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Chapter I

Introduction (français)

1 Contexte et résultats

Dans cette thèse, nous étudions certaines propriétés concernant la percolation
critique plane ainsi que les processus SLE. Nous commencerons dans cette
partie par introduire ces modèles. Nous motiverons la définition et l’utilité
de ces processus SLE à travers l’exemple de la percolation critique. Il existe
de nombreux livres ou “surveys” sur le sujet, nous opterons donc dans cette
partie pour une présentation concise.

1.1 Modèle de la percolation et transition de phase

La percolation est l’un des modèles les plus simples qui possède une tran-
sition de phase. Considérons tout d’abord le cas du réseau Zd, d ≥ 2; soit
Ed, l’ensemble des arêtes de Zd. Si p ∈ [0, 1], on définit un sous-graphe
aléatoire de Zd de la manière suivante : indépendamment pour chaque arête
e ∈ Ed, on garde cette arête avec probabilité p et on la retire avec probabil-
ité 1 − p. De manière équivalente, cela revient à définir une configuration
aléatoire ω ∈ {0, 1}Ed

où, indépendamment pour chaque arête e ∈ Ed, on dé-
clare cette arête ouverte (ω(e) = 1) avec probabilité p ou fermée (ω(e) = 0)
avec probabilité 1− p. On notera Pp la loi de ce sous-graphe (ou configura-
tion) aléatoire. En théorie de la percolation, on s’intéresse aux propriétés de
connectivité à grande échelle (ou échelle macroscopique) de la configuration
aléatoire ω. Si x, y ∈ Zd sont deux points, on note {x ↔ y}, l’événement
où il existe un chemin ouvert dans ω reliant x et y; en particulier {x ↔ y}

1



2 CHAPTER I. INTRODUCTION (FRANÇAIS)

désigne l’événement où le point x est connecté à l’infini (cela signifie que la
composante connexe du point x dans ω est infinie).

La transition de phase peut être décrite de la façon suivante : pour tout
d ≥ 2, il existe une probabilité critique 0 < pc(Zd) < 1 telle que si p < pc(Z),
alors presque sûrement toutes les composantes connexes sont finies, mais si
p > pc(Zd), alors presque sûrement il existe une unique composante connexe
infinie.

La fonction densité θZd(p) := Pp(0↔∞) fournit des informations impor-
tantes conçernant les propriétés à grande échelle de la configuration aléatoire
ω. Elle correspond à la densité d’occupation (en moyenne sur l’espace Zd)
de la composante connexe infinie. La transition de phase signifie en terme
de fonction densité que θZd(p) = 0 si p < pc(Zd), alors que θZd(p) > 0 si
p > pc(Zd). Que ce passe-t-il exactement au point de transition pc(Zd) ? Est
ce qu’il existe presque sûrement une composante connexe infinie à p = pc(Zd)
ou non ? Il se trouve que c’est une question difficile en général. La “con-
tinuité” de la transition de phase (caractéristique des transitions dites de
second-ordre) est connue pour d = 2 ainsi qu’en grande dimension (d ≥ 19),
mais par exemple c’est un problème ouvert de savoir si θZ3(pc(Z3)) est égal
à zéro ou non. Pour plus de détails sur la percolation dans Zd, on renvoie le
lecteur vers [Gri99]. Nous nous concentrerons désormais sur la percolation
plane, en particulier au niveau du point critique.

1.2 Percolation planaire, invariance conforme et proces-

sus SLE

La théorie de la percolation critique plane a connu de rapides progrès au
cours des dix dernières années, en particulier grâce à la preuve de Smirnov
de l’invariance conforme de la percolation sur réseau triangulaire, ainsi que
la découverte par Schramm des processus SLE. Il est conjecturé que la limite
d’échelle de la percolation critique sur Z2 est également invariante conforme.
L’invariance conforme supposée de ces systèmes a permis aux physiciens
théoriciens de prédire, a l’aide de la théorie des champs conformes, de nom-
breuses probabilités asymptotiques pour la percolation critique. Par exemple
ils ont pu prédire les valeurs des exposants critiques de la percolation qui
décrivent en quelque sorte les propriétés fractales des grandes composantes
connexes etc..

Même si l’invariance conforme de la percolation sur Z2 n’est à ce jour pas
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Figure 1.1: Le processus d’exploration dans le demi-plan supérieur.

démontrée, Stanislav Smirnov a prouvé dans [Smi01] qu’elle avait lieu (du
moins asymptotiquement) pour le réseau triangulaire T. Plus précisément,
il a prouvé qu’une grande famille d’événements de type “croisement” sont
asymptotiquement invariants par transformation conforme. Une conséquence
de cette preuve est l’obtention de la formule de Cardy pour la probabilité
asymptotique de traverser un rectangle.

Nous introduisons donc à présent ce modèle de percolation par site sur
le réseau triangulaire. Il est défini de façon similaire : pour tout p ∈ [0, 1],
indépendamment pour chaque site x dans le réseau triangulaire T, on déclare
le site ouvert (représenté en noir sur les images) avec probabilité p et fermé
(blanc) avec probabilité 1− p. Comme sur Z2, il y a une probabilité critique
pc(T), telle que si p ≤ pc(T) alors presque sûrement toutes les composantes
connexes de sites ouverts sont finies, alors que pour p > pc(T), il existe
presque sûrement une unique composante connexe infinie (de sites ouverts).
Un célèbre théorème dû à Harry Kesten affirme que pc(T) = pc(Z2) = 1

2
.

Le graphe triangulaire est intimement relié à son graphe dual, le graphe
hexagonal. C’est commode (esthétiquement du moins) de représenter les
configurations de percolation par site sur T à l’aide du graphe hexagonal,
voir figure 1.1
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Avant la preuve de Smirnov (en 2001), Oded Schramm avait identifié en
1999 quelles devraient être, en supposant que l’invariance conforme a effec-
tivement lieu, les courbes qui décrivent le bord des composantes connexes
“macroscopiques” à la limite continue. Ça l’a conduit à définir les fameux
processus SLE, où SLE signifie Stochastic-Loewner-Evolution ou Schramm-
Loewner-Evolution. Plutôt que de considérer tous les bords des composantes
connexes en même temps, Schramm a eu l’idée d’en considérer un en parti-
culier : le processus d’exploration dans le demi-plan H (voir figure 1.1 dans
le cas du réseau triangulaire), qui se trouve entre les composantes connexes
ouvertes attachées à la demi-droite R− et les composantes connexes fermées
attachées à la demi-droite R+. Le processus d’exploration peut être réalisé
de manière inductive en découvrant le statut des sites un par un.

Charles Loewner a élaboré dans les années vingt une façon de représenter
des courbes dans le plan afin de résoudre la conjecture de Bieberbach sur la
croissance des coefficients des fonctions univalentes. Sa théorie lui a permis
de contrôler la taille du troisième coefficient (les deux premiers coefficients
peuvent être contrôlés a l’aide de techniques usuelles en analyse complexe).
Il se trouve que bien des années plus tard, la preuve par De Branges de la
conjecture de Bieberbach (1985) elle aussi repose sur les chaînes de Loewner.
Appliqué à notre cadre de la percolation, on peut considérer le processus
d’exploration ci-dessus comme une courbe simple γ : [0,∞) → H, avec une
paramétrisation quelconque. Pour tout t ≥ 0, Ht := H\γ[0, t] est un domaine
simplement connexe, par conséquent en utilisant le théorème de représenta-
tion conforme de Riemann, il existe une application conforme gt de Ht vers
H. Il y a trois degrés de liberté pour le choix de gt; on fixe donc gt(∞) =∞
et gt(z) = z + o(1), quand z tend vers l’infini. Il est facile de vérifier que
cela détermine de façon unique l’application conforme gt. Maintenant si l’on
développe gt au voisinage de l’infini on trouve

gt(z) = z +
at

z
+ O(

1

z2
),

où t 7→ at est une fonction (réelle) croissante. Si on reparamétrise la courbe γ
de telle façon que at = 2t (ce que l’on peut toujours faire), alors le Théorème
de Loewner affirme que les applications conformes (gt)t≥0 vérifient l’équation
différentielle suivante

{
g0(z) = z ∀z ∈ H ,
∂
∂t

gt(z) = 2
gt(z)−β(t)

if t < T (z) ,
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où t 7→ β(t) est appelée la fonction directrice de la courbe γ, et T (z) est
le “temps d’explosion”, c.a.d. le temps à partir duquel, lorsque l’on suit la
trajectoire t 7→ gt(z), l’équation différentielle n’est plus définie (a posteriori,
la courbe γ(0, t] est l’ensemble des points z tels que T (z) ≤ t). Ainsi la courbe
γ est déterminée par sa fonction directrice β: en effet, pour reconstruire γ à
partir de t 7→ β(t), il suffit de résoudre l’équation différentielle ci-dessus.

Considérons à présent le processus d’exploration sur un réseau triangu-
laire de très petite maille (“mesh”) ǫT. Cela correspond à une certaine courbe
aléatoire γǫ : [0,∞] → H, que l’on peut paramétriser de telle façon que la
famille des applications conformes (gt) qui lui est associée vérifie la normal-
isation ci-dessus (at = 2t). Ce processus d’exploration γǫ est donc “dirigé”
par un certain processus aléatoire (réel) βǫ(t). Supposons que l’on arrête
l’exploration à un certain temps t > 0 (c.a.d on a découvert les sites un par
un jusqu’à l’obtention de la courbe γǫ[0, t]). L’observation cruciale est que ce
qu’il reste à découvrir dans H\γǫ suit toujours la loi de la percolation critique
i.i.d. En particulier, si on suppose que l’invariance conforme a lieu à la limite
continue, alors on peut “renvoyer” dans le demi-plan H, la configuration de
percolation qu’il reste à découvrir dans H \ γǫ, ceci grâce à l’application con-
forme gt. Heuristiquement, l’invariance conforme affirme que si la maille ǫ
du réseau est petite, alors le processus d’exploration dans le réseau “déformé”
(image par gt du réseau ǫT) “ressemble” beaucoup au processus d’exploration
dans le réseau d’origine (lui aussi de très petite maille). Autrement dit l’image
gt(γ

ǫ((t,∞])) est proche en loi du processus d’exploration γǫ.
Il n’est pas difficile de vérifier que cela se traduit de la façon suivante

en termes de fonction directrice : quand la maille ǫ tend vers 0, pour tout
t > 0, la loi de (βǫ(t + u))u>0 est indépendante de la loi de βǫ([0, t]) et a
même loi que (βǫ(t))t>0. Puisque la continuité de la fonction directrice est
préservée à la limite continue, alors par le Théorème de Levy, le processus
limite (quand ǫ tend vers 0) β est nécessairement un mouvement Brownien√

κBt + µt. Seulement, par symétrie de notre processus d’exploration (par
rapport à z → −z̄), il est clair que β(t) et −β(t) ont même loi, ce qui force le
drift µ de s’annuler. C’est précisément ce par quoi on désigne les processus
SLEκ : ce sont les évolutions de Loewner aléatoires “conduites” ou “dirigées”
par
√

κBt, où Bt est un mouvement Brownien standard.
Notons que l’on a un peu “triché” ici puisque nous avons expliqué la

théorie de Loewner dans le cas des courbes simples du demi-plan H, mais il
se trouve que la limite continue du processus d’exploration se trouve être une
loi supportée sur des courbes avec de nombreuses auto- intersections. En fait,
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la théorie de Loewner s’adapte au cas plus général des familles croissantes
de compacts qui satisfont à une certaine condition de “croissance locale”
(condition qui est satisfaite dans le cas de la percolation).

Il est en aucun cas évident (pour un paramètre κ quelconque) de démon-
trer que la construction décrite ci-dessus génère effectivement une courbe
aléatoire à partir d’un mouvement Brownien β =

√
κBt. Cela a été prouvé

par Rohde et Schramm dans [RS05]. Dans cet article, ils prouvent que dans
le demi-plan supérieur, la courbe SLE avec paramètre κ existe presque sûre-
ment et est continue. De plus ils montrent également que cette courbe est
simple seulement si κ ≤ 4, alors qu’elle a des points doubles et touche le
bord du demi-plan dès que κ > 4. Notons aussi qu’un processus SLE dans
un domaine simplement connexe quelconque est défini comme étant l’image
du SLE dans le demi-plan par une application conforme.

En résumé, en combinant la preuve par Smirnov de l’invariance con-
forme sur réseau triangulaire avec la description par Schramm des processus
d’exploration, on obtient que ce processus d’exploration de la percolation a
une limite continue quand la maille du réseau tend vers zéro. Cette limite
continue est donnée par un processus SLEκ pour un certain paramètre κ > 0.
Une fois que l’on a déterminé la limite continue comme étant un processus
SLE, il n’est pas très difficile de voir que κ doit être égal à 6; l’une des raisons
étant que le SLE6 est la seule courbe SLE dont la loi de croissance est lo-
cale (comme c’est déjà le cas au niveau discret). Pour prendre un exemple
extrême, si l’on considère le SLE0, cela correspond à une géodésique pour
la métrique de Poincaré; si on perturbe le domaine dans lequel on définit le
SLE0, cela affecte la métrique de Poincaré et du coup affecte la courbe; cette
influence du domaine ne se ressent pas dans le cas du SLE6 (a part bien sûr
quand le SLE6 touche le bord).

Une fois que l’invariance conforme de la percolation est démontrée, il reste
encore certains arguments non triviaux avant de pouvoir en déduire la con-
vergence du processus d’exploration discret vers le SLE6. La première preuve
détaillée se trouve dans Camia et Newman [CN07]. Une autre approche a été
exposée dans [Smi06] (dont les détails peuvent être trouvés dans [Wer07]).

En général, de nombreux modèles planaires issus de la physique statis-
tique sont conjecturés être invariants conformes au niveau de la transition de
phase (c.a.d au point critique). Cela a été prouvé dans un certain nombre de
cas, dont les modèles suivants.
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• Les modèles LERW (Loop Erased Random Walk) et UST (Uniform
Spanning Tree) ont des limites continues qui correspondent respective-
ment au SLE2 et au SLE8 (et sont donc invariants conforme), voir
[LSW04a].

• La frontière du Mouvement Brownien plan correspond au SLE8/3, [LSW01b]
(ce qui a impliqué en particulier la conjecture de Mandelbrot).

• Les lignes de niveau du Champ libre Gaussien discret convergent vers
le SLE4, [SchShe06].

• Smirnov a prouvé récemment l’invariance conforme pour le modèle
d’Ising (SLE3) ainsi que son modèle de FK-percolation correspondant
(SLE16/3); voir [Smi06, Smi07].

1.3 Exposants critiques

La convergence des interfaces de percolation vers le SLE6 sur le réseau tri-
angulaire permet de prouver l’existence de certains exposants critiques et de
calculer leur valeur. Nous donnerons deux exemples : l’exposant à un bras et
l’exposant à quatre bras. Pour tout R > 1, soit A1

R l’événement où le site 0
est connecté à distance R par un chemin de sites ouverts (ou chemin ouvert).
On note également A4

R l’événement où il y a quatre “bras” (ou chemins) de
statut (ou couleur) alternés qui partent du site 0 (de couleur quelconque)
et qui vont jusqu’à distance R de l’origine (autrement dit, on peut trouver
quatre chemins, deux fermés, deux ouverts qui vont de 0 jusqu’à distance R
et les chemins fermés se trouvent entre les chemins ouverts). La figure 1.3
représente deux configurations de percolation satisfaisant respectivement les
événements A1

R et A4
R.

Il a été prouvé dans [LSW02] que la probabilité de l’événement à un bras
décroît de la façon suivante

P
[
A1

R

]
:= α1(R) = R−

5
48

+o(1) ,

où 5
48

est ce que l’on appelle un exposant critique.
Pour l’événement à quatre bras, Smirnov et Werner ont prouvé dans

[SW01] que sa probabilité décroît comme

P
[
A4

R

]
:= α4(R) = R−

5
4
+o(1) .
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Figure 1.2: La configuration à gauche satisfait l’événement à un bras, celle
de droite satisfait l’événement à quatre bras

L’événement à quatre bras se révélera être d’importance capitale dans
tous les résultats qui concernent la percolation dans cette thèse. En effet
supposons que l’événement à quatre bras est satisfait pour un certain site x ∈
T jusqu’à une distance R. Cela signifie que l’information provenant du seul
site x est importante pour ce qui concerne les connections à grande échelle
dans la boule B(x, R). En changeant le statut de x, on affecte radicalement
“l’image” que l’on voit dans B(x, R). Un tel point sera appelé point pivot
jusqu’à distance R.

En utilisant les relations de “scaling” dues à Kesten [Kes87], la déter-
mination de ces deux exposants critiques implique (voir[Wer07, Nol07]) le
comportement suivant pour la fonction densité θ(p) sur le réseau triangulaire
au voisinage de pc = 1/2

θ(p) = (p− 1/2)5/36+o(1) ,

quand p→ 1/2+. Cela fait partie de la description de la percolation presque-
critique.

Comme nous l’avons mentionné ci-dessus, les exposants critiques four-
nissent des informations sur les propriétés fractales de la percolation à la lim-
ite continue. Par exemple si l’on considère l’exposant à un bras, cela signifie
qu’en moyenne on trouve R91/48+o(1) sites dans le carré [−R, R]2 qui appar-
tiennent à une composante connexe de diamètre plus grand que R. Puisque
il y a seulement un nombre “fini” de tels composantes macroscopiques, cela
signifie que à la limite continue, les composantes connexes de percolation
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sont des compacts aléatoires dont la dimension fractale est p.s. 91
48

(ce qui
peut être prouvé rigoureusement).

Une des difficultés au niveau discret provient du fait que les probabil-
ités ci-dessus ne sont connues qu’au niveau de l’exposant (c.a.d. ce sont des
équivalents logarithmiques). Par exemple on ne sait pas si α1(R)/R−5/48

reste bornée ou pas.

On a défini ces événements pour la percolation critique sur réseau trian-
gulaire, mais on peut les définir de la même façon sur Z2; par exemple nous
utiliserons souvent la probabilité α4(R) dans le contexte du graphe Z2. Un
certain nombre de propriétés sont connues sur les probabilités de ces événe-
ments rares; par exemple on sait qu’il existe des constantes 1 < α < β < 2,
telles que lorsque R est suffisamment grand

R−β < α4(R) < R−α.

Toutefois, ne serait-ce que l’existence des exposants critiques pour Z2 de-
meure encore ouverte à ce jour.

1.4 Aperçu des résultats

La partie principale de cette thèse est constituée de quatre chapitres indépen-
dants :

• L’aire moyenne de la boucle Brownienne planaire. Dans ce premier
chapitre, on montre que l’aire moyenne comprise à l’intérieur d’une
boucle Brownienne planaire de temps un est égale à π

5
. Afin de déter-

miner cette aire moyenne, on utilise de façon essentielle le SLE8/3 qui a
la propriété de décrire le “bord du mouvement Brownien”. C’est un ex-
emple de problème où il semble que l’on doit utiliser les processus SLE
afin de déterminer des quantités concernant le mouvement Brownien
qui semblent hors de portée des techniques standards de calcul stochas-
tique. Cette valeur de π

5
a des conséquences sur les propriétés fractales

du modèle des “soupes Browniennes” (ou Brownian Loop Soups) intro-
duites dans [LW04].

• Dans le second chapitre, on démontre un analogue du théorème de
Makarov (concernant la mesure harmonique) pour les processus SLEκ.
Autrement dit, on étudie en quelque sorte quelle est la “taille” possible
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de l’ensemble ∂D∩γ pour un SLE dans un domaine quelconque D. On
montre également que pour tout κ ∈ [0, 8), les courbes SLEκ dans un
domaine (simplement connexe) quelconque sont continues. Ce résultat
était connu pour κ ≤ 4 mais ne l’était pas pour 4 < κ < 8 où les SLEκ

touchent le bord du domaine; hors le bord d’un domaine simplement
connexe quelconque peut être “sauvage”.

• Le spectre de Fourier de la percolation critique. Dans ce troisième
chapitre, on obtient des résultats optimaux sur la sensibilité au bruit
de la percolation (que ce soit dans T ou dans Z2). Diverses applica-
tions de ces résultats sont déduites pour le modèle de la percolation
dynamique. Ce dernier modèle correspond à une configuration de per-
colation qui évolue au cours du temps et où le statut de chaque site est
indépendamment mis à jour à taux un (c.a.d. après des temps expo-
nentiels de paramètres un). On montre en particulier que si Exc est
l’ensemble aléatoire des temps exceptionnels pour la percolation dy-
namique (à pc = 1/2) sur réseau triangulaire où l’origine percole, alors
Exc a p.s. dimension 31/36. On montre également l’existence de tels
temps exceptionnels dans le cas de la percolation dynamique sur Z2.

• Limite continue de la percolation presque-critique et de la percolation
dynamique. Ce dernier chapitre fait parti d’un projet en cours où nous
comptons démontrer que ces modèles de percolation presque-critique et
de percolation dynamique, une fois renormalisés convenablement, ont
une limite continue (unique). On ne présente pas la preuve complète
dans cette thèse, mais nous incluons deux théorèmes (intéressants en
soi, indépendamment du plus large projet) qui constitueront des étapes
clés dans la preuve ultérieure de la limite continue.

Ces chapitres sont tous reliés aux objets bidimensionnels invariants par
transformation conforme. Les deux premiers chapitres utilisent et étudient
les processus SLE. Les deux derniers ne relèvent pas directement des tech-
niques type SLE, mais elles utilisent des résultats (par exemple les exposants
critiques) qui proviennent du SLE. Soulignons que même si les chapitres 3 et
4 sont tous les deux reliés à la percolation dynamique, ils sont en fait com-
plètement indépendants l’un de l’autre, et se focalisent sur des perspectives
assez différentes.

Le reste de l’introduction est organisé de la façon suivante : tout d’abord
nous décrivons les deux premiers chapitres. Ces résultats peuvent être énon-
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cés sans nécessiter de connaissances supplémentaires. Mais avant de décrire
le contenu des deux derniers chapitres, nous avons choisi de présenter, afin
de donner une image plus claire des résultats, une introduction détaillée des
objets mathématiques (comme le spectre de Fourier) qui sont abondamment
utilisés dans le chapitre 3.

2 Aire moyenne de la boucle Brownienne planaire

Notre premier résultat, en collaboration avec José Trujillo Ferreras, concerne
l’aire moyenne comprise dans une boucle Brownienne planaire de temps un.
Plus précisément, soit Bt, 0 ≤ t ≤ 1 une boucle Brownienne (un mouvement
Brownien dans C conditionné à B0 = B1). On considère le compact obtenu en
remplissant tous les trous de la boucle Brownienne, c.a.d. le complémentaire
de l’unique composante non-bornée de C \ B[0, 1]. Appelons A l’aire de ce
compact aléatoire; dans [GT06], nous prouvons le théorème suivant

Théorème 2.1.
E
[
A
]

=
π

5

Les autres moments de la variable aléatoire A sont pour le moment in-
connus. Ce travail était motivé par les “soupes Browniennes” (Brownian
Loop Soups) introduites dans [LW04]; voir aussi [Wer03, Wer05b] pour les
liens avec les CLEs (Conformal Loop Ensembles) qui sont les candidats na-
turels pour la limite continue de systèmes supposés être invariants conformes
(comme Ising, Potts, etc..).

Plus précisément, une Soupe Brownienne d’intensité c > 0 dans un do-
maine simplement connexe Ω 6= C, est un nuage de Poisson de boucles
Browniennes (enracinées et restreintes à rester dans Ω) d’intensité cµloop,
où la mesure infinie µloop est définie par

µloop :=

∫

C

∫ ∞

0

dt

2πt2
µ♯(z, z, t)dtdA(z).

Ici µ♯(z, z, t) correspond à la mesure de probabilité sur les boucles Browni-
ennes de temps t enracinées en z. Pour une telle soupe Brownienne d’intensité
c > 0, on considère le complémentaire (dans Ω) de toutes les boucles “rem-
plies” de la soupe. Comme il est expliqué dans [Wer05b], cet ensemble aléa-
toire dans Ω a la même “structure” que la percolation fractale de Mandel-
brot. Par analogie avec le cas de la percolation fractale, si l’on veut évaluer
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Figure 2.1: Différents indices dans une marche aléatoire de 50000 pas, les
régions en noir correspondent aux régions d’indice zéro.

la dimension de Hausdorff du complémentaire de la soupe Brownienne (c.a.d
l’ensemble des points qui ne sont entourés par aucune boucle), la quantité
que l’on a besoin de connaître est le premier moment de la taille des boucles
(à un certain niveau fixé, par exemple t = 1). Cette quantité est précisément
celle que l’on détermine dans le théorème 2.1. En utilisant ce résultat, on
peut montrer (voir [Tha06]) que cette dimension est p.s. égale à 2− c

5
, où c

est l’intensité de la soupe Brownienne (en particulier, quand l’intensité dé-
passe 10, p.s. tous les points dans C sont entourés par au moins une boucle).

La preuve du théorème 2.1 repose sur les processus SLEκ, et plus précisé-
ment sur le processus SLE8/3, qui décrit (du moins “localement”) le bord des
boucles Browniennes (voir [LSW01b]). Une approche naturelle pour prouver
le théorème 2.1 sans utiliser de processus SLE aurait été d’utiliser la formule
de Yor ([Yor80]) donnant la loi de l’indice d’une boucle Brownienne. Soit
Bt, 0 ≤ t ≤ 1 une boucle Brownienne; on définit pour tout n ∈ Z \ 0, Ωn

comme étant l’ouvert aléatoire du plan correspondant à tous les points de C
dont l’indice est n par rapport à la boucle B([0, 1]). Appelons Wn l’aire de
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Ωn, c.a.d.

Wn =

∫

C

1nz=ndA(z),

où nz est l’indice de z par rapport à B([0, 1]). La formule de Yor donne la
loi de l’indice nz en fonction de la position z. En intégrant cette loi sur le
plan complexe C, on trouve que pour tout n ∈ Z \ 0,

E
[
Wn

]
=

∫

C

P
[
nz = n

]
dA(z) =

1

2πn2
.

Ce résultat avait déjà été obtenu dans la littérature physique ([CDO90]) à
l’aide des méthodes de Gaz de Coulomb. Puisque un point z d’indice nz 6= 0
est nécessairement à l’intérieur de la boucle Brownienne remplie, on en déduit
que

∑
n 6=0Wn ≤ A. Les points qui restent à comptabiliser sont les points

d’indice zéro qui se trouvent à l’intérieur de la boucle Brownienne. Appelons
W0 l’aire de l’ensemble des points d’indice zéro à l’intérieur de la boucle.
Même si la formule de Yor donne la probabilité qu’un point z soit d’indice
nz = 0, on ne peut pas “voir” si le point est à l’intérieur où à l’extérieur de
la boucle Brownienne. (par exemple, un point distant de l’origine aura forte
probabilité d’être d’indice nul). Puisque la preuve de la formule de Yor est
basée sur des techniques de martingales qui suivent l’évolution de l’angle vu
depuis le point z, il n’y a aucune chance d’adapter cette preuve en ajoutant
de l’information géométrique du type intérieur/extérieur. C’est pourquoi il
semble que les processus SLE sont ici nécessaires. Dans [CDO90], Comtet,
Desbois et Ouvry (qui ont calculé les aires moyennes E

[
Wn

]
pour n 6= 0

à l’aide de gaz de Coulomb) ont posé la question de déterminer quelle est
l’aire moyenne des points d’indice zéro à l’intérieur de la boucle (ce que l’on
a appelé E

[
W0

]
). En combinant les résultats ci-dessus, on obtient

Théorème 2.2.

E
[
W0

]
=

π

30
.

La figure 2 représente les différentes régions Ωn colorées différemment
selon leur indice n. Notons que si l’on voulait évaluer les moments supérieurs
de A, par exemple le second moment, l’un des ingrédients nécessaires serait
de connaître la “two-point function” pour la courbe SLE8/3, c.a.d si l’on se
donne deux points z1, z2 ∈ H : quelle est la probabilité que la courbe SLE8/3

passe à leur droite; ce qui est connu comme étant une question difficile.
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3 Analogue du théorème de Makarov pour les

processus SLEκ, et continuité des courbes SLE

dans un domaine quelconque

Ce chapitre est en collaboration avec Steffen Rohde et Oded Schramm.

Le théorème de Makarov sur le support de la mesure harmonique affirme
que pour n’importe quel domaine simplement connexe Ω $ C, il existe un
ensemble E ⊂ ∂Ω de dimension de Hausdorff un tel que pour tout z ∈ Ω,
presque sûrement un mouvement Brownien qui part de z va sortir du do-
maine Ω en un point de E ⊂ ∂Ω. On considère ici la situation analogue
pour les processus SLEκ. Par exemple dans le cas de κ = 6, cela peut être
décrit de la façon suivante. Soit Ω $ C un domaine simplement connexe et
soit z ∈ Ω. Plutôt que de démarrer un mouvement Brownien en z, on peut
imaginer “envoyer” un cluster de “percolation continue” (c.a.d à la limite con-
tinue) en z; par exemple en conditionnant par l’événement de probabilité
0 que z soit connecté au bord ∂Ω (il est possible de donner un sens à ce
conditionnement dégénéré, voir par exemple [Kes86]). Puisque le cluster de
percolation va rencontrer le bord à de nombreux endroits, on ne s’attend pas
à trouver un ensemble E de dimension un qui va presque sûrement “absorber”
tous les points du bord qui seront connectés à z. Est ce que le bord entier est
nécessaire pour absorber les clusters ? Nous allons montrer qu’il existe une
constante absolue 1 < d < 2 telle que pour tout domaine simplement connexe
Ω, il existe un ensemble E ⊂ ∂Ω de dimension de Hausdorff plus petite que
d qui presque sûrement absorbe sur le bord tous les clusters macroscopiques
de percolation dans Ω. Voir figure 3.1 pour une illustration.

Dans le cas général des processus SLEκ, on lance une courbe SLEκ dans
un domaine Ω (par exemple un SLEκ radial depuis un point z ∈ Ω jusqu’à un
prime-end de Ω) et on se demande à quel point la courbe SLEκ s’engouffre
dans les fjords de Ω. On prouve le résultat suivant

Théorème 3.1. Soit Ω $ C un domaine simplement connexe, soient a, b
deux prime-ends de G, soit z0 ∈ Ω et κ ∈ (4, 8). Alors il existe un ensemble
Borelien E ⊂ ∂Ω tel que le SLEκ chordal dans Ω de a vers b ainsi que le
SLEκ radial dans Ω de a vers z0 presque sûrement vérifient

γ(0,∞) ∩ ∂Ω ⊂ E,
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C

∂G

Figure 3.1: Une vue schématique d’un cluster de percolation C (ou bien
“l’enveloppe” d’un SLE6) à l’intérieur d’un domaine fractal Ω; la courbe bleue
représente le bord extérieur du cluster.

et
dim E ≤ d(κ) < 2 ,

où d(κ) est une constante qui ne dépend que de κ.

On montre également que le théorème ne peut pas être vérifié pour d(κ) =
1. De plus on obtient certaines estimées explicites sur la dimension d(κ); en
particulier on obtient que limκ→4 d(κ) = 1.

Les techniques utilisées pour démontrer ce résultat nous permettent de
répondre à une question reliée qui concerne les processus SLEκ : les courbes
SLEκ sont-elles continues dans n’importe quel domaine ? Plus précisément,
soit Ω $ C un domaine quelconque et soient a, b deux prime-ends de Ω. Soit
f : H → Ω une application conforme qui envoie 0 sur le prime-end a et ∞
sur le prime-end b. Le SLEκ dans Ω est défini comme étant l’image par f du
SLEκ dans H. Sans restrictions sur le domaine Ω, on ne peut pas prolonger
f par continuité sur H. Vu que pour κ > 4, le SLEκ dans H touche le bord
sur un ensemble de type Cantor, pour prouver que son image dans Ω est
encore une courbe continue, on doit montrer qu’en quelque sorte les courbes
SLE dans H évitent les points du bord où l’application conforme f “explose”
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(c’est une image naïve car il existe des domaines pour lesquels l’application
conforme f : H → Ω ne peut être prolongée nulle part sur le bord). On
montre le théorème suivant

Théorème 3.2. Soit Ω $ C un domaine simplement connexe, soient a, b
deux prime-ends de Ω, soit z0 ∈ Ω et κ ∈ [0, 8). Alors le SLEκ chordal de a
vers b dans Ω et le SLEκ radial de a vers z0 dans Ω sont presque sûrement
des courbes continues sur (0,∞).

Bien évidemment, ce résultat était déjà connu pour 0 ≤ κ ≤ 4, paramètres
pour lesquels les SLEκ sont des courbes simples qui ne rencontrent pas le
bord.

Ces résultats qui concernent les propriétés générales des processus SLEκ

ont été en partie motivés par la situation suivante. Schramm et Smirnov
montrent dans [SS] que la limite continue de la percolation peut être vue
comme un bruit noir bidimensionnel au sens de Tsirelson (voir [Tsi04]). Etre
un bruit signifie que si A et B sont deux ensembles ouverts lisses, alors toute
l’information sur les connections de la percolation continue dans A (FA) plus
toute l’information sur les connections de la percolation continue dans B
(FB) suffisent à reconstruire toutes les connections dans A ∪B. Cela veut
dire que la filtration du processus de percolation (à la limite continue) est
“factorisable”. Il se trouve ([Tsi04]) que les bruits noirs se factorisent moins
bien que les bruits blancs. Dans ce contexte particulier de la percolation,
on peut illustrer cette baisse de factorisabilité en se demandant quelle est la
situation pour des ouverts A et B de régularité quelconque. Si on désirait
“recoller” l’information provenant de FA et FB “cluster par cluster”, on au-
rait besoin de savoir à quel point les clusters de percolation pénètrent dans
les fjords du domaine A (et B), ce qui est relié au théorème 3.1 ci-dessus.
Plus précisément il y a un résultat sur la mesure harmonique dû à Bishop,
Carleson, Garnett et Jones ([BCGJ89], voir aussi [Roh91]) qui affirme qu’il
existe des courbes γ pour lesquelles la mesure harmonique vue d’un côté
et la mesure harmonique vue de l’autre côté sont des mesures singulières.
Par analogie, les mêmes techniques utilisées pour les théorèmes ci-dessus im-
pliquent que pour tout κ ∈ (4, 8), il existe un certain domaine Ω = Ω(κ) et
un ensemble E ⊂ ∂Ω tels que si γ1 et γ2 sont respectivement des SLEκ con-
duits à l’intérieur et à l’extérieur de Ω, alors p.s. γ1(0,∞) ∩ ∂Ω ⊂ E tandis
que γ2(0,∞) ∩ ∂Ω ⊂ Ec. Appliqué au cas de κ = 6, cela signifie qu’il existe
des domaines Ω pour lesquels (à la limite continue) les clusters à l’intérieur
sont invisibles pour les clusters extérieurs.
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4 Le spectre de Fourier de la percolation cri-

tique

Avant d’expliquer nos résultats dans le contexte de la percolation, nous
présentons ci-dessous un petit “survey” sur la sensibilité au bruit des fonctions
Booléennes, et nous donnons quelque prérequis sur la percolation dynamique.

