique est

RCα = {∆2 > zk−1,α}.

Cette région étant asymptotique, elle n’est valable qu’à partir d’un nombre suffisamment
élevé d’observations. En pratique, il ne faut pas appliquer ce test si plus de 20% des
réalisations nj des variables Nj sont inférieures à 5 (critère de Cochran).

Exemple. Dans l’exemple précédent :

ej 1 2 3 4 5 6
nj 42 43 56 55 43 61
np∗j 50 50 50 50 50 50

Alors la distance du χ2 vaut

δ2 =
(42− 50)2

50
+

(43− 50)2

50
+ . . . +

(61− 50)2

50
= 6.48.

Nous comparons δ2 à z5;5% = 11.7. Comme δ2 < z5;5%, nous ne sommes pas dans la région
critique. Ainsi on ne rejette pas (H0). On ne peut pas conclure que le dé est truqué avec
un risque de 5%.

Généralisation : Et si l’on souhaitait tester l’appartenance de X à une famille de loi de
fonction de répartition appartenant à F = {Fθ , θ ∈ Rp} ? Dans ce cas, il faut procéder en
deux étapes :
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1. On estime la valeur de θ par θ̂n.

2. On teste (H0) “X suit la loi Fθ̂n
" contre (H1) “X ne suit pas la loi Fθ̂n

".

La région critique asymptotique du test est alors RCα = {∆2 > zk−1−p;α} avec ∆2 calculé
de manière similaire à ce qui précède en considérant p∗j = Fθ̂n

(ej). Remarquons que l’on
perd autant de degrés de liberté que l’on a de paramètres à estimer.

5.1.2 Variables continues

Nous observons X1, . . . , Xn variables indépendantes de même fonction de répartition F.
Nous voudrions construire un test de (H0) F = F∗ contre (H1) F 6= F∗. L’idée est de se
ramener à un cadre similaire à celui des variables discrètes pour appliquer ce qui précède.

Partitionnons l’ensemble des modalités en k intervalles, de manière similaire à ce qui a
été fait lors de la construction des histogrammes. Nous obtenons les classes cj =]aj−1; aj],
pour j = 1, . . . , k. Notons Nj les effectifs associés : pour tout j = 1, . . . , k, la variable
aléatoire Nj correspond au nombre d’observations dans la classe cj.

Si la fonction de répartition des variables observées est bien F∗, alors la probabilité pour
chacune des variables de se trouver dans la classe cj vaut

p∗j = P(Xi ∈ cj) = F∗(aj)− F∗(aj−1).

L’effectif théorique associé à chacune des classes est ainsi n∗j = np∗j .

Le raisonnement est alors en tout point similaire à ce qui précède. L’hypothèse (H0) est

rejetée au seuil α si δ2 > zk−1,α, avec δ2 = ∑k
j=1

(nj−n∗j )
2

n∗j
, où nj est la réalisation de Nj. Ce

test est asymptotique.

La généralisation à une famille de loi est similaire à ce qui est décrit dans le cas discret.

5.2 Test d’indépendance

Le but est de déterminer si deux variables aléatoires X et Y sont indépendantes. Par
exemple ici nous nous intéresserons à l’influence de la présence en cours sur la note.
Nous souhaitons savoir si la note obtenue en examen est significativement corrélée avec
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le taux de présence aux cours magistraux. Avant de décrire plus avant le test effectué,
nous rappelons les principales notions de vocabulaire liées à l’observation d’un cuople
de variables.

5.2.1 Tableaux de contingence

Nous avons demandé à la promotion de 2009-2010 de donner de manière anonyme son
taux de présence en cours magistral ainsi que sa note à l’examen final. Remarquons qu’en
raison d’un grand nombre d’auto-censure, nous ne disposons malheureusement pas de
suffisament de données à notre goût. Les résultats obtenus sont résumés dans le tableau
ci-après :

Note | Taux de présence < 50% > 50% total
0 à 5 0 2 2
5 à 10 5 3 8
10 à 15 3 11 14
15 à 20 0 6 6
total 8 22 30

Un tel tableau est appelé un tableau de distribution conjointe. Les marges donnant les
totaux sont les distributions marginales.

Donnons les notations utilisées dans un cadre plus général. Considérons deux variables
aléatoires X et Y, de modalités respectives {e1, . . . , ep} et {ẽ1, . . . , ẽk}. Dans le cas de va-
riables continues, ces modalilités représentent des classes. Le tableau de contingence des
observations de X et Y sur n individus est le suivant :

X | Y ẽ1 . . . ẽj . . . ẽk total
e1 n11 n1j n1k n1.
...

...
ei ni1 . . . nij . . . nik ni.
...

...
ep np1 npj npk np.

total n.1 n.j n.k n
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La grandeur nij correspond au nombre d’individus tels que X a pour modalité ei et Y a
pour modalité ẽj. La donnée des {nij, i = 1, . . . , p, j = 1, . . . , k} correspond à la distribu-
tion conjointe de (X, Y) en effectif.

