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analysis carried in Section 3 in the present draft (even though quite natural in its own)

can be essentially avoided.

Abstract

We give a simplified and complete proof of the convergence of the chordal explo-
ration process in critical FK-Ising percolation to chordal SLEκ(κ− 6) with κ = 16/3.
Our proof follows the classical excursion-construction of SLEκ(κ− 6) processes in the
continuum and we are thus lead to analyse the behaviour of the driving function of the
discrete system when Dobrushin boundary conditions collapse to a single point (this
corresponds to analysing the contribution of microscopic excursions and this is what
we call “dust analysis”). Our proof is very different from [KS15, KS16] as it only relies
on the convergence to the chordal SLEκ process in Dobrushin boundary conditions
and does not require the introduction of a new observable. Still, it relies crucially on
the powerful topological framework developed in [KS17] as well as its follow-up paper
[CDCH+14]. Also it relies in an essential way on the strong RSW Theorem proved in
[CDCH16].

We end the paper with a detailed sketch of the convergence to radial SLEκ(κ− 6)
when κ = 16/3 as well as the derivation of Onsager’s one-arm exponent 1/8.
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1 Introduction

Random cluster model on a finite graph Ω = (V (Ω), E(Ω)) ⊂ Z2 is a probability measure
on bond configurations ω = (ωe : e ∈ E(Ω)) ∈ {0, 1}E(Ω):

φp,q,Ω[ω] ∝ po(ω)(1− p)c(ω)qk(ω),

where o(ω) (resp. c(ω)) denotes the number of open edges (resp. closed edges) in ω
and k(ω) denotes the number of clusters in ω. This model was introduced by Fortuin
and Kasteleyn in 1969 and this model is closely related to the Ising model and the Potts
model. When q ≥ 1, the model enjoys FKG inequality which makes it possible to consider
the infinite volume measures of the model. For q ≥ 1, there exists a critical value pc for
each q such that, for p > pc, any infinite volume measure has an infinite cluster; whereas,
for p < pc, any infinite volume measure has no infinite cluster. This dichotomy does not
tell what happens at criticality p = pc and the critical phase is of great interest. When
q ∈ [1, 4], the critical phase is believed to be conformally invariant and the interface at
criticality is conjectured to converge to SLEκ where

κ = 4π/ arccos(−√q/2).

Conformal invariance is proved for q = 2 in the celebrated works [Smi10, CS12] while
the convergence to SLEκ is proved in [CDCH+14]. When q = 2, the random-cluster
model is also called FK-Ising percolation. Precisely, the conclusion proved in [Smi10,
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CS12, CDCH+14] is the following: consider the critical FK-Ising percolation on a simply
connected domain Ω with Dobrushin boundary conditions, the interface converges in law
to SLEκ. What about the convergence with other boundary conditions? The simplest
boundary conditions after the Dobrushin one is the fully wired boundary conditions. The
convergence of the interface with fully wired boundary conditions is the main topic of this
article.

Theorem 1.1. Let (Ω; a, b, c) be either a Jordan domain or the upper half plane H with
three marked points a, b, c on its boundary. Let (Ωδ; aδ, bδ, cδ) be a sequence of discrete
domains on δZ2 converging to (Ω; a, b, c) in the Carathéodory sense. Then, as δ → 0,
the exploration path of the critical FK-Ising model in the domain (Ωδ; aδ, bδ) with Do-
brushin wired/free boundary conditions and targeted at cδ, converges weakly to the chordal
SLEκ(κ−6) from a to c with force point at b and with κ = 16/3. The case a ≡ b corresponds
to an exploration path in a fully wired (or fully free) domain.

The same conclusion was also proved in [KS15], but our proof is very different from
the one there. In [KS15], the authors constructed the so-called holomorphic observable for
fully wired boundary conditions which is a generalization of the observable constructed
in [CS12] for Dobrushin boundary conditions; and then extract information from the
observable to characterize the scaling limit. Our approach is different and it only relies on
the convergence to the chordal SLE process and the powerful topological tool developed
in [KS17].

In order to explain our approach, let us first describe the connection between SLEκ(κ−
6) and SLEκ. Fix κ ∈ (4, 8), the process SLEκ(κ−6) is the Loewner chain (see Section 2.2)
with the driving function W which is the solution to the following SDE system:

dWt =
√
κdBt +

(κ− 6)dt

Wt − Vt
, W0 = 0; dVt =

2dt

Vt −Wt
, V0 = x ≥ 0, (1.1)

where B is a standard one-dimensional Brownian motion. The corresponding Loewner
chain is called SLEκ(κ − 6) in H from 0 to ∞ with force point x. Set θt = Vt −Wt, we
find that θt/

√
κ is a Bessel process of dimension 3− 8/κ. Note that θt is the renormalized

harmonic measure (see Section 3.2) of the right side of η[0, t] union [0, x].
As the process is scaling invariant, one can define the process in any simply connected

domain via conformal image. The process has the following special property—target-
independence: Suppose (Ω; a, b, c) is a simply connected domain with three distinct degen-
erated prime ends a, b, c on the boundary in counterclockwise order. Then an SLEκ(κ−6)
in Ω from a to c with force point b, then, up to the disconnection time—the first hitting
time of the boundary arc ∂bc, it has the same law as an SLEκ in Ω from a to b, up to the
disconnection time. This target-independent property allows us to decompose SLEκ(κ−6)
process into SLEκ excursions as follows.

Fix some cut-off ε > 0, define T ε1 to be the first time that θ reaches ε and define Sε1 to be
the first time after T ε1 that θ hits zero. Generally, define T εk+1 to be the first time after Sεk
that θ reaches ε and define Sεk+1 to be the first time after T εk+1 that θ hits zero. For t > 0,
suppose gt is the conformal map corresponding to the Loewner chain in the definition of
η and denote by xt the preimage of Vt under gt. Then, by the above target-independence,
we see that, for each k ≥ 1, the conditional law of (η(t), T εk ≤ t ≤ Sεk) given (η(t), t ≤ T εk)
is the same as SLEκ in H \ η[0, T εk ] from η(T εk) to xT εk up to the disconnection time. In
other words, the conditional law of (gT εk (η(t)), T εk ≤ t ≤ Sεk) is the same as SLEκ in H from
0 to ε up to the disconnection time. Roughly speaking, SLEκ(κ−6) can be constructed by
concatenating a sequence of i.i.d. SLEκ excursions. In particular, we have the following
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decomposition of θ: {(θ(t)/
√
κ, T εk ≤ t ≤ Sεk)}k are i.i.d. Bessel excursions. Each of them

is a Bessel process starting from ε and stopped at the first hitting time of zero.
In our approach of proving Theorem 1.1, we wish to follow the above excursion con-

struction of SLEκ(κ − 6). Suppose the same setup as in Theorem 1.1 and suppose γn is
the interface in Ωδn from aδn to cδn where the lattice size δn → 0. Fix some conformal map
φn : (Ωδn ; aδn , cδn)→ (H; 0,∞) (resp. φ : (Ω; a, c)→ (H; 0,∞)) such that φn(bδn)→ φ(b).
Denote by ηn = φn(γn). Denote by Wn its driving function and θn the renormalized
harmonic measure of the right side of ηn[0, t] union [0, φn(bδn)]. The goal of Theorem 1.1
is to show the convergence of ηn to η ∼ SLEκ(κ− 6) in distribution. To this end, we first
introduce stopping times Tn,εk and Sn,εk for ηn which are the analogs of T εk and Sεk for η, see
Section 5.1. These stopping times decompose θn into excursions {(θn(t), Tn,εk ≤ t ≤ Sn,εk )}k
and dusts {θn(t), Sn,εk ≤ t ≤ Tn,εk+1}. Our strategy is as follows.

1. First, we argue that {ηn}n is tight, see details in Section 2.3. For any convergent
subsequence, which we still denote by {ηn}n, we know that the limiting process η
is a continuous curve with continuous driving function W . Moreover, Wn → W
and ηn → η locally uniformly. The key ingredient in the first step is the topo-
logical framework developed in [KS17] and Russo-Symour-Welsh bounds proved in
[CDCH16].

2. Second, we argue that θn → θ locally uniformly. This fact seems intuitive, but it is
not as easy as one expects. We prove the convergence in Section 4.

3. Third, we argue that the stopping times converge: Tn,εk → T εk , S
n,ε
k → Sεk. Although

we have ηn → η,Wn → W and θn → θ locally uniformly, the convergence of the
stopping times still requires certain technical works. One difficulty one faces is that
one cannot rely on a stopping time for the limiting curve without possibly ruining
the domain Markov property for the discrete exploration paths. It will be proved in
Section 5.2.

4. Fourthly, we use the convergence of the interface with Dobrushin boundary condi-
tions [CS12] to conclude that, for each k ≥ 1, the process (θ(t), T εk ≤ t ≤ Sεk) is a
Bessel excursion and it is independent of (θ(t), t ≤ T εk). There are several subtleties
in this step. The first one is that, although θn → θ, Tn,εk → T εk and Sn,εk → Sεk,
we still need to control the processes on the intervals [Tn,εk ∧ T εk , T

n,ε
k ∨ T εk ]. The

second one is that the Markov property of ηn or θn does not pass to the limit η or
θ automatically. This is related to the convergence of the conditional distributions
which can be quite delicate to conclude in general. See discussions in Section 5.3.

5. Fifthly, we control the dusts {θn(t), Sn,εk ≤ t ≤ Tn,εk+1}. In this step, we restrict to
the case when Ω is flat near c. The key ingredient in this step is a uniform estimate,
Proposition 3.7, whose proof in Section 3 is based on the strong Russo-Symour-Welsh
bounds from [CDCH16].

6. Combining the previous two steps, we conclude that θ is indeed a Bessel process. In
the fourth step, we have shown that θ has the law of Bessel excursion on the intervals
[T εk , S

ε
k]; and in the fifth step, we control the process on the intervals [Sεk, T

ε
k+1] in

a uniform way. From these, we see that θ is an “approximate Bessel process”. We
show that the approximate Bessel processes converge to Bessel process in Section 2.1,
and then conclude that θ is indeed a Bessel process. The conclusions derived in the
fourth and fifth steps are both crucial in this step, see Section 5.4. The dependency
structure is also rather delicate here: we do not need to show that the limiting dust
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components {θ(t), Sn,εk ≤ t ≤ Tn,εk+1} are independent of what happened before, but
we crucially need of course that the excursions (θ(t), T εk ≤ t ≤ Sεk) are independent
of (θ(t), t ≤ T εk).

7. Next, we argue that η is an SLEκ(κ− 6). In other words, we wish to argue that Wt

solves the SDE system (1.1) from the fact that θ is a Bessel process. Recall that W
is the driving function of η and θ is defined as the renormalized harmonic measure
of the right side of η. It is not immediate how to get information on W out of θ.
Naively, the first trivial attempt is through the convergence from the discrete to the
continuum, as one has in the discrete

θn(t) = Wn
t +

∫ t

0

2ds

θn(s)
.

Combining with the facts that Wn →W and θn → θ, it is tempting to conclude

θ(t) = Wt +

∫ t

0

2ds

θs
. (1.2)

However, it is not hard to find examples where the integral term does not necessarily
converge as Wn → W and θn → θ. In fact, the relation (1.2) still holds, but we
prove it using the fact that η is a continuous curve with continuous driving function
W and that η satisfies the Russo-Symour-Welsh bounds. With (1.2) at hand, one
can conclude that η is indeed an SLEκ(κ− 6), see Section 5.4.

8. As we restrict to the case when Ω is flat near c in the fifth step, we only prove
Theorem 1.1 in this case in the previous step. Finally, we prove the conclusion in
the general case in Section 5.5 using a standard coupling argument.

Acknowledgments: We wish to thank Vincent Beffara, Dima Chelkak, Antti Kemp-
painen and Avelio Sepúlveda for useful discussions. C.G. is supported by the ANR grant
Liouville ANR-15-CE40-0013 and the ERC grant LiKo 676999 and H.W. is supported by
the startup funding no. 042-53331001017 of Tsinghua University. This work was carried
out during visits of Hao Wu in Lyon funded by the ERC LiKo 676999.

2 Preliminaries

2.1 Approximate Bessel process

Let (Xt, t ≥ 0) be a Bessel process of dimension d. When d > 1, it is a semimartingale
and a strong solution to the SDE:

Xt = X0 +Bt +
d− 1

2

∫ t

0

ds

Xs
, (2.1)

where B is a standard one-dimensional Brownian motion, see [RY94, Chapter XI]. When
d ∈ (1, 2), it almost surely assumes the value zero on a nonempty random set with zero
Lebesgue measure. Standard excursion theory shows that if we decompose X according
to zero points, then it gives a Poisson point process of Bessel excursions of the same
dimension.