4.1 Sensibilité au bruit des fonctions Booléennes

Commençons pas un exemple. Imaginons que l’on s’intéresse à la sensibilité
du résultat d’une élection par rapport au faible taux d’erreurs dans le comp-
tage des votes (autrement dit, dû au faible niveau de “bruit”). Pour simpli-
fier supposons qu’il y a seulement deux candidats (+1 et -1) et que chaque
personne participant au scrutin fait son choix de façon indépendante et uni-
forme. Un mode de scrutin correspond à une certaine fonction Booléenne f
de {−1, 1}n vers {−1, 1}, où n est le nombre de personnes. On peut supposer
de plus que le mode de scrutin est équilibré dans le sens où il ne favorise pas
tel ou tel candidat (cela se traduit par E

[
f
]

= 0). Le faible taux de bruit (ou
d’erreurs) peut être modélisé comme suit : supposons que indépendamment
pour chaque bulletin, une erreur se produit avec probabilité ǫ, où ǫ ∈ (0, 1)
est une constante fixée. Cela veut dire que indépendamment pour chaque
personne, avec probabilité ǫ le vote est mal pris en compte (+1 devient -1
et vice-versa). La sensibilité au bruit du mode de scrutin f correspond ici
à la probabilité que le résultat de l’élection soit affecté par les erreurs. Par
exemple un scrutin à la majorité absolue sera moins sensible au bruit qu’un
scrutin à plusieurs niveaux (comme c’est le cas aux états-unis).

Plus formellement, nous considérerons des fonctions Booléennes f de
{−1, 1}n vers {−1, 1} (souvent, les fonctions Booléennes vont plutôt de {0, 1}n
vers {0, 1} mais pour des raisons de symétrie il s’avérera être plus pratique
de les considérer de {−1, 1}n vers {−1, 1} et plus généralement de {−1, 1}n
dans R). Les propriétés des fonctions Booléennes sont étudiées de façon ap-
profondie en informatique ainsi que dans d’autres domaines (voir [KS06] par
exemple).

Comme nous l’avons motivé ci-dessus, pour une fonction Booléenne fixée
f de n bits, nous serons principalement intéressés par la sensibilité de la
fonction f quand les données sont affectées par du “bruit”. En informatique,
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on poserait la question de la manière suivante : est ce que la fonction f
est robuste aux erreurs (dans la transmission des données par exemple) ?
Plus précisément, soit f : {−1, 1}n → {−1, 1}. Supposons que l’hypercube
{−1, 1}n est muni de la mesure de probabilité uniforme. La théorie peut
être facilement étendue aux mesures produit sur {−1, 1}n, mais nous nous
restreindrons à ce cas (qui est déjà très riche). Pour une configuration aléa-
toire x = (x1, . . . , xn) ∈ {−1, 1}n, soit y = (y1, . . . , yn) une perturbation
aléatoire de x, où indépendamment pour chaque bit i ∈ {1, . . . , n}, avec
probabilité ǫ, yi = −xi et avec probabilité 1 − ǫ, yi = xi. Ici ǫ est une pe-
tite constante qui correspond au niveau de bruit. La fonction Booléenne f
sera dite sensible au bruit si pour une majeur partie des configurations x,
connaissant les données initiales x, il est difficile de prédire ce que sera f(y).
Plus quantitativement cela peut être mesuré par la quantité suivante :

N(f, ǫ) := var
[
E
[
f(y1, . . . , yn)

∣∣ x1, . . . , xn

]]
. (4.1)

On s’intéressera au cas asymptotique où le nombre de bits n tend vers l’∞.

Définition 4.1. Soit (nm)m∈N une suite croissante dans N. Une suite de fonc-
tions Booléennes fm : {−1, 1}nm → {−1, 1} sera dite asymptotiquement
sensible au bruit (ou juste sensible au bruit) si pour tout ǫ > 0,

lim
m→∞

N(fm, ǫ) = 0. (4.2)

Cela peut être paraphrasé en disant que asymptotiquement, la donnée
initiale (x1, . . . , xnm) ne donne presque aucune information sur le résultat
f(y1, . . . , ynm).

La situation opposée correspond à la stabilité au bruit. Une suite de
fonctions Booléennes fm : {−1, 1}nm → {−1, 1} sera dite (asymptotique-
ment) stable au bruit si

sup
m≥0

P
[
f(x1, . . . , xnm) 6= f(y1, . . . , ynm)

]
−→
ǫ→0

0.

Bien évidemment, la sensibilité au bruit et la stabilité au bruit sont des cas
extrêmes; il y a de nombreux exemples qui se trouvent entre les deux. On
trouve la même situation dans la théorie des bruits de Tsirelson où les bruits
noirs et les bruits blancs sont les cas extrêmes.

Dans certains contextes, d’autres façons de mesurer la sensibilité au bruit
peuvent sembler plus naturelles, mais dans la plupart des cas, notre mesure de
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la sensibilité N(f, ǫ) contrôle les autres critères. Par exemple, il est immédiat
par Cauchy-Schwarz de vérifier que pour f : {−1, 1}n → R, on contrôle la
corrélation

∣∣E
[
f(x)f(y)

]
− E

[
f
]2∣∣ ≤

√
N(f, ǫ)

√
var(f),

ce qui peut être traduit dans le cas d’une fonction Booléenne équilibrée
(E
[
f
]

= 0) à valeurs dans {−1, 1} par

∣∣P
[
f(x) 6= f(y)

]
− 1

2

∣∣ ≤ 1

2

√
N(f, ǫ).

Cette dernière expression est ce que l’on considérerait dans le cas du résultat
d’un mode de scrutin.

Il se trouve que l’analyse de Fourier discrète fournit des outils très utiles
pour l’étude de la sensibilité au bruit.

4.2 Analyse de Fourier des fonctions Booléennes et ap-
plication à la sensibilité au bruit

Commençons par une analogie avec l’analyse de Fourier classique. Imaginons
qu’une certaine fonction f dans L2(R/Z) nous soit donnée. On choisit une
point x au hasard, uniformément sur le cercle. Soit y une perturbation de x
(c.a.d. x plus un petit bruit), par exemple y = x +N (0, ǫ2) pour une petite
valeur ǫ > 0. On aimerait prédire la valeur de f(y) sachant x. Par exemple
si f(x) = sin(π2100x), il est clair que si le bruit ǫ vaut 10−3, la sensibilité sera
très forte. En général on peut quantifier la sensibilité de f par

N(f, ǫ) = var
[
E
[
f(y)|x

]]
. (4.3)

On sait que les coefficients de Fourier de f donnent des informations sur la
“régularité” de f . Si le spectre de f est concentré sur les petites fréquences,
f sera très régulière et peu sensible au bruit, alors que si f a beaucoup de
hautes fréquences, le résultat f(y) sera moins prévisible. On peut facile-
ment calculer N(f, ǫ) à l’aide de la décomposition en série de Fourier f(x) =
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∑
n∈Z

f̂(n)e2iπnx, en effet

N(f, ǫ) = E
[
[E
[
f(y)

∣∣ x
]
− E

[
f
]
]2
]

=

∫ 1

0

(
∑

n

f̂(n)E
[
e2iπny|x

]
− f̂(0)

)2

dx

=

∫ 1

0

(
∑

n 6=0

f̂(n)e2iπnxE
[
e2iπnN (0,ǫ2)

]
)2

dx

=

∫ 1

0

(
∑

n 6=0

f̂(n)e2iπnxe−2π2n2ǫ2

)2

dx

=
∑

n 6=0

|f̂(n)|2e−4π2n2ǫ2 since f̂(n) = f̂(−n) .

Ainsi on peut voir sur cette formule que les hautes fréquences favorisent la
sensibilité au bruit.

On aimerait suivre la même approche pour l’étude des fonctions Booléennes.
Il existe une riche théorie de l’analyse de Fourier sur l’hypercube {−1, 1}n.
Considérons le cas plus général de l’espace L2({−1, 1}n) des fonctions réelles
de n bits dans R, muni du produit scalaire :

〈f, g〉 =
∑

x1,...,xn

2−nf(x1, . . . , xn)g(x1, . . . , xn)

= E
[
fg
]
,

avec la mesure de probabilité uniforme sur l’hypercube. Pour tout S ⊂
{1, 2 . . . , n}, soit χS la fonction sur {−1, 1}n définie par

χS(x) :=
∏

i∈S

xi , (4.4)

pour tout x = (x1, . . . , xn). Il est immédiat de voir que cet ensemble de
2n fonctions forme une base orthonormale de L2({−1, +1}n). Ainsi toute
fonction f peut être décomposée comme

f =
∑

S⊂{1,...,n}
f̂(S) χS,
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où f̂(S) sont les coefficients de Fourier de f . Ils sont parfois appelés les
coefficients de Fourier-Walsh de f . Il vérifient

f̂(S) = 〈f, χS〉 = E
[
fχS

]
.

Notons que f̂(∅) correspond à la moyenne E
[
f
]
.

Bien sûr on pourrait trouver d’autres bases orthonormales pour L2({−1, 1}n),
mais il y a de nombreuses situations où ce choix particulier de fonctions
(χS)S apparaît naturellement. Tout d’abord il y a une théorie approfondie
de l’analyse de Fourier sur les groupes, théorie qui est particulièrement simple
et élégante pour les groupes Abeliens (ce qui inclue notre cas de l’hypercube
{−1, 1}n, mais aussi R/Z, R etc..). Pour les groupes Abeliens, l’ensemble
Ĝ des caractères de G (c.a.d. le groupe des morphismes de G dans C∗) se
trouve être le bon point de vue pour faire de l’analyse harmonique sur G.
Dans notre situation où G = {−1, 1}n, les caractères sont précisément les
fonctions χS indexées par S ⊂ {1, . . . , n} car χS(x · y) = χS(x)χS(y).

Ces fonctions apparaissent aussi naturellement si l’on considère la marche
aléatoire simple sur l’hypercube (équipé de la structure de graphe de Ham-
ming), car ce sont les fonctions propres du noyau de la chaleur sur {−1, 1}n.

Enfin, cette base (χS) est particulièrement bien adaptée à notre étude de
la sensibilité au bruit. En effet, de la même façon que pour les fonctions sur
le cercle R/Z, on obtient que si f est une fonction de L2({−1, 1}n), alors

N(f, ǫ) = E
[
[E
[
f(y)

∣∣ x
]
− E

[
f
]
]2
]

= E
[
[
∑

S⊂{1,...,n}
f̂(S)E

[
χS(y)

∣∣ x
]
− f̂(∅)]2

]
.

Il est facile de vérifier que E
[
χS(y)

∣∣ x
]

=
∏

i∈S E
[
yi

∣∣ xi

]
= (1 − 2ǫ)|S| par

indépendance des bits. Ainsi en utilisant le fait que si S1 6= S2, χS1 et χS2

sont orthogonales on obtient

N(f, ǫ) =
∑

S⊂{1,...,n}, S 6=∅
f̂(S)2(1− 2ǫ)2|S|. (4.5)

Par conséquent, dans le contexte des fonctions Booléennes, les “hautes fréquences”
correspondent aux sous-ensembles S de {1, . . . , n} de grand cardinal. La for-
mule de Parseval implique que

∑

S

f̂(S)2 = ‖f‖22.
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Pour toute fonction Booléenne f : {−1, 1}n → R, on définit sa mesure
spectrale sur l’ensemble des parties de {1, . . . , n} par

Qf

[
S = S

]
= Q

[
S = S

]
:= f̂(S)2,

où le sous-ensemble “aléatoire” S (Q n’est pas forcément une mesure de
probabilité ici) sera appelé le spectre aléatoire de Fourier de f . En
particulier, si f est à valeurs dans {−1, 1}, alors ‖f‖2 = 1, et on obtient une
mesure de probabilité spectrale,

Pf

[
S = S

]
= P

[
S = S

]
:= f̂(S)2.

Notons qu’il y a un léger abus de notation ici étant donné que Q et P ne
sont pas définis ici sur le même espace de probabilité que x ∈ {−1, 1}n, donc
formellement on aurait dû utiliser d’autres notations.

Pour toute fonction Booléenne f (à valeurs dans R), on peut réécrire sa
sensibilité N(f, ǫ) en terme de sa mesure spectrale de la façon suivante

N(f, ǫ) =
∑

S⊂{1,...,n}, S 6=∅
f̂(S)2(1− 2ǫ)2|S|

=
n∑

k=1

Q
[
|S | = k

]
(1− 2ǫ)2k.

Pour une fonction Booléenne de norme L2 égale à un, cela correspond à

N(f, ǫ) =

n∑

k=1

P
[
|S | = k

]
(1− 2ǫ)2k = E

[
(1− 2ǫ)2|S |],

où E correspond ici à l’espérance par rapport au spectre aléatoire S . Par
conséquent cela montre qu’une suite de fonctions Booléennes (fm) (à valeurs
dans {−1, 1}) sera asymptotiquement sensible au bruit si et seulement si
les mesures spectrales (Pfm) sont supportées sur des ensembles de plus en
plus grands et qu’il ne reste pas de masse sur les “fréquences finies” (à part
éventuellement ∅). Plus précisément

Proposition 4.2. Une suite de fonctions fm de {−1, 1}nm → {−1, 1} est
asymptotiquement sensible au bruit si et seulement si pour tout N > 0,

lim
m→∞

Pfm

[
0 < |S | < N

]
= 0.
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Ainsi la distribution de la taille du spectre aléatoire S réunit toute
l’information nécessaire à l’étude de la sensibilité au bruit de f . On pourrait
donc être tenté de restreindre notre étude seulement à la taille de S , mais il
s’avérera être utile dans le chapitre V de considérer S “géométriquement”.

4.3 Quelque exemples simples de fonctions Booléennes

• Commençons par un exemple simple relié à la situation des modes de
scrutin, décrite précédemment. Pour tout entier impair n ≥ 1, on
définit la fonction Majorité MAJn sur l’hypercube {−1, 1}n (toujours
muni de la mesure uniforme) de la façon suivante : pour tout x =
(x1, . . . , xn) ∈ {−1, 1}n soit

MAJn(x) = sign(
∑

i

xi).

Pour tout niveau de bruit ǫ > 0, si on se représente x1 + . . .+xn comme
une marche aléatoire simple sur Z de n pas, y = (y1, . . . , yn) sera une
version ǫ-bruitée de la marche aléatoire x; en particulier pour n grand,
1√
n
(x1, . . . , xn) et 1√

n
(y1, . . . , yn) sont approximativement proches à

√
ǫ

près. Ainsi si x est tel que |x1+. . .+xn| > 100
√

ǫ (ce qui se produit avec
grande probabilité si ǫ est petit), on peut prédire f(y) avec une bonne
précision. Par conséquent la fonction Majorité est (asymptotiquement)
stable au bruit.

On peut en fait calculer exactement dans cette situation la distribu-
tion de la taille du spectre aléatoire. Regardons le premier niveau
(|S | = 1) de la distribution de Fourier. Pour tout bit i ∈ {1, . . . , n},
P
[
S = {i}

]
= E

[
sign(x1 + . . . + xn)xi

]2
. La seule contribution à l’es-

pérance provient des configurations x telles que
∑

xi = ±1; l’ensemble
de ces configurations (asymptotiquement) a probabilité 2√

2πn
. Cela

donne P
[
S = {i}

]
= 2

πn
+ o( 1

n
), d’où P

[
|S | = 1

]
= 2

π
+ o(1). On

observe donc que asymptotiquement, une fraction positive reste con-
centrée sur le niveau un des coefficients de Fourier; il en est de même
pour tous les niveaux impairs k ≥ 1 et de plus la masse ne se propage
pas à l’infini (quand n tend vers l’infini). La fonction Majorité est en
quelque sorte, sous des hypothèses raisonnables, la fonction Booléenne
la plus stable.
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• La fonction Parité PARn : soit n ≥ 1, considérons la fonction qui
retourne 1 si parmi les n bits on trouve un nombre pair de −1; −1
sinon. La fonction Parité peut être écrite pour tout x = (x1, . . . , xn) ∈
{−1, 1}n comme

PARn(x) =

n∏

i=1

xi = χ{1,2,...,n}(x).

En particulier dans cet exemple, la mesure spectrale est concentrée sur
le singleton δ{1,...,n}. C’est la fonction Booléenne la plus sensible au
bruit (plus haute fréquence) que l’on peut trouver sur l’hypercube.

• On se tourne à présent vers les fonctions Booléennes qui nous in-
téresseront tout particulièrement dans la suite (chapitre V) à savoir
les événements de croisement (radial ou de type Gauche-droite dans un
rectangle) en percolation critique (2d). Par exemple, si on considère la
percolation sur Z2 à pc = 1/2; pour le rectangle n × (n + 1), on peut
considérer la fonction Booléenne fn sur les arêtes de ce rectangle, qui
retourne 1 si il y a un croisement de Gauche à Droite, -1 sinon. Par du-
alité cette fonction est équilibrée : E

[
fn

]
= 0. On aimerait comprendre

quelle est la sensibilité au bruit de la percolation; ou plus précisément
comment ses connections, clusters etc.. sont affectées quand la con-
figuration est bruitée. Si on voulait calculer les coefficients de Fourier
de f10, puisqu’il y a environ 200 bits concernés, on aurait besoin de
calculer environ 2200 termes. Il n’existe pas à ce jour de manière de
calculer ces coefficients de Fourier. On ne sait pas non plus “simuler”
une réalisation de S de façon raisonnable (on peut comparer par exem-
ple avec la situation des SAW où il est difficile de compter le nombre
de chemins-auto-évitants, mais au moins il est possible en utilisant
l’algorithme pivot de les simuler). On a calculé ci-dessous la décompo-
sition de Fourier-Walsh de f1 (il y aurait déjà 213 termes pour f2).
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x1 x2

x3

x4 x5

Figure 4.1: Variables pour la fonction f1.

f1(x1, . . . , x5) =
1

25
(12χ1 + 12χ2 + 4χ3 + 12χ4 + 12χ5)

+
1

25
(−8χ1,2 + 8χ1,4 + 8χ2,5 − 8χ4,5)

+
1

25

{
−4χ1,2,3 − 4χ1,2,4 − 4χ1,3,4 + 4χ2,3,4 − 4χ1,2,5

+4χ1,3,5 − 4χ2,3,5 − 4χ1,4,5 − 4χ2,4,5 − 4χ3,4,5

+
4

25
χ1,2,3,4,5

Ce qui donne P
[
|S | = 1

]
= 592

210 ≈ 0.58, P
[
|S | = 2

]
= 252

210 = 1/4,
P
[
|S | = 3

]
= 160

210 ≈ 0.156 et P
[
|S | = 5

]
= 16

210 ≈ 0.016.

4.4 Résultats obtenus précédemment sur la sensibilité
au bruit de la percolation

L’étude de ce problème remonte à l’article séminal [BKS99]. Benjamini,
Kalai et Schramm ont prouvé que l’événement de croisement dans le rectangle
n × (n + 1) est en effet (asymptotiquement) sensible au bruit. Ils prouvent
le théorème suivant

Théorème 4.3. Si fn correspond à la fonction indicatrice (dans {−1, 1})
du croisement gauche-droite dans le rectangle n × (n + 1) , alors pour tout
N > 0,

lim
n→∞

Pfn

[
0 < |Sfn| < N

]
= 0. (4.6)

L’ingrédient principal de leur preuve est l’utilisation de la propriété d’hy-
percontractivité pour le “noise Operator” (l’analogue du semi-groupe de Orn-
stein-Uhlenbeck qui associe à toute fonction Booléenne f son espérance con-
ditionnelle E

[
f(y)

∣∣ x
]
). Dans cet article, les auteurs soulèvent la question
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de savoir à quel point la percolation est-elle sensible au bruit. Plus précisé-
ment, plutôt que de fixer le niveau de bruit à une valeur fixe ǫ > 0, le niveau
du bruit peut décroître vers 0 avec la taille du système. On considère donc
une suite (ǫn) tendant vers 0 et on regarde N(fn, ǫn). Benjamini, Kalai et
Schramm ont posé la question suivante

Question 4.4. Est ce que N(fn, n−β) tend vers 0 pour un certain exposant
β > 0 ?

C’est équivalent au problème de savoir si Pfn

[
0 < |S | < nβ

]
converge

vers zéro ou non (on s’intéresse à la vitesse à laquelle la masse de la mesure
spectrale se propage vers l’infini). Dans l’article, [BKS99] les techniques
d’hypercontractivité permettaient de montrer que la percolation est au moins
ǫn = c

log n
-sensible au bruit, pour une certaine constante c > 0.

Cette question a été résolue par Schramm et Steif dans [SS05]. Ils ont
prouvé le Théorème

Théorème 4.5. Il existe une exposant γ > 0 tel que

lim
n→∞

Pfn

[
0 < |Sfn | < nγ

]
= 0.

C’est équivalent au fait que la sensibilité N(fn, n−γ) tend vers 0 lorsque la
taille du rectangle tend vers l’infini. Dans le cas de la percolation critique sur
réseau triangulaire, en se basant sur la connaissance des exposant critiques,
ils obtiennent des estimées quantitatives de la sensibilité des événements de
croisement. Si gn est la fonction indicatrice (dans {−1, 1}) de l’événement de
croisement de gauche à droite dans un domaine approximant le carré de coté
n (on pourrait aussi choisir une forme plus adaptée au réseau triangulaire,
par exemple un losange de coté n) ils montrent

Théorème 4.6. Pour tout γ < 1/8,

lim
n→∞

Pgn

[
0 < |Sgn| < nγ

]
= 0.

En fait ils obtiennent des résultats plus fins sur les mesures spectrales,
puisqu’ils parviennent à contrôler la queue (inférieure) de distribution du
spectre, qui se trouve être la quantité clé pour l’étude de la percolation
dynamique.

Leur preuve utilise des techniques très différentes de celles utilisées dans
[BKS99]. Ils ont observé en particulier le phénomène suivant : si une fonc-
tion Booléenne peut être évaluée par un algorithme aléatoire (randomized



4. LE SPECTRE DE FOURIER DE LA PERCOLATION 27

algorithm) de telle façon que chaque bit est lu avec faible probabilité, alors
la fonction est sensible au bruit (et en quelque sorte sa sensibilité dépend
de “l’efficacité” de l’algorithme). Prenons le cas de la fonction Majorité (que
nous avons vu être stable), il est clair que si l’on veut déterminer le résultat
de l’élection en regardant les votes un par un (en suivant un certain algo-
rithme), dans tous les cas, on devra relever au moins n/2 suffrages; ainsi
il n’existe pas d’algorithme pour lequel chaque bit a une faible probabilité
d’être lu. Leurs techniques sont valides pour toute fonction Booléenne et ne
restreignent donc pas au cas de la percolation.

Nous concluons cette sous-partie en montrant que si le bruit décroît trop
vite quand la taille du système tend vers l’infini, alors le bruit peut ne plus
avoir aucun effet sur les propriétés de connection de la percolation. Plus
précisément considérons fn : l’indicatrice (±1) du croisement de gauche à
droite dans le rectangle n × (n + 1) dans Z2. Soit ω une configuration i.i.d
sur l’ensemble En des arêtes du rectangle n×(n+1); pour ǫn > 0 soit ωǫn une
configuration ǫn-bruitée de ω. Cela signifie qu’il y a N ∼ B(|En|, ǫn) arêtes
au hasard qui ont changé de statut. Pour produire ωǫn en partant de ω on
peut procéder comme suit : indépendamment pour chaque arête e ∈ En, soit
ue une variable aléatoire uniforme sur l’intervalle unité. Si ue < ǫn on change
le statut de e dans la configuration ω, sinon on garde le même statut pour
e. Cet aléas en plus nous procure un ordre sur l’ensemble S = {e1, . . . , eN}
des arêtes qui changent de statut entre ω et ωǫn. Soit ω0 = ω, on définit par
induction pour 0 ≤ i < N , la configuration ωi+1 comme étant la configuration
ωi dont le statut de l’arête ei+1 a changé. En particulier on a ωN = ωǫn.
Remarquons que pour tout 0 ≤ i ≤ N , ωi suit la loi de la percolation i.i.d.
sur En et la ime arête ei est distribuée uniformément sur En. Connaissant le
nombre total de changement N , on obtient que

P
[
fn(ω) 6= fn(ωǫn)

∣∣ N
]
≤

∑

0≤i<N

P
[
fn(ωi) 6= fn(ωi+1)

]

=
∑

0≤i<N

P
[
ei is pivotal for ωi

]
.

Mais puisque pour tout 0 ≤ i ≤ N , ωi suit la loi de percolation i.i.d et vu
que ei est distribué uniformément sur le rectangle, toutes ces probabilités
sont égales et il est facile de voir qu’elles dont de l’ordre de α4(n); il y
a certes ici des “effets de bord”, mais c’est un calcul classique de vérifier
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que ces contributions venant du bord (ou des coins) sont négligeables. On
obtient donc que P

[
fn(ω) 6= fn(ωǫn)

]
≤ O(1)E

[
N
]
α4(n) = O(1)ǫnn

2α4(n).
Par conséquent si le niveau de bruit (ǫn) satisfait asymptotiquement ǫn ≪

1
n2α4(n)

, alors les événements de croisement sont stable.
La conjecture naturelle était qu’il y a une transition “brusque” entre sen-

sibilité et stabilité, dans le sens où, dès que l’on commence à toucher de
nombreux points pivots, alors toute l’information devrait disparaître à la
limite. En d’autres termes, si ǫn ≫ 1

n2α4(n)
, alors les événements de croise-

ment devraient être sensibles au bruit. La résolution de cette conjecture
que nous décrirons plus bas est l’une des principales contributions de cette
thèse. Sur le réseau triangulaire, on a vu que α4(n) = n−5/4+o(1), en partic-
ulier le seuil de sensibilité au bruit se trouve au voisinage de ǫn = n−3/4+o(1).
On peut comparer ce seuil avec le théorème ci-dessus de [SS05] qui montre
que sur le réseau triangulaire, les croisements de percolation sont au moins
n−1/8+o(1)-sensibles au bruit.

4.5 Autres utilisations du spectre de Fourier dans des

contextes proches

Avant d’expliquer plus en détail comment l’étude de la sensibilité au bruit de
la percolation nous permet de mieux appréhender la percolation dynamique,
nous mentionnons brièvement deux autres contextes où des techniques simi-
laires se sont avérées être conséquentes.

• Dans [BKS03], il est prouvé que les longueurs des géodésiques en per-
colation de premier passage ont des fluctuations (en variance) majorée
par O(n/ log(n)), et diffèrent ainsi des fluctuations gaussiennes. La
conjecture (toujours ouverte) est que l’écart-type est en n1/3. Avant
cet article, Kesten ([Kes93]) avait montré que les fluctuations (en vari-
ance) sont en O(n), ce qui n’excluait pas à priori un comportement
Gaussien. Remarquons que les techniques de “sensibilité” au bruit sont
utilisées ici dans un but différent, à savoir comprendre les fluctuations
autour d’une forme asymptotique déterministe.

• Dans [FK96], il est montré que toute fonction Booléenne d’un graphe
aléatoire G(n, p), 0 ≤ p ≤ 1 (dont on oublie le label des points) admet
nécessairement un “sharp threshold” autour d’une certaine probabilité
critique pc = pc(n). Cela signifie que pour tout événement monotoneA,
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si on considère la fonction fn : p 7→ Pn,p

[
A
]
, alors fn a asymptotique-

ment une forme en “cut-off”. En d’autre termes, n’importe quel événe-
ment monotone apparaît “tout d’un coup” quand on augmente la valeur
de p. La preuve de ce résultat utilise entre autre le fait que l’influence
totale (où l’énergie) d’un événement monotone quelconque est néces-
sairement grande (ce qui à nouveau provient de l’hypercontractivité).
Ce fait (uniforme en quelque sorte par rapport à p ∈ (0, 1)) combiné
avec le lemme de Russo implique leur résultat.

4.6 Percolation dynamique

La percolation dynamique consiste en un dynamique naturelle sur l’espace des
configurations de percolation; plus précisément c’est un processus de Markov
sur l’ensemble de ces configurations. Le modèle est défini de façon élémen-
taire comme suit : pour tout graphe G = (V, E), on part d’une configuration
initiale ω0, qui suit la loi Pp (pour un certain p ∈ [0, 1]) où chaque arête est
ouverte avec probabilité p, et on laisse évoluer le statut de chaque arête e ∈ E
selon un processus de Poisson de taux un : indépendamment pour chaque
arête, à taux un le statut de l’arête (ouvert ou fermé) est retiré au hasard :
ouvert avec probabilité p, fermé avec probabilité 1 − p. Par conséquent, la
percolation dynamique (ωt) est une dynamique où à chaque temps fixé t0, la
configuration ωt0 suit la loi de percolation i.i.d. Pp; en d’autres termes Pp est
la loi de probabilité invariante pour ce processus de Markov. Ce modèle a été
introduit par Häggström, Peres et Steif dans [HPS97]. Les principales ques-
tions que l’on rencontre sont du type suivant : est ce qu’une propriété qui
est vérifiée presque sûrement pour la percolation statique (Pt) sera également
vérifiée pour tous les temps t de la dynamique ? Si la réponse se trouve être
négative, alors il existe au long de cette dynamique des temps exception-
nels où la propriété cesse d’être vérifiée. Puisque la propriété est supposée
être vérifiée presque sûrement pour la percolation statique, l’ensemble de ces
temps exceptionnels est nécessairement de mesure de Lebesgue nulle.

Dans [HPS97], les auteurs considèrent le cas général des graphes G, in-
finis, connexes et localement finis. Soit pc = pc(G) la probabilité critique.
Appelons C, l’événement qu’il existe une composante connexe infinie. Ils
montrent que à part peut-être au point critique pc, il n’y a pas de temps ex-
ceptionnels pour l’événement C. Plus précisément, ils montrent que si p > pc

alors presque sûrement (par rapport à la mesure de probabilité régissant le
processus de Markov) l’événement ¬C est vérifié pour tous les temps de la
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dynamique. Ainsi l’étude de la percolation dynamique s’est focalisée depuis
sur le comportement de la percolation dynamique au niveau du point cri-
tique. Toujours dans [HPS97], les auteurs ont soulevé cette question pour la
percolation dans Zd, d ≥ 2 au point critique pc(Zd). En utilisant des résultats
obtenus par Hara et Slade sur la percolation en grande dimension (d ≥ 19),
et en particulier le fait que la densité du cluster infini θZd(p) a une dérivée
finie en pc (c.a.d. θZd(p) = Pp

[
0↔∞

]
= O(p− pc(Zd))), ils ont montré que

à p = pc, il n’y a pas de temps exceptionnels où un cluster infini apparaît. En
dimension deux, la situation est différente car lorsque l’on fait croître p et que
l’on passe la valeur critique 1/2, le cluster infini apparaît en quelque sorte
plus subitement ( d

dp

∣∣
pc

θZ2(p) = ∞). La question de l’existence des temps

exceptionnels pour les clusters infinis dans Z2 est restée ouverte (maintenant
résolue, voir plus bas), mais dans [SS05], Schramm et Steif ont apporté une
contribution décisive en montrant que de tels temps exceptionnels existent
pour la percolation sur réseau triangulaire (à pc = 1/2). Ils ont prouvé le
Théorème suivant.

Théorème 4.7. Presque sûrement, l’ensemble des temps exceptionnels t ∈
[0, 1] tels que la percolation dynamique critique sur réseau triangulaire a une
composante connexe infinie est non vide.

De plus, la dimension de Hausdorff de cet ensemble de temps exception-
nels est presque sûrement une constante dans [1/6, 31/36].

Ils ont conjecturés que la dimension de ces temps exceptionnels est presque
sûrement 31/36.

La percolation dynamique est intimement reliée à la sensibilité au bruit
de la percolation. En effet, pour la percolation dynamique sur réseau triangu-
laire, la configuration ωt+s au temps t+s est une configuration ǫ-bruitée de ωt

avec ǫ = 1
2
(1−exp(−s)); ici le facteur 1/2 provient du fait que l’on a définit la

percolation dynamique en retirant au hasard le statut de chaque site à taux
un, plutôt que de changer la statut de chaque site à taux un (la première
définition étant plus commode pour les graphes où pc 6= 1/2). Comme c’est
souvent le cas, c’est beaucoup plus facile de contrôler la borne supérieure
pour la dimension de Hausdorff de l’ensemble des temps exceptionnels. D’un
autre coté, si pour un certain événement (de probabilité “statique” 0), on
veut prouver qu’il existe des temps exceptionnels, alors cela passe générale-
ment par la détermination d’une borne inférieure strictement positive pour
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la dimension de l’ensemble de ces temps exceptionnels (ce qui est en général
la partie difficile).

Nous allons expliquer d’où vient la borne supérieure égale à 31/36 dans
le cas du réseau triangulaire. Appelons E l’ensemble (aléatoire) des temps
exceptionnels t ∈ [0, 1] où il y a une composante connexe infinie dans ωt,
on veut montrer que p.s. dimH(E) ≤ 31

36
. Pour tout site x dans le réseau

triangulaire T, appelons Ix, l’événement qu’il existe un chemin ouvert de x
vers l’infini, et soit Ex l’ensemble des temps exceptionnels t ∈ [0, 1] tels que
x

ωt←→∞. Par définition, E = ∪x∈T Ex. Par dénombrabilité, il suffit de mon-
trer que l’ensemble E0 des temps exceptionnels où l’origine est connectée à
l’infini est p.s. de dimension plus petite que 31

36
. Pour tout entier n ≥ 1, on

partitionne l’intervalle unité [0, 1) en n intervalles Ik = [ k
n
, k+1

n
), 0 ≤ k < n.

Pour tout 0 ≤ k < n, on veut majorer la probabilité que E0 ∩ Ik 6= ∅. Pour
cela remarquons que ωk/n suit la loi de la percolation critique (p = 1/2);
on définit maintenant la configuration ω̃k comme étant l’ensemble des sites
ouverts de ωk/n plus tous les sites qui ont changé de statut (au moins une
fois) de fermé vers ouvert pendant l’intervalle Ik. Ainsi par définition, pour
tout t ∈ Ik, la configuration ωt est dominée par ω̃k. Mais il est facile de
voir que ω̃k suit précisément la loi de la percolation i.i.d avec paramètre
p = 1

2
+ 1

4
(1 − e−1/n) ≤ 1

2
+ 1

4n
. Par conséquent, la probabilité qu’il y

ait un temps t ∈ Ik pour lequel 0 soit connecté à l’infini est dominé par
la probabilité que 0 soit connecté à l’infini pour ω̃k. Cette probabilité est
donnée par la fonction de densité θ(1

2
+ 1

4n
). Maintenant, grâce à la connais-

sance des exposants critiques dans le cas du réseau triangulaire, on sait que
θ(p) = (p − 1/2)5/36+o(1), quand p → pc = 1/2 (voir par exemple [Wer07]).
En particulier pour tout α > 0 et n assez grand, on obtient que pour tout
0 ≤ k ≤ n, P

[
Ik ∩ E0

]
≤ ( 1

n
)5/36−α. Cela implique que pour n assez grand, le

nombre moyen d’intervalles de largeur 1/n nécessaires pour recouvrir E0 est
majoré par n31/36−α ce qui (en prenant n → ∞ et α → 0) prouve que p.s.
dim(E) = dim(E0) ≤ 31

36
. Voir [SS05] pour plus de détails.