La grandeur ni. = ∑j nij correspond au nombre d’individus tels que X a pour modalité ei.
La donnée des {ni., i = 1, . . . , p} correspond à la distribution marginale de X en effectif.

La grandeur n.j = ∑i nij correspond au nombre d’individus tels que Y a pour modalité ẽj.
La donnée des {n.j, j = 1, . . . , k} correspond à la distribution marginale de Y en effectif.

Comment à partir de tableaux similaires obtenir une première vision de la dépendance
entre les variables? Nous pouvons étudier les distributions dites conditionnelles afin de
mieux visualiser les liens éventuels.

La distribution conditionnelle en fréquence de X selon Y est donnée par le tableau sui-
vant :

X | Y ẽ1 . . . ẽj . . . ẽk

e1 f1|1 f1|j f1|k
...

...
...

...
ei fi|1 fi|j fi|k
...

...
...

...
ep fp|1 fp|j fp|k
total 1 1 1

avec fi|j =
nij
n.j . La grandeur fi|j est une estimation de la probabilité P(X = ei |Y = ẽj).

Ainsipour j donné { fi|j, i = 1, . . . , p} est la distribution empirique de X sachant Y = ẽj

(voir votre cours de probabilité pour des rappels sur les distributions conditionnelles).

Lorsqu’il y a indépendance entre les variables X et Y, le conditionnement de X par une
condition sur Y ne doit pas modifier la distribution. Ainsi dans le tableau ci-dessus, les
distributions, données en colonnes, doivent être similaires.

Prenons l’exemple de la note et du taux de présence en cours. Le tableau de distribution
conjointe en fréquence de la note selon la présence en cours est :
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Note | Taux de présence < 50% > 50%
0 à 5 0 0,09
5 à 10 0,63 0,14
10 à 15 0,38 0,50
15 à 20 0 0,27
total 1 1

Au vu de ce tableau, les distributions conditionnelles étant très différentes, nous avons
envie de conclure que les variables sont liées, c’est-à-dire qu’il y a une corrélation en les
notes obtenues et les taux de présence aux cours magistraux. Nous allons construire une
procédure de test afin de le vérifier.

5.2.2 Construction du test d’indépendance

Tableau des effectifs théoriques sous l’hypothèse d’indépendance

Dans le cas de l’exemple de l’étude du lien entre la note à l’examen et le taux de pésence
en cours magistral, si les variables étaient indépendantes, nous aurions les effectifs théori-
ques suivants :

Note | Taux de présence < 50% > 50% total
0 à 5 0.53 1.47 2
5 à 10 2.13 5.87 8
10 à 15 3.73 10.27 14
15 à 20 1.6 4.4 6
total 8 22 30

Le but est alors de tester si la différence entre le tableau de distribution conjointe observé
et le tableau de distribution conjointe théorique obtenu sous l’hypothèse d’indépendance
est significative. de manière similaire au test du χ2 sur l’adéquation, nous introduisons
une distance du Chi-deux, mesurant l’écart entre les deux tableaux. La distance du χ2

s’écrit :

δ2 = ∑
i,j

(nij − n∗ij)
2

n∗ij
.

De manière similaire à ce qui a été développé pour le test d’adéquation, nous pouvons
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montrer que si δ2 > z(k−1)×(p−1); α alors nous pouvons rejeter l’hypothèse d’indépendance
avec un risque α. La quantité z(k−1)×(p−1); α est ici le quantile d’ordre α de la loi du χ2 de
paramètre (k− 1)× (p− 1).

Remarque : Pour retenir le nombre de degré de liberté de la loi du χ2, notez que celui-ci
est égal à (nombre de lignes-1)×(nombre de colonnes-1).

De manière similaire au test d’adéquation, ce test est asymptotique. Ainsi, afin de l’appli-
quer vous devez vous assurer que moins de 20% des effectifs théoriques sont inférieurs
à 5.

Dans le cas de l’exemple considéré ici, nous ne pouvons pas appliquer le test car la condi-
tion ci-dessus n’est pas vérifiée. Dans un but pédagogique, nous extrapolons les données
recueillies ici pour toute la promotion. Cette démarche ne peut bien sûr être validée et a
uniquement pour but de vous montrer comment s’applique ce test.