Fix d ∈ (1, 2), let X = (Xt, t ≥ 0) be a Bessel process of dimension d starting from
zero. We will decompose the process according to zero points. For ε > 0, define sequences
of stopping times: set Sε0 = 0, for k ≥ 0,

T εk+1 = inf{t > Sεk : Xt ≥ ε}, Sεk+1 = inf{t > T εk+1 : Xt = 0}.
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We know that (
Xt, S

ε
k ≤ t ≤ T εk+1

)
, k ≥ 0

are i.i.d; and that
(Xt, T

ε
k ≤ t ≤ Sεk) , k ≥ 0

are i.i.d and their common law is Bessel excursion of dimension d starting from ε and
stopped when it hits zero. Fix t0 > 0, define N ε = sup{k : Sεk ≤ t0}. Roughly speak-
ing, consider the process X on the time interval [0, t0],the quantity N ε is the number of
excursions before t0 that have heights greater than ε.

Next, we will introduce some approximate Bessel processes. These processes are the
same as X on the time intervals ∪k(T εk , Sεk). We will show that, under certain conditions,
these approximate Bessel processes will converge to the Bessel process as ε→ 0.

For ε > 0, suppose X̃ε
t is a continuous process with the following properties. Set

S̃ε0 = 0. Let T̃ ε1 be the first time that the process exceeds ε. After T̃ ε1 , the process evolves
according to (2.1) until it hits zero at time S̃ε1. For k ≥ 0, let T̃ εk+1 be the first time after

S̃εk that the process exceeds ε. After T̃ εk+1, the process evolves according to (2.1) until it

hits zero at time S̃εk+1. For t0 > 0, define similarly Ñ ε = sup{k : S̃εk ≤ t0}.

Proposition 2.1. Fix d ∈ (1, 2). Suppose X̃ε satisfies the following assumptions.

(1) For each k ≥ 1, the processes

(X̃ε
t , t ≤ T̃ εk), and (X̃ε

t , T̃
ε
k ≤ t ≤ S̃εk),

are independent.

(2) There exist a sequence of identically distributed random variables {Y ε
k }k≥0 such that,

for all k, we have almost surely,

T̃ εk+1 − S̃εk ≤ Y ε
k .

(N.B. Note that we are not claiming the independence of the Y ε
k here).

(3) We have ε−1E[Y ε
0 ]→ 0 as ε→ 0.

Then the process X̃ε converges in law to the Bessel process of dimension d with the topology
of uniform convergence on compact subsets of [0,∞).

Proof. First, we construct a coupling of the process X̃ε with a Bessel process X of dimen-
sion d. Run X̃ε

t for t ∈ [0, T̃ ε1 ] and Xt for t ∈ [0, Sε1] independently; given X̃ε up to T̃ ε1 and
Xt up to Sε1, set

X̃ε
T̃ ε1+t

= XT ε1+t, 0 ≤ t ≤ Sε1 − T ε1 .

Generally, for k ≥ 1, given X̃ε
t up to T̃ εk and Xt up to Sεk, set

X̃ε
T̃ εk+t

= XT εk+t, 0 ≤ t ≤ Sεk − T εk .

Define M ε = sup{n :
∑n

k=1(Sεk − T εk) ≤ t0}. Then it is clear that N ε, Ñ ε ≤M ε. To obtain
the conclusion, it is sufficient to show, for any δ > 0 and t0 > 0,

lim
ε→0

P

[
sup

0≤t≤t0
|X̃ε

t −Xt| ≥ δ
]

= 0. (2.2)
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Note that, X̃ε and X agree on [0, t0] up to translation of time by an amount at most∑
k≤Mε

(
T εk+1 − Sεk

)
+
∑
k≤Mε

(
T̃ εk+1 − S̃εk

)
.

Thus, for any r > 0 small, we have

P

[
sup

0≤t≤t0
|X̃ε

t −Xt| ≥ δ
]
≤ P [∃s, t ∈ [t0 + 1] such that |s− t| < r, |Xs −Xt| ≥ δ − 2ε]

+ P

 ∑
k≤Mε

(
T εk+1 − Sεk

)
≥ r/2

+ P

 ∑
k≤Mε

(
T̃ εk+1 − S̃εk

)
≥ r/2

 .
Since X is continuous, we know that, for fixed δ > 0,

P [∃s, t ∈ [t0 + 1] such that |s− t| < r, |Xs −Xt| ≥ δ − 2ε]→ 0, as r → 0.

By [She09, Proposition 3.6], we have almost surely

εM ε → 0,
∑
k≤Mε

(T εk+1 − Sεk)→ 0, as ε→ 0.

Therefore, for fixed r > 0,

P

 ∑
k≤Mε

(
T εk+1 − Sεk

)
≥ r/2

→ 0, and P [M ε ≥ 1/ε]→ 0, as ε→ 0.

Combining these, to derive (2.2), it is sufficient to show, for any r > 0,

P

 ∑
k≤1/ε

(
T̃ εk+1 − S̃εk

)
≥ r/2

→ 0, as ε→ 0. (2.3)

Since T̃ εk+1 − S̃εk ≤ Y ε
k for all k. When ε−1E[Y ε

0 ]→ 0, we have

P

 ∑
k≤1/ε

(
T̃ εk+1 − S̃εk

)
≥ r/2

 ≤ P

 ∑
k≤1/ε

Y ε
k ≥ r/2

 ≤ 2E[Y ε
0 ]

εr
→ 0,

as desired.

2.2 Chordal Loewner chain

Suppose that K is a is compact subset of H. We call K an H-hull if K = H ∩K and
H = H \K is simply connected. Riemann’s mapping theorem asserts that there exists a
unique conformal map Ψ from H onto H such that Ψ(z) = z + O(1/z), as z → ∞. In
particular, there exists real a = a(K) such that

Ψ(z) = z + 2a/z + o(1/z), as z →∞.

The quantity a(K) is a non-negative increasing function of the set K, and we call it the
half-plane capacity of K and denote it by hcap(K).

We list some some estimates of the half-plane capacity which are useful in the later
sections. For their proof, see for instance[KS17, Lemma A.13].
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Lemma 2.2.

• If K ⊂ B(x, ε) for some x ∈ R, then hcap(K) ≤ ε2/2.

• If K ∩ (R× {εi}) 6= ∅, then hcap(K) ≥ ε2/4.

• If K ⊂ [−l, l]× [0, ε], then hcap(K) ≤ lε
2π (1 + o(1)) as ε/l→ 0.

The chordal Loewner chain with a continuous driving function W : [0,∞) → R is
the solution for the following ODE: for z ∈ H,

∂tgt(z) =
2

gt(z)−Wt
, g0(z) = z.

This solution is well-defined up to the swallowing time

T (z) := inf
{
t : inf

s∈[0,t]
|gs(z)−Ws| > 0

}
.

For t ≥ 0, define Kt := {z ∈ H : T (z) ≤ t}, then gt(·) is the unique conformal map from
H \Kt onto H with the expansion gt(z) = z + 2t/z + o(1/z) as z →∞.

We record two lemmas 2.3 and 2.4 in as follows. These two properties hold determin-
istically and will be useful later in the paper.

Lemma 2.3. [LSW04, Lemma 2.1]. There is a constant C > 0 such that the following
holds. Let (Wt, t ≥ 0) be a continuous driving function and (Kt, t ≥ 0) be the corresponding
Loewner chain. Set

k(t) :=
√
t+ max{|W (s)−W (0)| : s ∈ [0, t]}.

Then, for all t ≥ 0, we have

C−1k(t) ≤ diam(Kt) ≤ Ck(t).

Lemma 2.4. [MS16b, Lemma 3.3]. Suppose that η is a continuous path in H from 0 to
∞ that admits a continuous Loewner driving function W . Let (gt) be the corresponding
family of conformal maps. For each t, let Xt be the right most point of gt(η[0, t]) ∩ R. If
the Lebesgue measure of η ∩ R is zero, then X solves the integral equation

Xt =

∫ t

0

2ds

Xs −Ws
, X0 = 0+. (2.4)

Chordal SLEκ is the chordal Loewner chain with driving function W =
√
κB where

B is a one-dimensional Brownian motion. For κ > 0, the SLEκ process is almost surely a
continuous transient curve in H from 0 to ∞. When κ ∈ [0, 4], the curve is simple; when
κ ∈ (4, 8), the curve is self-touching; and when κ ≥ 8, the curve is space-filling. (See
[Law05] and references therein).

Chordal SLEκ(ρ) with force point V0 = x ∈ R is the chordal Loewner chain with
driving function W solving the following SDEs:

dWt =
√
κdBt +

ρdt

Wt − Vt
, W0 = 0; dVt =

2dt

Vt −Wt
, V0 = x. (2.5)

For κ > 0 and ρ > −2, define θt = Vt −Wt. The process θt/
√
κ is a Bessel process of

dimension 1 + 2(ρ+ 2)/κ > 1, hence Vt−Wt is well-defined for all times. This implies the
existence and uniqueness of the solution to (2.5). It is proved in [MS16a] that SLEκ(ρ)
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with ρ > −2 is almost surely generated by continuous and transient curves. Suppose
(Ω; a, b, c) is a simply connected domain Ω with three marked points (degenerate prime
ends) a, b, c on the boundary in counterclockwise order. We define SLEκ(ρ) in Ω from
a to c with force point b as the image of SLEκ(ρ) in H from 0 to ∞ with force point 1
under the conformal map φ : (H; 0, 1,∞)→ (Ω; a, b, c). In this article, we are interested in
SLEκ(κ− 6) as it has the following target-independent property.

Lemma 2.5. [SW05]. Suppose η is an SLEκ(κ − 6) in Ω from a to c with force point b
and define S to be the first time that η hits the boundary arc ∂bc, then (η(t), 0 ≤ t ≤ S)
has the same law as an SLEκ in Ω from a to b up to the first time that it hits the boundary
arc ∂bc.

Suppose η is an SLEκ(κ−6) in H from 0 to∞ with force point x ≥ 0. Then the process
θt = Vt −Wt is the renormalized harmonic measure (see Definition 3.6) of the right side
of η[0, t] union [0, x]. On the other hand, we find

dθt = −
√
κdBt +

(κ− 4)dt

θt
.

Thus the process θt/
√
κ is a Bessel process of dimension 3− 8/κ. Note that,

3− 8/κ ∈ (1, 2), when κ ∈ (4, 8).

This is important when we will apply Proposition 2.1 in the proof of Theorem 1.1.

2.3 Convergence of curves: the chordal case

In this section, we recall the main result of [KS17]. Let X be the set of continuous
oriented unparameterized curves, that is, continuous mappings from [0, 1] to C modulo
reparameterization. We equip X with the metric

dX(γ1, γ2) = inf
ϕ1,ϕ2

sup
t∈[0,1]

|γ1(ϕ1(t))− γ2(ϕ2(t))|, (2.6)

where the infimum is over all increasing homeomorphisms ϕ1, ϕ2 : [0, 1] → [0, 1]. The
topology on (X, dX) gives rise to a notion of weak convergence for random curves on X.

We call (Ω; a, b) a Dobrushin domain if Ω is a bounded simply connected domain Ω
with two distinct degenerate prime ends a, b on the boundary. We denote by ∂ab or (ab)
the boundary arc of ∂Ω from a to b in counterclockwise order.

Let Xsimple(Ω; a, b) be the collection of continuous simple curves in Ω from a to b such
that they only touch the boundary ∂Ω in {a, b}. In other words, Xsimple(Ω; a, b) is the
collection of continuous simple curves γ such that

γ(0) = a, γ(1) = b, γ(0, 1) ⊂ Ω.

Let X0(Ω; a, b) be the closure of the space Xsimple(Ω; a, b) in the metric topology
(X, dX). We often consider some reference sets X0(U;−1,+1) and X0(H; 0,∞) where
the latter can be understood by extending the above definition to curves defined on the
Riemann sphere.

Since choral SLE is invariant under scaling, we can define chordal SLE in (Ω; a, b) via
conformal image: suppose φ is any conformal map from H onto Ω that sends 0,∞ to a, b,
we define chordal SLE in Ω from a to b by the image of chordal SLE in H from 0 to ∞ by
φ. Note that SLEκ is in Xsimple(Ω; a, b) almost surely when κ ≤ 4 and it is in X0(Ω; a, b)
almost surely when κ > 4.
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We call (Q;x1, x2, x3, x4) a quad if Q is simply connected subset of C with four distinct
boundary points x1, x2, x3, x4. The four points are in counterclockwise order. We denote
by dQ((x1x2), (x3x4)) the extremal distance between (x1x2) and (x3x4) in Q. We say that
a curve γ crosses Q if there exists a subinterval [s, t] such that γ(s, t) ⊂ Q and γ[s, t]
intersects both (x1x2) and (x3x4).

For any curve γ ∈ X0(Ω; a, b) and any time τ , define Ω(τ) to be the connected compo-
nent of Ω\γ[0, τ ] with b on the boundary. Consider a quad (Q;x1, x2, x3, x4) in Ω(τ) such
that (x2x3) and (x4x1) are contained in ∂Ω(τ). We say that Q is avoidable if it does not
disconnect γ(τ) from b in Ω(τ).

Definition 2.6. Suppose {(Ωn; an, bn)}n is a sequence of Dobrushin domains. For each n,
suppose Pn is a probability measure supported on X0(Ωn; an, bn). We say that the collection
Σ(M) = {Pn}n satisfies Condition C2 if there exists a constant M > 0 such that for
any Pn ∈ Σ(M), any stopping time 0 ≤ τ ≤ 1, and any avoidable quad (Q;x1, x2, x3, x4)
of Ωn(τ) such that dQ((x1x2), (x3x4)) ≥M , we have

Pn[γ[τ, 1]crosses Q | γ[0, τ ]] ≤ 1/2.