D’un autre coté, ne serait-ce que la preuve de l’existence des temps excep-
tionnels se trouve être une tâche bien plus difficile. En effet, on a besoin pour
cela de comprendre les corrélations entre les configurations ωt et ωt+s. En
d’autres termes, les estimées de type “premier moment” (comme ci-dessus)
sont suffisantes pour les bornes supérieures, mais pour les bornes inférieures
on a recourt au moins à un contrôle du type “second moment” (d’où le besoin
de regarder les corrélations).
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Heuristiquement, si la configuration percolation ωt change très vite au
cours du temps t, alors elle aura plus de chance de créer des chemins infinis à
certains temps exceptionnels. Autrement dit, si la percolation se trouve être
très sensible au bruit, alors les propriétés de connection décorréleront vite ce
qui facilitera l’émergence de clusters infinis.

Plus mathématiquement, pour tout rayon R > 1, on introduit QR, l’ensemble
des temps où 0 est connecté à distance R:

QR := {t ∈ [0, 1] : 0
ωt←→ R}.

Prouver l’existence des temps exceptionnels revient à montrer qu’avec prob-
abilité strictement positive ∩R>0QR 6= ∅. Même si les ensembles QR ne sont
pas fermés, avec quelque techniques supplémentaires (voir [SS05]), il suffit de
montrer qu’il existe une constante c > 0 telle que infR>1 P

[
QR 6= ∅

]
> c. Cela

peut être établi en introduisant le montant de temps XR où 0 est connecté à
distance R : plus précisément on définit

XR :=

∫ 1

0

1
0

ωt←→R
dt.

Or par Cauchy-Schwarz,

P
[
QR 6= ∅

]
= P

[
XR > 0

]
≥ E

[
XR

]2

E
[
X2

R

] ,

(c’est ce que l’on appelle la méthode du second moment); il reste donc à
prouver qu’il existe une constante C > 0 telle que pour tout R > 1, E

[
X2

R

]
<

CE
[
XR

]2
. Remarquons que le second moment peut être écrit

E
[
X2

R

]
=

∫∫

0≤s≤1
0≤t≤1

P
[
0

ωs←→ R, 0
ωs←→ R

]
dsdt

≤ 2

∫ 1

0

P
[
0

ω0←→ R, 0
ωt←→ R

]
dt .

Maintenant, soit fR = fR(ω) la fonction indicatrice de l’événement {0 ω←→
R}. fR peut être vue comme une fonction Booléenne des bits du disque de
rayon R à valeurs dans {0, 1}. On peut donc calculer la corrélation de la
façon suivante
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P
[
0

ω0←→ R, 0
ωt←→ R

]
= E

[
fR(ω0)fR(ωt)

]

= E
[( ∑

S⊂B(0,R)

f̂R(S)χS(ω0)
)( ∑

S⊂B(0,R)

f̂R(S)χS(ωt)
)]

= E
[
fR

]2
+

∑

∅6⊂S⊂B(0,R)

f̂R(S)2 exp(−t|S|)

= E
[
fR

]2
+
∑

k≥1

Q
[
|S | = k

]
e−kt, (4.7)

où Q est la mesure spectrale de fR (ce n’est pas une mesure de probabilité
puisque ‖fR‖2 < 1). En intégrant le long de l’intervalle unité, cela donne

E
[
X2

R

]
≤ 2 E

[
XR

]2
+ 2

∑

k≥1

Q
[
|S | = k

]

k
.

Par conséquent, afin d’obtenir le second moment désiré, on doit contrôler
la queue de distribution inférieure de la taille du spectre aléatoire S . Cela
a été concrétisé dans [SS05], ce qui leur a permis de montrer l’existence
des temps exceptionnels sur le réseau triangulaire. Comme nous l’avons
mentionné ci-dessus, leur contrôle de la queue de distribution inférieure leur
a permis d’obtenir la borne inférieure de 1/6 pour la dimension de Hausdorff
de l’ensemble des temps exceptionnels. Afin d’atteindre la borne supérieure
de 31/36, des estimées optimales sur la queue de distribution (inférieure) du
spectre sont nécessaires, ce qui constitue une partie des résultats que nous
décrivons dans la sous-partie qui suit.

4.7 Notre contribution à la sensibilité au bruit et à la

percolation dynamique

Ces résultats sont en collaboration avec Gábor Pete et Oded Schramm.
Les énoncés qui suivent ont lieu à la fois pour le réseaux triangulaires et

Z2 (et ne se basent pas sur les SLE). Pour tout n ≥ 1, fn correspondra à
l’indicatrice du croisement de gauche à droite dans le rectangle n × (n + 1)
dans le cas de Z2, et dans un domaine approximant le carré de coté n dans
le cas du réseau triangulaire. α4(n) désignera la probabilité de l’événement
à quatre bras de l’origine jusqu’à distance n sur le réseau en considération.
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Nous avons vu ci-dessus que si ǫnn
2α4(n) tend vers 0, alors les événements

de croisement sont stables. Cela signifie que si yn est une configuration ǫn-
bruitée de xn, alors P

[
fn(yn) 6= fn(xn)

]
tend vers zéro. On montre que la

transition de la stabilité vers la sensibilité est “sharp” :

Théorème 4.8. Si le niveau de bruit satisfait ǫnn2α4(n)→∞, alors

lim
n→∞

N(fn, ǫn) = 0.

En terme de corrélations cela veut dire que si yn est une configuration ǫn-
bruitée de xn, alors on a

E
[
fn(yn)fn(xn)

]
− E

[
fn

]2 −→
n→∞

0.

Ce théorème est démontré en prouvant que toute la “masse spectrale” est
concentrée autour de n2α4(n); c.a.d. que pour toute fonction δ(n) tendant
vers 0 (arbitrairement vite), nous avons

P
[
0 < |Sfn | < δ(n) n2α4(n)

]
−→
n→∞

0.

En fait, nous obtenons des résultats plus fins sur la mesure spectrale, en
particulier sur sa queue de distribution inférieure avec le théorème suivant

Théorème 4.9. Le spectre aléatoire Sfn de fn vérifie

P
[
0 < |Sfn| < r2α4(r)

]
≍
(n

r

)2

α4(r, n)2,

pour tout r ∈ [1, n] et où ≍ correspond à l’équivalence à constantes multi-
plicatives près.

Nous montrons également un théorème analogue pour la queue de distri-
bution inférieure de la mesure spectrale de l’événement radial (à un bras).
C’est réellement ce contrôle de l’événement radial que l’on applique ensuite
à la percolation dynamique. On note que dans le théorème ci-dessus, notre
contrôle de la queue inférieure de distribution est optimal (à constantes près).

Dans le cas du réseau triangulaire, en utilisant la connaissance des ex-
posants critiques, on peut réécrire le théorème ci-dessus sous forme de con-
centration autour de la moyenne de la façon suivante :
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Proposition 4.10. Pour tout λ ∈ (0, 1], on a

lim sup
n→∞

P
[
0 < |Sfn| ≤ λ E

[
|Sfn |

]]
≍ λ2/3,

où les constantes impliquées dans ≍ sont des constantes absolues.

Remarquons que si l’on avait suivi l’approche développée dans [SS05] pour
obtenir ces contrôles optimaux, on aurait eu besoin de trouver un algorithme
pour évaluer fn avec un “revealment” δ = δ(n) (le revealment d’un algo-
rithme aléatoire étant le maximum sur l’ensemble des bits de la probabilité
qu’un bit soit “demandé” par l’algorithme). Dans notre contexte des événe-
ments de croisement, le théorème général qu’ils prouvent, reliant algorithme
et sensibilité, énonce que pour tous k ≥ 1,

P
[
0 < |Sfn| ≤ k

]
≤ δ(n)k2. (4.8)

Il est clair que dans le but d’évaluer fn, n’importe quel algorithme aura
besoin d’utiliser au moins n sites (en fait, avec grande probabilité, au moins
nβ sites seront nécessaires car les “plus court chemins” en percolation critique
ont une structure fractale). En particulier puisqu’il y a O(1)n2 bits impliqués,
le revealment est nécessairement supérieur à c/n pour une certaine constante
c > 0. Ainsi, en utilisant 4.8 et un algorithme optimisé au maximum, on peut
espérer prouver au mieux que pour tout φ(n) = o(

√
n), P

[
0 < |Sfn | < φ(n)

]

tend vers zéro (c.a.d. que la masse spectrale se propage au moins à vitesse√
n). Mais puisque l’on voulait prouver que la masse spectrale se propage à

vitesse n2α4(n) = n3/4+o(1), on a du recourir à une approche complètement
différente.

Notre stratégie se concentre plus sur la géométrie spatiale des spectres
aléatoires Sfn . Cela nous permet plus de liberté : par exemple on peut sortir
du cadre classique de la sensibilité au bruit en bruitant seulement une partie
des bits (on peut penser à un mode de scrutin dont le comptage des voies est
plus sûr dans une région que dans une autre). On peut par exemple montrer
dans le cas de la percolation sur Z2, que si l’on bruite seulement les arêtes
verticales (avec un bruit de niveau ǫ > 0), alors l’événement de croisement
est asymptotiquement sensible au bruit. Cette situation peut être poussée
à son extrême (avec ǫ = 1), où l’on change (ou retire) l’état d’un ensemble
fixé de bits. Cela répond à une conjecture apparue dans [BKS99]. Les tech-
niques précédentes ne permettaient pas d’aborder ce type de sensibilité avec
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contraintes.

Comme nous l’avons vu, on peut penser à Sfn comme à un sous-ensemble
aléatoire du rectangle n × (n + 1). Gil Kalai a suggéré d’étudier l’existence
d’une limite continue pour la loi des spectres aléatoires 1

n
Sfn . En combinant

la théorie des bruits de Tsirelson avec la preuve par Schramm et Smirnov
que la limite continue de la percolation peut être vue comme un bruit ([SS]),
on déduit que 1

n
Sfn a en effet une limite continue. On prouve le théorème

suivant

Théorème 4.11. Dans le contexte de la percolation sur réseau triangulaire,
la limite en loi de 1

n
Sfn existe. C’est p.s. un ensemble de Cantor aléatoire

de dimension 3/4.

On note que Sfn a beaucoup de propriétés en commun avec l’ensemble
aléatoire Pn des points pivots pour le croisement gauche-droite (par exemple
ils ont asymptotiquement la même dimension). Cependant nous voudrions
souligner ces deux ensembles aléatoires sont très différents (cela se vérifie par
exemple dans le domaine des grandes déviations); nous pensons en fait qu’ils
deviennent asymptotiquement singuliers.

Passons désormais à la description des résultats que l’on a pu obtenir con-
cernant la percolation dynamique en utilisant notre contrôle optimal du Spec-
tre. Tout d’abord, nos résultats sur la concentration du spectre de Fourier
dans le cas de Z2 nous permettent de démontrer le théorème suivant.

Théorème 4.12. P.s. il existe des temps exceptionnels où la percolation dy-
namique critique sur Z2 a des composantes connexes infinies, et la dimension
de Hausdorff de l’ensemble de ces temps est p.s. strictement positive.

Soulignons ici qu’il manquait peu de chose dans [SS05] pour parvenir à ce
résultat et que “rétrospectivement” leurs techniques (et estimées sur le spec-
tre) auraient été suffisantes pour montrer l’existence des temps exceptionnels
sur Z2.

Dans le cas du réseau triangulaire, on prouve le théorème suivant

Théorème 4.13. Dans le contexte de la percolation dynamique critique sur
réseau triangulaire, on a les valeurs (presque sûres) suivantes pour les di-
mensions de Hausdorff.
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1. L’ensemble des temps où il y a un cluster infini a p.s. dimension de
Hausdorff 31/36.

2. L’ensemble des temps où il y a un cluster infini restreint au demi-plan
H a p.s. dimension de Hausdorff 5/9.

3. L’ensemble des temps où un cluster infini ouvert et un cluster infini
fermé coexistent a p.s. dimension de Hausdorff au moins 1/9 (la di-
mension conjecturée étant 2/3).

Les bornes supérieures étaient connues depuis [SS05], mais ne serait-ce
que l’existence n’était prouvé que pour le premier point (avec comme borne
inférieure 1/6). Notons que dans le troisième point, notre borne inférieure ne
correspond pas à la borne supérieure. Ceci est dû à la perte de monotonicité
de l’événement en considération, et la monotonicité était utilisée de façon
cruciale dans notre manière de contrôler le Spectre.

5 Limite continue des percolations presque-critique

et dynamique

On insiste tout d’abord sur le fait que en dépit de ce que le titre semble
suggérer, ce chapitre n’est en aucune manière la continuation du chapitre
précédent et peut être vu comme un projet tout à fait indépendant. Nous
énoncerons toutefois un résultat à la fin qui relie les deux chapitres ensemble.

Ce chapitre concerne un projet en cours en collaboration avec Gábor Pete
et Oded Schramm, dont le but est de démontrer que la percolation presque-
critique et la percolation dynamique, une fois proprement renormalisées, ont
toutes deux une limite continue. Même si nous ne présentons pas de preuve
complète dans cette thèse de l’existence (et unicité) de ces limites continues,
on énonce et prouve deux résultats d’intérêts indépendants qui constitueront
des étapes clés dans la preuve ultérieure de la limite continue. Dans cette
introduction, nous présenterons le projet global et décrirons ces deux résul-
tats.
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5.1 Modèle et prérequis

Pour simplifier, on restreindra l’étude au cas de la percolation par site sur
réseau triangulaire (les résultats pour Z2 sont de toute façon partiels). Com-
mençons pas introduire le modèle de la percolation presque-critique. On
explique souvent la transition de phase en percolation “ en faisant croître
le niveau p”. Cela correspond à définir un couplage naturel sur les configu-
rations de percolation ωp pour tous les niveaux p ∈ [0, 1] en même temps.
Une manière de procéder est de tirer indépendamment pour chaque site x du
réseau triangulaire T une variable aléatoire uniforme ux sur l’intervalle unité.
Pour tout p ∈ [0, 1], soit ωp la configuration correspondant à l’ensemble des
points x ∈ T tels que ux ≤ p. A présent, presque sûrement (par rapport
à la loi du couplage), lorsque l’on fait croître p, un (unique) cluster infini
apparaît à partir du moment où p dépasse pc = 1/2. On aimerait à l’aide
de la compréhension actuelle de la percolation critique sur T, comprendre
comment le cluster infini émerge tout à coup dès que p > 1/2. En d’autres
termes, on aimerait décrire la “naissance” du cluster infini. Si l’on veut utiliser
l’invariance conforme (et donc le SLE6), une idée naturelle est de considérer
la limite continue du couplage entier (ωp)0≤p≤1 quand la maille du réseau tri-
angulaire tend vers 0. On considère donc par exemple la suite des couplages
(ωn

p ) sur les réseaux renormalisés 1
n
T. Le problème auquel on est confronté

avec cette approche est que pour tout niveau fixé p < 1/2, les probabilités
de connection décroissent exponentiellement vite (c.a.d. qu’il existe des con-
stantes C1, C2 > 0 qui dépendent de p, telles que la probabilité que 0 soit
connecté à distance n pour ωp est plus petite que C1 exp(−C2n)). Cela im-
plique en particulier que si l’on observe une configuration sous-critique ωn

p

(sur 1
n
T) dans la “fenêtre” [0, 1]2, alors la plus grande composante connexe

dans ωn
p sera de diamètre O(1) log(n)

n
. Quand n tend vers l’infini on obtient

donc une limite triviale. Le même phénomène se produit dans la situation
opposée du régime sur-critique p > 1/2.

Par conséquent, si l’on veut garder une transition significative du régime
sous-critique vers le régime surcritique, tout en renormalisant le réseau, on
doit aussi veiller à “ralentir” notre façon de croître le niveau p (de façon à
rendre cette transition moins “brutale”). Ainsi nous renormaliserons notre
couplage de la façon suivante : pour tout n ≥ 1, considérons le couplage
(ω̂n

λ)λ∈R où la configuration ω̂n
λ correspond à ωn

p avec p = 1/2 + λδ(n). Ici
δ(n) est la vitesse à laquelle on ralentit l’augmentation de p; pour le moment
ce sera juste une fonction qui tend vers zéro. Remarquons que l’on définit
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ainsi un couplage pour toutes les valeurs réelles de λ ∈ R (si λ est tel que
p = 1/2 + λδ(n) < 0, alors on définit ω̂n

λ comme étant la configuration vide,
de même pour les grandes valeurs de λ, ω̂n

λ sera la configuration entière). en
utilisant des idées semblables à celles du chapitre précédent, il est possible de
voir que si δ(n) décroît trop vite, alors on obtient à la limite un couplage où
toutes les configurations ω̂λ coïncident avec la configuration critique ω̂0. Cela
se produit si et seulement si limn→∞ δ(n)n2α4(n) = 0 (ce qui nous rappelle
curieusement la transition de sensibilité...). A l’inverse, si l’augmentation de p
n’est pas suffisamment ralentie (c.a.d. si δ(n) ne décroît pas assez vite vers 0)
alors on obtient un couplage trivial à la limite, le même que celui déjà obtenu
avec le couplage ωn

p . Cela se produit si et seulement si limn→∞ δ(n) n2α4(n) =
∞. Voir [NW08] pour plus de détails. Cette question de la “fenêtre d’échelle”
ou “scaling window” a été en fait beaucoup étudiée précédemment dans des
contextes variés; dans le cas du modèle de percolation, de nombreuses idées
proviennent de Kesten [Kes87].

Pour récapituler la discussion ci-dessus, si l’on veut garder un couplage
non-trivial à la limite continue, on est obligé de choisir une vitesse δ(n) qui
satisfait δ(n) ≍ 1

n2α4(n)
.

Dans [NW08], les auteurs considèrent les interfaces de percolation (par
exemple l’interface standard dans H qui part de 0) sur le réseau triangulaire
renormalisés 1

n
T au paramètre pn = 1/2 + δ(n), où δ(n) ≍ 1

n2α4(n)
. Soit

γn l’interface standard sur 1
n
T à p = pn partant de 0 et restant dans H

jusqu’à ce qu’elle sorte du disque de rayon un. Ils ont montré que (Pn)n≥1,
la famille des lois qui gouvernent ces interfaces renormalisées γn est tendue
(pour la topologie induite par une métrique bien choisie sur l’espace des
interfaces). En particulier, il existe des limites continues suivant des sous-

suites (subsequential scaling limits) γnk
loi→ γ qui convergent vers des lois

supportées sur les interfaces continues dans H∩D. Leur Théorème principal
énonce que toute subsequential scaling limit est singulière par rapport à la
SLE6 mesure sur les interfaces. Cela signifie que les “images” (du moins
les interfaces) que l’on voit en régime presque-critique (“off-critical”) sont
différentes des images que l’on voit en régime critique.

Cela implique que quelque chose “d’intéressant” se produit à la limite n→
∞ dans le seul cas restant (δ(n) ≍ 1

n2α4(n)
) pour nos couplages renormalisés

(ω̂n
λ)λ∈R.

Nous définirons dans le chapitre VI une topologie naturelle T sur l’espace
H de toutes les configurations de percolation. Pour pouvoir travailler avec
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le même espace H , à la fois aux niveaux discret et continu, on associera
à chaque configuration de percolation ω l’ensemble des “tubes” qui ont un
croisement de gauche à droite pour ω. Ainsi en quelque sorte, un élément
de H consiste en un ensemble de tubes, voir chapitre VI pour une défini-
tion plus précise. Il est démontré dans [SS] que l’espace topologique (H , T )
est compact. Le processus qui nous intéresse, à savoir le couplage des con-
figurations (ω̂n

λ)λ∈R, peut être vu comme une mesure de probabilité sur les
processus càdlàg R → H (càdlàg provient de notre choix de considérer un
site x ouvert si et seulement si ux ≤ p plutôt que ux < p). On munit cet
espace de trajectoire avec la topologie de la convergence uniforme sur les
compacts, soit T̂ cette topologie.

L’un des principaux Théorèmes de notre projet en cours énonce que dans
le régime digne d’intérêt δ(n) ≍ 1

n2α4(n)
, il y a une unique (à changement

d’échelle près) subsequential scaling limit pour le couplage (ω̂n
λ)λ∈R. Plus

précisément si δ(n) := 1
n2α4(n)

, on prévoit d’établir le théorème suivant

Théorème 5.1. Les couplages renormalisés (ω̂n
λ)λ∈R vus comme des proces-

sus cádlág dans H ont une limite continue quand n tend vers l’infini. Ils
convergent en loi, pour la topologie de la convergence uniforme sur les com-
pacts (T̂ ) vers un couplage de percolations continues (ω̂λ)λ∈R.

En particulier, pour tout niveau fixé λ 6= 0, les configurations de percola-
tion presque-critique ωn sur 1

n
T à pn = 1/2+ λ

n2α4(n)
ont une limite continue.

Pour la percolation dynamique, si l’on souhaite renormaliser le réseau afin
d’obtenir une limite continue de la percolation dynamique, pour la même
raison, on doit ralentir la dynamique en temps. En effet, si on renormalisait
le réseau tout en gardant le même taux pour les horloges de Poisson sur les
sites, du fait de la sensibilité de la percolation, on obtiendrait une limite
continue où à tout temps t ∈ R, on verrait une copie de percolation continue
complètement indépendante du reste. En suivant la même discussion que
pour la percolation presque-critique, si on veut garder une limite non-triviale,
lorsque l’on renormalise l’espace par n, on doit aussi ralentir le temps par
δ(n) ≍ 1/(n2α4(n)). Plus précisément pour tout n ≥ 1, soit (ωn

t )t≥0 une
percolation dynamique sur 1

n
T, où chaque site x ∈ T est mis à jour selon une

horloge de Poisson de taux qn := 1/(n2α4(n)) = n−3/4+o(1). De même que
pour la percolation presque-critique, on prévoit de montrer :

Théorème 5.2. Les percolations dynamiques renormalisées (ωn
t )t≥0 vues

comme des processus cádlág aléatoires sur H ont une limite continue quand
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n tend vers l’infini. Ils convergent en loi, pour la topologie de la conver-
gence uniforme sur les compacts (T̂ ) vers une percolation dynamique con-
tinue (ωt)t≥0.

Expliquons brièvement comment on prévoit de démontrer l’existence de
ces limites continues. On suit en partie un programme proposé par Camia,
Fontes et Newman dans [CFN06]. L’idée est de construire la limite continue
du couplage entier des percolations presque-critiques (ω̂λ)λ∈R ainsi que la
limite continue de la percolation dynamique (ωt)t∈R, seulement à partir de la
configuration critique “initialle” ω̂0 = ω0. Détaillons ce programme dans le
cas de la limite continue de la percolation presque-critique. Afin de réaliser
ω̂λ (pour un certain niveau λ > 0) à l’aide de ω̂0, de nombreux “sites” de-
vront changer de statut de façon aléatoire en passant de l’état fermé à l’état
ouvert. Seulement, puisque l’on est déjà à la limite continue, il n’y a plus
à proprement parler de “sites”. Néanmoins certains sites restent visibles :
l’ensemble P de tous les points pivots. Dans [CFN06], les auteurs expliquent
qu’il devrait être suffisant en principe de suivre l’état de ces points pivots
afin de suivre (quand λ varie) la configuration ω̂λ. Notons que l’on suit ici le
statut des points qui étaient initialement (pour la configuration ω̂0) pivots;
il se pourrait que la configuration ω̂λ “bouge” de telle façon que l’ensemble
de ses points pivots n’est pas préservé; cette partie du programme nécessite
donc une preuve. Mais même si l’on admet qu’il est suffisant (et que cela veut
dire quelque chose) de suivre l’état des points pivots initiaux, on se trouve
confronté à une difficulté : si P est l’ensemble de tous les points pivots initi-
aux (c.a.d. pour ω̂0), alors une infinité (dénombrable) de points dans P vont
passer de l’état fermé à l’état ouvert entre les configurations ω̂0 et ω̂λ ! Il
est donc difficile à priori de reconstruire la configuration ω̂λ à partir de la
configuration ω̂0 plus cette quantité “infinie” d’information additionnelle.

5.2 Résultats prouvés dans le chapitre VI

C’est la raison pour laquelle on introduit un “cut-off” : plutôt que de consid-
érer tous les points pivots en même temps, on considère seulement les points
pivots dont le statut compte au moins jusqu’à une distance ǫ, pour un certain
ǫ > 0. Un point x sera appelé ǫ-important si l’événement à quatre bras est
satisfait dans B(x, ǫ). Pour tout ǫ > 0, soit Pǫ l’ensemble des points pivots
qui sont initialement (pour ω̂0) au moins ǫ-importants.

Nous montrerons dans le chapitre VI, que si l’on veut prédire avec une
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bonne précision le “résultat” ω̂λ, alors il est en effet suffisant de suivre le statut
des points ǫ-importants Pǫ, le cut-off ǫ étant choisi arbitrairement petit en
fonction du degré de précision que l’on souhaite. Pour montrer ce résultat, on
aurait besoin d’exclure des scénarios où des “cascades d’importance” se pro-
duisent; c.a.d. des dynamiques (en λ), où certains points initialement de très
faible importance sont “promus” à une importance bien plus élevée (le long de
la dynamique en λ) et subissent ensuite un changement de statut (une mise
à jour). En effet puisque l’on ne suit pas le devenir des points initialement
peu importants, si un certain nombre d’entre eux deviennent importants et
changent d’état, alors on prédirait très mal le résultat ω̂λ. Cette propriété
de “non-cascade” est l’objet de notre premier théorème dans le chapitre VI.

Une fois que l’on sait qu’il est suffisant de suivre l’état des points ǫ-
importants, on doit maintenant trouver un moyen de réaliser (tirer au hasard)
quels points parmi Pǫ vont effectivement changer de statut (dans tout com-
pact du plan, seul un nombre fini de points dans Pǫ changeront d’état, c’est
la raison pour laquelle on a introduit un cut-off). Comme il est expliqué
dans [CFN06], cet ensemble aléatoire de points devrait correspondre à un
certain nuage de Poisson sur l’ensemble Pǫ, pour une certaine mesure, qui
au niveau discret correspondrait simplement à la mesure de comptage sur
l’ensemble Pn

ǫ des points ǫ-importants (renormalisé par n2α4(n)). Par con-
séquent pour tout ǫ > 0, si on se donne une percolation continue critique ω,
on a besoin de définir une mesure Borelienne µǫ = µǫ(ω) qui soit l’analogue
continu de la mesure de comptage sur Pǫ. Plus précisément pour tout n ≥ 1,
soit µǫ

n la mesure de comptage sur l’ensemble Pn
ǫ des points ǫ-importants de

ωn renormalisé par n2α4(n); c.a.d. µǫ
n est définit par

µǫ
n = µǫ

n(ωn) =
1

n2α4(n)

∑

x∈ 1
n

T is ǫ-important

δx .

Le résultat suivant est le second théorème principal du chapitre VI.

Théorème 5.3. Quand la maille 1/n tend vers 0, le couple de variables
aléatoires (ωn, µǫ

n) converge en loi vers (ω, µǫ), où ω est la limite continue de
la percolation continue critique, et la mesure Borelienne µǫ = µǫ(ω) est une
fonction mesurable de la percolation continue ω.

Notre preuve peut s’appliquer à d’autres objets aléatoire que l’on retrouve
en percolation, par exemple on peut montrer que la mesure de comptage sur
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le processus d’exploration (voir figure 1.1) proprement renormalisé converge
en loi vers une paramétrisation naturelle de la courbe SLE6. La question de
construire une paramétrisation “fidèle” pour les courbes SLEκ est une ques-
tion naturelle; elle a été adressée récemment par Lawler et Sheffield dans
[LS]. Dans notre cas, nous obtenons des paramétrisations naturelles seule-
ment pour le SLE8/3 et le SLE6, mais avec l’avantage que ces paramétrisations
sont issues du modèle discret (en tant que limites continues des mesures de
comptage).

5.3 Perspectives

On remarque que ce programme conduit non seulement à la preuve des limites
continues pour la percolation presque-critique et la percolation dynamique
mais qu’en plus, d’une certaine façon il donne une description des couplages
limites. Par exemple, cette stratégie implique que la limite continue de la
percolation dynamique (ωt)t≥0 est un processus de Markov sur l’espace des
configurations H ; cette propriété est évidente au niveau discret mais elle est
loin de l’être un fois passé à la limite continue.

Par ailleurs, cette approche nous permet d’utiliser le modèle de perco-
lation presque-critique (ou dynamique) de façon très flexible, par exemple
en rendant le taux de mise à jour dépendant de la position dans l’espace.
Dans cette direction, on montre dans le chapitre VI que la mesure de comp-
tage asymptotique définie ci-dessus a des propriétés de “covariance conforme”.
Ce résultat entraîne une structure de covariance conforme pour la percola-
tion presque-critique. Plus précisément, on prévoit de montrer que si ω̂λ

est une percolation presque-critique au niveau λ dans un domaine Ω, alors
si f : Ω → Ω̃ est une application conforme, f(ω̂λ) est une configuration
presque-critique “généralisée” dont le niveau λ̃ dépend de la position de la
façon suivante : pour tout z ∈ Ω, λ̃(f(z)) = |f ′(z)|−3/4λ.
Dans ce travail en cours, nous prévoyons d’appliquer ces résultats aux mod-
èles ci-dessous qui sont connus pour être reliés à la percolation presque-
critique:

• Nous montrerons que l’arbre couvrant minimal (Minimum Spanning
Tree) défini sur le réseau triangulaire, a une limite continue, est in-
variant par rotations (ce modèle ne devrait pas à priori être invariant
conforme). Nous décrirons certaines de ses propriétés asymptotiques.

• Le front de la percolation en gradient a une limite continue.
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• Le processus “invasion percolation” a une limite continue.

On aimerait conclure par la remarque suivante. Comme nous l’avons
mentionné plus haut, les chapitres V et VI sont largement indépendants l’un
de l’autre. Toutefois, en combinant les résultats du premier avec le second,
on en déduit que pour le modèle de la percolation dynamique à la limite
continue, lorsque t tend vers l’infini, ωt devient de plus en plus indépendant
de ω0. Autrement dit, au fur et à mesure que le temps passe, on oublie la
configuration initiale.

En considérant la percolation dynamique (à la limite continue) comme un
processus dans l’espace H , on peut en fait montrer en utilisant les techniques
du chapitre V le théorème suivant.

Théorème 5.4. Le processus t 7→ ωt est ergodique dans l’espace des con-
figurations H .



Chapter II

Introduction

1 Context and results

In this thesis, we will be focusing on properties of critical planar percolation
as well as SLE processes. Let us first introduce these models in the present
section. We will motivate the definition and need of SLE processes through
the example of critical percolation. Since there are numerous good surveys
and books on the subject (among which [Wer04, Law05, Sch07]), we opt for
a concise presentation.

1.1 Model of percolation and phase transition

Percolation is one of the simplest models that exhibit a phase transition.
Let us first consider the case of Zd, d ≥ 2; let Ed denote the set of edges
of Zd. For any p ∈ [0, 1] we define a random subgraph of Zd as follows:
independently for each edge e ∈ Ed, we keep this edge with probability p and
remove it with probability 1 − p. Equivalently, this corresponds to defining
a random configuration ω ∈ {0, 1}Ed

where, independently for each edge
e ∈ Ed, we declare the edge to be open (ω(e) = 1) with probability p or
closed (ω(e) = 0) with probability 1− p. The law of the so-defined random
subgraph (or configuration) is denoted by Pp. In percolation theory, one is
interested in large scale connectivity properties of the random configuration
ω. If x, y ∈ Zd are two vertices, {x↔ y} denotes the event that there is an
open path between x and y within the configuration ω, and {x↔∞} is the
event that the point x is connected to infinity (this means that the connected
component attached to x is infinite).

45
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The phase transition can be described as follows: For any d ≥ 2, there
is a critical probability 0 < pc(Zd) < 1 such that if p < pc(Zd), then with
probability one all connected components are finite (open) clusters, while if
p > pc(Zd) then with probability one, there is a unique infinite cluster.

The density function θZd(p) := Pp(0↔∞) encodes important properties
of the large scale connectivities of the random configuration ω. It corresponds
to the density (averaged over the space Zd) of the infinite cluster. The phase
transition means for the density function θZd that θZd(p) = 0 if p < pc(Zd),
while θZd(p) > 0 once p > pc(Zd). What exactly is happening at the threshold
point pc(Zd) ? Is there almost surely an infinite cluster at pc or not ? This
turns out to be a hard question in general. The “continuity” of the phase
transition (characteristic of second-order phase transitions) is known in d =
2 as well as in high dimensions, but it is for instance not known whether
θZ3(pc(Z3)) is equal to 0 or not. We refer the reader to [Gri99] for more
details on percolation in Zd. We will now focus on percolation for planar
graphs, especially at the critical point.

1.2 Planar percolation, conformal invariance and SLE

processes

The theory of critical planar percolation has undergone rapid growth over the
last ten years, especially thanks to Smirnov’s proof of conformal invariance
for critical percolation on the triangular lattice as well as the discovery of the
SLE processes by Schramm. It is believed that the scaling limit of Z2 perco-
lation at criticality is conformally invariant. This belief has lead theoretical
physicists to predict, using conformal field theory, many asymptotic prop-
erties of critical percolation. For instance they were able to predict critical
exponents of percolation which in some sense describe the fractal properties
of large clusters and so on.

Even though conformal invariance of Z2 percolation has not been proved
yet, Stanislav Smirnov proved in [Smi01] that conformal invariance holds
(asymptotically) for critical site percolation on the triangular lattice T. More
precisely, he proved that a large family of crossing events are asymptotically
conformally invariant. This in particular implied Cardy’s formula for the
asymptotic probability of crossing a rectangle.

Let us then introduce this variant model of site percolation on the tri-
angular grid. It is defined similarly as in the case of Z2: for any p ∈ [0, 1],
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Figure 1.1: The percolation interface in the upper half plane.

independently for each site x in the triangular grid T, declare the site to
be open (represented in black in the pictures) with probability p and closed
(white) with probability 1− p. As in Z2 there is a critical probability pc(T),
so that if p ≤ pc(T) then almost surely all clusters of open sites are finite,
while if p > pc(T), there is with probability one a unique infinite open clus-
ter. It is a well known theorem by Harry Kesten that pc(T) = pc(Z2) = 1

2
.

The triangular graph is intimately related to its dual graph, the hexagonal
(or honeycomb) lattice. It is convenient (“esthetically” at least) to draw con-
figurations of triangular site percolation on the honeycomb lattice, see figure
1.1.

Prior to Smirnov’s proof (in 2001), Oded Schramm identified in 1999
what should be, assuming conformal invariance holds, the curves describing
the boundaries of the (“macroscopic”) clusters at the scaling limit. This led
him to define the so-called SLE processes, where SLE stands for Stochastic-
Loewner-Evolution or Schramm-Loewner-Evolution. Instead of considering
all boundary curves at once, Schramm had the idea to consider one in par-
ticular: the exploration path in the upper-half plane H (see figure 1.1 in the
case of the triangular grid), which lies between the open clusters attached to
the negative half-line and the closed clusters attached to the positive half-



48 CHAPTER II. INTRODUCTION

line. The exploration process can be sampled inductively by discovering the
status of the sites one at a time.