Supposons que sur 120 etudiants, nous ayons observé la répartition suivante :

Note | Taux de présence < 50% > 50% total
0 à 5 0 8 8
5 à 10 20 12 32
10 à 15 12 44 56
15 à 20 0 24 24
total 32 88 120

Le tableau des effectifs théoriques sous l’hypothèse d’indépendance est :

Note | Taux de présence < 50% > 50% total
0 à 5 2.13 5.87 8
5 à 10 8.53 23.47 32
10 à 15 14.93 41.07 56
15 à 20 6.40 17.60 24
total 32 88 120

La distance du χ2 vaut

δ2 =
(0− 2.13)2

2.13
+

(8− 5.87)2

5.87
+ . . . +

(24− 17.6)2

17.6
= 33.43.
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Nous comparons cette grandeur à z3×1;5% = 7.81. Nous avons δ2 > z3;5%. Par conséquent
nous rejetons l’hypothèse d’indépendance. Au seuil de 5% la présence en cours magistral
et la note à l’examen sont liées. Remarquons de plus qu’au vu des données, plus le taux
de présence est élevé, plus la note est élevée . . . mais rappelons que nous avons étendu
les résultats observés sur 30 étudiants donc que ces conclusions ne sont pas valides. Ce-
pendant je me permets de vous inciter à suivre les cours d’amphi car même si cela est
probablement moins significatif, la présence en cours semble influencer les notes. . .

R

Rappelons qu’en R, zdl,α est donné par qchisq(1-alpha, df=dl). La p-valeur du
test du χ2 associée à la statistique de test ∆2 est

1-pchisq(Delta2,dl)

qui est égal à P(Z > ∆2) pour Z ∼ χ2(dl).
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CHAPITRE 6

INTRODUCTION À LA REGRESSION LINÉAIRE

Dans ce qui précède, nous nous sommes majoritairement intéressés à des modèles sur
une seule variable aléatoire. Même lors de la comparaison d’échantillons, nous avons
modélisé séparément les variables dans les deux échantillons, ou bien nous nous sommes
ramenés à une unique variable. Le but de ce chapître est d’introduire les modèles faisant
intervenir simultanément plusieurs variables, et plus précisément les modèles cherchant
à établir un lien entre deux variables.

Par exemple, vous souhaitez établir un lien entre le poids et la taille des individus, entre
la distance de freinage d’une voiture et la vitesse à laquelle elle roule, entre le prix des
biens immobiliers et leur surface, etc. Pour formaliser de tels liens, nous allons introduire
un modèle linéaire simple. Ce n’est qu’un aperçu du principe de ces modèles.

Remarque : En informatique, on rencontre parfois la notion de surface de réponse : l’idée est
de comprendre comment les sorties obtenues par votre code dépendent des paramètres
d’entrée à l’aide d’un modèle de régression.

6.1 Le modèle de regression linéaire simple

Définissons tout d’abord le modèle de régression de Y sur x :

Y = f (x) + ε.

où

— Y est la variable expliquée,

— x est la variable explicative,

— ε représente l’erreur de modélisation, ou résidu du modèle.
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Pour un échantillon (xi, yi)i=1...,n d’observations, le modèle s’écrit :

∀i = 1, . . . , n, Yi = f (xi) + ε i.

Nous considérerons dans le cadre de ce cours que les variables xi sont déterministes,
c’est-à-dire que ce sont des constantes et qu’elles ne seront pas vues comme des réalisa-
tions de variables aléatoires. Les résidus ε i sont des variables aléatoires centrées (pour
que le modèle ait une signification). Les variables Yi sont alors également des variables
aléatoires.

Il existe des méthodes, dites de régression non paramétriques, permettant d’estimer la
fonction f sans lui supposer une forme donnée. Cependant, de telles méthodes dépassent
le cadre de ce cours. Nous nous restreindrons ici à un cas simple, où la fonction f est
affine.

6.1.1 Définition

Le modèle de régression linéaire simple s’écrit :

∀i = 1, . . . , n, Yi = a xi + b + ε i,

avec a et b paramètres inconnus et des résidus ε i indépendants, de même loi et tels que
Eε i = 0 et Var(ε i) = σ2.

Les hypothèses de ce modèle, notamment celles sur les résidus, peuvent bien sûr être
relachées, mais nous préférons étudier le cas simple.

Remarquons que l’hypothèse affine n’est pas aussi restrictive qu’il n’y paraît, dans la
mesure où il est souvent possible de s’y ramener à l’aide de changement de variables.
Par exemple :

— Yi = a ln(xi) + b + ε i,

— Y2
i = a exi + b + ε i,

— ln(Yi/(1−Yi)) = a xi + b + ε i, (modèle logistique)

sont aussi des modèles linéaires.

Supposons par exemple que vous disposiez d’un appartement à Lyon que vous souhai-
tez vendre. Vous faîtes réaliser une estimation de votre bien mais vous ne trouvez pas
l’évaluation obtenue cohérente avec les prix du marché. Vous souhaitez donc établir une
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estimation du prix au vu de ce que vous avez observé. Sur un site d’annonces immo-
bilières vous avez relevé les prix et les surfaces de 12 biens immobiliers sur Lyon. Les
données datent du 16/11/2010.

Surface (en m2) 146 70 22 105 76 95 120 32 141 98 114 46
Prix (en milliers d’euros) 465 225 105 321 229 305 369 109 424 314 369 155

Le prix dépend-il de manière linéaire de la surface? Si oui, quels sont les coefficients de
la droite de régression?