For a probability measure P on curves in Ω, let φ be a conformal map on Ω. We denote
by φP the pushforward of P by φ. For the Dobrushin domain (Ωn; an, bn), let ψn be any
conformal map from (Ωn; an, bn) onto (U;−1,+1). Given the family Σ(M) as above, define
the family

ΣU(M) = {ψnPn : Pn ∈ Σ(M)}.

Theorem 2.7. If the family Σ(M) satisfies Condition C2, then the family ΣU(M) is tight
in the topology induced by (2.6). Suppose P∞ is a limiting measure of the family ΣU(M),
then the following statements hold P∞ almost surely.

(1) There exists β > 0 such that γ has a Hölder continuous parameterization for the
Hölder exponent β.

(2) The tip γ(t) of the curve lies on the boundary of the connected component of U\γ[0, t]
with 1 on the boundary for all t.

(3) The curve γ is transient: i.e. limt→1 γ(t) = 1.

Suppose γn ∼ Pn and let φn be any conformal map from (Ωn; an, bn) onto (H; 0,∞). We
parameterize ηn := φn(γn) by the half-plane capacity. Let Wn be the driving process of ηn.
Then

(4) {Wn}n is tight in the metrizable space of continuous function on [0,∞) with the
topology of local uniform convergence.

(5) {ηn}n is tight in the metrizable space of continuous function on [0,∞) with the
topology of local uniform convergence.

Moreover, if the sequence converges in any of the topologies (4) and (5) above it also
converges in the other topology and the limits agree in the sense that the limiting curve is
driven by the limiting driving process.

Proof. [KS17, Theorem 1.5, Corollary 1.7, Proposition 2.6].

Lemma 2.8. Assume the same as in Theorem 2.7 and suppose {ηn} is any convergent sub-
sequence and η is the limiting process. Then η satisfies all the requirements in Lemma 2.4
almost surely.
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Proof. Theorem 2.7 guarantees that η is generated by a continuous curve with a continuous
Loewner driving function W . We only need to check that η∩R has zero Lebesgue measure.
For convenience, we couple all ηn and η in the same space so that ηn → η and Wn → W
locally uniformly almost surely.

It is sufficient to prove there exists α > 0 such that, for all x ∈ R and ε > 0, we have

P[η ∩B(x, ε) 6= ∅] ≤ 10(ε/|x|)α. (2.7)

With (2.7) at hand, we see that P[η hits x] = 0 for all x ∈ R \ {0}, thus η ∩ R has zero
Lebesgue measure. We only need to prove (2.7) for x ≥ 4ε. Let Ax(r,R) be the semi-
annulus in H with center at x and inradius r and outradius R. It is proved in [KS17,
Proposition 2.6] that Condition C2 implies the following property: there exists α′ > 0
such that, for any avoidable quad Q in H,

P[ηn crosses Q] ≤ 10 exp(−α′dQ((x1x2), (x2x4))).

We apply this property to Q = Ax(2ε, x/2), then there exists α > 0 such that

P[ηn crosses Ax(2ε, x/2)] ≤ 10(ε/x)α.

For T > 0, denote by ‖ηn − η‖∞,T = inf{|ηn(t)− η(t)| : 0 ≤ t ≤ T}. Then we have

P[η[0, T ] ∩B(x, ε) 6= ∅] ≤ P[ηn crosses Ax(2ε, x/2)] + P[‖ηn − η‖∞,T ≥ ε]
≤ 10(ε/x)α + P[‖ηn − η‖∞,T ≥ ε].

Let n→∞, we have
P[η[0, T ] ∩B(x, ε) 6= ∅] ≤ 10(ε/x)α.

Thus

P[η ∩B(x, ε) 6= ∅] ≤ P[η[0, T ] ∩B(x, ε) 6= ∅] + P[η ∩B(x, ε) 6= ∅, η[0, T ] ∩B(x, ε) = ∅]
≤ 10(ε/x)α + P[η ∩B(x, ε) 6= ∅, η[0, T ] ∩B(x, ε) = ∅].

Let T → ∞, as η is transient, the second term goes to zero and we obtain (2.7). This
completes the proof.

2.4 Application to exploration paths of FK-Ising percolation

Let us start by recalling some useful facts on FK-Ising percolation that we will need
later in this paper. The reader may consult [DC13] for general background on FK-Ising
percolation.

We will consider finite subgraphs Ω = (V (Ω), E(Ω)) ⊂ Z2. For such a graph, we denote
by ∂Ω the inner boundary of Ω:

∂Ω = {x ∈ V (Ω) : ∃y 6∈ V (Ω) such that {x, y} ∈ E(Z2)}.

A configuration ω = (ωe : e ∈ E(Ω)) is an element of {0, 1}E(Ω). If ωe = 1, the edge e
is said to be open, otherwise e is said to be closed. The configuration ω can be seen as
a subgraph of Ω with the same set of vertices V (Ω), and the set of edges given by open
edges {e ∈ E(Ω) : ωe = 1}.

Given a finite subgraph Ω ⊂ Z2, boundary condition ξ is a partition P1t· · ·tPk of ∂Ω.
Two vertices are wired in ξ if they belong to the same Pi. The graph obtained from the
configuration ω by identifying the wired vertices together in ξ is denoted by ωξ. Boundary
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conditions should be understood informally as encoding how sites are connected outside
of Ω. Let o(ω) and c(ω) denote the number of open can dual edges of ω and k(ωξ) denote
the number of maximal connected components of the graph ωξ.

The probability measure φξp,q,Ω of the random cluster model model on Ω with edge-
weight p ∈ [0, 1], cluster-weight q > 0 and boundary condition ξ is defined by

φξp,q,Ω[ω] :=
po(ω)(1− p)c(ω)qk(ωξ)

Zξp,q,Ω
,

where Zξp,q,Ω is the normalizing constant to make φξp,q,Ω a probability measure. For q = 1,
this model is simply Bernoulli bond percolation.

If all the vertices in ∂Ω are pairwise wired (the partition is equal to ∂Ω), it is called
wired boundary conditions. The random cluster model with wired boundary conditions
on Ω is denoted by φ1

p,q,Ω. If there is no wiring between vertices in ∂Ω (the partition is
composed of singletons only), it is called free boundary conditions. The random cluster
model with free boundary conditions on Ω is denoted by φ0

p,q,Ω.
We call critical FK-Ising model the random cluster model with

q = 2, p = pc(2).

For q = 2, we have a stronger version of RSW. Given a discrete quad (Q; a, b, c, d), we
denote by dQ((ab), (cd)) the discrete extremal distance between (ab) and (cd) in Q, see
[Che16, Section 6]. The discrete extremal distance is uniformly comparable to and con-
verges to its continuous counterpart—the classical extremal distance.

Theorem 2.9. [CDCH16, Theorem 1.1]. Fix q = 2. For each L > 0 there exists c(L) > 0
such that, for any quad (Q; a, b, c, d) and any boundary conditions ξ, if dQ((ab), (cd)) ≤ L,
then

φξpc(2),2,Q [(ab)↔ (cd)] ≥ c(L).

The medial lattice (Z2)� is the graph with the centers of edges of Z2 as vertex set, and
edges connecting nearest vertices. This lattice is a rotated and rescaled version of Z2. The
vertices and edges of (Z2)� are called medial-vertices and medial-edges. We identify the
faces of (Z2)� with the vertices of Z2 and (Z2)∗. A face of (Z2)� is said to be black if it
corresponds to a vertex of Z2 and white if it corresponds to a vertex of (Z2)∗. See more
detail and figures in [DC13, Section 3].

Fix a Dobrushin domain (Ω; a, b) and consider a configuration ω together with its dual-
configuration ω∗. The Dobrushin boundary condition is given by taking edges of ∂ba to
be open and the dual-edges of ∂∗ab to be dual-open. Through every vertex of Ω�, there
passes either an open edge of Ω or a dual open edge of Ω∗. Draw self-avoiding loops on Ω�

as follows: a loop arriving at a vertex of the medial lattice always makes a ±π/2 turn so
as not to cross the open or dual open edges through this vertex. The loop representation
contains loops together with a self-avoiding path going from a� to b�, see Fig. 2.1. This
curve is called the exploration path in Ω� from a� to b�. For δ > 0, we consider the rescaled
square lattice δZ2. The definitions of dual and medial Dobrushin domains extend to this
context.

Theorem 2.10. [CDCH+14, Theorem 2]. Suppose (Ω; a, b) is a bounded simply con-
nected subset Ω ⊂ C with two distinct boundary points (degenerate prime ends) a, b. Let
(Ωδ; aδ, bδ) be a sequence of discrete Dobrushin domains on δZ2 converging to (Ω; a, b)
in the Carathéodory sense: fix the conformal maps φ : (Ω; a, b) → (H; 0,∞) and φδ :
(Ωδ; aδ, bδ)→ (H; 0,∞) so that φδ → φ as δ → 0 uniformly on compact subsets of Ω.
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Figure 2.1

(1) Then the exploration path γδ of the critical FK-Ising model with Dobrushin boundary
conditions in (Ωδ; aδ, bδ) converges in distribution for the topology induced by (2.6)
to chordal SLE16/3 in Ω from a to b.

Suppose γ is an SLE16/3 in Ω from a to b. We parameterize φδ(γδ) (resp. η = φ(γ))

by the half-plane capacity and let W δ (resp. W ) be the driving function. Let δn → 0,
denote by γn := γδn, ηn := φδn(γδn) and Wn := W δn; and suppose {ηn} is a convergent
subsequence. We also have the followings

(2) Wn converges in distribution to W with the topology of local uniform convergence.

(3) ηn converges in distribution to η with the topology of local uniform convergence.

In the above, we have defined the exploration path with Dobrushin boundary con-
ditions. Next, we will introduce the exploration path with wired boundary conditions.
Consider a configuration in Ω with wired boundary conditions and draw its loop repre-
sentation on Ω�. Construct the exploration path from a� to b� as follows. Starting from
a�, cut open the loop next to a and follow the loop clockwise until one of the following
two cases happens: (1) the path reaches the target; (2) the path arrives at a point which
is disconnected from the target. If case (1) happens, the path stops. If case (2) happens,
cut open the loops next to the current position and follow the new loop clockwise until
one of the two cases happens, and repeat the same strategy. Continue in this way until
the path reaches b�. See Fig. 2.2.

2.5 On degenerate prime ends

In the course of our proof, we will need to apply the above convergence Theorem 2.10 at
multiple occasions along the exploration procedure. In order to apply Theorem 2.10, we
need to make sure that the tip of the exploration path (aδ → a), as well as the marked
point at the end of the dual arc (bδ → b) are degenerate prime ends a.s. This will follow
from the following general Lemma.

Lemma 2.11. Let Ω be a bounded Jordan domain with some interior point x0 and let
γ : [0, T ]→ Ω̄ be a continuous curve which avoids x0. Then for any t > 0, the conformal
map f : U → Ω(t) (where Ω(t) is the connected component of x0 in Ω \ γ([0, t]) can be
continuously extended to Ū. In particular all points on ∂Ω(t) are degenerate prime ends.
(N.B. Ω(t) may not be a Jordan domain anymore).
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Figure 2.2

Remark 2.12. Note that this statement is similar in flavour to the visibility of the tip
statement in Theorem 2.7–Item(2). But it is independent of it : it does not follow from,
nor imply the visibility of the tip property.

This Lemma is not new: see for example Example 3.8 in [Law05] and its proof in
[New92, pp 88–89]. We include a proof below for completeness.

Proof of Lemma 2.11. Following [Law05, Proposition 3.7] (see also the continuity theorem
p18 in [Pom92]), it is equivalent to the fact that C \Ω(t) is locally connected for any time
t > 0. As we assumed that Ω is a Jordan domain, Ω(t) is the connected component of
x0 of a continuous curve η : [0, 1] → C. Following [Law05], a closed set K ⊂ C is locally
connected if for any ε > 0 there exists δ > 0 such that for any z, w ∈ K with |z − w| < δ,
there exists a connected set K1 ⊂ K with z, w ∈ K1 and diam(K1) ≤ ε.

Suppose C \ Ω(t) is not locally connected, i.e. one can find ε > 0 and a sequence
{zn, wn} of points such that |zn − wn| → 0 which do not satisfies the above property. As
Ω is a bounded set, supn |zn| ∨ |wn| < ∞, we can then extract a convergent subsequence
{ẑn, ŵn} such that ẑn, ŵn → x∗. If that point x∗ is at positive distance from the curve η
(in other words if x∗ is in C \ η([0, 1])), then it is immediate to reach a contradiction as
C\ η([0, 1]) is open. If on the other hand, x∗ belongs to the range of η, then x∗ = η(t∗) for
some t∗ and one can find times un, (resp. vn) such that ẑn (resp. ŵn) is very close to η(un)
(resp. η(vn)) in C \ Ω(t) (for example by taking the closest points from ẑn, ŵn to η). By
extracting further, we can assume un → u and vn → v. Our hypothesis implies that there
is no connected subset K1 in C \ Ω(t) of diameter less than ε/2 connecting η(u) to η(v).
As ẑn, ŵn → x∗ = η(t∗), by the continuity of the curve η, we must have η(u) = η(v) = x∗.
This gives us a contradiction by choosing K1 := {x∗}.