Charles Loewner back in the twenties elaborated a way to represent curves
(or rather slits) in the plane in order to solve the Bieberbach conjecture on
the growth of the coefficients of univalent functions. His theory enabled him
to control the size of the third coefficient (the first two coefficients being
controlled using “standard” complex analysis techniques). One should point
out that De Branges’s proof of the Bieberbach conjecture (1985) also relies
on Loewner evolutions. Applied to our percolation setting, one can consider
the above exploration path as a simple curve γ : [0,∞) → H, with some
arbitrary parametrization. For any t ≥ 0, Ht := H \ γ[0, t] is a simply
connected domain, therefore using the Riemann mapping Theorem, there
is some conformal map gt from Ht to H. There are three (real) degrees of
freedom in our choice of gt; let us then fix gt(∞) =∞ and gt(z) = z + o(1),
when z goes to infinity. This is easy to check that it uniquely defines the
conformal map gt. Now if one expands gt near infinity, one ends up with

gt(z) = z +
at

z
+ O(

1

z2
),

where t 7→ at is some (real) increasing function. If one reparametrizes the
curve γ so that at = 2t (which we can always do), then Loewner Theorem
states that the conformal maps (gt)t≥0 satisfy the following ODE

{
g0(z) = z ∀z ∈ H ,
∂
∂t

gt(z) = 2
gt(z)−β(t)

if t < T (z) ,

where t 7→ β(t) is called the driving function of the curve γ, and T (z) is the
“explosion time”, i.e. the time at which while we are following the trajectory
t 7→ gt(z), the ODE is no longer defined (a posteriori, the curve γ(0, t] is the
set of points z for which T (z) ≤ t). So in a way, the driving function β(t)
encodes the half-plane curve γ: in order to reconstruct γ from t 7→ β(t), one
just needs to solve the above ODE.

Imagine now that we consider the exploration path of triangular site
percolation on a very small-mesh grid ǫT. This corresponds to some random
curve γǫ : [0,∞] → H, that we may parametrize so that the associated
conformal maps gt satisfy the above normalization (at = 2t). Our exploration
process γǫ is thus “driven” by some random process βǫ(t). Now suppose we
stop our exploration at some time t > 0 (this means we discovered the



1. CONTEXT AND RESULTS 49

sites one by one, until we obtain the path γǫ[0, t]). The crucial observation
is that what remains to be discovered in H \ γǫ still has the law of i.i.d
critical percolation. In particular if one assumes conformal invariance, one
can conformally map the percolation configuration in H \ γǫ[0, t] back to the
upper half plane H using gt. Roughly speaking conformal invariance says
that if the mesh ǫ is small then the exploration process in the “distorded”
lattice looks very similar to the exploration process in the orginal lattice
(with small mesh as well). This means here that the image gt(γ

ǫ((t,∞])) is
close in law to the original exploration process γǫ.

It is not hard to check that it can be rephrased as follows in terms of
the driving functions: when the mesh ǫ goes to zero, for any t > 0, the law
of (βǫ(t + u))u>0 is independent of βǫ([0, t]) and has same law as (βǫ(t))t>0.
Since the driving function remains continuous at the limit, by Levy’s theo-
rem, the limiting process (ǫ going to zero) β necessarily is a Brownian motion√

κBt + µt. Now, by symmetry of our percolation process (under z → −z̄),
it is obvious that β(t) and −β(t) have the same law, which forces the drift
µ to be zero. This is exactly what SLEκ processes are, i.e. they are the ran-
dom Loewner evolutions driven by

√
κBt, where Bt is a standard Brownian

motion.
Note that we cheated a little bit since we explained Loewner theory in the

case of simple curves in H, but the scaling limit of the percolation process
turns out to be a curve with many self-intersections. In fact Loewner theory
works just as well for families of growing hulls under some assumption of
“local gowth” and this includes our case of percolation.

It is by no means easy (for general κ) to prove that the construction that
we have just described indeed constructs a random curve γ i.e. that one can
construct a random curve γ starting from a Brownian motion β =

√
κBt.

This is derived in the paper [RS05] by Rohde and Schramm. In this paper,
they prove that in the upper half-plane, the SLE curve with parameter κ al-
most surely indeed exists and is continuous. They also show that this curve
is simple only for κ ≤ 4, but that it has double points and hits the boundary
of the half-plane as soon as κ > 4. Note also that SLE in a general simply
connected domain is defined as the image of SLE in the upper half-plane
under a conformal map.

To sum up, combining Smirnov’s proof of Conformal invariance of trian-
gular critical percolation with Schramm’s description of interfaces, one ends
up with the fact that percolation interfaces have a scaling limit when the
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mesh of the lattice goes to zero, and this scaling limit is an SLEκ process
for some κ > 0. Once we know that the scaling limit is an SLE process, it
is not hard to see that the parameter κ has to be 6. There are several ways
to see that κ needs to be 6, one of them being that SLE6 is the only SLE
process whose growth is local (as it is in the discrete picture). To take an
extreme example, if one considers SLE0, this corresponds to a geodesic in the
Poincare metric, if one perturbs the domain in which one defines the SLE0,
it affects locally the Poincare metric and thus affects the curve; this does not
happen for SLE6.

Once conformal invariance of percolation is proved, some non-trivial ar-
guments are still needed to deduce the convergence of the discrete explo-
ration path to SLE6. The first detailed proof appears in Camia and Newman
[CN07]. Another approach has been outlined by Smirnov in [Smi06] (details
can be found in [Wer07]).

In general, many planar models from statistical physics are believed to
exhibit conformal invariance at criticality. This has been proved in several
cases, including the followings

• LERW (Loop Erased Random Walk) and UST (Uniform Spanning
Trees) have a scaling limit corresponding to SLE2 and SLE8 (and are
thus conformally invariant), see [LSW04a].

• The frontier of planar Brownian motion corresponds to SLE8/3, [LSW01b]
(which in particular implied Mandelbrot’s conjecture).

• Level lines of discrete Gaussian Free Fields converge to SLE4, [SchShe06].

• Smirnov recently proved conformal invariance for the Ising model (SLE3)
and its corresponding FK percolation (SLE16/3); see [Smi06, Smi07].

1.3 Critical exponents

Convergence of percolation interfaces to SLE6 on the triangular lattice en-
ables one to prove the existence of certain critical exponents, as well as to
compute their values. We will give two examples: the one-arm and four-arms
exponents. For any R > 1, let A1

R be the event that the site 0 is connected
to distance R by some open path. Also let A4

R be the event that there are
four “arms” of alternating color from the site 0 (which can be of either color)
to distance R (i.e. there are four connected paths, two open, two closed from
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0 to radius R and the closed paths lie between the open paths). Figure 1.2
represents two percolation configurations satisfying respectively the events
A1

R and A4
R.

Figure 1.2: The configuration on the left satisfies the one-arm event, while
the configuration on the right satisfies the four-arms event

It was proved in [LSW02] that the probability of the one-arm event decays
like

P
[
A1

R

]
:= α1(R) = R−

5
48

+o(1) ,

where 5
48

is what we call a critical exponent.
For the four-arms event, it was proved by Smirnov and Werner in [SW01]

that its probability decays like

P
[
A4

R

]
:= α4(R) = R−

5
4
+o(1) .

The four-arms event will be of key importance throughout this thesis.
Indeed suppose the four arms event holds at some site x ∈ T up to some
large distance R. This means that the site x carries an important information
about the large scale connectivities in the Ball B(x, R). Changing the status
of x will drastically change the “picture” in B(x, R). We call such a point a
pivotal point up to distance R.

Using Kesten’s scaling relations [Kes87], this implies (see [Wer07, Nol07])
for the density function θ(p) on the triangular lattice, the following behavior
near pc = 1/2

θ(p) = (p− 1/2)5/36+o(1) ,

when p→ 1/2+. This is part of the description of near-critical percolation.
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As mentioned above, critical exponents provide information about the
fractal properties of percolation at the scaling limit. For instance if one con-
siders the one-arm exponent, this means that in average there are R91/48+o(1)

sites in the square [−R, R]2, which are part of a cluster of diameter at least
R; since there are only “finitely” many such macroscopic clusters; this means
that at the scaling limit, clusters of percolation are some random compact
sets whose fractal dimension is a.s. 91

48
(which can be proved rigorously).

A difficulty on the discrete level arises from the fact that the above prob-
abilities are known at exponents level only. It is for instance not known
whether α1(R)/R−5/48 remains bounded or not.

We defined these events for critical triangular percolation, but we could
have defined these events on Z2 as well; for instance we will often use the
probability α4(R) in the context of Z2. Some information is known about
the decay of these rare events; for instance it is know that there are absolute
constants 1 < α < β < 2, such that for R large enough

R−β < α4(R) < R−α.

Still the existence itself of the critical exponents for Z2 is not known.

1.4 Brief overview

The main body of this thesis will consist of four independent chapters:

• The expected area of the planar Brownian loop. In this first chapter,
we show that the expected area enclosed inside a planar Brownian loop
of time one equals π

5
. In order to determine this expected area, one uses

in an essential way the SLE8/3 process which is known to describe the
“boundary of Brownian motion”. This is one instance where it seems
that one has to use SLE processes to determine quantities concerning
Brownian motion that seem out of reach of the usual stochastic cal-
culus techniques. This quantity π/5 has some consequences for fractal
properties of the so-called Brownian Loop Soups introduced in [LW04].

• In our second chapter, we prove an analog of Makarov’s theorem (about
harmonic measure) for the SLEκ processes. In other words, we study
the possible size of the set ∂D ∩ γ for an SLE in a general domain D.
We also prove that SLEκ paths in arbitrary (simply connected) domains
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are a.s. continuous if κ ∈ [0, 8), which was known only for κ ≤ 4 (this
is not a trivial statement, because the boundary of a simply connected
domain can be wild).

• The Fourier Spectrum of Critical Percolation. In this third chapter one
obtains sharp results about noise sensitivity of percolation. Various
applications of these results are derived for the model of dynamical
percolation. This is the model where the percolation configuration
evolves with time and the status of each site is updated after i.i.d.
exponential times. One proves in particular that the set of exceptional
times of dynamical critical site percolation on the triangular grid in
which the origin percolates has dimension 31/36 a.s. We also prove the
existence of such exceptional times in the case of Z2 percolation.

• Scaling limit of near-critical and dynamical percolation. This last chap-
ter is part of an ongoing project where we plan to prove that near-
critical percolation and dynamical percolation, properly renormalized,
have a scaling limit. We do not include a full proof of the existence
of these scaling limits here but we provide two theorems (of sufficient
independent interest to be stated alone) that are key steps in the larger
project.

All these chapters are related to two-dimensional conformally invariant
objects. The first two chapters are using and studying SLE processes. The
last two chapters do not rely directly on SLE techniques, but they use some
results that had been derived via SLE. We would like to emphasize that even
though both chapters 3 and 4 are related to dynamical percolation, they are
in fact completely independent of each other, and address quite different
perspectives.

The rest of this introduction is structured as follows: We will first describe
the first two chapters. These results can be stated without requiring any fur-
ther background. But before describing the content of the final two chapters,
we have chosen to propose a more detailed introduction to the mathematical
objects (such as the Fourier spectrum) that are used there, as we thought
that it could be useful to recall them in order to try to give a clearer picture
of the results.
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2 Expected area of the planar Brownian loop

Our first result, in joint work with José Trujillo Ferreras, concerns the ex-
pected area enclosed in a planar Brownian loop of time one. More precisely,
let Bt, 0 ≤ t ≤ 1 be a planar Brownian loop (a Brownian motion in C con-
ditioned so that B0 = B1). We consider the compact hull obtained by filling
in all the holes of the Brownian loop, i.e. the complement of the unique
unbounded connected component of C \ B[0, 1]. Let A denotes the area of
that hull; in [GT06] we prove the following theorem

Theorem 2.1.
E
[
A
]

=
π

5

The higher moments of the random variableA remain unknown at present.
This work was motivated by the so called Brownian Loop Soups introduced
in [LW04]; see also [Wer03, Wer05b] for links to CLEs (Conformal Loop En-
sembles) which are the natural candidates for the scaling limit of conformally
invariant systems (such as Ising, Potts and so on).

More precisely, a Brownian Loop Soup of intensity c > 0 in some simply
connected domain Ω 6= C, is a Poisson cloud of rooted Brownian loops (re-
stricted to stay in Ω) of intensity cµloop, where the infinite measure µloop is
defined as follows

µloop :=

∫

C

∫ ∞

0

dt

2πt2
µ♯(z, z, t)dtdA(z).

Here µ♯(z, z, t) stands for the probability measure on Brownian loops of time
duration t rooted at z. For such a Brownian Loop Soup of intensity c > 0,
let us consider the complement (in Ω) of all the “filled” loops of the Soup. As
explained in [Wer05b], this random set in Ω has the same “structure” as the
model of Fractal Percolation introduced by Mandelbrot. With the analogy
of Fractal Percolation in mind, if one is willing to compute the Hausdorff
dimension of the complement of the Brownian Loop Soup (i.e. the set of
points which are not surrounded by any loop), the quantity one needs to
know is the first moment of the size of our objects (at some fixed level, say
t = 1). This quantity is precisely what we computed. Using our result, it can
be shown (see [Tha06]) that this dimension a.s. equals 2 − c

5
, where c was

the intensity of the Brownian Loop Soup (in particular, when the intensity
is above 10, a.s. all the points in C are surrounded by some loop).
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Figure 2.1: Different indices in a random walk of 50000 steps, black areas
correspond to index 0.

The proof of Theorem 2.1 relies on SLEκ processes, and more precisely
on SLE8/3, which is known to describe (at least “locally”) the boundary
of Brownian hulls (see [LSW01b]). A natural approach to prove Theorem
2.1 without using SLE technology would have been to use Yor’s formula
([Yor80]) for the law of the index of a Brownian loop. Let Bt, 0 ≤ t ≤ 1 be
a Brownian Loop; define for all n ∈ Z \ {0}, Ωn to be the (random) open set
consisting of all the points in C which have index n with respect to the loop
B([0, 1]). Let Wn denote the area of Ωn, i.e.

Wn =

∫

C

1nz=ndA(z),

where nz is the index of z with respect to the Brownian loop B([0, 1]). Yor’s
formula gives the law of the index nz depending on the position z. By
integrating this law over the plane C we found that for all n ∈ Z \ {0},

E
[
Wn

]
=

∫

C

P
[
nz = n

]
dA(z) =

1

2πn2
.

This result was already obtained in the physics literature ([CDO90]) using
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Coulomb Gas methods. Since a point z of index nz 6= 0 is necessarily inside
the filled Brownian loop, we have that

∑
n 6=0Wn ≤ A. The points which

remain are the points of index 0 which are inside the Brownian Loop. Let
W0 be the area of the points of zero index inside the Loop. Even though
Yor’s formula gives the probability that some fixed point z is of index nz = 0,
it does not “see” whether that point is inside or outside the Brownian Loop
(for instance, in this setting a distant point will have high probability to be of
index 0). Since the proof of Yor’s formula is based on martingales following
the angle from the point z, there is no chance to add geometric information
of the type inside/outside to it. This is why it seems that SLE techniques
are needed here. In [CDO90], Comtet, Desbois and Ouvry (who computed
the expected area E

[
Wn

]
for n 6= 0 with Coulomb gas) asked the question to

compute the expected area of the points of zero index inside the loop (which
is what we called E

[
W0

]
). Combining the above results, we obtain

Theorem 2.2.

E
[
W0

]
=

π

30
.

Figure 2.1 represents the different regions Ωn colored differently depend-
ing on their index n. Note that if one wanted to compute the higher moments
of A, say the second moment, one of the ingredients needed would be to know
the two-point function for SLE8/3, i.e. given two points z1, z2 ∈ H, what is
the probability that the SLE8/3 path is on their left; which is known to be a
difficult question.

3 An SLE-analog of Makarov Theorem and the

continuity of SLE paths in arbitrary domains

This chapter is joint work with Steffen Rohde and Oded Schramm.
Makarov’s theorem on the support of harmonic measure claims that for

any simply connected domain Ω $ C, there exists a set E ⊂ ∂Ω of Hausdorff
dimension one such that for any z ∈ Ω, a.s a Brownian motion starting at
z will exit Ω on E ⊂ ∂Ω. One considers here the analogous situation for
SLEκ processes. For instance if one considers κ = 6, this can be described as
follows. Let Ω $ C be some simply connected domain and let z ∈ Ω. Instead
of starting a Brownian motion at z, we can think of “sending” a continuum
critical percolation cluster at z, for instance by conditioning on the event of
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probability 0 that z is connected to the boundary ∂Ω (it is possible to make
sense of this conditioning, see for instance [Kes86]). Since the percolation
cluster will hit the boundary at many places, we do not expect to find a
set E of dimension one which almost surely “absorbs” all the points on the
boundary which are connected to z. Does one need the whole boundary to
absorb the clusters ? We will prove that there is some absolute constant
1 < d < 2 so that for any simply connected domain Ω, there exists a set
E ⊂ ∂Ω of Hausdorff dimension less than d which almost surely absorbs on
the boundary all the (macroscopic) percolation clusters in Ω. See figure 3.1
for an illustration.

C

∂G

Figure 3.1: A schematic view of a percolation cluster C (or an SLE6 hull)
inside a fractal domain Ω; the blue curve represents the exterior boundary
of the cluster.

In the general case of SLEκ processes, we run an SLEκ path in some
domain Ω (say a radial SLEκ from a point z ∈ Ω to some prime end of Ω)
and we wonder to what extend the SLEκ path “enters” the fjords of Ω. We
prove the following result

Theorem 3.1. Let Ω $ C be a simply connected domain, let a, b be two
prime ends of G, let z0 ∈ Ω, and let κ ∈ (4, 8). Then there is a Borel set
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E ⊂ ∂Ω such that the chordal SLEκ trace in Ω from a to b and the radial
SLEκ trace in Ω from a to z0 almost surely satisfy

γ(0,∞) ∩ ∂Ω ⊂ E,

and
dim E ≤ d(κ) < 2 ,

where d(κ) is a constant that depends only on κ.

One also shows that the theorem cannot hold with d(κ) = 1. Furthermore
we obtain some quantitative estimates on the dimension d(κ); in particular
on has that limκ→4 d(κ) = 1.

The techniques used for proving this result allow us to answer a related
question about SLEκ processes, namely the continuity of their paths in ar-
bitrary domains. More precisely, let Ω $ C be some domain and let a, b be
two prime ends of Ω. Let f : H → Ω be some conformal map such that 0
is send to the prime end a and ∞ is send to the prime end b. The SLEκ

path in Ω from a to b is defined as the image by f of the SLEκ path in H.
Without restrictions on the domain Ω, one cannot prolong f by continuity to
H. Since for κ > 4 the SLEκ path in H intersects the boundary, in order to
prove that its image in Ω is still a continuous curve, one needs to show that
somehow the SLE path in H avoids the boundary points where the conformal
map f “explodes” (this is still a naive picture since there exist domains Ω for
which the conformal map f : H → Ω cannot be prolonged anywhere at the
boundary). We prove the following theorem

Theorem 3.2. Let Ω $ C be a simply connected domain, let a, b be two
prime ends of G, let z0 ∈ G, and let κ ∈ [0, 8). Then the chordal SLEκ

trace in Ω from a to b and the radial SLEκ trace in Ω from a to z0 are a.s.
continuous in (0,∞).

Of course this result was already known for 0 ≤ κ ≤ 4, where the SLEκ

paths are simple curves which do not intersect the boundary.
These results which concern general properties of SLEκ processes were

partly motivated by the following situation. Schramm and Smirnov prove in
[SS] that the scaling limit of percolation can be seen as a two-dimensional
black noise in the sense of Tsirelson (see [Tsi04]). Being a noise means that
if A and B are two smooth open sets, then all the information about the
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connectivities of the continuum percolation inside A (FA) plus all the infor-
mation about the connectivities inside B (FB) is enough to “reconstruct” all
the connectivities inside A ∪B. This means that the filtration of the per-
colation process (at the scaling limit) is “factorisable”. It is known ([Tsi04])
that black noises are not factorisable as much as whites noises are. In this
particular context of percolation, one can illustrate this non-factorisability by
asking what is the situation if the open sets A and B are not assumed to be
smooth. If one wanted to “glue” the information from FA and FB “cluster by
cluster”, one would need to know by how much percolation clusters enter the
fjords of a possibly fractal domain A (and B), which is linked to the above
Theorem 3.1. More precisely there is a theorem about harmonic measure
by Bishop, Carleson, Garnett and Jones ([BCGJ89], see also [Roh91]) which
shows that there are curves γ for which harmonic measure seen from one
side and harmonic measure seen from the other side are singular measures.
By analogy the same techniques used for the above theorems imply that for
any κ ∈ (4, 8) there exists some domain Ω = Ω(κ) and a set E ⊂ ∂Ω such
that if γ1 and γ2 are respectively SLEκ curves driven inside and outside Ω,
then a.s. γ1(0,∞) ∩ ∂Ω ⊂ E while γ2(0,∞) ∩ ∂Ω ⊂ Ec. Applied to κ = 6,
it means that there are some domains Ω for which (at the continuum limit)
inside clusters are invisible to outside clusters.

4 The Fourier Spectrum of critical percolation

Before explaining our results in the context of percolation, we give a short
survey of noise sensitivity of Boolean functions, and review earlier results on
dynamical percolation. The reader acquainted with this notion may wish to
skip these subsections.

4.1 Noise sensitivity of Boolean functions

Let us start with an example. Imagine that we are trying to study the sensi-
tivity of an election’s outcome to small errors in the counting of votes (or said
differently, to small level of noise). For simplicity suppose there are only two
candidates (+1 and -1) and that each voter independently makes a choice
for +1 or -1 uniformly at random. An election scheme corresponds to some
Boolean function f from {−1, 1}n to {−1, 1}, where n is the number of vot-
ers. One can assume furthermore that the election scheme is well balanced
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in the sense that the outcome +1 is as likely as -1 (in other words E
[
f
]

= 0).
The small level of noise (or errors) is described as follows : suppose that
independently for each voter, an error has occurred with probability ǫ, where
ǫ ∈ (0, 1) is some fixed constant. This means that independently for each
voter, with probability ǫ the vote is misrecorded (+1 changed into -1 and
vice-versa). The sensitivity of the election scheme f corresponds here to the
probability that the outcome is affected by the errors. For example simple
majority will be less sensitive to noise than several-layers majority (as in the
US).

More formally we will work with Boolean functions f : {−1, 1}n →
{−1, 1} (a Boolean function is often written from {0, 1}n to {0, 1} but for
symmetry reasons it will be more convenient for us to work from {−1, 1}n to
{−1, 1} and more generally from {−1, 1}n to R). The properties of Boolean
functions are extensively studied in computer science as well as in many other
fields (see [KS06] for example).

As motivated above, for some fixed Boolean function f of n bits, we will
be primarily interested in the sensitivity of the function f when the data is
subjected to some “noise”. In computer language one would ask: how robust
is the function f with respect to errors (say in the transmission of the data)?
More precisely, let f be some Boolean function from {−1, 1}n to {−1, 1}.
Suppose the hypercube cube {−1, 1}n is endowed with the uniform probabil-
ity measure. The theory can easily be extended to other product measures
on {−1, 1}n, but we will restrict ourself to this (already rich) case. Given
a random configuration x = (x1, . . . , xn) ∈ {−1, 1}n, let y = (y1, . . . , yn)
be a random perturbation of x, in the sense that independently for every
bit i ∈ {1, . . . , n}, with probability ǫ, yi = −xi and with probability 1 − ǫ,
yi = xi. Here ǫ is some small fixed constant corresponding to the level of
noise. The Boolean function f will be noise sensitive if for all but a small
fraction of the configurations x, even if one knows the initial data x, it will
be hard to predict what will be the outcome f(y). This can be encoded by
the following quantity :

N(f, ǫ) := var
[
E
[
f(y1, . . . , yn)

∣∣ x1, . . . , xn

]]
. (4.1)

We will be interested in the asymptotic n goes to ∞.

Definition 4.1. Let (nm)m∈N be some increasing sequence in N. A sequence of
Boolean functions fm : {−1, 1}nm → {−1, 1} will be called asymptotically
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noise sensitive (or just noise sensitive) if for any ǫ > 0,

lim
m→∞

N(fm, ǫ) = 0. (4.2)

This can be rephrased by saying that asymptotically the initial data
(x1, . . . , xnm) gives almost no information about the outcome f(y1, . . . , ynm).

The opposite situation corresponds to noise stability. A sequence of
Boolean functions fm : {−1, 1}nm → {−1, 1} is said to be (asymptotically)
noise stable if

sup
m≥0

P
[
f(x1, . . . , xnm) 6= f(y1, . . . , ynm)

]
−→
ǫ→0

0.

Of course noise sensitivity and noise stability are both extreme cases; there
are many examples which lie in between. It is the same situation as in
Tsirelson’s theory of noises where Black and White noises are extreme cases.

In some contexts, other ways to measure sensitivity might be more nat-
ural, but in most cases, our measure of sensitivity N(f, ǫ) controls the other
quantities. For instance, it is straightforward using Cauchy-Schwarz to check
that for f : {−1, 1}n → R, we control the correlation

∣∣E
[
f(x)f(y)

]
− E

[
f
]2∣∣ ≤

√
N(f, ǫ)

√
var(f),

which in the case of a balanced Boolean function with values in {−1, 1} can
be rephrased into

∣∣P
[
f(x) 6= f(y)

]
− 1

2

∣∣ ≤ 1

2

√
N(f, ǫ).

The last expression is what we would be interested in about the outcome of
some voting process.

It turns out that discrete harmonic analysis will provide very useful tools
for the study of noise sensitivity.

4.2 Fourier analysis of Boolean functions and applica-
tion to noise sensitivity

Let us start with an analogy with “classical” Fourier analysis. Say we have
some real function f on the circle in L2(R/Z). Take some uniform random
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point x on the circle. Let y be x plus some noise, for instance y = x+N (0, ǫ2)
for some small ǫ > 0. One wishes to predict the value of f(y) knowing x. For
instance if f(x) = sin(π2100x), one expects that for ǫ = 10−3, the sensitivity
will be very high. In general the sensitivity of f can be encoded by

N(f, ǫ) = var
[
E
[
f(y)|x

]]
. (4.3)

It is well known that the Fourier coefficients of f provide information about
the “regularity” of f . If the spectrum of f is concentrated on small frequencies
f will be very regular and not sensitive to noise, while if f has many high
frequencies, the output f(y) will be less predictable. One can easily compute
N(f, ǫ) using the Fourier expansion f(x) =

∑
n∈Z

f̂(n)e2iπnx, indeed

N(f, ǫ) = E
[
[E
[
f(y)

∣∣ x
]
− E

[
f
]
]2
]

=

∫ 1

0

(
∑

n

f̂(n)E
[
e2iπny|x

]
− f̂(0)

)2

dx

=

∫ 1

0

(
∑

n 6=0

f̂(n)e2iπnxE
[
e2iπnN (0,ǫ2)

]
)2

dx

=

∫ 1

0

(
∑

n 6=0

f̂(n)e2iπnxe−2π2n2ǫ2

)2

dx

=
∑

n 6=0

|f̂(n)|2e−4π2n2ǫ2 since f̂(n) = f̂(−n) .

Therefore one can see from the above formula that high frequencies favor
noise sensitivity.

One would like to follow the same approach for the study of Boolean func-
tions. There is a well developed theory of Fourier analysis on the hypercube
{−1, 1}n. Let us work in the more general case of the space L2({−1, 1}n) of
real functions from n bits to R, endowed with the inner product :

〈f, g〉 =
∑

x1,...,xn

2−nf(x1, . . . , xn)g(x1, . . . , xn)

= E
[
fg
]
,

for the uniform probability measure on the hypercube. For any S ⊂ {1, 2 . . . , n},
let χS be the function on {−1, 1}n defined for any x = (x1, . . . , xn) by

χS(x) :=
∏

i∈S

xi . (4.4)
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It is straightforward to see that this set of 2n functions forms an orthonormal
basis of L2({−1, +1}n). Thus, any function f can decomposed as

f =
∑

S⊂{1,...,n}
f̂(S) χS,

where f̂(S) are the Fourier coefficients of f . They are sometimes called the
Fourier-Walsh coefficients of f . They satisfy

f̂(S) = 〈f, χS〉 = E
[
fχS

]
.

Note that f̂(∅) corresponds to the average E
[
f
]
.

Of course one might find many other orthonormal basis for L2({−1, 1}n),
but there are many situations for which this particular set of functions (χS)S

arises naturally. First of all there is a well known theory of Fourier analysis
on groups, theory which is particularly simple and elegant on Abelian groups
(thus including our special case of {−1, 1}n, but also R/Z, R and so on). For
the Abelian groups, what turns out to be relevant for doing harmonic analysis
is the set Ĝ of characters of G (i.e. the group homomorphisms from G to
C∗). In our case of G = {−1, 1}n, the characters are precisely the functions
χS indexed by S ⊂ {1, . . . , n} since obviously χS(x · y) = χS(x)χS(y).

These functions also arise naturally if one performs simple random walk
on the hypercube (equipped with the Hamming graph structure), since they
are the eigenfunctions of the heat kernel on {−1, 1}n.

Last but not least, the basis (χS) turns out to be particularly adapted to
our study of noise sensitivity. Indeed as we computed for the functions on
the circle R/Z, if f is any function in L2({−1, 1}n), we have

N(f, ǫ) = E
[
[E
[
f(y)

∣∣ x
]
− E

[
f
]
]2
]

= E
[
[
∑

S⊂{1,...,n}
f̂(S)E

[
χS(y)

∣∣ x
]
− f̂(∅)]2

]
.

But it is easy to check E
[
χS(y)

∣∣ x
]

=
∏

i∈S E
[
yi

∣∣ xi

]
= (1 − 2ǫ)|S|, by

independence of the bits. Hence using the fact that for S1 6= S2, χS1 and χS2

are orthogonal, one obtains

N(f, ǫ) =
∑

S⊂{1,...,n}, S 6=∅
f̂(S)2(1− 2ǫ)2|S|. (4.5)
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Therefore, in the setting of Boolean functions, “high frequencies” will cor-
respond to subsets S of {1, . . . , n} with large cardinality. Parseval formula
implies ∑

S

f̂(S)2 = ‖f‖22.

For any Boolean function f : {−1, 1}n → R, one defines its spectral mea-
sure on the subsets of [n] to be

Qf

[
S = S

]
= Q

[
S = S

]
:= f̂(S)2,

where the “random” set S ⊂ [n] (note that Q is not necessarily a probability
measure) will be called the Fourier spectral sample of f . In the particular
case of a Boolean function f with values in {−1, 1}, since ‖f‖2 = 1 one ends
up with a spectral probability measure,

Pf

[
S = S

]
= P

[
S = S

]
:= f̂(S)2.

Note that there is a slight abuse of notation here, Q and P are not defined
on the same probability space as x ∈ {−1, 1}n, so formally one should have
used some other notations.

For any Boolean function f (with values in R), one can rewrite its sensi-
tivity N(f, ǫ) in terms of its spectral measure in the following way

N(f, ǫ) =
∑

S⊂{1,...,n}, S 6=∅
f̂(S)2(1− 2ǫ)2|S|

=
n∑

k=1

Q
[
|S | = k

]
(1− 2ǫ)2k.

For a Boolean function of L2 norm one, this can be rewritten as

N(f, ǫ) =

n∑

k=1

P
[
|S | = k

]
(1− 2ǫ)2k = E

[
(1− 2ǫ)2|S |],

where E denotes here the expectation with respect to the Fourier spectral
sample S . Therefore it shows that a sequence of Boolean functions (fm)
(with values in {−1, 1}) will be asymptotically noise sensitive if and only if,
the spectral measures (Pfm) are supported on larger and larger sets leaving
no mass on “finite frequencies” (except possibly ∅). More precisely
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Proposition 4.2. A sequence of Boolean functions fm from {−1, 1}nm →
{−1, 1} is asymptotically noise sensitive if and only if for any finite N > 0,

lim
m→∞

Pfm

[
0 < |S | < N

]
= 0.

Therefore the distribution of the size of the Spectrum sample encloses all
the information we need to study the noise sensitivity of f , one might then
be tempted to restrict to the information about its size (or cardinal), but it
will turn out to be very helpful in Chapter V to think of S “geometrically”.

4.3 Some simple examples of Boolean functions

• Let us start with an example linked to the above situation of voting
schemes. For any odd integer n ≥ 1, we define the majority func-
tion MAJn on the hypercube {−1, 1}n (still with uniform probability
measure) in the following way: for any x = (x1, . . . , xn) ∈ {−1, 1}n
define

MAJn(x) = sign(
∑

i

xi).

For any level of noise ǫ > 0, if one think of x1 + . . . + xn as a simple
random walk on Z of n-steps, y = (y1, . . . , yn) will be an ǫ-noised
version of the x-random walk, and therefore for large n, 1√

n
(x1, . . . , xn)

and 1√
n
(y1, . . . , yn) will be approximately

√
ǫ close. So if x is such that

|x1 + . . . + xn| > 100
√

ǫ (which happens with high probability if ǫ is
small), one can predict f(y) with good accuracy. This implies that the
Majority function is (asymptotically) noise stable.

One can actually exactly compute in this case the distribution of the
sizes of the Spectral sample. Let us look at the first level (|S | = 1)
of the Fourier distribution. For any bit i ∈ {1, . . . , n}, P

[
S = {i}

]
=

E
[
sign(x1 + . . . + xn)xi

]2
. It is obvious that the only contribution to

the expectation comes from the configurations x where x1 + . . . +
xn = ±1, which asymptotically is of probability 2√

2πn
. This gives

P
[
S = {i}

]
= 2

πn
+ o( 1

n
), hence P

[
|S | = 1

]
= 2

π
+ o(1). One sees that

asymptotically, a positive fraction is concentrated on level-1 Fourier
coefficients; all odd levels k ≥ 1 asymptotically receive positive mass,
but the mass does not spread (as n goes to infinity) to ∞ (Majority
function under reasonable hypothesis is in some sense the most stable
Boolean function).
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• The Parity function PARn: let n ≥ 1 and consider the function which
returns 1 if among the n bits, there are an even numbers of −1, and
−1 else. Therefore the Parity functions can be written for any x =
(x1, . . . , xn) ∈ {−1, 1}n as

PARn(x) =

n∏

i=1

xi = χ{1,2,...,n}(x).

Therefore in this special case, the Spectral probability measure is con-
centrated on the singleton δ{1,...,n}. It is the most noise sensitive (“higher
frequency”) Boolean function one can find on the hypercube (it is intu-
itively clear that choosing such or such candidate according to “parity”
would not be a satisfying voting scheme..).