La première étape consiste à faire une représentation graphique des données afin de bien
s’assurer qu’il n’est pas absurde d’envisager un modèle linéaire.

FIGURE 6.1 – Prix des biens immobiliers sur Lyon en fonction de leur surface, le
16/11/2010.

Dans le cas présent il semble tout à fait adapté de modéliser le prix en fonction de la
surface par une régression linéaire simple.

6.1.2 Coefficient de corrélation linéaire empirique

Le but est de déterminer une grandeur permettant de confirmer ou d’infirmer que la
relation entre les variables est linéaire. Nous rappelons la définition du coefficient de
corrélation linéaire qui a été vue dans le cours de probabilité.

89



6.1. LE MODÈLE DE REGRESSION LINÉAIRE SIMPLE

Si X et Y sont des variables aléatoires quantitatives, alors la covariance est définie par

Cov(X, Y) = E [(X−EX)(Y−EY)] = E(XY)−E(X)E(Y).

Si la covariance est nulle ont dit que les variables ne sont pas corrélées. Deux variables
indépendantes ne sont pas corrélées mais la réciproque est fausse.

La covariance donne une mesure de dépendance (on dit plutôt de corrélation) entre les
variables X et Y. L’inconvénient est qu’elle n’est pas facilement interprétable dans la me-
sure où une covariance aura un ordre de grandeur très variable selon le type de données
étudiées. C’est la raison pour laquelle on lui préfère en général le coefficient de corréla-
tion linéaire.

Si X et Y sont des variables aléatoires quantitatives, alors le coefficient de corrélation
linéaire est défini par

ρ(X, Y) =
Cov(X, Y)√

Var(X)Var(Y)
.

Nous avons −1 6 ρ(X, Y) 6 1. Lorsque ρ(X, Y)2 = 1, cela signifie que nous avons une
relation du type Y = aX + b entre les variables X et Y.

Donnons maintenant les versions empiriques de ces grandeurs. Pour cela, nous introdui-
sons les notations suivantes :

xn = 1
n ∑n

i=1 xi moyenne empirique des xi

Yn = 1
n ∑n

i=1 Yi moyenne empirique des Yi

s2
x = 1

n ∑n
i=1 x2

i − xn
2 variance empirique des xi

S2
Y = 1

n ∑n
i=1 Y2

i −Yn
2

variance empirique des Yi

La covariance empirique et le coefficient de corrélation linéaire empirique sont alors don-
nés respectivement par :

CxY = 1
n ∑n

i=1 xiYi − xn Yn covariance empirique entre les xi et les Yi

RxY = CxY
sxSY

coefficient de corrélation linéaire empirique entre les xi et les Yi

De même −1 6 RxY 6 1.

Afin de mieux visualiser ce que représente le coefficient RxY, voici quelques exemples :
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FIGURE 6.2 – Représentation des Yi en fonction des xi pour différentes valeurs de RxY.
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Nous voyons tout de suite qu’un modèle linéaire simple sera valide pour une valeur de
R2

xY proche de 1 et ne sera pas cohérent lorsque RxY sera proche de 0. Sous une hypothèse
de lois sur les résidus, il sera alors envisagé de construire un test de pertinence de la
régression en testant si R2

xY est suffisament proche de 1. Dans le cas présent, en l’absence
de lois, il n’est pas possible d’envisager un tel test.

Dans l’exemple des prix des biens immobiliers sur Lyon en fonction de la surface, nous
avons un coefficient de corrélation linéaire empirique égal à rxY = 0, 996. Le modèle
linéaire semble donc bien adapté.

6.1.3 Estimation de la droite de régression par moindres carrés

Une fois que la représentation graphique et le calcul du coefficient de corrélation linéaire
empirique incitent à essayer d’ajuster un modèle de régression linéaire simple, reste à
déterminer comment réaliser cet ajustement. Rappelons que le modèle de régression li-
néaire simple s’écrit :

∀i = 1, . . . , n, Yi = a0 xi + b0 + ε i,

avec a0 et b0 paramètres inconnus et des résidus ε i indépendants, de même loi et tels que
Eε i = 0 et Var(ε i) = σ2.

Le but est alors d’estimer a et b puis ultérieurement σ2. Nous optons pour une approche
dite des moindres carrés. L’idée est de minimiser un critère mesurant l’erreur commise
lorsqu’on résume le nuage de points par une droite.

Supposons que nous considérons que les points sont sur la droite d’équation Y = a x + b.
Alors l’erreur commise pour le ième point vaut δi = Yi − (a xi + b). L’erreur totale peut
alors être évaluée par δ2 = ∑n

i=1 δ2
i , chaque erreur étant élevé au carré afin de bien prendre

en compte l’éloignement des points à la droite de manière similaire. Cette grandeur est
appelé critère des moindres carrés, elle s’écrit donc

δ2 =
n

∑
i=1

(Yi − a xi − b)2.