3 Uniform control on the dust

The goal of this section is to obtain a uniform control on the Loewner drift of the explo-
ration process γδ when the approximate Bessel process is close to 0. Even though this
paper mostly deals with the chordal case, we start with the radial case because it is simpler
to state and also because it is needed in the detailed sketch for the radial convergence in
Section 6. We then state and adapt the proof to the chordal case.
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3.1 The radial case

Let us state the key estimate in the radial setting.

Proposition 3.1. There exist constants c, C > 0 such that for all inner radius r > 0, all
outer radius R > r, all ε ∈ (0, 1

4 ], all radial lattice-domain Ωδ which surrounds B(0, 2r)
and is surrounded by B(0, R), all marked point aδ ∈ ∂Ωδ ⊂ δZ2, then if the mesh δ is
sufficiently small (the proof below gives δ ≤ exp(− 100

CR,r
1
ε ), but is highly sub-optimal, see

Remark 3.4 below), the FK-radial exploration process starting from aδ and targeting the
origin will create, with probability at least c > 0, a dual arc of harmonic measure ε before
accumulating a capacity larger than C ε2.

The statement of this proposition is of course very intuitive. The difficulty lies in
the fact that the geometry of Ωδ can be arbitrary complicated. We will need to build
appropriate quads inside Ωδ which will have the following properties:

1. Their capacity is bounded by C ε2

2. They are built in such a way that the strong RSW—Theorem 2.9—can be used to
identify arcs with large Ω(ε)-harmonic measure.

As it does not seem straighforward to come up with such quads, our approach is as follows:

1. We will first map Ωδ to the disk using a conformal map φ : Ωδ → U

2. Then we will build the appropriate quads and domains on U

3. Finally, and this will be the main step, we will argue that the image under φ−1 of
these continuous quads can be accurately approximated by δZ2- quads which have
the suitable monotony properties so that the capacity/harmonic measure are still
satisfied for these approximated quads.

Let us start by stating an analog of Lemma 2.2 in the radial setting. Recall first
that the conformal radius of a domain D seen from z ∈ D is |ϕ′(z)|−1 where ϕ is any
conformal map from D onto U sending z to the origin. We denote this conformal radius
by CR(z;D). For any compact subset K ⊂ U, let D be the connected component of U\K
that contains z. We define the capacity of K seen from z to be

cap(z;K) = − log CR(z;D).

When z is the origin, we simply denote CR(0;D) and cap(0;K) by CR(D) and cap(K)
respectively. We have similar estimates for the capacity as above.

Lemma 3.2 (Radial analog of Lemma 2.2). Suppose that K is a compact subset of U such
that U \K is simply connected and contains the origin.

(1) If K ⊂ B(x, ε) for some x ∈ ∂U, then cap(K) ≤ 4ε2.

(2) If K ∩B(0, 1− ε) 6= ∅, then cap(K) ≥ ε2/8.

(3) If K ⊂ {z : 1−ε < |z| < 1, arg(z) ∈ [−l, l]} for some l ∈ (0, π/2], then cap(K) ≤ Clε
as long as l ≥ ε where C is a universal constant.
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Proof. First, one can check Item (1) by calculating cap(B(1, ε)). Next, we prove Item (2)
by contradiction. Suppose that there exists K such that K ∩ B(0, 1 − ε) 6= ∅ and that
cap(K) < ε2/8. Then one can find a smooth simple curve (γ(t), 0 ≤ t ≤ T ) parameterized
by the capacity such that γ(0) ∈ ∂U, |γ(T )| ≤ 1 − ε and T < ε2/8. Suppose that
(gt(z), 0 ≤ t ≤ T ) is the solution to the radial Loewner chain for γ with driving function
Wt = exp(iθt). For z ∈ U \ γ[0, T ], we write Xz

t = Re log gt(z). By the ODE for gt(z) (see
[Law05]), we have

dXz
t

dt
= Re

1 + gt(z)e
−iθt

1− gt(z)e−iθt
≤ 1 + eX

z
t

1− eXz
t
.

Thus,
(
1− eXz

t
)
dXz

t ≤ 2dt. Integrating both sides, we have

Xz
T − eX

z
T −Xz

0 + eX
z
0 ≤ 2T.

This is true for any z ∈ U \ γ[0, T ]. Let z → γ(T ), we have

2T ≥ −ε− log(1− ε) ≥ ε2/4.

This is a contradiction and completes the proof of Item (2).
Finally, we prove Item (3) by estimating the capacity of

W(ε, l) := {z : 1− ε < |z| < 1, arg(z) ∈ [−l, l]}.

Set φ(z) = i(1− z)/(1 + z), then φ is the conformal map from U onto H that sends 0 to i
and 1 to 0. Suppose l ∈ (0, π/2] and ε ∈ (0, 1/2), one can check that

φ(W(ε, l)) ⊂ R(ε, l) := [−l, l]× [0, 2ε].

The domain H\R(ε, l) is a polygon with vertices w1 = −l, w2 = −l+2iε, w3 = l+2iε, w4 =
l. Schwarz-Christoffel mappings give the conformal mapping from H onto to such polygons.
By symmetry, we may write one such mapping

f(z) =

∫ z
√

(w − a)(w + a)

(w − a− b)(w + a+ b)
dw,

where w1 = f(−a − b), w2 = f(−a), w3 = f(a), w4 = f(b). By [KS17, Lemma A.10], we
know that

a =
l

2
(1 + o(1)), b =

4ε

π
(1 + o(1)), as ε/l→ 0. (3.1)

By symmetry, we know that Re f(ui) = 0 for u > 0. Let y > 0 be such that f(yi) = i.
Then g(z) := f−1(z)/y is a conformal map from H \R(ε, l) onto H that fixes i. By (3.1),
we have y = 1 +O(lε). Therefore

cap(R(ε, l)) = log |g′(i)| = − log |f ′(yi)| − log y ≤ O(lε),

as desired.

We now proceed to the proof of Proposition 3.1. Let φ : Ωδ → U be the conformal
map which maps 0 to 0 and aδ to 1. We first want to build an “outer” shape which has
bounded capacity O(ε2). Let us consider for this a domain K = Kε as in Lemma 3.2 of
side-length l = 2ε. This domain has a capacity bounded by Cε2. We shall also consider
four scaled copies of such domains: K1 = 20K, K̃1 = 10K, K2 = 4K and K̃2 = 2K. See
Fig. 3.1. By the same Lemma 3.2, these domains have capacity bounded by O(ε2). Our
first key Lemma (which is of deterministic nature) can be stated as follows:
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φ(aδ)

φ(λδ1)

∂H

K1

K2

φ(λδ2)

φ(∂1) φ(∂2)

Figure 3.1: For simplicity, this figure as well as figures below are sketched in H instead of
U as it should.

Lemma 3.3. If δ is sufficiently small (i.e. δ ≤ δ0(ε, r, R)), there is a lattice path λ1 = λδ1
in δZ2 ∩ Ωδ which disconnects φ−1(∂K1) from φ−1(∂K̃1). Similarly there is a lattice path
λ2 = λδ2 which disconnects φ−1(∂K2) from φ−1(∂K̃2). See Fig. 3.1.

Note here that there are no issues of subtle prime ends as Ωδ is a δZ2 domain.

Proof. The proof relies on easy considerations of harmonic measure. Suppose one cannot
find a path disconnecting say φ−1(∂K1) from φ−1(∂K̃1). This means that one can nec-
essarily find a square Qδ in δZ2 of side-length 3δ which intersects φ−1(∂K1) as well as
φ−1(∂K̃1). As such, the conformal image φ(Qδ) intersects ∂K1 and ∂K̃1 and its diameter
needs to be larger than dist(∂K1, ∂K̃1) ≥ ε. In particular the harmonic measure of φ(Qδ)
seen from 0 in U (for the Brownian motion stopped when first exiting U \ f(Qδ)) is larger
than 1

100ε (by easy considerations on Brownian motion). Now, by conformal invariance
of harmonic measure, the harmonic measure of the square Qδ seen from 0 (for the B.M.
stopped when first exiting Ωδ \ Qδ) needs to be larger than 1

100ε as well. On the other
hand, as Ωδ is bounded (Ωδ ⊂ B(0, R)), by monotony properties of harmonic measure, the
above harmonic measure is smaller than the harmonic measure in B(0, R) of Qδ seen from
0. As the distance from Qδ to the origin is larger than Ω(r) (which follows for example
from Köbe’s theorem), this later harmonic measure is smaller than CR,r(log 1

δ )−1.

Remark 3.4. Note that it is possible to obtain much better bounds on how small δ needs
to be (with slightly more technical proofs though, this is why we sticked to that one). For
example one way is to consider the extremal length in the annulus A1 := K1 \ K̃1 from
one of the arcs of A1 intersecting ∂U to the other symetric arc. This extremal length is
clearly bounded from above by some constant M < ∞. If a path as in Lemma 3.3 did
not exist, then by designing an appropriate ρ-intensity on φ−1(A1) and using Beurling’s
estimate together with Koebe 1

4 -Theorem, one can show that the extremal length (which is

conformally invariant) would need to be larger than Ω(1) log( ε2

20δ ) (ε2 comes from Beurling
here) which would yield a much better control on δ = δ(ε) in Lemma 3.3.

End of the proof of Proposition 3.1. let Q be the lattice-quad in Ωδ ∩ δZ2 with two
opposite arcs ∂1 and ∂2 along ∂Ωδ and its two other arcs are λδ1 and λδ2. By construction,
Q is a lattice-quad which has extremal length from ∂1 to ∂2 bounded from above by some
constant M <∞. It thus follows from the strong RSW Theorem 2.9 that uniformly in the
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boundary conditions around Q, there is a dual crossing from ∂1 to ∂2 in Q with probability
larger than c = c(M) > 0. We now work in the domain U (using the map φ : Ωδ → U).
The radial exploration path starts from φ(aδ). On the event that there is a dual crossing
from φ(∂1) to φ(∂2), let τ be the first time the exploration path reaches the arc φ(∂1).
(Recall the exploration path keeps dual edges on its right). By construction, the capacity
of the interface stopped at t = τ is less than Cε2 (this follows from Lemma 3.2) and the
harmonic measure of the dual arc of the exploration path at t = τ is larger (by monotony
properties of harmonic measure) than the harmonic measure of the 4ε-long arc on the left
of φ(aδ) and is thus larger than ε. This concludes our proof of Proposition 3.1.

3.2 The chordal case

The additional slight technical difficulty in the chordal case is the fact that the harmonic
measure is replaced by the notion of renormalized harmonic measure seen from the target
b and ∂Ω may not be very regular around b (this issue obviously never arises with an
interior target point in the radial case). Throughout this section, we shall assume that
the boundary ∂Ω of our domain is smooth at least in a small neighbourhood of the target
b (for Ωδ, we shall even assume that ∂Ωδ is flat and oriented along ex or ey in a small
neighbourhood of bδ). This will allow us to define below an appropriate notion of renor-
malized harmonic measure seen from b. Later on in Section 5.5, we will explain how
to derive the general result when ∂Ω is not necessarily smooth near b.

Definition 3.5. Let Ω ( C be a bounded simply connected domain which has a smooth
boundary in some neighbourhood of b ∈ ∂Ω. For any A ⊂ ∂Ω, we define the renormalized
harmonic measure of A to be

RHMΩ,b(A) := lim
u→0

1

u
P b+u~n

[
Bτ ∈ A

]
,

where ~n is the normal derivative of ∂Ω at b pointing inside Ω and τ is the first exit time
that the Brownian motion B started at b+ u~n exits Ω.

If a 6= b is a degenerate prime end on ∂Ω, and if φ : (Ω; a, b) → (H; 0,∞) is the
conformal map from Ω to H sending a → 0, b → ∞, and satisfying φ(b + u~n) ∼u→0

1
u i,

then the renormalized harmonic measure of A seen from b is the same as the classical
RHM of φ(A) in the upper half plane H whose definition is given below.

Definition 3.6. For any Borel set A ⊂ R, we define the renormalized harmonic
measure of A seen from infinity to be

RHM(A) = RHMH(A) := lim
y→∞

πy P i·y[Bτ ∈ A] ,
where τ is the first time the Brownian motion started at iy touches ∂H. The multiplicative
factor π is there so that RHM([0, L]) = L. By conformal invariance of Brownian motion,
we define in the same fashion the renormalized harmonic measure for general hulls
H := H \K where K is any compact set of the plane as follows: for any subset A ⊂ ∂H,
we define

RHMH(A) := lim
y→∞

πy P i·y[BτH ∈ A] .
We are now ready to state our key estimate in the chordal case.
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Proposition 3.7. There exist constants c, C > 0 such that for all inner radius r > 0, all
outer radius R > r, all ε ∈ (0, 1

4 ], all bounded lattice domain Ωδ surrounded by B(0, R),
all marked point aδ ∈ ∂Ωδ ⊂ δZ2, all marked point bδ ∈ ∂Ωδ such that |bδ − aδ| > r and
Ωδ ∩B(bδ, r) is identical to B(bδ, r)∩H or B(bδ, r)∩ (iH), then if the mesh δ is sufficiently
small (the proof gives δ ≤ exp(− 100

CR,r
1
ε )), the FK-chordal exploration process ηδ from aδ to

bδ will create, with probability at least c > 0, a dual arc of renormalized harmonic measure
ε before accumulating a half-plane capacity larger than C ε2.