• Now we turn to the Boolean functions we will be mainly interested in
in Chapter V, i.e. crossing events (radial or Left-right crossing in a
rectangle) in critical 2-d percolation. For example if one considers Z2

percolation at pc = 1/2, one can look at the rectangle n× (n + 1). We
consider the Boolean functions fn on the edges of this square, which
returns 1 if there is a Left-Right crossing, -1 else. By duality the prob-
ability of Left-Right crossing for such a rectangle is 1/2, which makes
our Boolean function balanced. We would like to understand how noise
sensitive is percolation, or more exactly how its connectivities, clusters
and so on are disturbed under noise. If one wanted to compute the
Fourier coefficients of f10, since there are about 200 bits concerned,
one would need to compute about 2200 Fourier coefficients. There is at
present no known way to compute Fourier coefficients of percolation or
even sample a spectral set (according to the spectral probability mea-
sure) using say Monte-Carlo methods (compare for instance with the
situation of SAW where it is hard to count the number of Self Avoid-
ing Walks, but at least it is possible using pivot algorithm to sample
them). We computed below the Fourier-Walsh expansion of f1 (there
would already be about 213 terms for f2).
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x1 x2

x3

x4 x5

Figure 4.1: Variables for the function f1.

f1(x1, . . . , x5) =
1

25
(12χ1 + 12χ2 + 4χ3 + 12χ4 + 12χ5)

+
1

25
(−8χ1,2 + 8χ1,4 + 8χ2,5 − 8χ4,5)

+
1

25

{
−4χ1,2,3 − 4χ1,2,4 − 4χ1,3,4 + 4χ2,3,4 − 4χ1,2,5

+4χ1,3,5 − 4χ2,3,5 − 4χ1,4,5 − 4χ2,4,5 − 4χ3,4,5

+
4

25
χ1,2,3,4,5

Which makes P
[
|S | = 1

]
= 592

210 ≈ 0.58, P
[
|S | = 2

]
= 252

210 = 1/4,
P
[
|S | = 3

]
= 160

210 ≈ 0.156 and P
[
|S | = 5

]
= 16

210 ≈ 0.016.

4.4 Results previously obtained about noise sensitivity
of percolation

The study of this problem originated in the seminal paper [BKS99]. They
proved that the crossing event of an n× (n + 1) square in Z2 indeed is noise
sensitive. More precisely they proved the following Theorem

Theorem 4.3. If fn corresponds to the indicator function (in {−1, 1}) of
the left-right crossing of an n× (n + 1) rectangle, then for any fixed N > 0,

lim
n→∞

Pfn

[
0 < |Sfn| < N

]
= 0. (4.6)

The main ingredient of their proof is the hypercontractivity of the noise
operator (analog of the Ornstein-Uhlenbeck semigroup which associates to
the Boolean function f(x) its conditional expectation E

[
f(y)

∣∣ x
]
). In that

paper the authors raised the question to know by how much percolation is
sensitive to noise. More precisely instead of fixing the noise level at some
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fixed ǫ > 0, the amount of noise could decrease to zero with the size of the
system. One therefore considers some sequence (ǫn) going to zero and we look
at N(fn, ǫn). Benjamini, Kalai and Schramm asked the following question

Question 4.4. Does N(fn, n
−β) go to zero for some exponent β > 0 ?

This is equivalent to the question whether Pfn

[
0 < |S | < nβ

]
converges

to zero or not (one is interested in the speed at which the mass of the Spectral
measure spreads to infinity). In their paper [BKS99], hypercontractivity
techniques already implied that percolation is at least ǫn = c

log n
sensitive, for

some constant c > 0.
The question was answered positively by Schramm and Steif in [SS05].

They proved the following Theorem

Theorem 4.5. There exists some exponent γ > 0 so that

lim
n→∞

Pfn

[
0 < |Sfn | < nγ

]
= 0.

This is equivalent to the fact that the sensitivity N(fn, n−γ) goes to zero
when the size of the rectangle goes to infinity. In the case of critical percola-
tion on the triangular grid, based on the knowledge of the critical exponents,
they obtain quantitative estimates for the sensitivity of crossing events. If gn

denotes the indicator function (in {−1, 1}) of a left-right crossing in a domain
approximating the square of sidelength n (one could also choose a shape more
adapted to the triangular grid, for instance a rhombus of sidelength n), they
prove

Theorem 4.6. For all γ < 1/8,

lim
n→∞

Pgn

[
0 < |Sgn| < nγ

]
= 0.

In fact they obtain more refined results about the Spectral measures, since
they manage to control the lower tail of the spectrum, which will turn out
to be the key thing in the study of dynamical percolation.

Their proof uses very different techniques from [BKS99]. They observed
the interesting phenomenon that if a Boolean function can be computed with
some randomized algorithm so that every bit is unlikely to be read, then the
Boolean function will be noise sensitive (to some extent depending on how
“efficient” is the algorithm). If one thinks of the majority function above
(which we have seen to be stable), it is intuitively clear that if one wants to
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compute the outcome of the election by looking at the votes one by one in
any random way, we will have to wait at least n/2 before knowing the out-
come; hence there is no algorithm which computes the Majority function and
satisfies that every bit is unlikely to be read. Their techniques are valid for
any Boolean function and are thus not restricted to the study of percolation.

Let us conclude this subsection by stressing that if the noise decreases
very quickly as the size of the systems goes to infinity, then the noise will
have almost no effect on the connectivities of percolation. More precisely
let us consider fn, the ±1 indicator function of the left-right crossing of the
n×(n+1) rectangle in Z2. Let ω be an i.i.d. configuration on the set of edges
En of the rectangle n× (n + 1) rectangle; for ǫn > 0 let ωǫn be an ǫn noised
configuration of ω. This means that there are N ∼ B(|En|, ǫn) random edges
which are flipped. A way to produce ωǫn from ω is as follows: independently
for each edge e ∈ En, let ue be a uniform random variable on the unit
interval. If ue < ǫn flip the edge e in the configuration ω, else keep the same
status for e. This additional randomness provides an ordering on the set of
edges S = {e1, . . . , eN} which flip from ω to ωǫn. With ω0 = ω, we define
inductively for 0 ≤ i < N , the configuration ωi+1 to be the configuration ωi

with the edge ei+1 flipped. In particular we have ωN = ωǫn. Note that for
all 0 ≤ i ≤ N , ωi has the law of i.i.d percolation on En and the ith edge ei is
distributed uniformly over En. Knowing the total number of switches N , we
obtain that

P
[
fn(ω) 6= fn(ωǫn)

∣∣ N
]
≤

∑

0≤i<N

P
[
fn(ωi) 6= fn(ωi+1)

]

=
∑

0≤i<N

P
[
ei is pivotal for ωi

]
.

But since for all 0 ≤ i < N , ωi follows i.i.d percolation and since ei is
distributed uniformly on the rectangle, all these probabilities are equal and
are easily seen to be of order α4(n); note that there are boundary issues
here, but it is a standard calculation to check that near-boundary and near-
corner points have a negligible contribution. Therefore, one ends up with
P
[
fn(ω) 6= fn(ωǫn)

]
≤ O(1)E

[
N
]
α4(n) = O(1)ǫnn

2α4(n). In particular one
concludes that if the noise level (ǫn) asymptotically satisfies ǫn ≪ 1

n2α4(n)
,

then crossing events are noise stable. The natural conjecture was that there
is a sharp threshold of sensitivity, in the sense that once “we start touching
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many pivotals”, all the information is lost at the limit. In other words, if
ǫn ≫ 1

n2α4(n)
, then crossing events are noise sensitive. This will be part

of our results described at the end of this section. On the triangular grid,
we have seen that α4(n) = n−5/4+o(1), therefore the threshold of sensitivity
should occur around ǫn = n−3/4+o(1). Compare with the above theorem from
[SS05] which showed that on the triangular lattice, crossing events are at
least n−1/8+o(1) noise sensitive.

4.5 Other instrumental use of the Fourier spectrum

Before explaining in the next subsection how the study of noise sensitivity
of percolation enables to understand dynamical percolation, let us briefly
mention a few contexts where similar techniques were used.

• In [BKS03], it is proved that the lengths of the geodesics in First passage
percolation have fluctuations (in variance) bounded by O(n/ log(n)),
and therefore are different from gaussian fluctuations. The conjecture
(still unsolved) being that the standard deviations for this model are
in n1/3. Prior to that paper it was known from Kesten ([Kes93]) that
the fluctuations were less than O(n), which did not rule out Gaussian
behavior. Note that “noise sensitivity” techniques are used here for a
different purpose, i.e. understanding the fluctuations of an asymptotic
deterministic shape.

• In [FK96], it was proved that any monotone Boolean function of a
Random Graph G(n, p), 0 ≤ p ≤ 1 necessarily has a sharp threshold
around some critical value pc = pc(n) (which could depend upon n).
This means that for any monotone event A, if one considers the function
fn : p 7→ Pn,p

[
A
]
, then fn asymptotically has a “cut-off” shape. In

other words any monotone event appears “suddenly” while increasing
p. The proof of this deep result uses among other things the fact that
the Total influence of any monotone event (or its energy) is necessarily
large (which again follows from hypercontractivity). This statement
(somehow uniformly over p ∈ (0, 1)) combined with Russo’s Lemma
implies their result.
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4.6 Dynamical percolation

Dynamical percolation consists of a natural dynamic on the space of per-
colation configurations, and more precisely it is a Markov process on these
configurations. It is defined in an elementary way as follows: for any graph
G = (V, E), start with some initial percolation configuration ω0 (sampled for
instance according to Pp where each edge is open with probability p ∈ [0, 1]),
and let the status of each edge e ∈ E evolve according to a Poisson clock
of rate 1 (this means that independently for each edge, at rate 1 the sta-
tus (open or closed) is resampled to be open with probability p and closed
with probability 1− p). Therefore, Dynamical percolation (ωt) is a dynamic
where at each fixed time the configuration one sees has the law of ordinary
percolation, but the random bits determining the status of the edges follow
random independent changes at uniform rate. The model was introduced by
Häggström, Peres and Steif in [HPS97]. The main questions one faces are
of the following type: does a property which holds almost surely for static
percolation also holds at all times of the dynamic ? If the answer turns out
to be negative, then along the dynamic there are exceptional times at which
the property fails. Since the property was assumed to hold almost surely for
static percolation, the set of these exceptional times necessarily has Lebesgue
measure zero.

In [HPS97], the authors consider the general case of an infinite connected
locally finite graph G. Let pc = pc(G) denotes its critical value. Let C
be the event that there exists an infinite cluster. They prove that except
maybe at the critical point pc, there are no exceptional times for the event
C. More precisely they prove that if p > pc, then almost surely (under
the Probability measure of the Markov process) the event C holds for all
configurations (ωt)t≥0. As well if p < pc, then almost surely, the event ¬C
holds at all times. Hence the study of dynamical percolation focused on the
behavior of the dynamic at criticality. Still in [HPS97], the authors raised
the question for bond percolation on Zd, d ≥ 2 at the critical point pc(Zd).
Using results obtained by Hara and Slade about percolation in high dimension
(d ≥ 19), and in particular the fact that the density of the infinite cluster
θZd(p) has a finite derivative at pc (i.e. θZd(p) = Pp

[
0↔∞

]
= O(p−pc(Zd))),

they proved that at pc, there are no exceptional times where an infinite
cluster appears. In dimension d = 2, the situation is different since when one
increases p and passes the critical value 1/2, the infinite cluster appears in
some sense more suddenly ( d

dp

∣∣
pc

θZ2(p) =∞). The question of the existence
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of exceptional times for infinite clusters on Z2 at pc remained open, but in
[SS05], Schramm and Steif made a breakthrough contribution proving that
there indeed exist such exceptional times on site percolation on the triangular
grid (at pc = 1/2). They proved the following Theorem.

Theorem 4.7. Almost surely, the set of exceptional times t ∈ [0, 1] such that
dynamical critical site percolation on the triangular lattice has an infinite
open cluster is nonempty.

Furthermore, the Hausdorff dimension of the set of these exceptional times
is an almost sure constant in [1/6, 31/36].

They conjectured that the dimension of these exceptional times is a.s.
31/36.

Dynamical percolation is intimately related to noise sensitivity of perco-
lation. Indeed, for dynamical percolation on the triangular grid, the configu-
ration ωt+s at time t+ s is an ǫ-noise of ωt with ǫ = 1

2
(1− exp(−s)); here the

factor 1/2 comes from the fact that we defined the dynamic by resampling
each site at rate 1, instead of flipping each site at rate 1 (the first definition
being more convenient for general graphs where pc 6= 1/2). As often, it is
easier to provide an upper bound for the Hausdorff dimension of the set of
exceptional times. On the other hand, if for some event (of static probability
0) we want to prove that there exist exceptional times, then it usually goes
through the determination of a positive lower bound for the dimension of the
set of these exceptional times, which is the key part.

Let us explain in the above case of the triangular grid where the upper
bound 31/36 comes from. Let E denote the (random) set of exceptional
times t ∈ [0, 1] for which there is an infinite cluster in ωt, we want to show
that a.s. dimH(E) ≤ 31

36
. For any site x in the triangular lattice, let Ix be

the event that there is an open path from x to ∞, and let Ex be the set of
exceptional times t ∈ [0, 1] for which x

ωt←→ ∞. By definition we have that
E = ∪x∈TG Ex; since there are countably many lattice points, it is enough to
show that the set E0 of exceptional times where the origin 0 is connected to
infinity is almost surely of dimension less than 31

36
. For any large n ≥ 1, let

us partition the unit interval [0, 1) into n intervals Ik = [ k
n
, k+1

n
), 0 ≤ k < n.

For any 0 ≤ k < n, we want to bound the probability that E0 ∩ Ik 6= ∅. For
this, notice that ωk/n has the law of critical percolation (p=1/2); now define
ω̃k to be the set of open sites in ωk/n plus all the sites that have switched
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(at least once) from closed to open during the interval Ik. Hence, by defi-
nition, for any t ∈ Ik the percolation configuration ωt is dominated by ω̃k.
But it is easy to see that ω̃k follows exactly the law of i.i.d. percolation with
parameter p = 1

2
+ 1

4
(1 − e−1/n) ≤ 1

2
+ 1

4n
. Therefore the probability that

there is some time t ∈ Ik for which 0 is connected to ∞ is bounded by the
probability that 0 is connected to∞ for ω̃k. This is measured by the density
function θ(1

2
+ 1

4n
). Now, based on the knowledge of the critical exponents in

the case of the triangular grid it is known that θ(p) = (p−1/2)5/36+o(1), when
p → pc = 1/2 (see for instance [Wer07]). In particular for any α > 0 and n
large enough we have that for all 0 ≤ k < n, P

[
Ik ∩ E0

]
≤ ( 1

n
)5/36−α. This

implies that for n large enough the expected number of 1/n- intervals needed
to cover the random set E0 is bounded by n31/36−α which (taking n→∞ and
α→ 0) proves that a.s. dim(E) = dim(E0) ≤ 31

36
. See [SS05] for more details.

On the other hand, just proving the existence of such exceptional times
turns out to be a much harder task. Indeed, one needs to understand the
correlations between configurations ωt and ωt+ǫ. In other words first moment
estimates (as above) are enough to imply upper bounds, but for lower bounds
one needs at least to control second moments type of estimates (which in-
volves correlations).

Heuristically, if the percolation configuration ωt moves very “fast” along
the time dynamic t, then it will have more chances to create infinite paths at
some exceptional times. In other words, if percolation turns out to be very
noise sensitive, then the connection properties will decorrelate fast which will
help infinite clusters to appear.

More mathematically, for any large radius R > 1, we introduce QR to be
the set of times where 0 is connected to distance R:

QR := {t ∈ [0, 1] : 0
ωt←→ R}.

Proving the existence of exceptional times boils down to proving that with
positive probability ∩R>0QR 6= ∅. Even though the sets QR are not closed,
with some additional technicality (see [SS05]), it is enough to prove that
there is some c > 0 such that infR>1 P

[
QR 6= ∅

]
> c. This can be done by

introducing the amount of time XR where 0 is connected to distance R, more
precisely we define

XR :=

∫ 1

0

1
0

ωt←→R
dt.
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Since by Cauchy-Schwarz,

P
[
QR 6= ∅

]
= P

[
XR > 0

]
≥ E

[
XR

]2

E
[
X2

R

] ,

(this is what “second moment method” is referring to) it remains to prove that

there is some constant C > 0 such that for all R > 1, E
[
X2

R

]
< CE

[
XR

]2
.

Note that the second moment can be written

E
[
X2

R

]
=

∫∫

0≤s≤1
0≤t≤1

P
[
0

ωs←→ R, 0
ωs←→ R

]
dsdt

≤ 2

∫ 1

0

P
[
0

ω0←→ R, 0
ωt←→ R

]
dt .

Now let fR = fR(ω) be the indicator function of the event {0 ω←→ R}. fR

can be seen as a Boolean function from the bits in the disk of radius R,
B(0, R) with values in {0, 1}. One can compute the desired correlation in
the following way

P
[
0

ω0←→ R, 0
ωt←→ R

]
= E

[
fR(ω0)fR(ωt)

]

= E
[( ∑

S⊂B(0,R)

f̂R(S)χS(ω0)
)( ∑

S⊂B(0,R)

f̂R(S)χS(ωt)
)]

= E
[
fR

]2
+

∑

∅6⊂S⊂B(0,R)

f̂R(S)2 exp(−t|S|)

= E
[
fR

]2
+
∑

k≥1

Q
[
|S | = k

]
e−kt, (4.7)

where Q is the Spectral measure of fR (it is not a probability measure since
‖fR‖2 < 1). By integrating over the unit interval this gives

E
[
X2

R

]
≤ 2 E

[
XR

]2
+ 2

∑

k≥1

Q
[
|S | = k

]

k
.

Therefore, in order to obtain the desired second moment, one needs to control
the Lower Tail of the size of the Spectrum. This was achieved in [SS05]
allowing them to prove the existence of exceptional times on the triangular
grid. As mentioned above, their control of the lower tail enabled them to
obtain the lower bound of 1/6 for the Hausdorff dimension of the set of
these exceptional times. In order to reach the upper bound of 31/36, sharp
estimates are needed for the spectrum and in particular its lower tail, which
will be the results we will describe in the next subsection.
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4.7 Our contribution

These results are joint work with Gábor Pete and Oded Schramm.

The following statements hold both for the triangular and square lattices
(and they do not rely on SLE techniques). For any n ≥ 1, fn will denote
the left-right crossing of the n × (n + 1) rectangle if we are on Z2, and the
left-right crossing of a domain approximating the square of sidelength n if
we work on the triangular grid. Similarly, α4(n) will be the probability to
observe 4 alternate arms from the origin to distance n on the lattice we are
considering.

We have seen above that if ǫnn2α4(n) goes to zero, then the crossing
events are noise stable. This means that if yn is an ǫn-noise of xn, then
P
[
fn(yn) 6= fn(xn)

]
goes to zero. We prove that the transition from stability

to sensitivity is sharp:

Theorem 4.8. If the noise level satisfies ǫnn2α4(n)→∞, then

lim
n→∞

N(fn, ǫn) = 0.

In terms of correlations this means that if yn is an ǫn-noise of xn, then we
have

E
[
fn(yn)fn(xn)

]
− E

[
fn

]2 −→
n→∞

0.

This theorem is proved by showing that all of the “spectral mass” is con-
centrated around n2α4(n); i.e. that for any function δ(n) going to zero (ar-
bitrary slowly) we have that

P
[
0 < |Sfn| < δ(n) n2α4(n)

]
−→
n→∞

0.

One in fact obtains more refined results about the spectral measure, in
particular about its lower tail with the following theorem

Theorem 4.9. The Spectral sample Sfn of fn satisfies

P
[
0 < |Sfn | < r2α4(r)

]
≍
(n

r

)2

α4(r, n)2,

for any r ∈ [1, n] and ≍ denotes equivalence up to multiplicative constants.
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We also prove an analog Theorem about the lower tail of the Spectral
measure concerning the radial event, and it is really this radial control that
one then applies to dynamical percolation. Note that in the above theo-
rem our control of the lower tail of the spectrum is optimal (up to absolute
constants).

In the case of the triangular lattice, using the knowledge of the critical
exponents, one has the following variant for the lower tail written in terms
of concentration around the mean.

Proposition 4.10. For every λ ∈ (0, 1], one has

lim sup
n→∞

P
[
0 < |Sfn | ≤ λ E

[
|Sfn |

]]
≍ λ2/3,

where the constants involved in ≍ are absolute constants.

Note that if one would have followed the setup in [SS05] in order to
prove these sharp bounds, we would have needed to find some algorithm
for computing fn with an “optimal” revealment δ = δ(n) (the revealment
being the supremum over all bits of the probability that a bit is “asked” by
the algorithm). In the context of our crossing event the general theorem they
prove relating algorithms and sensitivity states that for any k ≥ 1,

P
[
0 < |Sfn | ≤ k

]
≤ δ(n)k2. (4.8)

It is clear that in order to evaluate the left right crossing fn, any algorithm
has to use at least n sites (in fact with high probability it would need to use
at least nβ bits with some β > 1 since “shorter paths” in percolation have
a fractal structure). In particular since there are O(1)n2 bits involved, the
revealment is necessarily at least c/n, for some constant c > 0. So the best
one can hope, using 4.8 and some optimized algorithm, is to prove that for
any φ(n) = o(

√
n), P

[
0 < |Sfn | < φ(n)

]
goes to zero (i.e. that the spectrum

mass spreads at least at speed
√

n). But since we wanted to prove that the
mass spreads at speed n2α4(n) = n3/4+o(1), we had to use a completely dif-
ferent approach.

Our strategy focuses more on the spatial geometry of the spectral set Sfn .
This allows us some additional freedom, for instance one can go beyond the
classical setup of noise sensitivity by noising only some subset of the bits
(think of a voting scheme where the counting of votes is safer in some state
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than in some other...). One can prove for example in the case of Z2, that
if one noises only the vertical edges (at some level ǫ > 0), then the crossing
event is asymptotically noise sensitive. This situation can be pushed to its
extreme (with ǫ = 1), where one resamples (or switches) a fixed (determinis-
tic) set of bits. This answers a conjecture from [BKS99]. Previous techniques
could not handle this type of sensitivity with constraints.

As we have seen, one can think of Sfn as a random subset of the n×[n+1]
rectangle. Gil Kalai suggested to study the scaling limit of the rescaled
spectral sample 1

n
Sfn . Combining Tsirelson’s theory of noises and the proof

by Schramm and Smirnov that percolation scaling limit can be seen as a
noise ([SS]), it follows that 1

n
Sfn indeed has a scaling limit. We prove the

following theorem

Theorem 4.11. In the setting of the triangular grid, the limit in law of
n−1Sfn exists. It is a.s. a Cantor set of Hausdorff dimension 3/4.

Note that Sfn has many properties in common with the random set Pn

of pivotals points for the left right crossing (for instance they have asymp-
totically the same dimension). However we would like to stress that they are
very different from each other (this can be tested via large deviations); we in
fact believe that they become asymptotically singular.

We now turn to the description of the results we could achieve concerning
dynamical percolation using our sharp control of the spectrum. First of all,
our results about the concentration of the Fourier spectrum in the case of Z2

allow us to prove the following theorem

Theorem 4.12. A.s. there are exceptional times at which dynamical critical
bond percolation on Z2 has infinite clusters, and the Hausdorff dimension of
the set of such times is a.s. positive.

One should point out here that [SS05] came quite close to proving this
theorem; and “retrospectively” their techniques would have been sufficient to
derive the existence of exceptional times on Z2.

In the case of the triangular grid, we prove the following theorem.

Theorem 4.13. In the setting of dynamical critical site percolation on the
triangular grid, we have the following almost sure values for the Hausdorff
dimensions.
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1. The set of times at which there is an infinite cluster a.s. has Hausdorff
dimension 31/36.

2. The set of times at which there is an infinite cluster in the upper half
plane a.s. has Hausdorff dimension 5/9.

3. The set of times at which an infinite occupied cluster and an infinite
vacant cluster coexist a.s. has Hausdorff dimension at least 1/9 (the
conjectured dimension being 2/3).

The upper bounds were known from [SS05] but even the existence was
proved only for the first item (with the lower bound of 1/6). Note that
in the third item, our lower bound does not match with the upper bound.
This is due to the lack of monotonicity of the event under consideration, and
monotonicity is used at a key step in our way to control the Spectrum.

5 Scaling limit of near-critical and dynamical

percolation

Let us first stress that in spite of what its title might suggest, this chapter
is not a continuation of the previous one and can be seen as a completely
independent project. We will nevertheless state a result at the end which
links one with the other.

This chapter is part of an ongoing project with Gábor Pete and Oded
Schramm, where the goal is to prove that near-critical (or off-critical) perco-
lation and dynamical percolation properly renormalized have a scaling limit.
Even though we do not provide in this thesis a full proof of the existence of
these scaling limits, we state and prove two results of independent interest
that are essential bricks of this project. In this introduction, we will say some
words about the general projects, and describe these two results.

5.1 Setup and background

For simplicity, we will restrict our study to the case of site percolation on
the triangular grid. Let us first introduce the model of near-critical perco-
lation. One often explains the phase transition in percolation by “increasing
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the level p”. This corresponds to defining a natural coupling of percolation
configurations ωp for all “levels” p ∈ [0, 1] at the same time. A way to do so
is to sample independently for all sites x in the triangular grid T a uniform
random variable ux on the unit interval. For any p ∈ [0, 1], let ωp be the
configuration corresponding to the set of points x ∈ T for which ux ≤ p.
Now, almost surely (under the law of the coupling), when one increases p, a
(unique) infinite cluster appears from the moment that p exceeds pc = 1/2.
We would like, using the recent understanding of critical percolation on T,
to understand “how” the infinite cluster suddenly emerges once p > 1/2. In
other words, we would like to describe the “birth” of the infinite cluster. If
one wants to use conformal invariance (i.e. SLE6), a natural idea is to con-
sider the scaling limit of the whole coupling (ωp)0≤p≤1 when the mesh of the
triangular lattice goes to zero. So one considers for example the sequence of
couplings (ωn

p ) on the rescaled grids 1
n
T. The problem one faces with this ap-

proach is that for any fixed p < 1/2, the connection probabilities of ωp decay
exponentially fast (i.e. there are some constants C1, C2 > 0 which depend on
p, so that the probability that 0 is connected to distance n within ωp is less
than C1 exp(−C2n)). This implies in particular that if we observe a rescaled
subcritical configuration ωn

p (on 1
n
T) in the “window” [0, 1]2, then the largest

clusters in ωn
p will be of diameter O(1) log n

n
. Taking n going to infinity we get

a trivial limit. The same phenomenon happens in the opposite situation of
the supercritical regime p > 1/2.

Therefore, if one wants to keep a meaningful transition from subcritical
to supercritical regime, while we rescale the lattice, we also need to “slow
down” our way to increase the level p (in order to make the transition less
“brutal”). So we will rescale our coupling in the following way: for all n ≥ 1,
consider the coupling (ω̂n

λ)λ∈R where the configuration ω̂n
λ stands for ωn

p with
p = 1/2+λδ(n). Here δ(n) is the speed at which one slows down the “increase
in p”; for now on this is just some function going to zero. Note that we defined
a coupling for all real values λ ∈ R (if λ is such that p = 1/2+λδ(n) < 0, then
we define ω̂n

λ to be the empty configuration, as well for large values of λ, ω̂n
λ

will be the full configuration). Using similar ideas as in our previous chapter
it is possible to see that if δ(n) decays too fast, then we end up with a trivial
coupling at the scaling limit where all configurations ω̂λ coincide with the
critical configuration ω̂0. This happens if and only if limn→∞ δ(n)n2α4(n) = 0
(which severely reminds us the threshold of sensitivity...). On the other hand,
if the “increase in p” is not slowed down enough (i.e. if δ(n) decays too slowly
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to 0) we also obtain a trivial coupling at the limit, the same that the one
we obtained with the original coupling (ωp) (i.e. without slowing down).
This happens if and only if limn→∞ δ(n) n2α4(n) = ∞. See [NW08] for
more details. This question of “scaling window” had in fact been studied
extensively before in various contexts and many ideas in the percolation
model go back to Kesten [Kes87].

To sum up the above discussion, if one wants to keep a nontrivial coupling
at the scaling limit, we are forced to choose a speed δ(n) which satisfies
δ(n) ≍ 1

n2α4(n)
.

In [NW08], the authors consider percolation interfaces (say for instance
the standard one in H starting at 0) on the rescaled triangular lattice 1

n
T

at the parameter pn = 1/2 + δ(n), where δ(n) ≍ 1
n2α4(n)

. Let γn denote the

standard percolation interface on 1
n
T at p = pn starting at 0, and remaining

in H until it exits the disk of radius 1. They prove that (Pn)n≥1, the family
of laws which govern the rescaled interfaces γn is tight (for the topology
induced by a well chosen metric on the space of interfaces). In particular there

are subsequential scaling limits γnk
law→ γ converging to laws on continuous

interfaces γ on H∩D. Their main theorem asserts that any such subsequential
scaling limit is singular with respect to the SLE6 measure on interfaces. This
means that the “pictures” (at least the interfaces) one sees in the off-critical
regime are different from the pictures one sees in the critical regime.

This implies that something “interesting” has to occur at the limit n →
∞ in the only remaining case (δ(n) ≍ 1

n2α4(n)
) for our rescaled coupling

configurations (ω̂n
λ)λ∈R.

We will define in chapter VI a natural topology T on the space H of all
percolation configurations. In order to work on the same space H , both at
the discrete and continuum levels, we will associate to a percolation configu-
ration ω the set of all quads (or “tubes”) which have a left-right crossing for ω.
So roughly speaking an element of H consists of a set of quads, see chapter
VI for more precise definitions. It is proved in [SS] that the topological space
(H , T ) is compact. The process one is interested in, i.e. the coupling of
configurations (ω̂n

λ)λ∈R, can be seen as a probability measure on the càdlàg
processes R → H (càdlàg comes from our choice to consider some site x
open if and only if ux ≤ p instead of ux < p). We equip this space of paths

with the topology of locally uniform convergence, let T̂ denote this topology.

One of the main Theorems of our ongoing project states that in the
interesting regime δ(n) ≍ 1

n2α4(n)
, there is essentially a unique (up to scaling)
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subsequential scaling limit for the coupling (ω̂n
λ)λ∈R. More precisely if δ(n) :=

1
n2α4(n)

, we plan to establish the following:

Theorem 5.1. The rescaled couplings of percolation configurations (ω̂n
λ)λ∈R

seen as random cádlág processes on H have a scaling limit when n goes to
infinity. They converge in law under the topology of locally uniform conver-
gence (T̂ ) to a coupling of continuum percolation (ω̂λ)λ∈R.

In particular, for any fixed level λ 6= 0, near-critical percolation configu-
rations ωn on 1

n
T at pn = 1/2 + λ

n2α4(n)
have a scaling limit.

For dynamical percolation, if one wishes to rescale the lattice in order to
obtain some scaling limit of dynamical percolation, for the same reason we
need to slow down the time evolution. Indeed, if we would rescale the lattice
while keeping the same rate for the poisson clocks on the sites, because of the
sensitivity of percolation, one would obtain a scaling limit where at it each
time t ∈ R, one would “see” a completely independent copy of continuous
percolation. Following the same discussion as for near-critical percolation,
if we want to keep a nontrivial scaling limit, while we rescale the space
by n, we also need to slow down the time by δ(n) ≍ 1/(n2α4(n)). More
precisely for each n ≥ 1, let (ωn

t )t≥0 be a dynamical percolation on 1
n
T,

where each site x ∈ 1
n
T is updated according to a Poisson clock of rate

qn := 1/(n2α4(n)) = n−3/4+o(1). As for near-critical percolation, we plan to
prove:

Theorem 5.2. The rescaled dynamical percolation processes (ωn
t )t≥0 seen as

random cádlág processes on H have a scaling limit when n goes to infinity.
They converge in law under the topology of locally uniform convergence (T̂ )
to a continuum dynamical percolation (ωt)t≥0.

Let us briefly explain how we plan to prove the existence of these scaling
limits. We roughly follow a program proposed by Camia, Fontes and Newman
in [CFN06]. Their idea was to construct the scaling limit of the entire near-
critical coupling (ω̂λ)λ∈R as well as the scaling limit of dynamical percolation
(ωt)t∈R, out of the critical slice ω̂0 = ω0. Let us explain this program in the
case of the scaling limit of near-critical percolation. In order to sample ω̂λ

(for some level λ > 0, say) using ω̂0, many “sites” will switch in some random
way from closed to open. But since we are at the scaling limit, there are no
“sites” any more. Nevertheless some sites are somehow still visible: the set P
of all pivotal points. In [CFN06] the authors explain that it should be enough
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to follow the status of these pivotal points in order to follow “along λ” the
configuration ω̂λ. Note here that we follow the status of points which were
“initially” (for the configuration ω̂0) pivotal; it could be that the configuration
ω̂λ “moves” in such a way that its set of pivotal points is not preserved; hence
that part of the program needs some proof already. But even assuming that
it is enough (and also makes sense) to follow the status of these initial pivotal
points, one faces a difficulty: if P is the set of all the initial pivotal points
(i.e. for ω̂0), then for any λ > 0, in any given compact, say in the window
[0, 1]2, infinitely many pivotal points in P will switch from closed to open
between the configurations ω̂0 and ω̂λ ! So it makes it hard to reconstruct
the configuration ω̂λ out of the ω̂0 configuration plus this “infinite” amount
of information.

5.2 Results proved in Chapter VI

This is the reason why we introduce a “cut-off”: instead of considering all
the pivotal points at once, we only consider the pivotal points whose status
matters at least up to distance ǫ, for some ǫ > 0. A point x will be called
ǫ-important if the four-arms event is satisfied in B(x, ǫ). For any ǫ > 0, let
Pǫ denote the set of all pivotal points which are initially (for ω̂0) at least
ǫ-important.

We will prove in chapter VI, that if we want to predict with good accu-
racy the “outcome” ω̂λ, then it is indeed enough to follow the status of the
ǫ-important points Pǫ, the cut-off ǫ being chosen small enough depending on
the degree of “accuracy” we want. In order to prove this result, we will need to
rule out configurations where “cascades of importance” happen; i.e. dynamics
(in λ), where some points initially of very low importance get promoted to
a much higher importance along the dynamic λ and also switch their status
(we do not follow the status of these initially low important points, so if they
switch from closed to open, we do not “see” it). This “non-cascade” property
is our first main theorem in Chapter VI.

Once we know that it is enough to follow the ǫ-important points, we
still need to find a way to sample which points in Pǫ will switch (in any
compact set, only finitely many will switch, this was the purpose of our cut-
off). As argued in [CFN06], this random set of points should be a certain
“Poissonian” cloud over the set Pǫ, under some measure, which on the discrete
level would simply be the counting measure on the set Pn

ǫ of ǫ-important
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points (renormalized by n2α4(n)). Therefore for any ǫ > 0, if we have some
continuum critical percolation ω, we need to define a Borel measure µǫ =
µǫ(ω) which is a natural analog of the counting measure on the discrete level.
More precisely for any n ≥ 1, let µǫ

n be the counting measure on the set
of ǫ-important points Pn

ǫ renormalized by n2α4(n). Hence µǫ
n is defined as

follows

µǫ
n = µǫ

n(ωn) =
1

n2α4(n)

∑

x∈ 1
n

T is ǫ-important

δx .

The following result is the second main theorem in chapter VI.

Theorem 5.3. When the mesh 1/n vanishes, the random variable (ωn, µǫ
n)

converges in law to some (ω, µǫ), where ω is the scaling limit of critical per-
colation, and the Borel measure µǫ = µǫ(ω) is a measurable function of the
continuum percolation ω.

Our proof can also be applied to other random objects concerning percola-
tion, for instance one can prove that the counting measure on the exploration
process (see figure 1.1) properly renormalized (by n2α2(n)) converges in law
to a “natural” parametrization of the SLE6 curve. The question of construct-
ing a natural parametrization of SLEκ curves is natural and was recently
addressed by Lawler and Sheffield in [LS]. In our case we obtain natural
parametrizations only for SLE8/3 and SLE6 curves, but with the nice feature
that they arise from the discrete model as limits of the discrete counting
measures.