Le but est alors de trouver l’équation de droite minimisant ce terme d’erreur, c’est-à-dire
de déterminer a et b minimisant δ2.
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FIGURE 6.3 – Construction du critère des moindres carrés.

Pour ce faire, nous dérivons δ2 et nous résolvons le système :

∂δ

∂a
= 0,

∂δ

∂b
= 0.

Nous obtenons :
1
n ∑ xi(Yi − a xi − b) = 0,

1
n ∑(Yi − a xi − b) = 0.

La deuxième équation donne b = Yn − a xn. En remplaçant dans la première, nous en
déduisons que a = CxY/s2

x. Ainsi nous avons le résultat suivant :

BILAN :
Les estimateurs des moindres carrés de a0 et b0 sont

ân =
CxY

s2
x

et b̂n = Yn − ân xn.

En appliquant ces formules dans l’exemple des biens immobiliers sur Lyon, il vient :
ân = 2, 92 et b̂n = 23, 11. Le paramètre b s’interprète comme un coût fixe commun à tout
les biens vendus, et le paramètre a comme le prix d’un m2, en milliers d’euros.
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Ainsi, le coût du mètre carré à Lyon est d’environ 2923 euros au vu de nos données. (Ce
résultat est cohérent avec les chiffres donnés par les agences notariales.) A titre d’informa-
tion, voici les prix approximatifs du mètre carré dans différentes villes de France à cette
date : Brest 1450 euros/m2, Toulouse 2350 euros/m2, Marseille 2500 euros/m2, Bordeaux
2700 euros/m2 et Paris 7500 euros/m2.

FIGURE 6.4 – Prix des biens immobiliers sur Lyon en fonction de leur surface et droite
des moindres carrés.

Les résidus résultant de notre modélisation peuvent ensuite être estimés par ε̂ i = Yi −
ân xi. Nous admettons le résultat suivant :

BILAN :
La variance des résidus peut être estimée par

σ̂2
n =

1
n− 2

n

∑
i=1

(Yi − ânxi − b̂n)
2 =

n
n− 2

S2
Y(1− R2

xY).

Dans l’exemple des prix des biens immobiliers sur Lyon en fonction de la surface, nous
avons σ̂2

n = 118, 6.

Remarquons enfin que l’intérêt d’avoir élaboré un tel modèle, outre qu’il aide à mieux
comprendre le lien entre les deux variables x et Y, est qu’il permet de faire de la prévision.
En effet, pour un x0 donné, nous pouvons estimer que la réalisation de Y correspondante
sera ŷ0 = ân x0 + b̂n.

Dans l’exemple des biens immobiliers, supposons que vous ayez un bien d’une surface
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de 35 m2 situé proche des biens relevés ici. Alors il semble raisonnable de le mettre en
vente à ŷ = 2, 92× 35 + 23, 11 = 125, 31 millers d’euros.

Cependant, si ce modèle permet déjà le calcul de plusieurs grandeurs pertinentes et la
compréhension des liens, nous pouvons constater qu’il est assez limité : aucnu outil sta-
tistique puissant n’est disponible, pour calculer des intervalles de confiance ou réaliser
des tests. Pour cela, il est nécessaire d’introduire une loi de probabilité sur les résidus.
C’est l’objet de la section suivante.

6.2 Le modèle de regression linéaire simple gaussien

Nous supposons ici que les résidus suivent une loi normale. Autrement dit, nous avons :

∀i = 1, . . . , n, Yi = a0 xi + b0 + ε i,

avec a0 et b0 paramètres inconnus et des résidus ε i indépendants, de même loi N (0, σ2).
Cette hypothèse est de loin la plus usuelle, mais remarquez qu’en pratique, vous pou-
vez rencontrer d’autres lois : lois de Poisson en astronomie, lois binomiales lorsque Y
correspond à l’appartenance à une classe, etc.

Lorsque les résidus sont gaussiens, il est immédiat que nous avons alors les lois sui-
vantes :

BILAN :

(i) ân ∼ N (a0, σ2

ns2
x
),

(ii) b̂n ∼ N (b0, σ2

n (1 + xn
2

s2
x
)),

(iii) ân x + b̂n ∼ N (a0 x + b0, σ2

n (1 + (x−xn)2

s2
x

)),

(iv) Ŷn ∼ N (y, σ2

n (1 + n + (x−xn)2

s2
x

)),

(v) (n−2)σ̂2
n

σ2 ∼ χ2
n−2,

(vi) σ̂2
n est indépendante de ân et de b̂n.
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Nous pouvons en déduire des intervalles de confiance et des tests sur les paramètres a, b
et σ2, ainsi que pour une prévision, Ŷ = ânx + b̂n. Rappelons que lorsqu’on remplace σ2

par son estimation dans les lois gaussiennes, on obtient des lois de Student.

La propriété (iii) permet de donner la qualité d’estimation de la droite, tandis que (iv)
donne la qualité de prévision du modèle. (iv) prend donc en compte le fait que le modèle
autorise à s’éloigner de la droite selon la loi N (0, σ2).