The same statement holds if Ωδ is H∩δZ2\Kδ where Kδ is a δ-lattice compact connected
set which intersects R.

Proof. The proof follows the same lines as in the radial case : let φ : Ωδ → H be the
conformal map such that φ(bδ + u~n) ∼u→0

1
u · i and φ(aδ) = 0. We build a quad Q via

φ−1 in the same way (see Fig. 3.1). To show that this quad has the right properties, one
needs to

1. adapt Lemma 3.3 to the chordal case.

2. rely on Lemma 2.2 to get the desired bound of C ε2 on the accumulated half-plane
capacity.

To prove the analog of Lemma 3.3, one follows the same approach except one needs to
replace the arguments based on the harmonic measure seen from 0 by arguments based
instead on the renormalised harmonic measure (RHM) seen from bδ. Indeed,
suppose, one can find a δ-square Qδ which intersects ∂K1 and ∂K̃1, this means its diameter
is larger than dist(∂K1, ∂K̃1) ≥ ε. We need here to generalize slightly the notion of RHM
as φ(Qδ) is not included in ∂H, let us then define

RHM(φ(Qδ)) := lim
y→∞

πy P i·y[Bτ ∈ φ(Qδ)
]
,

where τ is the first time the Brownian motion started at iy touches ∂H ∪ φ(Qδ). Since
diam(φ(Qδ)) ≥ ε, it easily implies that its RHM is larger than c1ε. Now, as this quantity
is conformally invariant, this means

RHMΩδ,bδ(Qδ) := lim
u→0

1

u
P bδ+u~n

[
Bτ ∈ Qδ

]
≥ c1ε ,

where τ is the first time the Brownian motion started at bδ + u~n touches ∂Ωδ ∪Qδ.
Then we consider the upper bound on RHMΩδ,bδ(Qδ), to this end, we shall use our

assumption that Ωδ ∩ B(bδ, r) is identical to B(bδ, r) ∩ H or B(bδ, r) ∩ (iH). Indeed, the
fact the geometry is very simple around bδ allows us to give an explicit expression of the
RHM of Qδ using (non-renormalized) harmonic measure, i.e. without limiting procedure
u → 0. More precisely, for any radius smaller than r, say r0 := r

2 , there is an explicit
probability measure λr0 on ∂B(bδ, r0) ∩ Ωδ, and a scaling parameter kr0 � 1

r0
such that

RHM(Qδ) = kr0

∫
∂B(bδ,r0)∩Ωδ

Px
[
Bτ ∈ Qδ

]
λr0(dx) .

Now, as in the chordal case, it is easy to check that there is a constant Cr,R < ∞ s.t.
uniformly in δ and x ∈ ∂B(bδ, r0) ∩ Ωδ, Px

[
Bτ ∈ Qδ

]
≤ Cr,R(log 1

δ )−1. This gives us a
contradiction and the rest of the proof is concluded in the exact same fashion.
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4 Convergence of renormalized harmonic measure

Throughout this section, we will assume we are in the same setup as in Theorem 2.10.
We thus have a sequence of domains (Ωn; an, bn) (= (Ωδn ; aδn , bδn)) which converge in
Carathéodory sense to (Ω; a, b) and we are given conformal maps φn : Ωn → H and
φ : Ω→ H satisfying the hypothesis in Theorem 2.10. Recall the main convergence result
from that Theorem is its item (3) on the random curves in H, ηn := φn(γn) and η := φ(γ)
each parametrised by the half-plane capacity in H. Furthermore recall that the Loewner
driving function W of η is the limit in law of Wn, the driving function of ηn.

We now state the main result of this section.

Proposition 4.1. Assume we are in the same setup as in Theorem 2.10. We also as-
sume (using Skorokhod’s representation theorem) that the random curves ηn and η (each
parametrized by half-plane capacity) are coupled on the same probability space so that both
Wn and ηn a.s. converge locally uniformly to W and η. Let t 7→ θn(t) (resp. t 7→ θ(t)) de-
note the renormalized harmonic measure of the right boundary of ηn([0, t]) (resp. η([0, t])).
Then θn a.s. converges to θ locally uniformly. I.e. for any T > 0, almost surely

‖θn − θ‖∞,T = sup
t∈[0,T ]

|θn(t)− θ(t)| → 0, as n→∞.

Proof. Let us fix some time T > 0. Recall we are in the setup of Theorems 2.7 and 2.10.
By combining hypothesis of Theorem 2.7 with the estimate Lemma 2.3, one easily obtains
that

M := sup
n

diam(ηn[0, T ]) ∨ diam(η[0, T ]) <∞ a.s. (4.1)

ηt

0 R

Figure 4.1: We express the harmonic measure on the right of the curve η([0, t]) as the
difference of the harmonic measure of the grey and green arcs.

Our proof will be based on writing the renormalized harmonic function θn(t) as a
difference of two quantities: indeed one has for any t ∈ [0, T ], and for any R > M ,

θn(t) = RHMH\ηn[0,t](η
n(t), R)− RHMH\ηn[0,t]([0, R]). (4.2)

Here RHMH\ηn[0,t](η
n(t), R) means the renormalized harmonic measure of the right bound-

ary of ηn[0, t] union [0, R]. See Fig. 4.1. Let gnt be the conformal map from the unbounded
connected component of H\ηn[0, t] onto H normalized at∞. Now by conformal invariance
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of RHM, the first term is

RHMH\ηn[0,t](η
n(t), R) = gnt (R)−Wn(t)

= R+O(
(diamηn[0, t])2

R
)−Wn(t)

= R+O(
1

R
)−Wn(t) by (4.1)

→ R+O(
1

R
)−W (t) uniformly on [0, T ] .

Note that we also have

RHMH\η[0,t](η(t), R) = R+O(
1

R
)−W (t) .

By letting R → ∞ in the above two displayed equations and using (4.2), this concludes
our proof modulo the remaining lemma below.

Lemma 4.2. For any R > M (recall (4.1)),

RHMH\ηn[0,t]([0, R])→ RHMH\η[0,t]([0, R])

uniformly in t ∈ [0, T ] and the speed of convergence is independent of R > M .

ηt

0 R
xδt

δ2

Figure 4.2: The point xδt can be defined as the center of the δ-ball started at +∞ and
shifted towards the origin until it intersects for the first time the curve η([0, t]).

Proof. Let δ > 0 be some small real number. Define (See Fig. 4.2)

xδt := sup{x ∈ R+ : B(xδt , δ) ∩ η[0, t] 6= ∅} ,

where B(xδt , δ) is the Euclidean ball centred around xδt ∈ ∂H of radius δ. Let us consider
the domains {

Ht := H \Hull(η[0, t])

Hδ
t := H \

(
Hull(η[0, t])(δ2) ∪B(xδt , δ)

)
,

21



where Hull(η[0, t])(δ2) is the δ2-neighborhood in H of the hull generated by η[0, t]. See
Fig. 4.2. Clearly, one has Ht ⊂ Hδ

t but we shall not use directly this fact. What we shall
use instead is the fact that when n = n(δ) is sufficiently large then

Hn
t ⊂ Hδ

t

where Hn
t := H \ ηn[0, t]. Indeed this follows readily from the fact that ηn → η locally

uniformly. This in turn implies immediately that for n ≥ n(δ),

RHMHδ
t
([0, R]) ≤ RHMH\ηn[0,t]([0, R]) (4.3)

Let us now show that there exists some continuous function f : [0, 1]→ [0, 1] with f(0) = 0
s.t.

RHMHt([0, R]) ≤ RHMHδ
t
([0, R]) + f(δ) (4.4)

To show (4.4), we consider Brownian motion starting at 1
u i and stopped the first time

it hits ∂Hδ
t . Let τ δ denote that stopping time. As Ht ⊂ Hδ

t , one has τ δ ≤ τ . Our goal is

then to compare 1
uP

1
u
i
[
Bτ ∈ [0, R]

]
with 1

uP
1
u
i
[
Bτδ ∈ [0, R]

]
. The difference is given by

1

u
P

1
u
i
[
Bτδ ∈ ∂Hull(η[0, t])(δ2) \B(xδt , δ) and Bτ ∈ [0, R]

]
+

1

u
P

1
u
i
[
Bτδ ∈ ∂B(xδt , δ)

]
The second term is less than the RHM of B(xδt , δ) in the full H and is thus bounded from
above by O(δ) as δ → 0. For the first term, notice that

• Bτδ is at distance δ2 from Hull(η[0, t])

• Because of the definition of xδt and B(xδt , δ), the Brownian motion needs to travel at
distance at least δ between times τ δ and τ in order to reach [0, R].

Using Beurling’s estimate, this happens with probability at most O(
√
δ2/δ) = O(δ1/2).

This gives us our desired bound with a continuous function f satisfying f(δ) = Ω(δ1/3).
We have thus shown that

RHMHt([0, R]) ≤ RHMHδ
t
([0, R]) + f(δ)

≤ RHMH\ηn[0,t]([0, R]) + f(δ) for n ≥ n(δ)

Using the exact same proof in the reverse direction (by now defining a point xδn,t which

could possibly be very far from xδt ), we obtain that for n ≥ n(δ),

RHMH\ηn[0,t]([0, R]) ≤ RHMHt([0, R]) + f(δ)

which thus concludes the proof.

5 Proof of Theorem 1.1

5.1 General setup

In this section, we explain the general setup as in Theorem 1.1. Suppose Ω is a bounded
simply connected subset of C with three distinct boundary points (degenerate prime ends)
a, b, c in counterclockwise order. Let (Ωδ; aδ, bδ, cδ) be a sequence of domains on δZ2 con-
verging to (Ω; a, b, c) in the Carathéodory sense: there exist conformal map φ : (Ω; a, c)→
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(H; 0,∞) and φδ : (Ωδ; aδ, cδ)→ (H; 0,∞) so that φδ → φ as δ → 0 uniformly on compact
subset of Ω and φδ(bδ)→ φ(b).

Consider the FK-Ising model on Ωδ with Dobrushin boundary conditions: edges along
∂ba are wired and the dual-edges of ∂∗ab are dual-wired. Suppose γδ is the exploration path
from aδ to cδ, as explained in Section 2.4. Suppose δn → 0, and denote by An = Aδn
for A = Ω, a, b, c, γ, φ, S and denote ηn = φδn(γδn). We parameterize ηn by the half-plane
capacity and denote by Wn the driving function and by gnt the corresponding conformal
maps in the definition of Loewner chain. Let θn(t) be the renormalized harmonic measure
of the right side of ηn[0, t] union [0, φn(bn)] in H \ ηn[0, t] seen from ∞.

Definition 5.1 (Definition of stopping times {Tn,εk , Sn,εk }k≥1). Fix ε ≥ 10
√
δn. Define

Tn,ε1 to be the first time that θn is greater than ε (if θn(0) = φn(bn) ≥ ε, then Tn,ε1 = 0).
Define Sn,ε1 to be the first time after Tn,ε1 that γn hits the boundary arc ∂bc. Generally, for
k ≥ 1, let Tn,εk+1 be the first time after Sn,εk that θn exceeds ε and define Sn,εk+1 to be the first
time after Tn,εk+1 that γn hits the boundary arc ∂bc.

In this way, we decompose the process ηn as follows: from time Tn,εk to Sn,εk , the
exploration process is similar to the situation when the boundary conditions is Dobrushin;
from time Sn,εk to Tn,εk+1, we know little about the process, and we call this part as dust.

As the sequence {γn} satisfies Condition C2 in Definition 2.6 (due to Theorem 2.9),
from Theorem 2.7, both sequences {γn} and {ηn} are tight. We can extract subsequence,
which we still denote by {γn} and {ηn}, such that Wn converges in distribution to W and
ηn converges in distribution to η locally uniformly, and that η satisfies the properties in
Theorem 2.7. We couple them on the same probability space so that they converge almost
surely.

For the limiting process η, recall from Theorem 2.7 that W is its driving function and
let gt be the corresponding conformal maps. Define θ(t) to be the renormalized harmonic
measure of the right boundary of η[0, t] union [0, φ(b)]. Fix T > 0 large and define

‖An −A‖∞,T := sup{|An(t)−A(t)| : t ∈ [0, T ]},

for A = η,W, θ. By Proposition 4.1, we know that ‖θn − θ‖∞,T → 0 almost surely.
For the limiting process η, we define the stopping times similarly. Let T ε1 be the first

time that θ is greater than ε. Define Sε1 to be the first time after T ε1 that θ hits zero.
Generally, for k ≥ 1, define T εk+1 to be the first time after Sεk that θ exceeds ε and define
Sεk+1 to be the first time after T εk+1 that θ hits zero.