5.3 Outlook

One should point out that this program not only leads to the proof of the
scaling limits of near-critical and dynamical percolation, but that it also
describes the limiting couplings. For example, this proof implies that the
scaling limit of dynamical percolation (ωt)t≥0 is a Markov process on the
space of percolation configurations H ; this is obvious at the discrete level,
but far from obvious once in the scaling limit.

Also, this allows us to use and apply the near-critical (or dynamical)
percolation model in a very flexible way, for instance by making the rate of
switching vary over the space. In this direction we prove in chapter VI that
the limiting counting measure defined above has nice conformal covariance
properties. Plugged into our setup, this will imply in our ongoing project a
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Conformal Covariance structure for near-critical percolation. More precisely,
we plan to prove that if ω̂λ is a near-critical percolation at level λ in some
domain Ω, then if f : Ω→ Ω̃ is some conformal map, f(ω̂λ) is a “generalized”
near-critical configuration where the level λ̃ depends on the position in the
following way: for any z ∈ Ω, λ̃(f(z)) = |f ′(z)|−3/4λ.

In this work in progress, we plan to apply the above results to the following
models which, as is well-known, are related to near-critical percolation:

• We will prove that Minimal Spanning Tree (defined on the triangular
grid) has a scaling limit, is rotationally invariant (it is not believed to
be conformally invariant), and we will describe some of its asymptotic
properties.

• The front in gradient percolation has a scaling limit.

• The process of invasion percolation has a scaling limit

We would like to conclude by the following remark. As we argued, chap-
ters V and VI are largely independent from each other. However, combining
their results, implies that for dynamical percolation when t goes to infinity,
ωt is getting independent of ω0. Roughly speaking, as time goes on, we forget
the initial configuration.

By considering the percolation dynamic (at the scaling limit) as a process
in the space H , we can actually prove using the techniques of chapter V the
following theorem.

Theorem 5.4. The process t 7→ ωt is ergodic in the space of configurations
H .



Chapter III

The expected area of the filled
planar Brownian loop is π

5

Joint work with José Trujillo Ferreras.

Let Bt, 0 ≤ t ≤ 1 be a planar Brownian loop (a Brownian motion condi-
tioned so that B0 = B1). We consider the compact hull obtained by filling
in all the holes, i.e. the complement of the unique unbounded component of
C\B[0, 1]. We show that the expected area of this hull is π/5. The proof uses,
perhaps not surprisingly, the Schramm Loewner Evolution (SLE). Also,
using Yor’s result [Yor80] about the law of the index of a Brownian loop,
we show that the expected areas of the regions of index (winding number)
n ∈ Z\{0} are 1

2πn2 . As a consequence, we find that the expected area of the
region of index zero inside the loop is π/30; this value could not be obtained
directly using Yor’s index description.

85
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Figure 0.1: Random walk loop of 50000 steps and corresponding hull.

1 Introduction

In the abundant literature about planar Brownian motion, there are certainly
results dealing with the question of area. Paul Lévy’s stochastic area formula
describing the algebraic area “swept” by a Brownian motion will likely come
to the mind of many readers. Our result, however, is very different from this
classical theorem, firstly because Levy’s area is a signed area, but mainly
because of the following : in order to apprehend Lévy’s area it is enough to
follow the Brownian curve locally without paying attention to the rest of the
curve. In our case, one needs to consider the curve globally.

Aside from the fact that the question we address is a very natural one for
Brownian motion, we have been motivated by related results in the Physics
literature. In [Car94], using methods of conformal field theory, Cardy has
shown that the ratio of the expected area enclosed by a self-avoiding polygon
of perimeter 2n to the expected squared radius of gyration for a polygon
of perimeter 2n converges as n goes to infinity to 4π/5. We note that self-
avoiding polygons are supposed to have the same asymptotic shape as filled
Brownian loops (see, for example, [Ric04] and references therein). However,
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studying this relationship is hard basically for the following reason. The
boundary of the Brownian loop is of SLE8/3-type, but, unfortunately, there
does not exist a good way of “talking about the length” of SLE curves at
this moment.

Our result gives interesting information regarding the Brownian loop
soups introduced in [LW04]. This conformally invariant object plays an im-
portant role in the understanding and description of SLE curves (see, e.g.
[LW04, Wer05a, LSW03]). It can be viewed as a Poissonian cloud (of inten-
sity c) of filled Brownian loops in subdomains of the plane. Among other
things, it is announced in [Wer03] that the dimension of the set of points in
the complement of the loop soup (i.e. the points that are in the inside of no
loop) can be shown to be equal to 2− c/5, using consequences of the restric-
tion property. A detailed proof of this statement has never been published,
and in fact, our result implies the corresponding first moment estimate (i.e.
the mean number of balls of radius ε needed to cover the set). The other
arguments needed to derive the result announced in [Wer03] will be detailed
in [Tha06].

Let us make precise what we mean by area enclosed by a Brownian loop.
Let B denote a Brownian bridge in C of time duration 1. I.e. the law of
Bt, 0 ≤ t ≤ 1 is the same as the law of Wt− tW1, 0 ≤ t ≤ 1, where W is just
a standard Brownian motion in C. C \ B[0, 1], i.e. the complement of the
path, has a unique infinite connected component H . The hull T generated
by the Brownian loop is by definition C \H . Let A be the random variable
whose value is the area of T . In this paper, we will prove

Theorem 1.1.
E(A) =

π

5
.

We would like to explain now how this result is related to the problem
of windings of a Brownian loop. In [Yor80], Yor gave an explicit formula for
the law of the index of a Brownian loop around a fixed point z. A point
with a non-zero index has to be inside the loop. Using this fact, it is almost
possible to describe the probability that a point is inside the loop, modulo the
problem of the zero index; indeed, there are some regions inside the Brownian
loop which are of index zero. It seems hard to control the influence of these
zero-index points inside the curve. In the last section, using our main result,
theorem 1.1, combined with the law of the index given by Yor, we find that
the expected area of the set of points inside the loop that have index zero is
π
30

. We also compute the expected areas of the regions of index n ∈ Z \ {0}.
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In [CDO90], using physics methods, Contet, Desbois and Ouvry obtained
the values of the expected areas for the non-zero regions. In their paper, they
noted the different nature of the n = 0 sector (the points in the plane of zero
index) and emphasized that “it would be interesting to distinguish in the
n = 0 sector, curves which do not enclose the origin from curves which do
enclose the origin but an equal number of times clockwise and anticlockwise”.
Their values in the case n 6= 0 agree with our results; they argue that the
0-case cannot be treated within the scope of their analysis.

From a probabilistic viewpoint, it also appears that usual techniques for
Brownian motion are not strong enough to obtain the expected area of the
Brownian loop or the expected area of the 0-index region inside the Brownian
loop. However, the computation of the expected area of the n-index region
for n 6= 0 was within reach using the result of Yor. To our knowledge this
computation had not been carried out in a mathematical way before.

Let us briefly explain why usual techniques for Brownian motion seem
unable to tackle the problem of the expected area of the Brownian loop.
Basically, the enclosed area depends only on the boundary of the hull gen-
erated by the Brownian loop. The frontier of the Brownian loop concerns
only a small subset of the time duration [0, 1]. In some sense, on certain
time-intervals, the enclosed area does not depend much on the behavior of
the Brownian motion. So, this problem needs a good description of the fron-
tier of a Brownian loop. Recently, Lawler, Schramm and Werner proved
a conjecture of Mandelbrot that the Hausdorff dimension of the Brownian
frontier is 4/3. For this purpose they used the value of intersection expo-
nents computed with the help of SLE curves, see for instance [LSW01b] and
references therein. The description of the Brownian frontier via SLE can be
done in a slightly different way using the conformal-restriction point of view,
see [LSW03]. We will use this approach, and so will present to the reader
the facts needed about conformal restriction measures in the next section.

The paper gives another striking example of a simple result concerning
planar Brownian motion that seemed out of reach using the usual stochastic
calculus approach, but that can be derived using conformal invariance and
SLE. For a thorough account on SLE processes, see [Law05, Wer04].

Acknowledgments : We wish to thank Greg Lawler and Wendelin
Werner for suggesting the problem and for fruitful discussions, and Wen-
delin Werner for pointing out the link with the paper of Yor [Yor80].
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2 Preliminaries

Conformal restriction measures in H are measures supported on the set of
closed subsets K of H such that K ∩ R = {0}, K is unbounded and H \K
has two infinite connected components, that satisfy the conformal restriction
property : for all simply connected domains H ⊂ H such that H \ H is
bounded and bounded away from the origin, the law of K conditioned on K ⊂
H is the law of Φ(K), where Φ is any conformal transformation from H to H
preserving 0 and∞ (this law doesn’t depend of the choice of Φ). It is proved
in [LSW03] that there is only one real parameter family of such restriction
measures, Pα where α ≥ 5/8. These measures are uniquely described by the
following property : for all closed A in H bounded and bounded away from
0,

Pα[K ∩A = ∅] = Φ
′
A(0)α , (2.1)

where ΦA is a conformal transformation from H\A into H such that ΦA(z)/z →
1, when z →∞. To aid with the notation for the rest of the paper whenever
we write ΦA we will be assuming that we have chosen the translate with
the additional property ΦA(0) = 0. P5/8 is the law of chordal SLE8/3, and
P1 can be constructed by filling the closed loops of a Brownian excursion in
H (Brownian motion started at 0 conditioned to stay in H). An important
property of these conformal restriction measures is that using two indepen-
dent restriction measures Pα1 and Pα2 , we can construct Pα1+α2 by filling
the “inside” of the union of K1 and K2. This “additivity” property and the
construction of P5/8 and P1 give the good description of the Brownian motion
in terms of SLE curves, namely, 8 SLE8/3 give the same hull as 5 Brownian
excursions.

Since, we want to describe the boundary of loops of time duration 1, we
will first create loops with the use of the infinite hulls described above. Re-
striction measures are conformally invariant (Brownian excursion, SLE8/3,..),
so we had better use conformal maps. There is obviously no conformal map
which sends both ∞ and 0 to 0, so the natural idea is to consider a Möbius
transformation preserving H which maps 0 to 0, and ∞ to ε. We can choose

mε(z) =
εz

z + 1

m−1
ε (z) =

z

ε− z
.
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The limit when ε goes to zero of the measures mε(P1) is the dirac measure at
{0}. The good renormalization to keep something interesting is in ε2. Hence,
we define the Brownian bubble measure in H as :

µbub = lim
ε→0

1

ε2
mε(P1) .

This measure was introduced in [LSW03], and it is an important tool
for studying the link between SLE curves and the Brownian loop soup (see
[LW04]). It was already noted in [LSW03, LSW04b], as an easy consequence
of the “additivity” property described above, that

5

8
µbub =

5

8
lim
ε→0

1

ε2
mε(P1) = lim

ε→0

1

ε2
mε(P5/8) .

The last measure can be seen as an infinite measure on “SLE8/3 loops", let
us call this measure µsle. Recall, that we are interested in a Brownian loop
of time duration 1. We have the following time decomposition for µbub, (see
[LW04],[Law05])

µbub =

∫ ∞

0

dt

2 t2
Pbr

t × Pexc
t , (2.2)

where Pbr
t is the law of a one-dimensional Brownian bridge of time duration

t, and Pexc
t is the law of an Itô Brownian excursion re-normalized to have

time t. Pbr
t × Pexc

t is the law of an H-Brownian bridge of time duration t, by
considering the one dimensional bridge as the x coordinate of the curve, and
the excursion as the y coordinate. Unfortunately, it is hard to compute fixed-
time quantities with SLE techniques. Thus, we will compute a “geometric
quantity" using SLE8/3, and then extract E(A) from this geometric value by
using the relation µbub = 8/5µsle and the decomposition 2.2.

Let us explain in a few words why we need to deal with Brownian bridges
in H and cannot work directly with bridges in C. The underlying idea is the
fact that one needs to choose a starting point on the boundary of the Brow-
nian loop for the SLE loop representation. A natural choice is the (almost
surely) unique lower point, this is why we are interested in H quantities. So
let AH be the random variable giving the area of an H−Brownian bridge of
time duration one. Working with AH will turn out not to be a problem since,
as the reader might already suspect, the random variables A and AH have
the same law.

For the geometric quantity, we could choose to compute
∫

A(γ)dµsle,
where A(γ) is the area enclosed in H by the “curve" γ, but this integral
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is infinite. Let γ∗ be the radius of the curve γ, that is, γ∗ = sup0≤t≤tγ |γ(t)|.
We may consider the “expected" area under the law µsle “conditioned" on
γ∗ = 1. Here, µsle is not a probability measure so the term “expected value"
is not correct, and the conditioning is on a set of µsle−measure equal to 0.
But we have the following rigorous definition :

µsle(A|γ∗ = 1) = lim
δ↓0

∫
A(γ)1{γ∗∈[1,1+δ)}dµsle

µsle{γ∗ ∈ [1, 1 + δ)} . (2.3)

Using µsle = 5/8µbub, we can write in the same way :

µsle(A|γ∗ = 1) = lim
δ↓0

∫
A(γ)1{γ∗∈[1,1+δ)}dµbub

µbub{γ∗ ∈ [1, 1 + δ)} . (2.4)

Thus, µsle(A|γ∗ = 1) represents at the same time the “expected" area of
an SLE8/3 loop conditioned to touch the half circle of radius one and the
expected area of a Brownian bubble with the same conditioning. With the
use of the restriction property for SLE8/3, we will be able to compute in the
last section µsle(A|γ∗ = 1). Before, in the coming section, we will find the
relationship between E(A) and µsle(A|γ∗ = 1).

3 Extraction of E(A) from µsle(A|γ∗ = 1)

In this section we will prove the following

Lemma 3.1.
E(A) = 2µsle(A|γ∗ = 1).

Proof. First of all, by using the definition of µbub in terms of limε↓0
1
ε2 mε(P1)

and the restriction property of P1, it is easy to show that µbub{γ∗ ≥ r} = 1
r2 ,

hence
µbub{γ∗ ∈ [1, 1 + δ)} = 1− 1/(1 + δ)2 = 2δ + O(δ2),

and thus, from (2.4), we have

µsle(A|γ∗ = 1) = lim
δ↓0

∫
A(γ)1{γ∗∈[1,1+δ)}dµbub

µbub{γ∗ ∈ [1, 1 + δ)}

= lim
δ↓0

∫∞
0

dt
2t2

Et(A(γ)1{ sup
0≤u≤t

|γ(u)|∈[1,1+δ)})

2δ + O(δ2)
.
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Here Et is the expectation according to the law of an H-Brownian bridge in
time t. By Brownian scaling we have

Et(A(γ) 1{ sup
0≤u≤t

|γ(u)|∈[1,1+δ)}) = t ∗ E1(A(γ) 1{ sup
0≤u≤1

|γ(u)|∈[ 1√
t
, 1√

t
+ δ√

t
)}).

Therefore :

µsle(A|γ∗ = 1) = lim
δ↓0

∫ ∞

0

dt

4 t(δ + O(δ2))
E1(A 1{γ∗∈[ 1√

t
, 1√

t
+ δ√

t
)})

= lim
δ↓0

∫ ∞

0

dt

4 t3/2

P1{γ∗ ∈ [ 1√
t
, 1√

t
+ δ√

t
)}

δ√
t
(1 + O(δ))

E1(A |γ∗ ∈ [
1√
t
,

1√
t

+
δ√
t
))

= lim
δ↓0

1

2

∫ ∞

0

du(1 + O(δ))
P1{γ∗ ∈ [u, u + δu)}

δu
E1(A |γ∗ ∈ [u, u + δu)) ,

using the change of variables u = 1√
t
. Let η1 be the density on R+ of the

random variable γ∗ under the H-Brownian bridge of time duration one. As
for the one dimensional bridge (law of the maximum of the bridge), this
density decays exponentially fast at infinity. Thus, we can interchange the
limit and the integral to obtain :

µsle(A|γ∗ = 1) =
1

2

∫ ∞

0

η1(u)E1(A|γ∗ = u)du =
1

2
E(AH) .

Hence, the proof of the lemma will be concluded as soon as we establish

E(AH) = E(A).

There is a (almost sure) one to one correspondence between C-Brownian
bridges and H-Brownian bridges. The idea is to start the Brownian loop from
its lowest point. More precisely, if Bt, 0 ≤ t ≤ 1 is a Brownian bridge in C,
with probability one, there is a unique t̄ ∈ [0, 1] such that Im(Bt̄) ≤ Im(Bt),
for all t ∈ [0, 1]. We associate to the Brownian Bridge Bt the process (Zt)0≤t≤1

in H, defined by this simple space-time translation :

Zt =

{
Bt̄+t − Bt̄ , 0 ≤ t ≤ 1− t̄ ,
Bt̄+t−1 − Bt̄ , 1− t̄ ≤ t ≤ 1 .

(3.1)

Now, we have to identify the law of Zt with Pexc
1 ×Pbr

1 . The real and imaginary
parts of Bt are two independent one-dimensional Brownian bridges. The law
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of the random variable t̄ is independent of Re(Bt), so in the space-time change
3.1, Re(Zt) is still a one-dimensional bridge independent of the imaginary
part of Zt. Im(Zt) has the law of a one-dimensional Brownian bridge viewed
from its (almost sure) unique lowest point. By the Vervaat Theorem (see
[Ver79]), this gives the law of an Itô excursion renormalized to have time
one. Thus Zt has the law of an H-Brownian bridge of time one. Our space-
time transformation obviously preserves the area, hence E(AH) = E(A).

4 Computation of µsle(A|γ∗ = 1), and proof of

theorem 1.1

In this section we prove lemma 4.1, the proof provides a good example of the
use of standard techniques for SLE8/3. We have chosen to leave out some
algebraic details in order to allow the reader to focus on the main ideas.

Lemma 4.1.

µsle(A|γ∗ = 1) =
π

10
.

Note that theorem 1.1 follows immediately from this lemma and lemma 3.1.

Proof. Recall (2.3) :

µsle(A|γ∗ = 1) = lim
δ↓0

∫
A(γ)1{γ∗∈[1,1+δ)}dµsle

µsle{γ∗ ∈ [1, 1 + δ)} . (4.1)

By using the definition µsle = limε↓0
1
ε2 mε(P5/8) , we can rewrite 4.1 as :

lim
δ↓0

lim
ε↓0

Eε(A(γ)|γ∗ ∈ [1, 1 + δ)), (4.2)

where Eε is a more appealing notation for the expected value under the law
of mε(P5/8) (this law, in simpler words, is the law of a chordal SLE8/3 in H
from 0 to ε). Recall that A(γ) is the area of the bounded set in H enclosed
by the curve γ. A(γ) can be written as

∫
H

1{z inside}dA(z), where {z inside}
means that z is in the component bounded by γ. Thus (4.2) can be written
as :

lim
δ↓0

lim
ε↓0

Eε

(∫

(1+δ)D+

1{z inside}dA(z)|γ∗ ∈ [1, 1 + δ)

)
, (4.3)
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where D+ is D ∩H. Since everything is nicely bounded, we can interchange
the limits and the integral. This gives us :

µsle(A|γ∗ = 1) =

∫

D+

lim
δ↓0

lim
ε↓0

Pε{z inside |γ∗ ∈ [1, 1 + δ)} dA(z). (4.4)

Therefore, what remains to be done is to compute, for a fixed z, the
“probability" that this z is inside an “SLE8/3 loop" conditioned to have radius
exactly 1. So let us fix z0 in D+. Let Dε ( resp Dδ

ε) denote the image under
m−1

ε (z) = z/(ε− z) of the set {z ∈ H : |z| ≥ 1} (resp {z ∈ H : |z| ≥ 1 + δ}).

z0

m−1

ε

1 1 + δ

m−1

ε (z0)

0−1

Φε

0

Φε(m
−1

ε (z0))

0

Φδ
ε(m

−1

ε (z0))

ε0
Φδ

ε

We warn the reader that γ will denote two different kinds of curves in
H : a curve from 0 to ∞, or a curve from 0 to ε. Let Fε be the event
{γ[0,∞) ∩ Dε = ∅}, and, similarly, let F δ

ε be the analogous event for Dδ
ε .

Then,

Pε{z0 inside |γ∗ ∈ [1, 1+δ)} = P5/8{m−1
ε (z0) is to the right of γ |(Fε)

c∩F δ
ε } .

Recall that P5/8 is the law of a chordal SLE8/3 from 0 to∞ in H, henceforth,
we will simply call it P. In order to make the formulas more concise we will
denote the event {z is to the right of γ } by R(z). Then,

P{R(m−1
ε (z0))|(Fε)

c∩F δ
ε } =

P{R(m−1
ε (z0))|F δ

ε }P{F δ
ε } − P{R(m−1

ε (z0))|Fε}P{Fε}
P{F δ

ε } − P{Fε}
.

(4.5)
The reason for this last step is that now all the probabilities involved can be
computed using the restriction property for SLE8/3, and a simple formula,
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see lemma 4.2, for the probability that a point is to the right of an SLE8/3

path from 0 to ∞ in H. This requires (cf. section 2) to know the unique
conformal map Φε = ΦDε from H \Dε into H, with Φε(0) = 0, Φε(∞) = ∞
and Φ′ε(∞) = 1 (with a similar statement for Dδ

ε). Thus by restriction, the
law of the chordal SLE8/3 in H conditioned not to touch Dε is the inverse
image of the chordal SLE in H by Φε. This implies for the quantities we
need to compute :

P{R(m−1
ε (z0))|Fε} = P{R(m−1

ε (Φε(z0)))}
P{R(m−1

ε (z0))|F δ
ε } = P{R(m−1

ε (Φδ
ε(z0)))} .

Note that m−1
ε is a Möbius transformation, which maps∞ to −1. Therefore,

Dε and Dδ
ε are half disks whose centers are very close to -1. The fact that

they are not exactly centered at -1 is due to the lack of symmetry in the
problem : an SLE from 0 to ε in a half disk D+ centered in 0. Nevertheless,
for the computation of Φε(z) and Φδ

ε(z), we can think of Dε and Dδ
ε as two

half disks centered at -1 with radii respectively ε and (1− δ)ε. If we carried
out the computations with the actual disks (straightforward but tedious), we
would see that our approximation is of order O(ε2+ε2δ2/|z+1|+ε4/|z+1|2),
when z goes to -1. In this way, we have

Φε(z) = z − ε2 +
ε2

z + 1
+ O(ε2 +

ε4

|z + 1|2 )

Φδ
ε(z) = z − ε2(1− δ)2 +

ε2(1− δ)2

z + 1
+ O(ε2 +

ε2δ2

|z + 1| +
ε4

|z + 1|2 ) .

We now have to evaluate these functions at the point m−1
ε (z0) = z0/(ε−z0) =

−1 − ε
z0

+ O(ε2) (recall z0 is fixed). The approximations O(ε4/|z + 1|2)
and O(ε2δ2/|z + 1|) at the point m−1

ε (z0) are of order O(ε2) and O(εδ2),
respectively; this gives us :

Φδ
ε(m

−1
ε (z0)) = −1− ε

z0

+
ε2(1− δ)2

−ε/z0 + O(ε2)
+ O(εδ2 + ε2)

= −1− ε(z0 +
1

z0

) + 2εδz0 + O(εδ2 + ε2) .

Using the Taylor series for the logarithm, and then taking the imaginary
part, we see that

arg
(
Φδ

ε(m
−1
ε (z0))

)
= π + εIm(z0 +

1

z0
)− 2εδIm(z0) + O(εδ2 + ε2).
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Now, using lemma 4.2, and the Taylor series for cosine we see that

P{R(Φδ
ε(m

−1
ε (z0)))} =

ε2

4

[(
Im(z0 +

1

z0

)

)2

− 4δIm(z0 +
1

z0

)Im(z0)

]
+O(ε2δ2+ε3).

(4.6)
In particular, if we set δ = 0 we obtain,

P{R(Φε(m
−1
ε (z0)))} =

ε2

4

(
Im(z0 +

1

z0
)

)2

+ O(ε3). (4.7)

Also, by (2.1), we have (our approximation doesn’t change significantly the
derivative at 0 which is far away from small disks centered at -1) :

P{F δ
ε } = P5/8{γ[0,∞) ∩Dδ

ε = ∅} = (Φδ
ε)
′(0)5/8

= (1− ε2(1− 2δ + O(δ2)))5/8 + O(ε3)

= 1− 5

8
ε2 +

5

4
ε2δ + O(ε2δ2 + ε3)

Similarly, P{Fε} = 1− 5/8ε2 + O(ε3), which gives

P{F δ
ε } − P{Fε} =

5

4
ε2δ + O(ε2δ2 + ε3) . (4.8)

Hence, by combining this last expression, 4.5, 4.6, 4.7 and using the fact
that both P{Fε} and P{F δ

ε } are 1 + O(ε2), we obtain :

lim
δ↓0

lim
ε↓0

Pε{z0 inside |{γ∗ ∈ [1, 1 + δ)}}

= lim
δ↓0

lim
ε↓0

ε2

4
(−4δIm(z0 + 1

z0
)Im(z0)) + ε2O(δ2) + O(ε3)

5
4
ε2δ + O(ε2δ2 + ε3)

= −4

5
Im(z0 +

1

z0
)Im(z0).

Therefore, by (4.4), and using polar coordinates to evaluate the integral,
we get :

µsle(A|γ∗ = 1) =

∫

D+

−4

5
Im(z +

1

z
)Im(z)dA(z)

=
π

10
.

This concludes the proof of the lemma.
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Below we state a result that we have used extensively in our proof; for
the reader’s sake we will sketch a proof. This lemma gives an equivalent
expression to the one given by Schramm, in [Sch01].

Lemma 4.2. Let γ be chordal SLEκ in H with κ ≤ 4, and let z = reiθ be
a point in H. If we let f(z) = P{z is to the right of γ[0,∞)}, then f , which
by scaling depends only on θ, is given by

f(θ) =
1

∫ π

0
(sin u)

2(4−κ)
κ du

∫ π

θ

(sin u)
2(4−κ)

κ du.

In particular, for κ = 8
3

:

P{z is to the right of γ[0,∞)} = 1/2 + 1/2 cos(θ).

Proof. (sketch)
As already mentioned, by scale invariance of SLE, the probability that a

point z = reiθ is to the right of the curve only depends on the angle θ. Thus,
this probability is a certain function f of the angle θ. SLE curves satisfy also
a conformal-type Markov property. Thus, if Xt is the unique conformal map
from H\γ(0, t] onto H satisfying Xt(∞) =∞ , X ′t(∞) = 1 and Xt(γ(t)) = 0,
we get :

P(z is on the right |Ft) = P(Xt(z) is on the right) = f(θt) ,

where θt is the continuous argument of Xt(z). This shows that f(θt)t≥0 is a
martingale in (0, 1). Using that Xt(z) = gt(z) −√κdBt, where gt is defined
by :

∂tgt(z) =
2

gt(z)−√κBt
, g0(z) = z z in H,

we have

dXt = dgt(z)−√κdBt =
2

Xt

dt−√κdBt ,

d logXt =
2

X2
t

dt−
√

κ

Xt
dBt −

κ

2X2
t

dt =
(4− κ)

2X2
t

dt−
√

κ

Xt
dBt ,

and by taking the imaginary part :

dθt =
κ− 4

2|Xt|2
sin(2θt)dt +

√
κ

|Xt|
sin(θt)dBt .
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Now suppose f is a C2 function, and apply Itô’s formula to f(θt). We want
this process to be a martingale, so the dt term in the expression for df(θt) has
to be 0. This gives a simple second order deterministic differential equation.
Moreover we have the boundary conditions f(0) = 1 and f(π) = 0. There is
a unique solution, given in the lemma, which indeed is C2.

Remark : We would like to point out that the 1/5 in the final result,
comes from the 8/5 in the restriction formula 2.1.

5 Decomposition of the expected area of the

Brownian loop into the expected areas of the

regions with fixed winding number

Let z ∈ C \ {0} be fixed, and (Bt)0≤t≤1 a Brownian loop in C starting at 0.
Almost surely z 6∈ {Bs : 0 ≤ s ≤ 1}, and therefore we can define its index
nz. More precisely, ∀s ∈ [0, 1], Bs − z = Rz

s exp(iθz
s), where Rz

s = |Bs − z|
and θz

s is any continuous representative of the argument. The index nz is

by definition
θz
1−θz

0

2π
; this is the number of times that the Brownian particle

winds around z. For each n ∈ Z, n 6= 0, let Wn denote the area of the open
set of points of index nz = n. This random variable can be written as :

Wn =

∫

C

1{nz=n}dA(z) .

Let W0 be the area of the open set of points inside the loop that have index
zero :

W0 =

∫

C

1{nz=0}∩{z is inside}dA(z) .

Since the Brownian curve is of Lebesgue measure zero, we have the fol-
lowing decomposition of the area A inside the Brownian loop (basically, the
Brownian path does not take much place inside its hull)

A =
∑

n∈Z

Wn

Hence :

E(A) =
π

5
=
∑

n∈Z

E(Wn).
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Figure 5.1: Different indices in a random walk of 50000 steps, black areas
correspond to index 0.

Using results of Yor [Yor80], it will be straightforward to compute E(Wn)
for n 6= 0. And, hence, by subtracting from π/5, one can obtain the value of
E(W0).

Theorem 5.1.

E(Wn) =

{
π
30

n = 0 ,
1

2πn2 n 6= 0, n ∈ Z .
(5.1)

Remark : This result is consistent with the asymptotic result obtained
by Werner in [Wer94], about the area At

n of the set of points around which
the planar Brownian motion (not the loop) winds around n times on [0, t].
It is indeed proved that At

n is equivalent (in the L2-sense) to t
2πn2 as n goes

to infinity. Very roughly the area of the n-sector for large n comes from local
contributions along the path, hence the global picture of the hull is not rele-
vant; that is why, both Brownian motion and Brownian bridge should have
the same asymptotics. Werner’s proof requires to compute the asymptotics
of the first and second moments. This present paper gives exact computa-



100 CHAPTER III. AREA OF THE BROWNIAN LOOP

tions for the first moments in the case of the loop, but it does not provide
any information about the second moments.

Proof. We start by computing E(Wn) for n 6= 0. For this purpose we use
theorem 5.2, which was proved by Yor [Yor80]. Thus, for each n 6= 0, using
polar coordinates :

E(Wn) =

∫

C

P(nz = n)dA(z)

= 2π

∫ ∞

0

rdre−r2

[∫ ∞

0

dte−r2 cosh(t)

(
2n− 1

t2 + (2n− 1)2π2
− 2n + 1

t2 + (2n + 1)2π2

)]

= 2π

∫ ∞

0

dt

(
2n− 1

t2 + (2n− 1)2π2
− 2n + 1

t2 + (2n + 1)2π2

)∫ ∞

0

re−r2(1+cosh(t))dr

= π

∫ ∞

0

dt

1 + cosh(t)

(
2n− 1

t2 + (2n− 1)2π2
− 2n + 1

t2 + (2n + 1)2π2

)

=
1

2πn2
.

We sketch one possible way to see how to obtain the last line in the above
chain of equalities.

It is slightly more convenient to generalize a bit, so thinking of 2n as x
and using the symmetry of the integrand, we consider the function

F (x) =

∫ ∞

−∞

dt

1 + cosh(t)

(
x− 1

t2 + (x− 1)2π2
− x + 1

t2 + (x + 1)2π2

)
.

In this new notation what we want to prove is that F (x) = 4
π2x2 (for x ≥ |2|).

Since, F is symmetric about 0, it is enough to study the case of x positive;
furthermore, since F is real analytic on {x : x > 1}, we can allow ourselves
to assume that x is not an integer. Now, for x > 1 and x not an integer, a
simple residue computation with appropriate contours yields

F (x) = − 8

π2

∞∑

k=1

(
(2k − 1)(x− 1)

((x− 1)2 − (2k − 1)2)2
− (2k − 1)(x + 1)

((x + 1)2 − (2k − 1)2)2

)
.

In order to evaluate this sum, it is enough to notice that using partial fractions
one can obtain

∞∑

k=1

(2k − 1)w

(w2 − (2k − 1)2)2
= − 1

16

∞∑

k=0

(
1

(k + w/2 + 1/2)2
− 1

(k − w/2 + 1/2)2

)
,
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and substituting x− 1 and x + 1 for w, and noticing the telescoping cancel-
lations one readily obtains

F (x) =
4

π2x2
,

hence, E(Wn) = 1
2πn2 .

Finally, using the fact that
∑∞

n=1
1
n2 = π2

6
, and the fact that the area of

the Brownian loop is π/5 we conclude E(W0) = π
30

. This finishes the proof
of the theorem.

Theorem 5.2. Fix z = reiθ, with r 6= 0. Under the law of a Brownian loop
of time duration one, starting at 0, we have the following probabilities :

P(nz = n) = e−r2

[Ψr((2n− 1)π)−Ψr((2n + 1)π)] if n ∈ Z \ 0 , (5.2)

P(nz = 0) = 1 + e−r2

[Ψr(−π)−Ψr(π)] , (5.3)

where ∀x 6= 0,

Ψr(x) =
x

π

∫ ∞

0

e−r2 cosh(t) dt

t2 + x2
.





Chapter IV

Continuity of the SLE trace in
simply connected domains

Joint work with Steffen Rohde and Oded Schramm.

We prove that the SLEκ trace in any simply connected domain G is
continuous (except possibly near its endpoints) if κ < 8. We also prove an
SLE analog of Makarov’s Theorem about the support of harmonic measure.

103
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1 Introduction

The stochastic Loewner evolution (SLE) describes a collection of random
curves that are related to scaling limits of two-dimensional statistical physics
systems. In [RS05, Theorem 5.1] it was shown that the chordal SLE trace in
the upper half plane H is a well defined continuous path. For other simply
connected domains G $ C, the SLE in G is defined via a conformal homeo-
morphism f : H→ G. The situation with radial SLE is similar, except that
the “standard” domain is the unit disk D. Our first theorem extends this
continuity result, as follows.

Theorem 1.1. Let G $ C be a simply connected domain, let a, b be two
prime ends of G, let z0 ∈ G, and let κ ∈ [0, 8). Then the chordal SLEκ

trace in G from a to b and the radial SLEκ trace in G from a to z0 are a.s.
continuous in (0,∞).

Besides the intrinsic interest in this result, it is also useful in the general
theory of SLE and the related scaling limits. For example, the construction of
the conformal loop ensembles in [She06, Section 4.1] would have been simpler
if this theorem was available.