Considérons par exemple le cas où nous voulions estimer le prix d’un bien de 35 m2.
Nous avions estimé un prix de ŷ = 125, 31 milliers d’euros. Pouvons-nous donner un
intervalle de confiance? Ceci permettrait notamment de vérifier que le prix proposé par
une agence est cohérent avec le marché.

D’après ce qui précède,

Ŷ ∼ N
(

y,
σ2

n
(1 + n +

(x− xn)2

s2
x

)

)
.

La variance de Ŷ− y est supérieure à celle de Ŷ− (a x + b) par le fait que y = a x + b + ε,
avec ε de variance σ2. En appliquant le théorème de Fisher avec (iv), (v) et (vi),

Ŷ− y√
σ̂2

n

(
1 + n + (x−xn)2

s2
x

) ∼ S t(n− 2).

Ainsi, l’intervalle de confiance d’ordre 1− α pour y est donc :[
Ŷ± tn−2,α

√
σ̂2

n

(
1 + n +

(x− xn)2

s2
x

)]
.

L’application pour un bien de 35 m2 donne IC95%(y) = [98, 25; 152.37]. Si l’agent immo-
bilier a proposé 95000 d’euros, vous pouvez demander à monter le prix.

6.2.1 Tests de pertinence

Afin de vérifier que le choix d’un modèle linéaire était bien justifié nous souhaitons tester
(H0) a = 0 contre (H1) a 6= 0. C’est ce qu’on appelle le test de pertinence de la régression.

Les résultats qui précèdent permette de déduire que

ân − a0

σ̂n/(
√

nsx)
∼ S t(n− 2).
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Par conséquent la région critique de ce test pour le risque α est

RCα = {|T| > tn−2;α} avec T =
ân

σ̂n/(
√

nsx)
.

Dans l’exemple sur les biens immobiliers de Lyon, la réalisation de T vaut t = 37.6.
Comme t10;1% = 3.169 nous pouvons en déduire qu’au seuil de 1%, la régression est bien
pertinente.

Néanmoins, nous avons vu précédemment que pour justifier de la régression linéaire,
nous avions regardé la valeur du coefficient de corrélation empirique RxY. Y-a-t’il un lien
avec le test étudié ici ? Nous pouvons en fait montrer qu’il est équivalent de tester (H0)
a = 0 contre (H1) a 6= 0 et de tester (H0) R2

xY = 0 contre (H1) R2
xY > 0. La région critique

de ce test pour le risque α est

RCα = {F > f1;n−2;α} avec F = (n− 2)
R2

xY
1− R2

xY
.

On peut montrer que F = T2 et f1;n−2;α = t2
n−2;α.

Remarque : En régression multiple, le test de Student permet de savoir si une variable
donnée est pertinente dans la régression, tandis que le test de Fisher regarde la pertinence
globale du modèle. Il revient à regarder si la variabilité de la variable Y est bien expliquée
par le modèle.

6.2.2 Test sur la constante

La présence d’un prix fixe peut sembler surprenante. Il paraît naturel de considérer que
le prix des biens immobiliers Yi varie en fonction de la surface selon Yi = a xi + ε i. Nous
souhaitons donc réaliser le test de (H0) b = 0 contre (H1) b 6= 0.

Nous pouvons montrer que

b̂n − b
σ̂√
n

√
1 + xn

2

s2
x

∼ S t(n− 2).

La région critique de seuil α est donc

RCα = {|T| > tn−2;α} avec T =
b̂n

σ̂√
n

√
1 + xn

2

s2
x

.
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La réalisation de T vaut t = 3.05 et est inférieure à t10;1%. Au seuil de 1%, nous ne pouvons
pas affirmer que la présence de la constante b dans la régression est pertinente.

6.2.3 Etude des résidus

Afin de valider le modèle il faut aussi vérifier que les hypothèses formulées sur les rési-
dus sont bien valables. Plutôt que de donner une approche numérique, nous optons ici
pour une approche graphique.

Dans un premier temps, nous pouvons vérifier que les résidus sont indépendants. Si nous
représentons le nuage de points des résidus estimés, nous ne devons pas voir apparaître
de structure : si la valeur d’un résidu semble dépendre de la valeur du résidu précédent,
cela signifie qu’il y a dépendance. Ceci est souvent le cas par exemple lorsque l’on étudie
une régression au cours du temps (i.e. où xi est le temps d’observation de Yi).

Dans l’exemple de l’immobilier, nous observons bien un nuage de points sans structure
visible, ce qui conforte donc l’hypothèse d’indépendance.
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FIGURE 6.5 – Résidus estimés dans la régression des prix des biens immobiliers sur
Lyon en fonction de leur surface.