The goal of Theorem 1.1 is to identify the law of η and our strategy is the following:

• First we argue that the following two processes are close:(
θn(t), Tn,εk ≤ t ≤ Sn,εk

)
and (θ(t), T εk ≤ t ≤ Sεk) .

• Then, using Theorem 2.10, we shall argue that
(
θn(t), Tn,εk ≤ t ≤ Sn,εk

)
converges in

distribution to Bessel excursion, and thus (θ(t), T εk ≤ t ≤ Sεk) is a Bessel excursion.

• For the dusts—(θn(t), Sn,εk ≤ t ≤ Tn,εk+1)k—we control them in a uniform way thanks
to Proposition 3.7 and argue that they will disappear as ε → 0. Then by Proposi-
tion 2.1, we conclude that θ is a Bessel process.

• Finally, we use Lemma 2.4 to extract W from θ and conclude that η is an SLEκ(κ−6).

However, it is quite delicate to make this strategy work. The first issue is that, although
the processes (ηn,Wn, θn) are close to (η,W, θ), we do not know a priori whether the
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stopping times (Tn,εk , Sn,εk ) are close to the stopping times (T εk , S
ε
k). This will be proved in

Proposition 5.2 and this turns out to be more technical than one might expect.
For the second item, the issue is that one needs to argue the processes are not moving

much for θn and θ on
[Tn,εk ∧ T εk , T

n,ε
k ∨ T εk ].

This issue will be solved by equicontinuity, see Section 5.3.
For the third item, one issue is that Proposition 3.7 requires the domain to be flat

near b (See Proposition 3.7 for a precise assumption). This is why we will restrict to such
domains in Subsections 5.2 to 5.4 and will get back to the general setting of Theorem 1.1
only in Subsection 5.5.

Another issue concerns the convergence of conditional distribution, or the passage of
Markov property to the limit. In the discrete, the exploration process ηn has domain
Markov property and we know ηn converges to η. But the domain Markov property does
not pass to η for free, as it was pointed out in [Sch00, Proposition 4.2 and Section 5] in
the setting of loop-erased random walk. For simplicity, we first discuss the following two
pieces

Xn := (ηn(t), 0 ≤ t ≤ Tn,ε1 ) and Y n := (ηn(t), Tn,ε1 ≤ t ≤ Sn,ε1 ).

Define the conformal map Gn(·) := gn
Tn,ε1

(·)−Wn(Tn,ε1 ). Note that Gn is a measurable

function of Xn. In the limiting process η, we define

X := (η(t), 0 ≤ t ≤ T ε1) and Y := (η(t), T ε1 ≤ t ≤ Sε1).

Define the conformal map G(·) := gT ε1 (·)−W (T ε1) and note again that G is a measurable
function of X. At this point, we have ηn → η and Sn,ε1 → Sε1, and hence we have
the convergence of the concatenation of (Xn, Y n) to the concatenation of (X,Y ) in the
metric (2.6), and we want to argue that the conditional law of Yn given Xn converges to the
conditional law of Y given X. However, this is generally false without further condition
on (Xn, Y n), see for example the discussion in [Gog94].

In our setting, we do have further properties below on the pair (Xn, Y n) which allow
us to conclude.

• As (ηn,Wn, θn) converges to (η,W, θ) and Tn,ε1 → T ε1 almost surely, we see Gn → G
in Carathéodory sense. (This follows for example from Caratheodory kernel theo-
rem). As ηn → η, together with equicontinuity and the fact that Tn,ε1 → T ε1 a.s.
we obtain that Xn converges to X. Consider the Gn(ηn|t≥Tn,ε1

). The collection
{Gn(ηn|t≥Tn,ε1

)}n satisfies Condition C2 due to Theorem 2.9, hence it is tight in the

topologies in Theorem 2.7. Combining with the equicontinuity and Sn,ε1 → Sε1, we
will show in Lemma 5.8 that G(Y ) is the only possible subsequential limit, thus
Gn(Y n) converges to G(Y ).

• Since Y n is an exploration path in H \ Xn with Dobrushin boundary conditions
(stopped at the disconnection time), using Theorem 2.10 and Lemma 2.5, we will
obtain in Section 5.3 that Gn(Y n) converges to an SLEκ(κ − 6) in H from 0 to ∞
with force point at ε (stopped at the disconnection time). This will be the purpose
of Proposition 5.7 and the key point there will be that G(Y ) is independent of X.

Going back to the random process θ, we will see in Section 5.3 that by combining these
three observations, one obtains: (θ(t), 0 ≤ t ≤ T ε1) and (θ(t), T ε1 ≤ t ≤ Sε1) are independent
and (θ(t), T ε1 ≤ t ≤ Sε1) has the law of Bessel excursion.
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For general k ≥ 1, the above argument applies to the following two pieces

(ηn(t), 0 ≤ t ≤ Tn,εk ) and (ηn(t), Tn,εk ≤ t ≤ Sn,εk ).

As hinted above, Section 5.4 will combine the above analysis together with Section 3, as
well as Proposition 2.1 in order to conclude that θ is a Bessel process. In the case of
domains which are flat near b we will conclude the proof of Theorem 1.1 by relying on
Lemma 2.4. Finally we will extend to result to general Jordan domains in Section 5.5
using a RSW coupling argument. (This latter argument is often implicit in the literature
but is carefully written down here).

From now on (all the way to Subsection 5.5), we shall assume that (Ω; a, b) is r-
flat around the target b, i.e. that there exists r > 0 such that Ω ∩ B(b, r) is identical to
B(b, r) ∩ H or B(b, r) ∩ (iH) (this will allow us to rely on Proposition 3.7).

5.2 Convergence of discrete stopping times to their continuous analogs

In this section we shall prove the following key control on {Tn,εk , T εk , S
n,ε
k , Sεk}

Proposition 5.2. Assume we are in the above setup where, in particular, ηn → η locally
uniformly and Wn →W locally uniformly. Then we have for any k ≥ 1 and as n→∞,{

Tn,εk → T εk in probability

Sn,εk → Sεk in probability

We shall in fact need the following slightly preciser version. For any fixed T > 0, there
exists a sequence {αn} converging to zero such that the following holds:

P
[
∃k ≥ 1, s.t. T εk ≤ T − 1 and |Tn,εk − T εk | > αn

]
≤ αn

P
[
∃k ≥ 1, s.t. Sεk ≤ T − 1 and |Sn,εk − S

ε
k| > αn

]
≤ αn

Remark 5.3. This is in the same flavour as [Wer07, Lemma 3.1] which would correspond
to Sn,εk → Sεk a.s. (not to Tn,εk → T εk), the proof of which was left as a homework exercise.
However, we find this exercise not that easy for the following reasons:

(1) First, if we stop the joint exploration paths (ηn, η̃) at time S, indeed ηn is close to
disconnecting and it is tempting to conclude by some careful use of RSW. But one
important issue is that S is a stopping time for η̃ but not for ηn. Because of that,
we are not allowed to use the discrete domain Markov property and a rather delicate
analysis cannot be avoided it seems.

(2) Second, stopping the curve when it is close to disconnecting 0 from ∂U needs to be
done with some care. For example, being close in ‖ · ‖∞ to disconnection does not
prevent from having a dual harmonic arc with large harmonic measure seen from
0. This is why in our proof below, we rely on stopping times built from harmonic
measure seen from 0 instead of Euclidean distance from disconnection.

(3) The stopping times Sεk are geometric disconnection times and may possibly be anal-
ysed through a different route using the absence of 6-arms events at large scales. On
the other hand the stopping times T εk , based on the R.H.M, are of a different nature
and it is less clear how to carefully adapt a proof based on the 6 arms events in this
case.

Let us start as a warm-up with the following Lemma
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Lemma 5.4. Assume for simplicity that we are in the case where θn(0) = θ(0) = 0 (no
free arc at the beginning of the exploration). For any fixed T ≥ 2, We have for any u > 0,

P
[
T ε1 ≤ T − 1 and |Tn,ε1 − T ε1 | > u

]
→ 0 , as n→∞.

Proof. For any r < ε/2, define the stopping times Tn,ε−2r
1 and Tn,ε+2r

1 exactly as Tn,ε1 . By
definition and monotony, one clearly has

Tn,ε−2r
1 ≤ Tn,ε1 ≤ Tn,ε+2r

1 (5.1)

Now, let us show that there exists a function f(r) which goes to zero as r → 0, and which
is such that uniformly in n ≥ n(r), one has

P
[
Tn,ε+2r

1 − Tn,ε−2r
1 ≥ f(r)

]
≤ f(r) (5.2)

Remark 5.5. Recall the main issue in the current proof is that any interaction between η
and ηn may ruin the domain Markov property for ηn. The above estimate does not involve
the limiting curve η in the joint coupling and it is therefore much safer to prove such an
estimate using standard arguments.

ηn
T
n,ε−2r
1

0
θn = ε− 2r

(φn
Tn,ε−2r
1

)−1

θn = ε− 2r2r

Figure 5.1

To Prove the estimate (5.2), we proceed exactly as in Section 3. Namely we use Strong-
RSW in appropriate quads in the discrete domain H \ ηn[0, Tn,ε−2r

1 ] which are defined as
conformal images via (φn

Tn,ε−2r
1

)−1 of well-chosen rectangular quads in H. As the arguments

are very similar to the ones in Section 3, we leave the details to the reader and refer to
Fig. 5.1 for the construction of these quads.

Now, using that ηn → η locally uniformly and Wn → W locally uniformly, recall we
have by Proposition 4.1 that ‖θn − θ‖∞,T → 0 as n → ∞. In particular, if we define the
event

En,r := {‖θn − θ‖∞,T ≤ r} ,

then we have for any r > 0, P
[
En,r

]
→ 1 as n→∞. The main observation which remains

in order to prove Lemma 5.4 is that on the event

{‖θn − θ‖∞,T ≤ r}

we must have the inequality
Tn,ε−2r

1 ≤ T ε1 ≤ T
n,ε+2r
1
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at least if Tn,ε+2r
1 is not too big (it needs to be less than T which it does with high

probability on the event T ε1 ≤ T−1 thanks to the estimate (5.2)). This together with (5.1)
implies readily that on the event {‖θn− θ‖∞,T ≤ r}∩ {Tn,ε+2r

1 −Tn,ε−2r
1 < f(r)}, one has

|Tn,ε1 −T ε1 | < f(r) if T ε1 ≤ T−1. As lim inf P
[
En,r ∩ {Tn,ε+2r

1 − Tn,ε−2r
1 < f(r)}

]
≥ 1−f(r),

this concludes the proof of Lemma 5.4 by choosing r arbitrarily small.

In order to prove Proposition 5.2, we would like to iterate the same idea to the later
stopping times Sn,εk , Tn,εk etc.

Proof of Proposition 5.2. Let us start by explaining in details how to handle the conver-

gence of the next stopping time, i.e. Sn,ε1
Prob.→ Sε1. Namely we wish to prove that for any

u > 0,

P
[
Sε1 ≤ T − 1 and |Sn,ε1 − Sε1| > u

]
→ 0 , as n→∞. (5.3)

To prove this, we face two (slight) technical difficulties:

1. The first one is that Sn,ε1 will be close to Sε1 only if the earlier stopping times Tn,ε1

and T ε1 will be close as well. This must appear in the proof somewhere.

2. The second issue is that there is no monotonicity such as the one we used above
(namely, Tn,ε−2r

1 ≤ T ε1 ≤ T
n,ε+2r
1 ). We will still have an analog of the left inequality,

but the R.H.S will be replaced by the inequality Sε1 ≤ lim infn→∞ S
n,ε
1 which can be

seen as a deterministic statement given the fact that θn → θ uniformly on [0, T ].

Let us introduce the following stopping times which will have useful monotony prop-
erties: {

S̃n,ε,2r1 := inf{t > Tn,ε−2r
1 , s.t. θn(t) ≤ 2r}

Ŝn,ε,2r1 := inf{t > Tn,ε−2r
1 , s.t. γn hits the boundary arc ∂bc}

Note first that it always the case that

S̃n,ε,2r1 ≤ Sn,ε1 (5.4)

Also, note that on the event {Sε1 ≤ T − 1} ∩ {‖θn − θ‖∞,T ≤ r}, we have that

S̃n,ε,2r1 ≤ Sε1 (5.5)

Furthermore, exactly as for the estimate (5.2), one can prove in the same fashion that
there exists a function f(r) which goes to zero as r → 0, and which is such that uniformly
in n ≥ n(r), one has

P
[
Ŝn,ε,2r1 − S̃n,ε,2r1 ≥ f(r)

]
≤ f(r) (5.6)

Finally, using the estimate (5.2) as well as the equicontinuity of the set of functions {θn}n≥1

restricted to the interval [0, T ] (this equicontinuity follows form the uniform convergence
of θn towards the continuous θ), we deduce that for n large enough,

P
[
Ŝn,ε,2r1 = Sn,ε1

]
≥ 1− 2 f(r) . (5.7)

Indeed, one term f(r) comes from the possibility that Tn,ε+2r
1 � Tn,ε−2r

1 which could
prevent the above equality to hold and is dominated thanks to (5.2), the second term f(r)
comes from the unlikely event that γn would hit the arc ∂bc strictly between Tn,ε−2r

1 and
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Tn,ε1 . This possibility is easily controlled using the equicontinuity of {θn}n≥1. Combining
the above four estimates (5.4), (5.5), (5.6), (5.7), we obtain that for any u > 0,

P
[
Sε1 − S

n,ε
1 < −u

]
→ 0 as n→∞.