If the boundary ∂G is a smooth curve (more generally, if it is locally
connected), then the conformal map f to G extends continuously to the
closure of H (respectively D), and the continuity of the trace f ◦ γ follows at
once from the continuity of the trace γ. But if ∂G contains boundary points
at which it looks like the topologist’s sine curve, then f is not continuous at
the corresponding points, and the continuity of f◦γ is no longer obvious when
κ > 4. In fact, this non-continuity could happen at every boundary point:
there are simply connected domains G for which the limit set f(z) := {w :
∃(zk → z), lim f(zk) = w} equals ∂G, for all z ∈ ∂D [Kue74]! On the other
hand, for every conformal map f : D → C, the radial limit limr→1f(reit)
exists for a.e. t ∈ [0, 2π]. A celebrated theorem of Makarov asserts that
there is a set A ⊂ ∂D of full measure such that the set of radial limits
f(A) has Hausdorff dimension 1 (even sigma-finite length). Equivalently, for
every simply connected domain G $ C there is a set B ⊂ ∂G of Hausdorff
dimension 1 such that a Brownian motion started inside G will a.s. exit
G through B. However, under a mild assumption on the geometry of G
(precisely, if G is a John domain), reflected Brownian motion in G intersects
the boundary in a set of full dimension [BCR04]. In particular, there is no
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nontrivial upper bound on the dimension of the trace of reflected Brownian
motion on ∂G. The situation is different for SLE:

C

∂G

Figure 1.1: A schematic view of a percolation cluster C (or an SLE6 hull)
inside a fractal domain G; the blue curve represents the exterior boundary
of the cluster.

Theorem 1.2. Let G $ C be a simply connected domain, let a, b be two
prime ends of G, let z0 ∈ G, and let κ ∈ (4, 8). Then there is a Borel set
(actually a Fσ set) B ⊂ ∂G such that the chordal SLEκ trace in G from a to
b and the radial SLEκ trace in G from a to z0 almost surely satisfy

γ(0,∞) ∩ ∂G ⊂ B,

and
dim B ≤ d(κ) < 2 ,

where d(κ) is a constant that depends only on κ.

In the case κ = 6, this theorem can be thought of as a Makarov theorem
for percolation. Indeed, instead of starting a Brownian motion at z0 inside
G, think of “sending” a critical percolation cluster from z0 in the following
way: already at the scaling limit, condition z0 to be connected via some
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open cluster to the boundary ∂G (though this is an event of probability 0,
it is possible to make sense of this conditioning; see [Kes86]). Theorem 1.2
then implies that there is a subset B ⊂ ∂G of dimension d ≤ d(6) < 2
which almost surely “absorbs” all the points on ∂G which are connected to
z0 within G. See figure 1.1 for an illustration of this. Of course one cannot
hope to find such a set B of dimension one, as in Makarov’s theorem, since
the percolation cluster is much “thicker” than the Brownian path stopped on
the boundary. Following this intuition, we will also show that the smallest
bound d(κ) necessarily satisfies d(κ) > 1 for all κ ∈ (4, 8).

The case κ = 4 should nearly correspond to the setting of Makarov’s
theorem (for instance if one considers chordal SLE4 in the disc with a random
initial point). Therefore we expect that for κ close to 4, d(κ) should be close
to one. We indeed prove the following estimates on d(κ):

Proposition 1.3. There are absolute constants C1, C2 > 0 such that for any
κ ∈ (4, 8),

d(κ) ≤
(
2− C1(8− κ)

)
∧
(
1 + C2

√
κ− 4

)
. (1.1)

Finally, in Section 4 we will relate the integral means spectrum of a con-
formal map to the dimension of the SLE trace on the boundary of a domain,
and show existence of nice Jordan curves such that two independent SLEκ,
run in the two complimentary domains of the curve, are almost surely dis-
joint.

Acknowledgments. We wish to thank Jeff Steif for pointing out an error
in the statement of Theorem 1.2.

2 Uniform Continuity

For sets A ⊂ C, denote

Hp(A) = inf
{∑

rp
i : A ⊂

⋃

i

B(xi, ri)
}
,

which is called the p-dimensional Hausdorff content of A, where the infimum
is over all covers of A by discs with positive radius. The following is an
adaptation of [KR97, Proposition 3.3].
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Lemma 2.1. Let G $ C be a simply connected domain and f : D → G a
conformal homeomorphism. For every 0 < p < 1 and ǫ > 0 there is D ⊂ D
and C > 0 such that

Hp(D \D) < ǫ

and
|f(z)− f(z′)| ≤ C |z − z′|p/2 (2.1)

for all z, z′ ∈ D.

For our present application, the case where p is small is the most relevant.
The proof shows that we can choose the centers of the discs to lie on the unit
circle.

Proof. We first assume that G is bounded. Consider the collection Q of
dyadic “squares”

Q = Qn,k =
{
reit : 1− 2−n ≤ r < 1,

k

2n
≤ t

2π
≤ k + 1

2n

}
,

where n ≥ 1 and k = 0, 1, 2, ..., 2n− 1. Denote by ℓ(Q) := 2−n, the size of Q,
and T (Q) := {z ∈ Q : 1− 2−n ≤ r ≤ 1− 2−(n+1)}, the “inner half” of Q. Fix
N > 1, to be determined later, and let L be the collection of those Q ∈ Q
for which

ℓ(Q) ≤ 2−N

and ∫

T (Q)

|f ′|2 > ℓ(Q)p.

Set

D = D \
⋃

Q∈L
Q .

We claim that

∀z∈D |f ′(z)| ≤ C
1

(1− |z|)1−p/2
(2.2)

with C depending on N and p only. Indeed, let z ∈ D. If |z| < 1− 2−N , we
get (2.2) simply by choosing C large enough. Else, suppose that |z| ≥ 1−2−N .
Let Q be such that z ∈ T (Q) and notice that Q /∈ L. Hence

∫
T (Q)
|f ′|2 ≤

ℓ(Q)p. By the Koebe distortion theorem [Pom92], |f ′| is essentially constant
in T (Q) and (2.2) follows.
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We now claim that f satisfies (2.1) for z, z′ ∈ D, with possibly a different
constant C. Consider any z, z′ ∈ D. First, suppose that z = s z′, where
s > 1. Note that the interval [z, z′] is contained in D. Then we may integrate
the estimate (2.2) over [z, z′] to obtain (2.1). Next, suppose that z = r eiθ1

and z′ = r eiθ2 , where |θ1 − θ2|/(2 π) ≤ 1 − r. In that case, the path r eiθ,
θ ∈ [θ1, θ2], is contained in the union of some Q ∈ Q satisfying z ∈ T (Q) and
a possibly different Q′ ∈ Q satisfying z′ ∈ T (Q′). Therefore, this path is in
D, and we get (2.1) in the same way. In general, suppose that z = r1 eiθ1 and
z′ = r2 eiθ2 with |θ1− θ2| ≤ π. Then take ρ := min{r1, r2, 1−|θ1− θ2|/(2 π)}.
We then use the above cases and |f(z)−f(z′)| ≤ |f(z)−f(ρ eiθ1)|+|f(ρ eiθ1)−
f(ρ eiθ2)|+ |f(ρ eiθ2)− f(z′)|, to obtain (2.1).

To estimate the p-content of D \ D, just notice that the interiors of the
sets T (Q), Q ∈ Q, are disjoint and

∑

Q∈L
ℓ(Q)p ≤

∑

Q∈L

∫

T (Q)

|f ′|2 ≤ area{f(z) : 1− 2−N < |z| < 1} ,

which can be made arbitrarily small by choosing N large. This completes
the proof in the case where G is bounded.

The case of unbounded G requires a few minor adaptations. Set

φ(z) :=
∣∣∣

f ′(z)

max
{
|f(z)| log |f(z)|, 1

}
∣∣∣
2

,

and redefine L to be the set of Q ∈ Q such that ℓ(Q) ≤ 2−N and
∫

T (Q)
φ >

ℓ(Q)p. Note that a simple change of variables gives
∫

D

φ =

∫

G

max{|z| log |z|, 1}−2 <∞

and so we get
∑

Q∈L ℓ(Q)p < ǫ by taking N sufficiently large, as above.
The Koebe distortion theorem implies that φ is essentially constant in T (Q).
Therefore, we get

∀z∈D

∣∣∣
f ′(z)

max
{
|f(z)| log |f(z)|, 1

}
∣∣∣ ≤ C

(
1− |z|

)−1+p/2
. (2.3)

Set

g(z) :=

∫ |z|

0

ds

max{s log s, 1} .
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Then d
dr

g
(
f(r eiθ)

)
is bounded by the left hand side of (2.3) with z = r eiθ.

Therefore, since D is star-shaped about 0, we have for z ∈ D,

g ◦ f(z) ≤ g ◦ f(0) + C

∫ 1

0

(
1− r

)−1+p/2
dr <∞ .

Thus g ◦ f is bounded on D. Since limz→∞ g(z) = ∞, it follows that f is
bounded on D. Thus (2.3) implies (2.2) with possibly a different constant.
This gives (2.1), as before.

3 Remaining proofs

Proof of Theorems 1.1 and 1.2. Let γ be the chordal SLEκ trace in D
from 1 to −1, and denote by f a conformal map from D to G sending 1 and
−1 to a and b. If κ ≤ 4, then γ is continuous on (0,∞) and γ(0,∞) ⊂ D
almost surely [RS05, Theorems 5.1 and 6.1]. The continuity of f ◦ γ follows
at once. Now let 4 < κ < 8, let δ, ǫ > 0 and δ < |t| < π − δ. We have

P
[
γ(0,∞) ∩B(eit, r) 6= ∅

]
≤ C r

8
κ
−1 (3.1)

for some constant C = C(κ, δ) and for all r < δ/2; see, e.g., [SZ07, Propo-
sition 2.3] or [AK08, Theorem 3.2]. Let p = 8

κ
− 1 and let D be as in

Lemma 2.1. It follows from that lemma that there are discs B(xi, ri) with
D \ D ⊂ ⋃i B(xi, ri) and

∑
rp
i < ǫ, and we may and will assume xi ∈ ∂D.

From (3.1) we obtain

P
[(

γ(0,∞) \ (B(1, 2 δ) ∪B(−1, 2 δ))
)
∩
⋃

i

B(xi, ri)) 6= ∅
]
≤ Cǫ.

Since f is continuous on D, it follows that with probability at least 1 − Cǫ
f ◦ γ is continuous at every t such that γ(t) /∈ B(1, 2 δ) ∪ B(−1, 2 δ). Now
Theorem 1.1 in the chordal case follows by first letting ǫ → 0, then letting
δ → 0, and using the transience of γ [RS05, Theorem 7.1]. The radial case
is similar.

To prove Theorem 1.2, consider the domain

Dǫ = D \
⋃

i

T (xi, ri),
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where xi and ri are as above and T (x, r) is the triangular region bounded by
the circular arc B(x, 2 r)∩∂D and the two line segments joining the endpoints
of the arc with the point (1 − 2 r) x. (Alternatively, let Dǫ be the domain
Dǫ = D \ ⋃Q∈LQ from Lemma 2.1.) Then Dǫ is a John domain (meaning
that Dǫ is bounded and there is a number M > 1 such that every Jordan
arc γ ⊂ Dǫ with endpoints on ∂Dǫ decomposes Dǫ into two subdomains at
least one of which has diameter ≤ M diam γ) with uniformly bounded John
constant M . Therefore, any conformal map ϕ : D→ Dǫ is Hölder continuous
with some universal exponent α = α(M) > 0; see [Pom92], Chapter 5.2, or
[GM05], Chapter 7. Thus (2.1) implies

|f ◦ ϕ(z)− f ◦ ϕ(z′)| ≤ C |z − z′|αp/2

for all z, z′ ∈ D, with a constant C depending on ǫ, but with exponent αp/2
depending on κ only.

If α p/2 happened to be greater than 1/2, then the result would follow
from the trivial estimate for the change of Hausdorff dimension by the recip-
rocal of the Hölder exponent. Since it is not the case (recall p = 8/κ−1), we
need to use some more advanced results. Here is a Theorem by Jones and
Makarov (Theorem C.2 in [JM95], see Corollary 3.2 in [KR97] for a different
proof of this Theorem).

Theorem 3.1 (Jones-Makarov). Let η ∈ (0, 1) and let Ω be some Hölder
domain with exponent η (i.e., Ω is a Jordan domain so that any conformal
mapping f : D→ Ω is η-Hölder in the disk). Then

dim ∂Ω ≤ 2− c η ,

where c > 0 is an absolute constant.

Applied to our setting, this theorem implies that

dim ∂f(Dǫ) = dim ∂
(
f ◦ ϕ(D)

)
≤ 2− cαp/2.

Above, we have seen that for every 0 < t < T < ∞ we almost surely have
γ[t, T ] ⊂ Dǫ for some ǫ > 0, and therefore

f
(
γ(0,∞) ∩ ∂D

)
⊂
⋃

n

∂f(D1/n).
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Setting B = ∂G ∩ ⋃n ∂f(D1/n), Theorem 1.2 follows at once with d(κ) =
2−cαp/2. Notice here that B is indeed a Fσ set since by (2.1), f is uniformly
continuous on D1/n.

Notice that α can be chosen independently of κ, therefore there is a
constant C1 > 0 such that

d(κ) ≤ 2− C1 (8− κ) , (3.2)

which proves part of Proposition 1.3.

In order to show that we cannot choose d(κ) ≤ 1 in general, fix κ ∈ (4, 8)
and choose α ∈ ( 8

κ
− 1, 1). Then there is a simply connected domain G

whose boundary has dimension greater than 1 and such that any conformal
map f from D onto G is Hölder continuous with exponent α. In fact, any
sufficiently “flat” snowflake curve, or the bounded Fatou component of the
quadratic polynomial z2 + λz with 0 < |λ| < (1−√α)/(1 +

√
α) will do, see

[AIM], Chapter 13.3. If B ⊂ ∂G is a Borel set which almost surely contains
the intersection γ(0,∞) ∩ ∂G of the chordal SLEκ trace γ from a to b with
the boundary of the domain, then almost surely the chordal SLEκ in D does
not intersect L = ∂D \ f−1(B). We claim that L has to be of Hausdorff
dimension at most a := 8

κ
− 1. We briefly sketch the proof, which is based

on estimates and arguments from [SZ07]. Consider the chordal SLEκ path
from 0 to ∞ in the upper half plane. Let L′ ⊂ [1, 2] be Borel-measurable
and have Hausdorff dimension larger than a. By Theorem 8.8 in [?], there
exists a Frostman measure µ supported on a compact subset A of L′ whose
a-energy is finite; namely, µ is supported on A ⊂ L′, µ(A) > 0, and

∫∫

A×A

dµ(x)dµ(y)

|x− y|a <∞ .

(See [?, Section 8] for background on Frostman measures.) Let Cǫ be defined
as in [SZ07, Section 2]. We now apply a second moment argument to the
random variable µ(Cǫ). By Propositions 2.3 and 2.4 in [SZ07] we have for
1 ≤ x < y ≤ 2 and ǫ < 1 that P

[
x ∈ Cǫ

]
is comparable to ǫa and P

[
x, y ∈

Cǫ

]
≤ C ǫ2a (y − x)−a. Hence,

E
[
µ(Cǫ)

]
=

∫

[1,2]

P
[
x ∈ Cǫ

]
dµ(x)



112 CHAPTER IV. ANALOG OF MAKAROV THEOREM FOR SLE

is of order ǫa and

E
[
µ(Cǫ)

2
]

=

∫∫

[1,2]2
P
[
x, y ∈ Cǫ] dµ(x) dµ(y)

≤ C ǫ2a

∫∫

[1,2]2
|x− y|−a dµ(x) dµ(y) .

By the choice of µ, the latter is bounded by a constant times ǫ2a. Thus,

E
[
µ(Cǫ)

2
]
≤ C E

[
µ(Cǫ)

]2
. The standard second moment argument (i.e.,

Cauchy Schwarz) therefore implies that P[µ(Cǫ) > 0] is bounded away from
0 independently of ǫ. Thus, with positive probability µ(Cǫ) > 0 for every
ǫ > 0. But since the support of µ is compact and contained in L′, this implies
that the SLE path hits L′ with positive probability, which clearly implies our
claim that the Hausdorff dimension of L = ∂D \ f−1(B) is at most a.

As dim L ≤ a and f is α-Hölder, it follows that dim f(L) ≤ a/α < 1.
Since B = ∂G \ f(L), it follows that dim B = dim ∂G > 1, as required.

Proof of Proposition 1.3. We already noticed one part of the inequality
in (3.2). It remains to bound d(κ) when κ is close to 4. We will follow the
same plan of proof, but instead of using the quantities

∫
Q
|f ′|2 we will refine

Lemma 2.1 by using
∫

Q
|f ′|t for some well chosen t = t(κ) close to zero. What

allowed us to conclude the proof of Lemma 2.1 was the fact that for bounded
domains,

∫
D
|f ′|2 < ∞. Here we will use instead the known bounds on the

Integral means spectrum of univalent functions (in particular, we do not need
to assume G bounded in this proof).

Let us briefly recall some facts about the Integral Means Spectrum (see
[Pom92]). Let f be an univalent function in the unit disc D. For any t ∈ R,
let

βf(t) := inf
{
β ∈ R : lim

r→1
(1− r)β

∫

|z|=r

|f ′(z)|t |dz| = 0
}
.

The universal integral means spectrum B(t) of univalent functions is defined
as

B(t) = sup
f

βf(t),

where the supremum is over all univalent functions (often one restricts the
supremum to bounded univalent functions, resulting in a slightly different
spectrum). Much is known about this spectrum, see [Pom92] and references
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therein. We will use the following upper bound on the spectrum ([Pom92],
Theorem 8.5):

B(t) < 4t2 for all t ∈ R \ {0} .

We prove the following Lemma (which is a refinement of Lemma 2.1 for
p close to 1), from which Proposition 1.3 will easily follow.

Lemma 3.2. Let G $ C be a simply connected domain and f : D → G a
conformal homeomorphism. For every 0 < p < 1, and ǫ > 0 there is D ⊂ D
and C > 0 such that

Hp(D \D) < ǫ,

and
|f(z)− f(z′)| ≤ C|z − z′|1−6

√
1−p, (3.3)

for all z, z′ ∈ D.

Proof. Notice that the lemma is relevant only when p is close enough to 1.
As in the proof of Lemma 2.1, we consider the collection Q of dyadic squares.
For each Q ∈ Q, denote by L(Q) the inner “segment” {z ∈ Q : |z| = 1−2−n}.
Fix the parameters N > 1, t > 0 and 0 < δ < p, to be determined later, and
let L be the collection of squares Q ∈ Q for which

l(Q) ≤ 2−N

and ∫

L(Q)

|f ′|t > l(Q)p−δ.

Set as before
D = D \

⋃

Q∈L
Q .

Using the integral means spectrum, one can easily estimate the Hausdorff
p-content of D \D. Indeed,

Hp(D \D) ≤
∑

Q∈L
l(Q)p ≤

∑

Q∈L
l(Q)δ

∫

L(Q)

|f ′|t

≤
∑

n≥N

2−nδ

∫

|z|=1−2−n

|f ′|t

≤
∑

n≥N

C 2−n(δ−4t2),
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since βf(t) ≤ B(t) < 4t2, where C > 0 may depend on f . Therefore one
needs to choose δ > 4t2; let δ := 5t2. By taking N large enough, we get
Hp(D \D) ≤ ǫ.

As in Lemma 2.1, to conclude the proof, it is enough to check that there
is some C = C(f, N, p) such that for all z ∈ D,

|f ′(z)| ≤ C
1

(1− |z|)6
√

1−p
. (3.4)

Let z ∈ D, |z| ≥ 1 − 2−N (for |z| < 1 − 2−N , we choose C large enough
so that (3.4) is satisfied). Let Q be such that z ∈ T (Q) and notice that
Q /∈ L. Therefore

∫
L(Q)
|f ′|t ≤ l(Q)p−5t2 . By Koebe’s distortion theorem, |f ′|

fluctuates by at most a multiplicative constant with is essentially constant
within T (Q), and hence

|f ′(z)| ≤ O(1)
( 1

1− |z|
) 1−p+5t2

t

.

By choosing our last parameter t :=
√

1− p, this leads to (3.4).
Now, following Lemma 2.1, i.e., integrating along appropriate arcs, this

proves Lemma 3.2.

Proposition 1.3 follows from Lemma 3.2 with p = 8/κ−1 in the following
way: a.s. the SLEκ trace remains in D = Dǫ for some ǫ small enough. More-
over the map f from Dǫ to f(Dǫ) is η-Hölder with η = 1− 6

√
1− p. Hence,

by the obvious bound (here we do not need the above Theorem of Jones and
Makarov),

dim ∂f(Dǫ) ≤
1

η
dim ∂Dǫ =

1

1− 6
√

1− p
≤ 1 + C2

√
κ− 4

(p = 8/κ− 1), which together with (3.2) implies Proposition 1.3.

4 Related results

In [SZ07, AS08], it is proved that for κ ∈ (4, 8], the chordal SLEκ in H a.s.
satisfies dim(SLEκ ∩ R) = 2− 8/κ (the same holds of course for radial SLE
in the unit disc D). What happens in the case of a general simply connected
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G
G

c

Figure 4.1: For some domains G, (at the continuum limit) percolation clus-
ters inside G are “invisible” to percolation clusters inside Gc.

domain G? That is, what is the Hausdorff dimension of SLEκ ∩ ∂G ? By
Theorem 1.2 we know that it is ≤ d(κ) < 2. If G is a John domain, we can
generally do much better. Notice that if one takes κ = 8, then SLEκ is space
filling and thus SLEκ∩∂G = ∂G. If G is a John domain, it is known ([Pom92],
Theorem 10.17) that the dimension d of the boundary is the unique solution
to the equation βf(d) = d− 1, where f is a conformal map from D to G and
βf (d) is the integral means spectrum of f . We will now sketch a proof that
for general κ ∈ (4, 8] and John domains G, the dimension of SLEκ ∩ ∂G is
bounded from above by the solution d of the equation βf (d) = d− (2− 8/κ).
Fix κ ∈ (4, 8), and t > 0 such that βf(t) < t − (2 − 8/κ). Let γ be a
chordal SLEκ from −1 to 1 in D. We are interested in dim f(γ(0,∞))∩ ∂G.
Since we assumed G to be a John domain, there is a constant C such that
C ·f(T (Q)) ⊃ f(Q) for each dyadic square Q ∈ Q. Cover f(γ(0,∞))∩∂G by⋃

C · f(T (Q)), where the union is over those Q ∈ Q for which γ ∩ 2 ·Q 6= ∅
and l(Q) ≤ 2−N with N large enough. By (3.1), the expected Hausdorff
t-content of f(γ(0,∞)) ∩ ∂G is thus bounded by

∑

n≥N

∑

l(Q)=2−n

O(1)(2−n|f ′(zQ)|)t(2−n)8/κ−1 =
∑

n≥N

O(1)2−n(t−2+8/κ)

∫

|z|=1−2−n

|f ′|t,
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where zQ is any point in T (Q). This sum converges since βf (t) < t−(2−8/κ);
so by letting N going to∞, the expected Hausdorff t-content of f(γ(0,∞))∩
∂G is equal to zero, and the result follows.

If κ > 16/3, then dim(SLEκ ∩ R) = 2 − 8/κ > 1/2 and hence two
independent SLEκ, one in the upper half plane and one in the lower, will
intersect a.s. This is not true any more for general Jordan domains: For
each κ ∈ (4, 8), there exists a John domain (actually a quasidisc) G = G(κ)
and a set E ⊂ ∂G such that if γ1 and γ2 are respectively SLEκ curves driven
inside and outside G, then a.s. γ1(0,∞)∩∂G ⊂ E while γ2(0,∞)∩∂G ⊂ Ec.
Indeed, given κ ∈ (4, 8) and choosing 0 < ε < 8/κ − 1, by [Tha06] and
[Roh91] there is a quasidisc G and a subset A ⊂ ∂D with dim A < ε and
dim ∂D \ f−1

c (f(A)) < ε, where f and fc are conformal maps from D to G
and Gc. It follows that SLEκ in D will a.s. be disjoint from both A and
∂D \ f−1

c (f(A)), and the claim follows with E = f(∂D \ A). This can be
viewed as an SLE analog of the Theorem by Bishop, Carleson, Garnett and
Jones about harmonic measure (see [BCGJ89, Roh91]). Figure 4.1 is an
illustration of this property in the case of percolation clusters.



Chapter V

Fourier Spectrum of Critical
Percolation

Joint work with Gábor Pete and Oded Schramm.

Consider the indicator function f of a two-dimensional percolation cross-
ing event. In this paper, the Fourier transform of f is studied and sharp
bounds are obtained for its lower tail in several situations. Various appli-
cations of these bounds are derived. In particular, we show that the set
of exceptional times of dynamical critical site percolation on the triangular
grid in which the origin percolates has dimension 31/36 a.s., and the corre-
sponding dimension in the half-plane is 5/9. It is also proved that critical
bond percolation on the square grid has exceptional times a.s. Also, the
asymptotics of the number of sites that need to be resampled in order to
significantly perturb the global percolation configuration in a large square is
determined.
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1 Introduction

1.1 Some general background

The Fourier expansion of functions on Rd is an indispensable tool with nu-
merous applications. Likewise, the harmonic analysis of functions defined
on the discrete cube {−1, 1}d has found a host of applications; see the sur-
vey [KS06]. Yet the Fourier expansion of some functions of interest is rather
poorly understood. Here, we study the harmonic analysis of functions aris-
ing from planar percolation and answer most if not all of the previously
posed problems regarding their Fourier expansion. We also derive some ap-
plications to the behavior of percolation under noise and in the study of
dynamical percolation. It is hoped that some of the techniques introduced
here will be helpful in the harmonic analysis of other functions.

Let I be some finite set, and let Ω = {−1, 1}I be endowed with the
uniform measure. The Fourier basis on Ω consists of all the functions of the
form χS(ω) :=

∏
i∈S ωi, where S ⊂ I. (These functions are also sometimes

called the Walsh functions.) It is easily seen to be an orthonormal basis with
respect to the inner product E

[
f g
]
. Therefore, for every f : Ω→ R, we have

f =
∑

S⊂I
f̂(S) χS , (1.1)
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where f̂(S) := E[f χS]. If E[f 2] = 1, then the random variable S = Sf ⊂ I
with distribution given by

P
[
S = S

]
= f̂(S)2

will be called the Fourier spectral sample of f . Due to Parseval’s formula,
this is indeed a probability distribution. The idea to look at this as a proba-
bility distribution was proposed in [BKS99], though the study of the weights

f̂(S)2 is “ancient”, and boils down to the same questions in a different lingo.
As noted there, important properties of the function f are encoded in the law
of the spectral sample. For example, suppose that f : {−1, 1}I → {−1, 1}.
Let x ∈ {−1, 1}I be random and uniform, and let y be obtained from x by re-
sampling1 each coordinate with probability ǫ independently, where ǫ ∈ (0, 1).
Then y is referred to as an ǫ-noise of x. Since for i ∈ I we have E

[
xi yi

]
= 1−ǫ

it follows that E
[
χS(x) χS(y)

]
= (1−ǫ)|S| for S ⊂ I and hence it easily follows

by using the Fourier expansion (1.1) that

E
[
f(x) f(y)

]
= E

[
(1− ǫ)|Sf |

]
. (1.2)

Thus, the stability or sensitivity of f to noise is encoded in the law of |S |.
One mathematical model in which noise comes up is that of the Poisson

dynamics on Ω, in which each coordinate is resampled according to a Poisson
process of rate 1, independently. This is, of course, just the continuous time
random walk on Ω. If xt denotes this continuous time Markov process started
at the stationary (uniform) measure on Ω, then xt is just ǫ-noise of x0, where
ǫ = 1− e−t. Indeed, the Markov operator defined by

Ttf(x) = E
[
f(xt)

∣∣ x0 = x
]

is diagonalized by the Fourier basis:

TtχS = e−|S|χS .

It is therefore hardly surprising that the behavior of |Sf | will play an impor-
tant role in the study of the generally non-Markov process f(xt). These types

1In the definition of [BKS99], each bit is flipped with probability ǫ, rather than resam-
pled. This accounts for some discrepancies involving factors of 2. The present formulation
generally produces simpler formulas.
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of questions have been under investigation in the context of Bernoulli perco-
lation [HPS97], [PS98], [HP99], [PSS07], [Kho08], other percolation type pro-
cesses [VMW97], [BS98], [BS06], and also more generally [BHPS03], [JS06],
[Hof06], [KLMH06]. Estimates of the Fourier coefficients played an impor-
tant role in the proof that the dynamical version of critical site percolation
on the triangular grid a.s. has percolation times [SS05]. These estimate can
naturally be phrased in terms of properties of the random variable |S |.

Recall that the (random) set of pivotals of f is the set of i ∈ I such
that flipping the value of ωi also changes the value of f(ω). It is easy to
see [KKL88] that the first moment of the number of pivotals of f is the same
as the first moment of |Sf |. Gil Kalai (personal communication) observed
that the same is true for the second moment, but not for the higher moments.
(We will recall the easy proof of this fact in Section 2.3.) This often facilitates
an easy estimation of E

[
|Sf |

]
and E

[
|Sf |2

]
.

It is often the case that E
[
|S |2

]
is of the same order of magnitude as

E
[
|S |

]2
, and this implies that with probability bounded away from zero, the

random variable |S | is of the same order of magnitude as its mean. However,
what turns out to be much harder to estimate is the probability that |S | is
positive and much smaller than its mean. (In particular, this is much harder
than the analogous result for pivotals.) This is very relevant to applications;
as can be seen from (1.2), the probability that |S | is small is what matters
most in understanding correlation of f(x) with f evaluated on a noisy version
of x. Likewise, in the dynamical setting, the lower tail of |S | controls the
switching rate of f . Indeed, the primary purpose of this paper is getting good
estimates on P

[
0 < |Sf | < s

]
for indicators of crossing events in percolation

and deriving the consequences of such bounds.

1.2 The main result

We consider two percolation models: critical bond percolation on the square
grid Z2 and critical site percolation on the triangular grid. See [Wer07] for
background. These two models are believed to behave essentially the same,
but the mathematical understanding of the latter is significantly superior
to the former due to Smirnov’s theorem [Smi01] and its consequences. Fix
some large R > 0, and consider the event that (in either of these percolation
models) there is an open (i.e., occupied) left-right crossing of the square
[0, R]2. Let fR denote the ±1 indicator function of this event; that is, fR = 1
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if there is a crossing and fR = −1 when there is no crossing. In this case,
I is the relevant set of bonds or sites, depending on whether we are in the
bond or site model. The probability space is Ω = {−1, 1}I with the uniform
measure. Here, it is convenient that pc = 1/2 for both models, and so the
relevant measure on Ω is uniform.

The paper [BKS99] posed the problem of studying the law of SfR
. There,

it was proved that P
[
0 < |SfR

| < c log R
]
→ 0 as R → ∞ for some c > 0.

This had the implication that fR is asymptotically noise sensitive; that
is, limR→∞ E

[
fR(x) fR(y)

]
− E

[
fR(x)

]
E
[
fR(y)

]
= 0, when y is an ǫ-noisy

version of x and ǫ > 0 is fixed. It was also asked in [BKS99] whether
P
[
0 < |S | < Rδ

]
→ 0 for some δ > 0. This was later proved in [SS05]

with δ = 1/8 + o(1) in the setting of the triangular lattice and with an un-
specified δ > 0 for the square lattice. While certainly a useful step forward,
these results were far from being sharp. But the issue is more than just a
quantitative question. The most natural hypothesis is that |S | is always
proportional to its mean when it is nonzero, or more precisely that

sup
R>1

P
[
0 < |SfR

| < t E|SfR
|
]
→ 0 as tց 0 . (1.3)

To illustrate the fact that (1.3) is not a universal principle, we note that it
does not hold, e.g., for the ±1-indicator function of the event that there is a
left-right percolation in the square [0, R]2 and this square has more open sites
[or edges] than closed sites [or edges]. We prove (1.3) in the present paper,
and give useful bounds that are sharp up to constants on the left hand side
of (1.3). This is the content of our first theorem.

Theorem 1.1. As above, let R > 1 and let fR be the ±1 indicator function
of the left-right crossing event of the square [0, R]2 in critical bond percolation
on Z2 or site percolation on the triangular grid. The spectral sample of fR

satisfies

P
[
0 < |SfR

| < E|Sfr |
]
≍
(E|SfR

|/R
E|Sfr |/r

)2

(1.4)

holds for every r ∈ [1, R], and ≍ denotes equivalence up to positive multi-
plicative constants.

To make the sharp bound (1.4) more explicit, one needs to discuss es-
timates for E|Sfr |. The value of E|Sfr | is estimated by the probability
of the so called “alternating 4-arm event”, which we will treat in detail
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in Subsection 2.2. For now, let us just mention that it is known that
E|SfR

|/E|Sfr | ≤ (R/r)1−δ for some δ > 0, and that for the triangular lattice

E|SfR
| / E|Sfr | ≍ (R/r)3/4+o(1) (1.5)

as R/r → ∞ while r ≥ 1 follows from Smirnov’s theorem [Smi01] and the
SLE-based analysis of the percolation exponents in [SW01]. (This will be
proved in Section 7.2.) From (1.5) and (1.4), we get for the triangular grid

P
[
0 < |SfR

| ≤ λ E|SfR
|
]
≍ λ2/3+o(1), (1.6)

where λ may depend on R, but is restricted to the range
[
(E|SfR

|)−1, 1
]
.

Here, the o(1) represents a function of λ and R that tends to 0 as λ→ 0, uni-
formly in R. This answers Problem 5.1 from [Sch07]. For either lattice, (1.3)
follows from Theorem 1.1. Below, we prove (7.6), which is a variant of (1.6)
with slightly different asymptotics.

There is nothing particularly special about the square with regard to
Theorem 1.1. The proof applies to every rectangle of a fixed shape (with
the implied constants depending on the shape). For percolation crossings in
more general shapes, Theorem 7.1 gives bounds on the behavior of S away
from the boundary, and we also prove Proposition 7.4, which is some analog
of (1.3). However, we chose not to go into the complications that would arise
when trying to prove (1.4) in this general context.

We also remark that P
[
Sf = ∅

]
= E[f ]2 = f̂(∅)2 is generally easy to

compute. The level 0 Fourier coefficient f̂(∅) has more to do with the way
the function is normalized than with its fundamental properties. For this
reason, |S | = 0 is separated out in bounds such as (1.4).

At this point we mention that Theorem 7.3 gives the bound analogous to
Theorem 1.1, but dealing with the spectrum of the indicator function for a
percolation crossing from the origin to distance R away.

1.3 Applications to noise sensitivity

Figure 1.1 illustrates a sequence of percolation configurations, where each
configuration is obtained from the previous one by applying some noise. The
effect on the interfaces can be observed. Theorem 1.1 implies the following
sharp noise sensitivity estimate regarding such perturbations:
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→

↓↑

↓↑

←

Figure 1.1: Interfaces in percolation on Z2. Each successive pair of config-
urations are related by a noise of about 0.04, which results in about one in
every 50 bits being different. Each square is about 60× 60 lattice squares.
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Corollary 1.2. Suppose that y is an ǫR-noisy version of x, where ǫR ∈ (0, 1)
may depend on R. If limR→∞ E|SfR

| ǫR =∞, then

lim
R→∞

E
[
fR(x) fR(y)

]
− E

[
fR(x)

]
E
[
fR(y)

]
= 0 , (1.7)

while if limR→∞ E|SfR
| ǫR = 0, then

lim
R→∞

E
[
fR(x) fR(y)

]
− E

[
fR(x)2

]
= 0 . (1.8)

The second of these statements is actually obvious from (1.2) and Jensen’s
inequality, and is brought here only to complement the first claim. Of
course, (1.7) just means that having a crossing in x is asymptotically un-
correlated with having a crossing in y, while (1.8) means that with prob-
ability going to 1, a crossing in x occurs if and only if there is a crossing
in y. Although fR(x)2 = 1, we find the form of (1.8) more suggestive,
since this is the statement that generalizes to other situations. Likewise,
limR→∞ E

[
fR(x)

]
= 0, but (1.7) is more suggestive.