Ensuite, nous voulons vérifier qu’ils suivent bien une loi normale et que leur variance
est identique. En utilisant les lois des estimateurs ci-dessus et le théorème de Fisher, cela
implique que ε̂ i/σ̂ suit une loi de student à n− 2 degré de liberté. Si nous représentons ces
variables, dits résidus studentisés, nous devons observer que tous (excepté éventuelle-
ment une exception) doivent être compris dans l’intervalle inter-déciles [tn−2;1%; tn−2;99%].
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FIGURE 6.6 – Résidus studentisés dans la régression des prix des biens immobiliers sur
Lyon en fonction de leur surface.

Enfin, remarquons que le caractère linéaire de la régression n’est validé que si les résidus
ne dépendent pas des xi. En effet, cela signifierait que nous pouvons trouver une fonction
f telle que ε i = f (xi) + ξi et donc que le modèle Yi = a xi + b + f (xi) + ξi serait plus
adapté que le modèle choisi.

Dans notre exemple, le modèle linéaire est validé : aucune structure n’apparaît dans la
représentation des ε i en fonction des xi.

FIGURE 6.7 – Représentations des résidus en fonction de la surface dans la régression
des prix des biens immobiliers sur Lyon.
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6.3 Régression linéaire simple avec R : exemple détaillé

Nous reprenons un autre exemple de régression linéaire simple, mais maintenant en s’in-
téressant à la façon dont on déroule le modèle avec le logiciel R

Préambule : récupération et mise en forme des données

On utilise la base forbes de la librairie MASS.

> library(MASS)
> data(forbes)

Pour avoir des informations sur les données contenues dans le paquet on utilise :

> help(forbes)

Ce paquet contient deux variables : la température d’ébullition de l’eau en degrés Faren-
heit et la pression barométrique en pouces de mercures. La commande

> attach(forbes)

permet de manipuler les variable contenues dans forbes par leur noms respectifs, ici bp
et pres.

Afin de mieux comprendre ce que nous manipulons, nous allons considérer dans la suite
la température en degré Celcius et l’altitude en mètres correspondant à la pression obser-
vée. Ceci est réalisé à l’aide des instructions :

> temp <- -160/9+5/9*bp
> alt <- 8170-274.5*pres

Nous créons ensuite un data.frame avec ces nouvelles variables :

> ebullition <- data.frame(alt=alt,temp=temp)

Les commandes suivantes permettent respectivement de résumer le contenu des données
de ebullition et de donner les principales statistiques descriptives sur les variables :

> str(ebullition)
> summary(ebullition)
> var(ebullition)
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6.3.1 Modèle de régression

On souhaite expliquer la température temp par l’altitude alt.

• Représentation graphique

> plot(ebullition, main=’’,xlab=’Altitude [m]’,
ylab=’Temperature d’ebullition [deg.C]’)
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Le graphique justifie ici pleinement la régression linéaire.

• On cherche à étudier la relation linéaire entre ces deux variables. On utilise pour
cela la fonction lm de R.

> eau.lm <- lm(temp~ alt)

• Les différentes grandeurs calculées sont données par names(eau.lm). On peut no-
tamment extraire :

– les prédictions : fitted(eau.lm) ou predict(eau.lm),

– les coefficients du modèle : coef(eau.lm),

– les résidus : resid(eau.lm),

– les résidus studentisés : stdres(eau.lm). Cette commande nécessite le paquet
MASS.
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Pour chacune des 3 premières commandes, on peut également utiliser respective-
ment
eau.lm$fitted.values, eau.lm$coefficients ou eau.lm$resid. Par exemple ici,
coef(eau.lm) retourne

(Intercept) alt
99.944254402 -0.003848985

• Si l’on souhaite accéder à des grandeurs non citées par names(eau.lm), elles sont a
priori données par summary(eau.lm). Vous pouvez le vérifier à l’aide de
names(summary(eau.lm)). Par exemple pour accéder au coefficient R2, la syntaxe
est la suivante :

> summary(eau.lm)$r.squared

qui retourne ici 0.9944282. Le R2 est donc très élevé, ce qui est cohérent avec le
nuage de points représenté initialement et justifie un modèle linéaire.

• On trace la droite de régression estimée par le modèle linéaire sur le nuage de
points.

> abline(eau.lm)
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La droite de régression linéaire semble bien correspondre au nuage de points.
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6.3.2 Principales statistiques

• Nous détaillons ici la sortie de

> summary(eau.lm)

(2)

(3)

(4)

On retrouve dans cette sortie :

(1) La formule initiale associée à la sortie.

(2) Des statistiques descriptives sur les résidus.

(3) Les estimations des paramètres, de leur écart-type, la valeur de la statistique
de student associée, la p-valeur du test (H0) coeff=0 contre (H1) coeff 6=0.

(4) L’écart-type estimé des résidus.
Les coefficients de détermination R2, avec et sans ajustement.
Le test de pertinence de Fisher : valeur de la statistique et p-valeur.