For the other direction, we rely on a completely different argument (already suggested
in [Wer07, Lemma 3.1]) which is based on the Lemma stated below. Indeed it readily
implies that

P
[
Sε1 − S

n,ε
1 > +u

]
→ 0 as n→∞.

which concludes our proof at least for Sn,ε1
Prob.→ Sε1.

Lemma 5.6. On the event Sε1 ≤ T − 1,

Sε1 ≤ lim inf Sn,ε1

Proof. Let us argue by contradiction. Suppose this is not the case, then there exists α > 0
s.t. for infinitely many nk ∈ N,

Snk,ε1 ≤ Sε1 − α .

Using Beurling’s estimate one has{
|θnk(Tnk,ε1 )− ε| ≤ 10

√
δnk

θnk(Snk,ε1 ) ≤ 10
√
δnk

By possibly further extracting so that Tnk,ε1 and Snk,ε1 both converge and using the fact
that θnk converges uniformly to θ on [0, T ], we thus reach a contradiction, as Sε1 should
then be smaller than limSnk,ε1 .

Proof of Proposition 5.2 continued. For the general case, k ≥ 2, we can proceed induc-

tively on k ≥ 1. The induction hypothesis being that indeed, Tn,εj
Prob.→ T εj and Sn,εj

Prob.→ Sεj
for all j ≤ k− 1. Then, to propagate the induction hypothesis, we proceed as follows: say

we have proved all stopping times converge in probability all the way to Tn,εk
Prob.→ T εk and

we wish to control the next one, i.e. Sn,εk
Prob.→ Sεk. For the lower bound, we set up the

following stopping times:

T̃n,ε,2r2 := inf{t > S̃n,ε,2r1 , θn(t) = ε− 2r}
T̂n,ε,2r2 := inf{t > S̃n,ε,2r1 , θn(t) = ε+ 2r}
S̃n,ε,2r2 := inf{t > T̃n,ε,2r2 , θn(t) = 2r}
Ŝn,ε,2r2 := inf{t > T̃n,ε,2r2 , s.t. γn hits the boundary arc ∂bc}
T̃n,ε,2r3 := inf{t > S̃n,ε,2r2 , θn(t) = ε− 2r}
. . .

The advantage of these definitions is that stopping times T̃k and Ŝk (resp. S̃k and Ŝk) are
close with high probability, and the following monotonies always hold:

T̃n,ε,2rk := inf{t > S̃n,ε,2rk−1 , θn(t) = ε− 2r} ≤ T εk
S̃n,ε,2rk := inf{t > T̃n,ε,2rk , θn(t) = ε− 2r} ≤ Sεk.

28



The same proof as the one above implies that for all k ≥ 2 and u > 0,

P
[
T εk − T

n,ε
k < −u

]
∨ P
[
Sεk − S

n,ε
k < −u

]
→ 0 as n→∞.

Now, for the upper bound, exactly as in Lemma 5.6, one has for all k ≥ 2,

T εk ≤ lim inf Tn,εk , Sεk ≤ lim inf Sn,εk

which concludes the proof that one can iterate from j ≤ k− 1 to k in the same way as for

Sn,ε1
Prob.→ Sε1 above.

To conclude our proof of Proposition 5.2, one still need to handle a potentially large
number of stopping times. Indeed the main statement in Proposition 5.2 provides a control
on ALL stopping times Tn,εk or Sn,εk which arise below T . To conclude, we thus rely once
again on the equicontinuity of {θn} on [0, T ] (which again follows from θn → θ uniformly
on [0, T ]). In particular, there is a random δ = δ(ω, ε) > 0 a.s., s.t. for all n ≥ 1 and any
0 ≤ s < t ≤ T , with |s− t| < δ

|θn(s)− θn(t)| < ε/2 .

This implies readily that one cannot have more than Tδ−1 stopping times before time
T . Now by combining the fact that P

[
δ(ω, ε) > α

]
→ 1 as α ↘ 0 and a straightforward

union bound argument, we conclude the proof of Proposition 5.2 with a choice of {αn}n
converging sufficiently slowly to zero.

5.3 Convergence in law to one Bessel excursion

In this section, we will show the following proposition.

Proposition 5.7. The law of (θ(t)/
√
κ, T ε1 ≤ t ≤ Sε1) is the same as a Bessel process

of dimension 3 − 8/κ starting from ε and stopped when it reaches zero where κ = 16/3.
Moreover, it is independent of (θ(t), t ≤ T ε1).

We will give a detailed proof of Proposition 5.7 in this section, and most of the argu-
ments can be applied verbatim for the future excursions.

From Proposition 5.2, we have

P [Sε1 ≤ T − 1, |Tn,ε1 − T ε1 | > αn, |Sn,ε1 − Sε1| > αn] ≤ αn.

We may choose a subsequence nj →∞ such that
∑

j αnj <∞. Then we have∑
j

P
[
Sε1 ≤ T − 1, |Tnj ,ε1 − T ε1 | > αnj , |S

nj ,ε
1 − Sε1| > αnj

]
<∞.

By Borel-Cantelli Lemma, we have

T
nj ,ε
1 → T ε1 , S

nj ,ε
1 → Sε1, a.s. on {Sε1 ≤ T − 1}.

Lemma 5.8. Recall the definition of Xn, Y n, Gn and X,Y,G as in Section 5.1. On the
event {Sε1 ≤ T − 1}, the process Gnj (Y nj ) converges to G(Y ) almost surely.

Proof. Consider the sequence {Gnj (ηnj |
t≥T

nj,ε

1
)}j , it satisfies Condition C2 by Theorem 2.9.

Then it is tight as in Theorem 2.7. Suppose G
nkj (η

nkj |
t≥T

nkj
,ε

1

) is a converging subsequence

and the limit is η̃ with driving function W̃ . We have the following observation.
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• Applying Theorem 2.7 to G
nkj (η

nkj |
t≥T

nkj
,ε

1

), we know that W
nkj , restricted to

[T
nkj ,ε

1 , T ], converges to W̃ locally uniformly.

• Applying Theorem 2.7 to ηn, we know that Wn converges to W locally uniformly.
In particular, Wn converges to W uniformly on [0, T ]. The uniform convergence
implies the equicontinuity of the sequence {Wn}n on the interval [0, T ].

• By the choice of nj , we have T
nj ,ε
1 → T1, S

nj ,ε
1 → Sε1 almost surely on {Sε1 ≤ T − 1}.

Combining the above three facts, we conclude that W̃ coincides with W on the interval
[T ε1 , S

ε
1]. By Theorem 2.7 again, η̃ is the Loewner chain generated by (W̃ (t), T ε1 ≤ t ≤ Sε1)

and G(Y ) is the Loewner chain generated by (W (t), T ε1 ≤ t ≤ Sε1). Thus η̃ coincides
with G(Y ). As G(Y ) is the unique subsequential limit of {Gnj (Y nj )}j , we conclude that
Gnj (Y nj ) converges to G(Y ).

Proof of Proposition 5.7. Recall the definition of Xn, Y n, Gn and X,Y,G as in Section 5.1.
First, we explain the convergence of Gnj .

• Recall that Gnj is the conformal map from (H \ ηnj [0, Tnj ,ε1 ]; ηnj (T
nj ,ε
1 ),∞) onto

(H; 0,∞) and G is the conformal map from (H \ η[0, T ε1 ]; η(T ε1),∞) (normalized at
∞). As ηn → η,Wn → W and T

nj ,ε
1 → T ε1 , The map Gnj → G locally uniformly

almost surely on {Sε1 ≤ T − 1} by Carathéodory kernel theorem.

• By Proposition 4.1, we have θn → θ locally uniformly. In particular, the sequence
{θn}n is equicontinuous on [0, T ]. As T

nj ,ε
1 → T ε1 , we conclude θnj (T

nj ,ε
1 )→ θ(T ε1) =

ε almost surely on {Sε1 ≤ T − 1}.

Combining the above two items, we conclude that Gnj → G in Carathéodory sense and
the image of the dual arc under Gnj converges to the interval [0, ε] almost surely on
{Sε1 ≤ T − 1}.

Since Y n is the exploration path in H\Xn with Dobrushin boundary conditions. Com-
bining the above convergence of Gnj and Theorem 2.10, the sequence Gnj (Y nj ) converges
in distribution to SLEκ in H from 0 to ε. By the choice of nj , we also have the convergence
of the disconnection time: S

nj ,ε
1 → Sε1 almost surely on {Sε1 ≤ T −1}. Therefore, Gnj (Y nj )

up to the disconnection time converges in distribution to SLEκ in H from 0 to ε up to the
disconnection time. By Lemma 2.5, we conclude that Gnj (Y nj ) (up to the disconnection
time) converges in distribution to SLEκ(κ − 6) (up to the disconnection time) in H from
0 to ∞ with force point ε.

By Lemma 5.8, we have Gnj (Y nj )→ G(Y ) almost surely. Combining with the above
analysis, we know that G(Y ) has the law of SLEκ(κ − 6) (up to the disconnection time)
in H from 0 to ∞ with force point ε. As θ is the corresponding renormalized harmonic
measure, it has the same law as Bessel process starting from ε stopped at the first time
that it reaches zero conditioned on {Sε1 ≤ T − 1}. As this is true for all T ≥ 2, and
P[Sε1 ≤ T − 1]→ 1 as T →∞, we can remove the conditioning.

It thus remains to argue that G(Y ) is indeed independent of X. Let us show that for
any bounded continuous functionals f and h on the space of continuous curves with the
topology of local uniform convergence, one has E

[
f(G(Y ))h(X)

]
= E

[
f(G(Y ))

]
E
[
h(X)

]
.

As we have shown above that Xnj → X a.s. and (Lemma 5.8) that Gnj (Y nj ) → G(Y )
a.s., we readily have by dominated convergence theorem that

E
[
f(G(Y ))h(X)

]
= lim

j→∞
E
[
f(Gnj (Y nj ))h(Xnj )

]
= lim

j→∞
E
[
E
[
f(Gnj (Y nj ))

∣∣ Xnj
]
h(Xnj )

]
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Now, observe that the above analysis in fact shows more than what we stated. Namely, on
the event K that Gnj → G and θnj (T

nj ,ε
1 ) → θ(T ε1) = ε (which happens with probability

one as shown above), we have as argued above by Theorem 2.10 and Lemma 2.5 that the
law of Gnj (Y nj ) (up to the disconnection time) given Xnj converges in distribution to
SLEκ(κ− 6) (up to the disconnection time) in H from 0 to ∞ with force point ε. This is
nothing but saying that for any functional f as above, one has E

[
f(Gnj (Y nj ))

∣∣ Xnj
]
→

E
[
f(SLEκ(κ− 6))

]
almost surely on the event K. As f is bounded and P

[
K
]

= 1, again
by dominated convergence theorem, one has

E
[
f(G(Y ))h(X)

]
= lim

j→∞
E
[
E
[
f(Gnj (Y nj ))

∣∣ Xnj
]
h(Xnj )

]
= E

[
E
[
f(SLEκ(κ− 6))

]
h(X)

]
= E

[
f(SLEκ(κ− 6))

]
E
[
h(X)

]
= E

[
f(G(Y ))

]
E
[
h(X)

]
which thus concludes the proof.

For general k ≥ 1, by Proposition 5.2, we have

P[Sεk ≤ T − 1,∃` ≤ k s.t. |Tn,ε` − T ε` | > αn or |Sn,ε` − S
ε
` | > αn] ≤ αn.

As
∑

j αnj <∞, we have∑
j

P[Sεk ≤ T − 1, ∃` ≤ k s.t. |Tnj ,ε` − T ε` | > αnj or |Snj ,ε` − Sε` | > αnj ] <∞.

By Borel-Cantelli lemma, we have

T
nj ,ε
` → T ε` , S

nj ,ε
` → S

nj ,ε
` , for all ` ≤ k, a.s. on {Sεk ≤ T − 1}.

The proof of Proposition 5.7 also works for (θ(t), T εk ≤ t ≤ Sεk).

Corollary 5.9. For any k ≥ 1, the law of (θ(t)/
√
κ, T εk ≤ t ≤ Sεk) is the same as a

Bessel process of dimension 3 − 8/κ starting from ε and stopped when it reaches zero
where κ = 16/3. Moreover, it is independent of (θ(t), t ≤ T εk).

5.4 Convergence in law to a Bessel process

In this section, we will prove in Proposition 5.10 that θ considered as a whole process is
indeed a Bessel and we will complete the proof of Theorem 1.1 (still in the case where Ω
has a flat boundary near b, hypothesis which shall be removed in Subsection 5.5).

Proposition 5.10. The law of (θ(t)/
√
κ, t ≥ 0) is the same as a Bessel process of dimen-

sion 3− 8/κ where κ = 16/3.

Proof. In order to apply Proposition 2.1 to the process θ/
√
κ, we need to check the three

requirements in Proposition 2.1. The first item holds due to Corollary 5.9. It remains to
check the other two items. To this end, we will need results in Section 3, this part is what
we call dust analysis.

Suppose C, c > 0 are the universal constants as in Proposition 3.7. By Proposition 3.7,
we have, for k ≥ 0 and ` ≥ 0,

P
[
Tn,εk+1 ≤ S

n,ε
k + (`+ 1)Cε2 |Tn,εk+1 > Sn,εk + `Cε2

]
≥ c. (5.8)
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It is important that the constants c, C are uniform. Let Z be a random variable taking
values in {1, 2, 3, . . .} such that

P[Z > `] = (1− c)`, ∀` ∈ {0, 1, 2, . . .}.

From (5.8), we know that Tn,εk+1 − S
n,ε
k is stochastically dominated by ZCε2. By Proposi-

tion 5.2, for any T > 0 and a > 0

P
[
T εk+1 ≤ T − 1, T εk+1 − Sεk ≥ a

]
≤ P

[
T εk+1 ≤ T − 1, Tn,εk+1 − S

n,ε
k ≥ a− 2αn

]
+ 2αn

≤ P
[
ZCε2 ≥ a− 2αn

]
+ 2αn.

Let n→∞ and then T →∞, we have for any a > 0,

P
[
T εk+1 − Sεk ≥ a

]
≤ P

[
ZCε2 ≥ a

]
.

Thus T εk+1 − Sεk is also stochastically dominated by ZCε2. Note that E[ZCε2] = ε2C(1−
c)/c. This guarantees the other requirement in Proposition 2.1 and completes the proof.

Proof of Theorem 1.1. Recall the notations at the beginning of Section 5.1. By Theo-
rem 2.9, the collection of interfaces {ηδ} satisfies Condition C2. By Theorem 2.7, the
sequence is tight. Suppose δn → 0 and {ηδn}n is a convergent subsequence and the limit is
denoted by η. Theorem 2.7 also gives that η is a continuous curve with continuous driving
function W . We denote by θt the renormalized harmonic measure of the right side of η[0, t]
union [0, φ(b)] in H \ η[0, t] seen from ∞. By Lemma 2.8, we can apply Lemma 2.4 to η,
thus

θt +Wt =

∫ t

0

2ds

θs
, ∀t ≥ 0.

By Proposition 5.10, we know that θ(t)/
√
κ is a Bessel process of dimension 3−8/κ. Thus

(Wt, θ(t) +Wt : t ≥ 0) solves (2.5), i.e. by setting Vt = θt +Wt, we have

dWt =
√
κdBt +

(κ− 6)dt

Wt − Vt
, dVt =

2dt

Vt −Wt
.

Thus η is an SLEκ(κ − 6). As SLEκ(κ − 6) is the only subsequential limit, we have the
convergence of the sequence.

5.5 Coupling argument and the case of general Jordan domains

In the last subsections (since Subsection 5.2), we assumed our domains satisfied the as-
sumption in Proposition 3.7, i.e. that there exists r > 0 such that Ω ∩B(b, r) is identical
to B(b, r) ∩ H or B(b, r) ∩ (iH). In order to extend the result to the class of Jordan do-
main as stated in Theorem 1.1, we use a classical coupling argument (see for example
the strong mixing property in [DC13]) as follows: Let (Ω; a, b) be a Jordan domain with
two distinct boundary points a, b. We wish to approximate Ω by a domain Ω(r) which
satisfies the above flat condition near b. Let γ : [0, 1]→ C be the continuous simple curve
drawing ∂Ω and let us assume that γ(0) = a and γ(1/2) = b. Define the following times
s1(r) := inf{t < 1/2, |γ(t) − b| = 2r} and s2(r) := sup{t > 1/2, |γ(t) − b| = 2r}. As the
set ∂Ω is a simple curve and is thus locally connected, we deduce that necessarily one has
the following properties:

s2(r)− s1(r)→ 0, as r → 0

|γ(s1(r))− γ(s2(r))| > 0 (obvious)

δ(r) := sup{|γ(u)− b|, u ∈ [s1(r), s2(r)]} → 0 as r → 0
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Using these properties, one can easily build a domain (Ω(r); a, b(r)) which satisfies the
following properties (see Fig. 5.2):

i) It is r-flat near b, i.e. Ω(r) ∩B(b, r) is identical to B(b, r) ∩ H or B(b, r) ∩ (iH)

ii) Ω and Ω(r) are identical away from B(b, δ(r)).

a

∂Ω(r)∂Ω

2r

δ(r)

Figure 5.2

Now, using RSW theorem in annuli between radii δ(r) and
√
δ(r) (as in the proof of the

strong mixing property of FK), we can couple, with arbitrary large probability (as r → 0),
the exploration processes (discrete or continuous) from a to b in Ω and from a to b(r) in
Ω(r) to coincide up to the first hitting time of B(b,

√
δ(r)). Letting r → 0, this concludes

the proof of our main Theorem 1.1.

6 Detailed sketch of the convergence to radial SLE(16/3, 16/3−
6) and the one-arm exponent

The goal of this section is to give a detailed sketch of the different steps needed to adapt the
proof in the chordal case to the radial case. This should not be considered as a complete
proof, in particular in the case of item 4) below whose complete proof would require more
topological details. In Subsection 6.2, we sketch how to derive Onsager’s exponent 1/8
from the convergence of the radial exploration process.

6.1 On the convergence to radial SLE(16/3, 16/3− 6)

One possible way to obtain the convergence to radial SLE(16/3, 16/3 − 6) would be to
design and analyse a discrete parafermionic observable well-adapted to a radial exploration
process. This would be in some sense the approach followed in [KS15, KS16]. Once one
has the convergence to chordal SLE(16/3, 16/3−6), another natural route is to extract the
convergence to radial SLE(16/3, 16/3−6) using the fact that the chordal SLE(16/3, 16/3−
6) is target-independent (Lemma 2.5). Even tough very natural, this strategy does not
come for free and the following steps need to be addressed in order to prove the convergence
to radial SLE(16/3, 16/3− 6):
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1. First, the powerful topological setup from [KS17] needs to be adapted to radial
curves. In particular, one needs to show radial analogs of statements such as Theo-
rem 2.7. It turns out that by following closely the proof from [KS17], there are no
real difficulties on the way for this first item.

2. Then, one starts exploring the configuration inside and at the beginning one proceeds
exactly as in the chordal case with stopping times Tn,εk , Sn,εk etc. (The radial version
of Proposition 3.7, i.e. Proposition 3.1 would be used to control the accumulation
of dust).

3. We keep going until the first disconnection times: Dn
1 = Dn

1 (ηn) and D1 = D1(η).
Here, one needs to show that for the coupled interfaces (ηn, η) one has Dn

1 → D1

in probability, say. As explained above, this step requires some care as the use of a
stopping time for the continuous curve η will ruin the spatial Markov property for
ηn. The techniques we used in the chordal case (see Proposition 5.2) work in the
same fashion in the radial setting except one needs to add the following step:

4. Similarly as in Proposition 4.1, we need to show in the radial setting the uniform
convergence of discrete harmonic measures θn. More precisely, let ηn = φn(γn) and
η = φ(γ) be the radial curves conformally mapped into U and parametrised by their
disk–capacity. From the analog of Theorem 2.7 mentioned in item 1., we get that
ηn → η and Wn → W locally uniformly. Let t 7→ θn(t) (resp θ(t)) denote the
harmonic measure of the free arc on the right of ηn[0, t] (resp. η[0, t]). With these
notations, we need to show that for any fixed T > 0,

‖θn − θ‖∞,T = sup
t∈[0,T ]

|θn(t)− θ(t)| → 0 . (6.1)

A slightly different proof as the one we used in Section 4 is needed here, as the proof
in Section 4 relies specifically on the geometry of H. One possible way to proceed is
to divide the proof in the following two steps:

a) Equicontinuity of the family {θn}n≥1. As pointed out to us by Avelio Sepúlveda,
one can obtain the equicontinuity of {θn}n by relying on ηn → η locally uni-
formly together with some harmonic measure considerations. Indeed ηn → η
locally uniformly implies that for any T > 0 and r > 0, there exists δ > 0,
s.t. for n large enough, ηn([t, t + δ]) remain inside the ball B(ηn(t), r) for any
t ∈ [0, T ]. Together with some easy harmonic measure estimates, this implies
the equicontinuity of {θn}n. As such it reduces the question to the following
second step.

b) Pointwise convergence of θn → θ. Let us then fix some t ≥ 0. Consider the
δ-neighborhood Oδn of ηn([0, t]). Let F δn ⊂ ∂Oδn be the closed set of points on
the boundary of Oδn which are at geodesic-distance-measured-in-U \ ηn([0, t]) δ
from the free arc of ηn([0, t]) and which are at Euclidean distance at least δ1/100

from the tip ηn(t) as well as from the current force point (last disconnection
vertex). We claim that with high probability (as δ → 0), all points in F δn are at
a geodesic-distance-measured-in-U \ ηn([0, t]) at least δ1/2 from the wired arc
of ηn([0, t]): otherwise, one could find a six-arm event for the FK percolation
(three-arm event if near the boundary of ∂U), in an annulus of inner radius
δ1/2 and outer radius δ1/100. This can be shown to be of vanishing probability
(vanishing in δ → 0, uniformly in n) using the fact that the six-arm exponent
for critical FK-Ising percolation is > 2. See for example Section 4.3 in [BPW18].
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Now, similarly as in Section 4, one can use Beurling’s estimate to claim that
once a Brownian motion in U \ Oδn started at 0 will hit the set F δn , it will hit
with very high probability the free arcs of ηn([0, t]) as well as η([0, t]) before
intersecting the respective wired arcs. One concludes by some easy harmonic
measure considerations for the balls of radius δ1/100 around the tip and the
force point. More topological details are certainly needed to turn this sketch
into a formal proof.

5. As in the chordal case, one needs to justify limits of conditional expectations arising
after say, the first disconnection time t = Dn

1 . (I.e. the fact the spatial Markov
property passes to the scaling limit definitively requires some justification). This
step can be handled similarly as in Subsection 5.3.

6. Finally, one can extract the radial Loewner driving function W from the angle θ
evolving like a cotan-Bessel process on [0, 2π] by relying on a suitable radial analog
of Lemma 2.4. It is not so immediate to generalize Lemma 2.4 to the radial setting,
because the assumption Leb(η ∩ R) = 0 does not suit the radial setting. One pos-
sible way is to compromise to an almost sure conclusion (instead of deterministic
conclusion): in the chordal setting, one replaces the requirement Leb(η ∩ R) = 0 by
Condition C2, since Leb(η ∩ R) = 0 holds almost surely under Condition C2 (see
Lemma 2.8), then the conclusion holds almost surely. This compromised version of
Lemma 2.4 in the chordal setting is easily generalized to the radial setting.

6.2 On Onsager’s one-arm exponent (equal to 1/8)

We briefly outline here what are the classical steps which enable to extract Onsager’s cel-
ebrated exponent 1

8 assuming the convergence to radial SLE(16/3, 16/3 − 6) is proved
(i.e. assuming item 4 above). First let us point out that the convergence to radial
SLE(16/3, 16/3 − 6) only implies a weaker result than Onsager’s one: similarly to the
one-arm exponent for critical percolation [LSW02], it implies that as n→∞,

P wired
Λn,pc(2)

[
0↔ ∂Λn

]
= n−

1
8

+o(1) ,

while there are no sub-polynomial o(1) corrections in Onsager’s result. The main steps to
prove this are as follows:

1. A computation of the exponent 1/8 on the continuous level. This corresponds to the
one-arm exponent α̃1 of radial SLEκ(κ− 6) which was calculated in [SSW09]:

α̃1 =
(8− κ)(3κ− 8)

32κ
.

Note that α̃1 = 1/8 when κ = 16/3.

2. Second, one needs to carefully argue that this continuous one-arm exponent α̃1 is
the same as the exponent describing the crossing probability, for critical FK-Ising
percolation, of large macroscopic annuli Λn \ Λrn as n → ∞ and r ∈ (0, 1). This
step can be made rigorous in essentially two steps: a) first by showing similarly as in
Proposition 5.2 that the discrete disconnection times Dn

k for the radial exploration
process converge to the continuous ones Dk. And b) by showing via some separation
types of lemmas that the probability of not disconnecting (i.e. θ not reaching 0) is
up to constant the same as connecting ∂Λn to ∂Λrn.
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3. Finally as for critical percolation (q = 1), one relies on the quasi-multiplicativity
of the discrete one-arm event to conclude. see [LSW02] or [SW01, Section 4.2] in the
case q = 1. In fact this quasi-multiplicativity of the one-arm event is even rigorously
known for all critical random-cluster models with q ∈ [1, 4] thanks to the recent
Russo-Seymour-Welsh Theorem proved in [DCST17, Theorem 7].
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