Dans cet exemple, nous pouvons constater notamment que la constante et le coeffi-
cient de la pente sont significatifs et que le test de Fisher ne rejette pas le modèle li-
néaire. De plus on constate que les deux tests de pertinence, décrits en Section 6.2.1,
donnent bien la même p-valeur.
Remarque : Le coefficient de détermination ajusté est utilisé en régression multiple
et n’est pas pertinent pour une régression simple comme ici.

• Représentation des intervalles de confiance et de prédiction.

> ICconf <- predict(eau.lm, interval = "confidence", level = 0.95)
> matlines(alt, ICconf, lty = c(1, 4, 4), col = c(1, 2, 2))
> ICpred <- predict(eau.lm, interval = "prediction", level = 0.95)
> matlines(alt, ICpred, lty = c(1, 4, 4), col = c(1, 3, 3))
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6.3.3 Etude des résidus

Nous proposons ici une étude des résidus plus détaillée que celle présentée auparavant.

• On commence par étudier le caractère centré des résidus et l’homogénéité de la
variance. Pour cela, on représente les résidus studentisés en fonction des (ŷi) :

> plot(fitted(eau.lm),stdres(eau.lm),main=’’,xlab=’Reponses estimees’,
ylab=’Residus studentises’)

ou encore

> plot(eau.lm,which=1)
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L’hypothèse d’espérance nulle peut être remise en cause au vu de ce graphique :
il semblerait que pour un voisinage donné de ŷ, les résidus ne sont pas centrés.
L’homogénéité de la variance est elle vérifiée graphiquement : l’étalement du nuage
de points ne dépend pas de l’axe des abscisses.

• On teste ensuite l’hypothèse de normalité. Ceci peut être testé à l’aide d’un test dit
de Shapiro-Wilk (non vu en cours), qui teste (H0) les données sont issues d’une loi
gaussienne, contre (H1) la loi n’est pas gaussienne.

> shapiro.test(resid(eau.lm))

On obtient une p-valeur de 3.36%. On rejette l’hypothèse de normalité avec un seuil
de 5%. L’hypothèse gaussienne n’est pas vérifiée ici, le modèle n’est donc pas va-
lidé.

On peut également représenter un QQ-plot afin de vérifier l’hypothèse gaussienne

> qqnorm(residuals(eau.lm), ylab="Residuals")
> qqline(residuals(eau.lm))

ou encore

plot(eau.lm,which=2)
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Visuellement, on valide l’hypothèse gaussienne si les points sont “proches” de la
droite.

• On a également fait l’hypothèse d’indépendance des résidus. On peut représenter
l’autocorrélation des résidus

> acf(residuals(eau.lm))
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Si une barre, exeptée la première, dépasse des seuils en pointillés, l’indépendance
est remise en cause. Des tests (Durbin Watson notamment) sont possibles mais non
traités ici.
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L’hypothèse d’indépendance n’est pas mise en défaut.

• On peut vérifier la présence de points ayant une forte contribution à l’aide de la
fonction influence influence() ou de la distance de Cook.

> cooks.distance(eau.lm)
> plot(eau.lm,which=4)
> plot(eau.lm,which=5)
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Les distances sont inférieures à 1, donc il n’y a pas de point perturbant l’estimation.
Cependant le point 12 semble atypique. Si nous l’enlevons nous pouvons en effet
constater que l’hypothèse de normalité est alors vérifiée :

> eau.lm.new <- lm(temp ~ alt, subset=(1:17)[-12])
> shapiro.test(resid(eau.lm.new))
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retourne une p-valeur de 40.83%. Il faut donc a priori retirer le point 12 pour que le
modèle soit valable.

En conclusion, il faudrait reprendre l’étude après avoir retiré le point 12 des observations.

Notons que les 4 principaux graphiques fournis par la fonction plot(eau.lm) sont les
suivants :
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Ce qu’on attend de ces graphiques :

— Residuals vs Fitted : le nuage de points doit être sans structure

— Normal Q-Q : les points doivent être proches de la bissectrice

— Scale-Location : le nuage de points doit être sans structure

— Cook’s distance : les points doivent être entre les lignes pointillées correspondant à 1
et il faut regarder les points au-dessus.
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R - Bilan

Pour ajuster un modèle linéaire simple gaussien yi = a xi + b + ε i :

modele <- lm(y ~ x)

Pour voir les principales statistiques du modèle :

summary(modele)

Pour étudier la validité des hypothèses, on peut regarder les graphiques donnés
par plot(modele). En détail,

- Adéquation et homoscédasticité : plot(fitted(modele),stdres(modele))

- Indépendance : acf(res(modele))

- Normalité : shapiro.test(resid(modele)) et QQ-plot

- Points aberrants : cooks.distance(modele)

Seul le modèle simple est considéré ici, c’est-à-dire avec une seule variable explicative. En
pratique nous avons souvent plus d’une variable explicative et nous devons donc réaliser
un modèle de régression dit multiple. Une sélection des variables explicatives pertinentes
est ensuite nécessaire. Ce modèle ne peut être considéré ici par manque de temps.
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