In Corollary 8.1, we prove a generalization of Corollary 1.2 for the crossing
function fRQ, where Q is an arbitrary fixed “quad”, i.e., a domain homeo-
morphic to a disk with four marked points on its boundary.

In a forthcoming paper on the scaling limit of dynamical percolation
[GPS], we plan to show that for critical percolation on the triangular grid,
whenever limR→∞ E|SfR

| ǫR exists and is in (0,∞), then limR E
[
fR(x) fR(y)

]

also exists and is strictly between the limits of E
[
fR(x)

]2
and E

[
fR(x)2

]
.

The following theorem proves Conjecture 5.1 from [BKS99]. With minor
adaptations, it follows from the proof of Theorem 1.1.

Theorem 1.3. Consider bond percolation on Z2. Let x be a critical perco-
lation configuration, and let z be another critical percolation configuration,
which equals x on the horizontal edges, but is independent from x on the
vertical edges. Then having a left-right crossing in x is asymptotically inde-
pendent from having a left-right crossing in z. Moreover, the same holds true
if “horizontal” and “vertical” are interchanged.

1.4 Applications to dynamical percolation

First, recall that in dynamical percolation the random bits determining
the percolation configuration are refreshed according to independent Pois-
son clocks of rate 1. Dynamical percolation was proposed in 1992 by Itai
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Benjamini, though the first paper on the subject is by Häggström, Peres
and Steif [HPS97]. Since then, dynamical percolation and other dynamical
random processes have been the focus of several research papers; see the ref-
erences in Section 1.1. In response to a question in [HPS97] it was proved
in [SS05] that critical dynamical site percolation on the triangular grid a.s.
has times at which the origin is in an infinite connected percolation compo-
nent. Such times are called “exceptional”, since they necessarily have measure
zero. The paper [SS05] also showed that the dimension of the set of excep-
tional times is a.s. in

[
1
6
, 31

36

]
, and conjectured that it is a.s. 31/36. Likewise,

it was conjectured there that the set of times at which an infinite occupied
as well as an infinite vacant cluster coexist is a.s. 2/3, but [SS05] only proved
that 2/3 is an upper bound, without establishing the existence of such times.
Similarly, [SS05] proved that the set of times at which there is an infinite
percolation component in the upper half plane has Hausdorff dimension at
most 5/9, but did not prove that the set is nonempty. There were numerous
other lower and upper bounds of this type in [SS05], some of them having
to do with dynamical percolation in wedges and cones, but they will not be
discussed presently. We can now prove most of these conjectures regarding
the Hausdorff dimensions of exceptional times in the setting of the triangu-
lar grid, and for each case corresponding to a monotone event, the Hausdorff
dimension a.s. equals the previously known upper bound. In particular, we
have

Theorem 1.4. In the setting of dynamical critical site percolation on the tri-
angular grid, we have the following a.s. values for the Hausdorff dimensions.

1. The set of times at which there is an infinite cluster a.s. has Hausdorff
dimension 31/36.

2. The set of times at which there is an infinite cluster in the upper half
plane a.s. has Hausdorff dimension 5/9.

3. The set of times at which an infinite occupied cluster and an infinite
vacant cluster coexist a.s. has Hausdorff dimension at least 1/9.

The reason that in 1 and 2 the results agree with the conjectured upper
bound from [SS05] is that the upper bound is dictated by E

[
|Sf |

]
(which

is generally not hard to compute), while the tail estimate given in (1.4) and
its analogs give sufficient estimates to bound the probability that |Sf | is
much smaller than its expectation. Here, f is the indicator function of some
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crossing event, which may vary from one application to another. We cannot
calculate the exact dimension in item 3 because we use the monotonicity of
f in an essential way (though at only one point), and the event that both
vacant and occupied percolation crossings occur is not monotone.

See Section 9 for further results and an explanation as to how these num-
bers are calculated.

The paper [SS05] came quite close to proving that exceptional times exist
for dynamical critical bond percolation on Z2, but was not able to do it.
Now, we close this gap.

Theorem 1.5. A.s. there are exceptional times at which dynamical critical
bond percolation on Z2 has infinite clusters, and the Hausdorff dimension of
the set of such times is a.s. positive.

There is one more application to dynamical percolation that we will
presently mention. This has to do with the scaling limit of dynamical per-
colation, as introduced in [Sch07], and whose existence we plan to show in
[GPS]. In this scaling limit, time and space are both scaled, and the re-
lationship between their scaling is chosen in such a way that the event of
the existence of a percolation crossing of the unit square at time 0 and at
one unit of time later have some fixed correlation strictly between 0 and 1.
Consequently, as space is shrinking, time is expanding. We leave it as an
excercise to the reader to verify that the ratio between the scaling of time
and of space can be worked out directly from the law of |SfR

|. An easy
consequence of (1.3) is that in the dynamical percolation scaling limit, the
correlation between having a left-right crossing of the square at time 0 and
at time t goes to zero as t → ∞; see (8.6). In fact, based on [SS] and esti-
mates such as (1.3) and its generalizations to other domains, it can be shown
that the dynamical percolation scaling limit is ergodic. These results answer
Problem 5.3 from [Sch07].

1.5 The scaling limit of the spectral sample

The study of the scaling limit of S was suggested by Gil Kalai [Sch07,
Problem 5.2] (see also [BKS99, Problem 5.4]). The idea is that we can think
of SfR

as a subset of the plane, and consider the existence of the weak limit as
R→∞ of the law of R−1 SfR

. Boris Tsirelson [Tsi04] addressed this problem
more generally within his theory of noises, dealing with various functions f
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that are not necessarily related to percolation. It follows from Tsirelson’s
theory and from [SS] that the scaling limit of SfR

exists. In Section 10, we
explain this, and prove

Theorem 1.6. In the setting of the triangular grid, the limit in law of
R−1 SfR

exists. It is a.s. a Cantor set of dimension 3/4.

The conformal invariance of the scaling limit of SfR
in the setting of the

triangular grid is also proved in Section 10. These results answer a problem
posed by Gil Kalai [Sch07, Problem 5.2].

1.6 A rough outline of the proof

The proof of Theorem 1.1 does not follow the same general strategy as the
proof of the non-sharp bounds given in [SS05]. The lower bound on the left
hand side in (1.4) is rather easy, and so we only discuss here the proof of
the upper bound. Fix some r ∈ [1, R] and subdivide the square [0, R]2 into
subsquares of sidelength r (suppose that r divides R, say). Let S (r) denote
the set of these subsquares that intersect SfR

. In Section 4 we estimate the
probability that |S (r)| = k when k is small (for example, k = O(log(R/r))).
The argument is based on building a rough geometric classification of all
the possible configurations of S (r), applying a bound for each class, and
summing over the different classes. The bound obtained this way is

P
[
|S (r)| = k

]
≤ exp

(
O(1) log2(k + 2)

) (E|SfR
|/R

E|Sfr |/r
)2

, (1.9)

and has the optimal dependence on R and r, but a rather bad dependence
on k.

Here is a naive strategy for getting from (1.9) to (1.4), which does not
seem to work. Fix some r × r square B. Suppose that we are able to
show that conditioned on the intersection of S with some set W in the
complement of the r-neighborhood of B, and conditioned on S intersecting
B, we have a probability bounded away from 0 that |S ∩ B| > E|Sfr |.
We can then restrict to a sublattice of r × r squares that are at mutual
distance at least r and easily show by induction that the probability that S

intersects at least k′ of the squares in the sublattice but has size less than
E|Sfr | is exponentially small in k′. We may then take a bounded set of such
sublattices, which covers every one of the r × r squares in our initial tiling
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of [0, R]2, and thereby obtain the required bound on P
[
0 < |S | < E|Sfr |

]

from (1.9) and the exponentially small bound in k′. The reason that this
strategy fails is that there are presently no good tools to understand the
conditional law of B∩S given B∩W . Refusing to give up, we observe that,
as explained in Section 2.3, the law of B∩S conditioned on S ∩W = ∅ can
be described. Based on this, we amend the above strategy, as follows. We
pick a random set W ⊂ I independent from S , where each i ∈ I is put in W
with probability about 1/E|Sfr | independently. Then, we can hope to get a
good upper bound on P

[
S 6= ∅ = W ∩S

]
, which would almost immediately

give a constant times the same bound on P
[
0 < |S | < E|Sfr |

]
.

In Section 5 we show that for an r × r square B, if we condition on
S ∩ B 6= ∅ and on S ∩ Bc ∩W = ∅, then with probability bounded away
from 0 we have S ∩B′ ∩W 6= ∅, where B′ is a square of 1/3 the sidelength
that is concentric with B; namely,

P
[
S ∩ B′ ∩W 6= ∅

∣∣ S ∩ Bc ∩W = ∅, S ∩ B 6= ∅
]

> a > 0 , (1.10)

for some constant a. This is based on a second moment argument, but
to carry it through we have to resort to rather involved percolation argu-
ments. A key observation here is to interpret these conditional events for the
spectrum sample in terms of percolation events for a coupling of two config-
urations (which are independent on the set W but coincide elsewhere). An
important step is to prove a quasi-multiplicativity property for arm-events
in the case of this system of coupled configurations.

Again, there is a simple naive strategy based on (1.10) and (1.9) to get an
upper bound for P

[
S 6= ∅ = W ∩S

]
. One may try to check sequentially if

B′∩W ∩S 6= ∅ for each of the r×r squares, and as long as a nonempty inter-
section has not been found, the probability to detect a nonempty intersection
is proportional to the conditional probability that S ∩B 6= ∅. However, the
trouble with this strategy is that the conditional probability of S ∩ B 6= ∅
varies with time, and the bound (1.9) does not imply a similar bound for
the sum of the conditional probabilities, since each time the conditioning is
different.

The substitute for this naive strategy is a large deviations estimate that
we state and prove in Section 6, namely, Proposition 6.1. This result is
somewhat in the flavor of the Lovász local lemma, since it gives estimates
for probabilities of events with a possibly complicated dependence structure.
The proposition deals with random variables x, y ∈ {0, 1}n. In the applica-
tion, xi is the indicator of the event that S intersects the square of sidelength
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r/3 concentric with the i’th r× r square and yi is indicator of the event that
S ∩W intersects the i’th r×r square. The assumption (1.10) then translates
to

P
[
yj = 1

∣∣ yi = 0 ∀i ∈ I
]
≥ a P

[
xj = 1

∣∣ yi = 0 ∀i ∈ I
]
, j /∈ I ⊂ [n] ,

and the proposition tells us that under these assumptions we have

P
[
y = 0

∣∣ X > 0
]
≤ a−1 E

[
e−aX/e

∣∣ X > 0
]
, (1.11)

where X =
∑

i xi. In our application X = |S (r)|, and thus (1.11) combines
with (1.10) to yield the desired bound. The proof of Theorem 1.1 is completed
in this way in Section 7.
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Beffara for permitting us to include Proposition 12.1 and Pierre Nolin and
Wendelin Werner for enlightening discussions.

2 Some basics

2.1 A few general definitions

In this paper we consider site percolation on the triangular grid as well as
bond percolation on Z2, both at the critical parameter p = 1/2.

In the case of site percolation on the triangular grid T , a percolation
configuration ω is just the set of sites which are open. However, we often
think of ω as a coloring of the plane by two colors: in the hexagonal grid
dual to T , a hexagon is colored white if the corresponding site is in ω, while
the other hexagons are colored black. If A and B are subsets of the plane,
we say that there is a crossing in ω from A to B if there is a continuous
path with one endpoint in A and the other endpoint in B that is contained
in the closure of the union of the white hexagons. Likewise, a dual crossing
corresponds to a path contained in the closure of the black tiles.

In the case of bond percolation on Z2, there is a similar coloring of the
plane by two colors which has the “correct” connectivity properties. In this
case, we color by white all the points that are within L∞ distance of 1/4
from all the vertices of Z2 and all the points that are within L∞ distance of
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1/4 from the edges in ω, and color by black the closure of the complement
of the white colored points.

Regardless of the grid, the set of points whose color is determined by ωx

will be called the tile of x. In the case of the square grid, we also have tiles
with deterministic color, namely, each square of sidelength 1/2 centered at
a vertex of Z2 and each square of sidelength 1/2 concentric with a face of
Z2. Thus, in either case we have a tiling of the plane by hexagons or squares
where each tile consists of a connected component of a set of points whose
colors always agree.

A quad Q is a subset of the plane homemorphic to the closed unit disk
together with a distinguished pair of disjoint closed arcs on ∂Q. We say that
ω has a crossing of Q if the two distinguished arcs can be connected by a
white path inside Q.

If A is an event, then the ±1 indicator function of A is the function
2 · 1A− 1, which is 1 on A and −1 on ¬A. The ±1 indicator function for the
event that a quad Q is crossed will be denoted by fQ.

We use I to denote the set of bits in ω; that is, in the context of the
triangular grid I is the set of vertices of the grid, and in the context of Z2 it
denotes the set of edges. Although I is not finite in these cases, the functions
we consider will only depend on finitely many bits in I, and so the Fourier-
Walsh expansion (1.1) still holds. Moreover, for L2 functions depending
on infinitely many bits we still have (1.1), except that the summation is
restricted to finite S ⊂ I.

Since we will be considering S as a geometric object, we find it convenient
to think of I as a set in the plane. In the context of the triangular grid, this
is anyway the case, but for the square grid we will implicitly associate each
edge of Z2 with its center; so I can be considered as the set of centers of the
relevant edges. This way, any subset of the plane also represents a subset of
the bits. Note however that e.g. the crossing function fQ usually depends on
more bits than the ones contained in Q.

For z ∈ R2 and r ≥ 0, the set z + [−r, r)2 will be called the square of
radius r centered at z. Furthermore, we let B(z, r) denote the union of the
tiles whose center is contained in z + [−r, r)2, and will refer to B(z, r) as a
box of radius r. One reason for using these boxes (instead of round balls,
say) is that the plane can be tiled with them perfectly.
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2.2 Multi-arm events for percolation

In many different studies of percolation, the multi-arm events play a central
role. We now define these events (a word of caution — there are a few
different natural variants to these definitions), and discuss the asymptotics
of their probabilities.

Let A ⊂ R2 be some topological annulus in the plane, and let j ∈ N+. If
j is even, then the j-arm event in A is the event that there are j disjoint
monochromatic paths joining the two boundary components of A, and these
paths in circular order are alternating between white and black. If j is odd,
the definition is similar, except that the order of the colors is required to be
(in circular order) alternating between white and black with one additional
white crossing.

In most papers, the restriction that the colors are alternating is relaxed
to the requirement that not all crossings are of the same color. Indeed, it
is known that if A is an annulus, A = B(0, R) \ B(0, r), then in the setting
of critical site percolation on the triangular grid the circular order of the
colors effects the probability of the event by at most a constant factor (which
may depend on j), provided that in the case j > 1 there is at least one
required crossing from each color [ADA99]. However, since it appears that
the corresponding result for the square grid has not been worked out, we
have opted to impose the alternating colors restriction.

We let αj(A) denote the probability of the j-arm event in A. For the case
A = B(0, R) \ B(0, r), write αj(r, R) for αj(A). Note that αj(r, R) = 0 if
r << j < R. We use αj(R) as a shorthand for αj(2 j, R). We will also adopt
the convention that αj(r, R) = 1 if r ≥ R.

We now review some of the results concerning these arm events. The
Russo-Seymour-Welsh (RSW) estimates imply that

s−aj/Cj ≤ αj(r, s r) ≤ Cjs
−1/aj (2.1)

for all r, s > 1, where Cj , aj > 1 depend only on j. Another important
property of these arm events is quasi-multiplicativity, namely,

αj(R)/Cj ≤ αj(r) αj(r, R) ≤ Cj αj(R) (2.2)

for 1 < r < R, where, again, Cj > 0 depends only on j. This was proved in
[Kes87]; see [SS05, Proposition A.1] and [Nol07, Section 4] for concise proofs.
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The above properties in particular give for r < r′ < R′ < R that

C−1
j

(R r′

R′ r

)a−1
j

αj(r, R) ≤ αj(r
′, R′) ≤ Cj

(R r′

R′ r

)aj

αj(r, R) , (2.3)

with possibly different constants Cj.

Of the multi-arm events, the most relevant to this paper is the 4-arm
event, due to its relation to pivotality for the crossing event in a quad Q. In
particular, for closed B ⊂ R2, we will use α�(B,Q) to denote the probability
of having four arms in Q \ B, the white arms connecting ∂B to the two
distinguished arcs on ∂Q and the black arms to the complementary arcs. If
B∩∂Q 6= ∅, then the arms connecting B to the arcs of ∂Q which B intersects
are considered as present. Quasi-multiplicativity often generalizes easily to
this quantity; for example, if Q is an R × R square with two opposite sides
being the distinguished arcs, B is a radius r box anywhere in Q, and x ∈ B
is at a distance at least cr from ∂B, then

α�(x,Q)/α�(B,Q) ≍ α4(x, B) ≍ α4(r) , (2.4)

with the implied constants depending only on c. (A more general version
of this will also be proved in Section 5.5.) Here and in the following, when
we write α�(x,Q) or α4(x, B), we are referring to the corresponding 4-arm
event from the tile of x to ∂Q or ∂B (with or without paying attention to
any distinguished arms on the boundary, respectively).

Let us also recall what is known about α4 quantitatively. For site perco-
lation on the triangular lattice, by [SW01], we have

α4(r, R) = (r/R)5/4+o(1) (2.5)

as R/r →∞ while 1 ≤ r ≤ R. Similar relations are known for j 6= 4 [LSW02,
SW01]. For bond percolation on the square grid, we presently have weaker
estimates; in particular,

C−1 (r/R)2−ǫ ≤ α4(r, R) ≤ C (r/R)1+ǫ (2.6)

for some fixed constants C, ǫ > 0 and every 1 ≤ r ≤ R. The left inequality
can be obtained by combining α5(r, R) ≍ (r/R)2 (see [KSZ98, Lemma 5]
or [SS05, Corollary A.8]), the RSW estimate α1(r, R) < O(1) (r/R)ǫ, and,
finally, the relation α1(r, R) α4(r, R) ≥ α5(r, R) (which follows from Reimer’s
inequality [Rei00], or from Proposition 12.1 in our Appendix). The right
hand inequality in (2.6) follows from [Kes87]; see also [BKS99, Remark 4.2].
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2.3 The spectral sample in general

This subsection derives some formulas and estimates for P
[
S ⊂ A

]
, for the

distribution of S ∩ A, and for P
[
S ∩A = ∅ 6= S ∩ B

]
. We also briefly

present an estimate of the variation distance between the laws of Sf and
of Sg in terms of ‖f − g‖. (We generally use ‖ · ‖ to denote the L2 norm.)
Moreover, the definition of the set of pivotals P is recalled and some relations
between P and S are discussed.

As before, let Ω := {−1, 1}I , where I is finite. Recall that for f : Ω→ R
with ‖f‖ = 1, we consider the random variable Sf whose law is given by

P
[
S = S

]
= f̂(S)2. More generally, if ‖f‖ > 0, we use the law given by

P
[
S = S

]
= f̂(S)2/‖f‖2,

but will also consider the un-normalized measure given by

Q
[
S = S

]
= f̂(S)2.

(If we wish to indicate the function f , we may write Qf in place of Q.)
Now suppose that f, g : Ω→ R. We argue that if ‖f − g‖ is small, then

the law of Sf is close to the law of Sg, as follows:
∑

S⊂I

∣∣f̂(S)2 − ĝ(S)2
∣∣ =

∑

S

∣∣f̂ − ĝ
∣∣ ∣∣f̂ + ĝ

∣∣

≤
(∑

S

(f̂ − ĝ)2
)1/2(∑

S

(f̂ + ĝ)2
)1/2

= ‖f − g‖ ‖f + g‖ ,

(2.7)

where the inequality is due to Cauchy-Schwarz and the final equality is an
application of Parseval’s identity.

For A ⊆ I, let ωA denote the restriction of ω to A, and let FA denote the
σ-field of subsets of Ω generated by ωA. We use the notation Ac := I \A for
the complement of A. Observe that for A ⊂ I,

E
[
χS

∣∣ FA

]
=

{
χS S ⊂ A ,

0 otherwise .
(2.8)

It follows from this and (1.1) that

g := E
[
f
∣∣ FA

]
=
∑

S⊆A

f̂(S) χS .
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Thus ĝ(S) = f̂(S) for S ⊆ A, and ĝ(S) = 0 otherwise. Therefore, Parseval’s
formula implies

Q
[
S ⊆ A

]
= E

[
E[f | FA]2

]
. (2.9)

In principle, this describes the distribution of S in terms of f , and indeed
we will extract information about S from this formula and its consequences.

Using (1.1) and (2.8), one obtains for S ⊂ A ⊂ I

E
[
f χS

∣∣ FAc

]
=
∑

S′⊂Ac

f̂(S ∪ S ′) χ′S .

This gives

E
[
E
[
f χS

∣∣ FAc

]2]
=
∑

S′⊂Ac

f̂(S ∪ S ′)2 = Q
[
S ∩ A = S

]
,

which implies the following Lemma from [LMN93]. Roughly, the lemma says
that in order to sample the random variable S ∩ A, one can first pick a
random sample of ωAc , and then take a sample from the spectral sample of
the function we get by plugging in these values for the bits in Ac.

Lemma 2.1. Suppose that f : Ω → R, and A ⊂ I. For x ∈ {−1, 1}A and
y ∈ {−1, 1}Ac

, write gy(x) := f
(
ω(x, y)

)
, where ω(x, y) is the element of Ω

whose restriction to A is x and whose restriction to Ac is y. Then for every
S ⊂ A, we have Q

[
Sf ∩ A = S

]
= E

[
ĝy(S)2

]
= E

[
Qgy [Sgy = S]

]
.

For any ω ∈ Ω and any A ⊂ I, let ω+
A denote the element of Ω that is

equal to 1 in A and equal to ω outside of A. Similarly, let ω−A denote the
element of Ω that is equal to −1 in A and equal to ω outside of A. An i ∈ I
is said to be pivotal for f : Ω→ R if f(ω+

{i}) 6= f(ω−{i}). Let P = Pf denote

the (random) set of pivotals.
It is known from [KKL88] that for functions f : Ω→ {−1, 1},

E
[
|S |

]
= E

[
|P|

]
, (2.10)

Gil Kalai (private communication) further observed that also

E
[
|S |2

]
= E

[
|P|2

]
, (2.11)

but this does not hold for higher moments. To prove (2.10) and (2.11),
consider some i, j ∈ I. In Lemma 2.1, if we take A = {i}, then gy is a
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constant function (of x) unless i ∈P, while gy = ±χ{i} if i ∈P. Therefore,
the lemma gives

P
[
i ∈ S

]
= P

[
S ∩ {i} = {i}

]
= P

[
i ∈P

]
, (2.12)

which sums to give (2.10). Similarly, one can show that

P
[
i, j ∈ S

]
= P

[
i, j ∈P

]
(2.13)

by using Lemma 2.1 with A = {i, j} to reduce (2.13) to the case where
Ω = {−1, 1}2, which easily yields to direct inspection. Now (2.11) follows by
summing (2.13) over i and j.

We now derive estimates for Q
[
S ∩B 6= ∅ = S ∩W

]
. Define ΛB = Λf,B

as the event that B is pivotal for f . More precisely, ΛB is the set of ω ∈ Ω
such that there is some ω′ ∈ Ω that agrees with ω on Bc while f(ω) 6= f(ω′).
Also define λB,W := P

[
ΛB

∣∣ W c
]
.

Lemma 2.2. Let S = Sf be the spectral sample of some f : Ω → R, and
let W and B be disjoint subsets of I. Then

Q
[
S ∩ B 6= ∅ = S ∩W

]
≤ 4 ‖f‖2∞E

[
λ2

B,W

]
.

Proof. From (2.9),

Q
[
S ∩B 6= ∅, S ∩W = ∅

]
= Q

[
S ⊆W c

]
−Q

[
S ⊆ (W ∪B)c

]

= E
[
E[f | FW c]2 − E[f | F(W∪B)c ]2

]

= E
[(

E[f | FW c]− E[f | F(W∪B)c ]
)2]

.

(2.14)

On the complement of ΛB, we have f = E
[
f
∣∣ FBc

]
. Therefore,

−2 ‖f‖∞ 1ΛB
≤ f − E[f | Bc] ≤ 2 ‖f‖∞1ΛB

.

Taking conditional expecations throughout, we get

−2 ‖f‖∞ λB,W ≤ E
[
f
∣∣ FW c

]
− E

[
E[f | FBc ]

∣∣ FW c

]
≤ 2 ‖f‖∞λB,W .

Note that E
[
E[f | FBc ]

∣∣ FW c

]
= E

[
f
∣∣ F(B∪W )c

]
, since our measure on Ω is

i.i.d. Thus, the above gives
∣∣∣E
[
f
∣∣ FW c

]
− E

[
f
∣∣ F(B∪W )c

]∣∣∣ ≤ 2 ‖f‖∞ λB,W .
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An appeal to (2.14) now completes the proof.

What turns out to be important in Section 5 is that, in the context of
percolation, the quantity E

[
λ2

B,W

]
can be studied and controlled when B is

a box and W ⊂ I \ B is arbitrary. Likewise, in Section 4, we use a variant
of Lemma 2.2 in which we look at the event that S intersects a collection of
boxes and is disjoint from some collection of annuli.

3 First percolation spectrum estimates

We will now consider the special case of Sf when f = fQ for a quad Q ⊂ R2.
As noted in Section 2.1, we will be considering I and S ⊂ I as subsets of
the plane. When R > 0, we will use the notation RQ to denote the quad
obtained from Q by scaling by a factor of R about 0.

Lemma 3.1 (First and second moments). Let Q ⊂ R2 be some quad and
let U be an open set whose closure is contained in the interior of Q. Let
S := SfRQ be the spectral sample for the ±1-indicator function of crossing
RQ. There are constants C, R0 > 0, depending only on Q and U , such that
for all R > R0

C−1 R2 α4(R) ≤ E
[
|SfRQ ∩R U |

]
≤ C R2 α4(R)

and
E
[
|SfRQ ∩R U |2

]
≤ C E

[
|SfRQ ∩ R U |

]2
.

The reason for the appearance of α4 in the first moment is the following.
We know from (2.12) that P

[
x ∈ S

]
= P

[
x ∈P

]
for P := PfRQ. In order

for x to be pivotal for fRQ it is necessary and sufficient that there are white
paths in RQ from the tile of x to the two distinguished arcs on R ∂Q and
two black paths in RQ from the tile of x to the complementary arcs of R∂Q.
These four paths form the 4-arm event in the annulus between the tile of x
and R∂Q. Moreover, it is well-known (and follows from quasi-multiplicativity
arguments) that

∀x ∈ I ∩ R U : P
[
x ∈PfRQ

]
= α�(x, RQ) ≍ α4(R) . (3.1)

Here and in the proof below, we use the notation g ≍ g′ to mean that there
is a constant c > 0 (which may depend on U and Q), such that g ≤ c g′ and
g′ ≤ c g. Likewise, the O(·) notation will involve constants that may depend
on Q and U .
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Proof of Lemma 3.1. From (2.12) and (3.1) we get that

∀x ∈ I ∩R U : P
[
x ∈ S

]
≍ α4(R) . (3.2)

The first claim of the lemma is obtained by summing over x ∈ I ∩ R U .
Now consider x, y ∈ I ∩R U . Let a be the distance from U to ∂Q. Thus

a > 0. Then by (2.13), we have P
[
x, y ∈ S

]
= P

[
x, y ∈P

]
. Therefore

in order for x, y ∈ P it is necessary that the 4 arm event occurs from
the tile of x to distance (|x − y|/3) ∧ (a R) away, and from the tile of y
to distance (|x − y|/3) ∧ (a R) away, and from the circle of radius 2 |x − y|
around (x + y)/2 to distance a R away (if 2 |x− y| < a R). By independence
on disjoint subsets of I, this (together with the regularity properties of the
4-arm probabilities (2.3)) gives for R sufficiently large

P
[
x, y ∈ S

]
≤ O(1) α4(|x− y|)2 α4(|x− y|, R) .

Using the quasi-multiplicativity property of α4, this gives

∀x, y ∈ I ∩ R U : P
[
x, y ∈ S

]
≤ O(1) α4(R)2/α4(|x− y|, R) . (3.3)

The number of pairs x, y ∈ I ∩ U such that |x− y| ∈ [2n, 2n+1) is O(R2) 22n,
and is zero if |x − y| > R diam(Q). Therefore, we get from (3.3) and the
regularity property (2.3) that

E
[
|S ∩ RU |2

]
≤ O(R2) α4(R)2

log2(R)+O(1)∑

n=0

22n

α4(2n, R)
.

From (2.6) we get 22n/α4(2
n, R) ≤ O(1) R2−ǫ 2ǫn. Hence the sum over n is at

most O(R2), and we obtain the desired bound on the second moment.

Note that E
[
|S ∩R U |

]
→∞ as R→∞, which follows from (2.12), (3.1)

and (2.6). Moreover, by the standard Cauchy-Schwarz second-moment argu-
ment (also called the Paley-Zygmund inequality), the above lemma implies
that for some constant c > 0 (which may depend on Q and U),

P
[
|S ∩RU | > c E|S ∩ RU |

]
> c .

We also note the following lemma.
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Lemma 3.2. Let Q ⊂ R2 be a quad, and set S = SfQ. Let B be some
union of tiles such that B ∩Q is nonempty and connected. Then

P[S ∩ B 6= ∅] ≤ 4 α�(B,Q) , (3.4)

and
P[∅ 6= S ⊆ B] ≤ 4 α�(B,Q)2. (3.5)

When B is a single tile, corresponding to x ∈ I, we have

P
[
x ∈ S

]
= α�(x,Q) and P

[
S = {x}

]
= α�(x,Q)2. (3.6)

Proof. Note that P
[
ΛB

]
= α�(B,Q), since ΛB holds if an only if the 4-arm

event from B to the corresponding arcs on ∂Q occurs. Since λB,∅ = 1ΛB
,

the first claim follows from Lemma 2.2 with W = ∅. Similarly, (3.5) follows
by taking W = Bc. The identity P

[
x ∈ S

]
= α�(x,Q) follows from (2.12).

Finally, the right hand identity in (3.6) can be derived from (2.14) with
B = {x} and W = I \B. Alternatively, it also follows from P

[
{x} = S

]
=

P
[
x ∈ S

]2
, which holds for arbitrary monotone f : Ω→ {−1, 1}.

As we will see in Section 5, both inequalities in Lemma 3.2 are actually
approximate equalities when B ⊂ Q. The main reason for this is a classi-
cal arm separation phenomenon, see e.g. [SS05, Appendix], which roughly
says that conditioned on having four arms connecting ∂B to the appropriate
boundary arcs on ∂Q, with positive conditional probability, these arms are
“well-separated” on ∂B. On this event, a positive proportion of the ωB con-
figurations enable the crossing of Q, while a positive proportion disable all
crossings.

Lemma 3.2 has the following immediate consequence. Let Q be the R×R
square with two opposite sides as distinguished boundary arcs. Then, for a
box B ⊆ Q of radius r and a concentric sub-box B′ of radius r/3, if B′∩I 6= ∅,
then

E
[
|S ∩ B′|

∣∣∣ S ∩ B 6= ∅
]

=
∑

x∈B′

P[x ∈ S ]

P[S ∩ B 6= ∅] ≥
∑

x∈B′

α�(x,Q)

4α�(B,Q)

≍ |B′|α4(r) ≍ r2α4(r), (3.7)

where we used the quasi-multiplicativity result (2.4). This result already sug-
gests that S has self-similarity properties that a random fractal-like object
should have, and it should be unlikely that it is very small. This idea will,
in fact, be of key importance to us, and will be developed in Section 5.
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4 The probability of a very small spectral sam-

ple

4.1 The statement

In this section, we study the Fourier spectrum of the indicator function f of
having a crossing of a square, or more generally, of a quad Q.

Divide the plane into a lattice of r × r subsquares, that is, r Z2, and for
any set of bits S ⊂ I define

Sr := {those r × r squares that intersect S}.

In particular, Sr is the set of r-squares whose intersection with the spectral
sample S of f is nonempty. Following is an estimate for the probability that
S is very small, or, more generally, that Sr is very small.

Proposition 4.1. Let S be the spectral sample of f = f[0,R]2, the ±1 in-
dicator function of the left-right crossing of the square [0, R]2. For g(k) :=
2ϑ log2

2(k+2), with ϑ > 0 large enough, and γr(R) := (R/r)2α4(r, R)2,

∀k, R, r ∈ N+ P
[
|Sr| = k

]
≤ g(k) γr(R).

The square prefactor (R/r)2 in the definition of γr reflects the two dimen-
sionality of the ambient space — it corresponds to the number of different
ways to choose a square of size r inside [0, R]2. The factor α4(r, R)2 comes
from the second inequality in Lemma 3.2. In fact, since that lemma will turn
out to be sharp up to a constant factor (when the r-square is not close to the
boundary of [0, R]2), the k = 1 case of Proposition 4.1 is also sharp. When
we use this proposition, this will be important, as well as the fact that the
dependence on k is sub-exponential.

Recall from (2.5) that for critical site percolation on the triangular lat-
tice γr(R) = (r/R)1/2+o(1), as R/r → ∞. Also, note that for critical bond
percolation on Z2 we have γr(R) < O(1) (r/R)ǫ for some ǫ > 0 by (2.6).

Note that the proposition gives limR→∞ P
[
0 < |S | < C(log R)a

]
= 0 for

any C, a > 0. This is already stronger than the a = 1 and small C result of
[BKS99], whose proof used more analysis but less combinatorics.

In order to demonstrate the main ideas of the proof of the proposition
in a slightly simpler setting in which considerations having to do with the
boundary of the square do not appear, we will first state and prove a “local”
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version of this proposition. Then we will see in Subsection 4.3 that the
boundary of the square indeed has no significant effect; the main reason for
this is that the spectral sample “does not like” to be close to the boundary.

4.2 A local result

Proposition 4.2. Consider some quad Q, and let S be the spectral sample
of f = fQ, the ±1 indicator function for the crossing event in Q. Let U ′ ⊂
U ⊂ Q, let R denote the diameter of U , let a > 0, and suppose that the
distance from U ′ to the complement of U is at least a R. Let S(r, k) be the
collection of all sets S ⊂ I such that

∣∣(S ∩ U)r

∣∣ = k and S ∩ (U \ U ′) = ∅.
Then for g and γr as in Proposition 4.1, we have

∀k, r ∈ N+ P
[
S ∈ S(r, k)

]
≤ ca g(k) γr(R) ,

where ca is a constant that depends only on a.

We preface the proof of the proposition with a rough sketch of the main
ideas. When S ∈ S(r, k) and k is small, the set (S ∩ U)r has to consist of
one or very few “clusters” of squares that are small and well separated from
each other. The probability that (S ∩ U)r has just one cluster contained in
a specific small box B is estimated by (3.5) of Lemma 3.2. One may then
sum over an appropriate collection of B to get a reasonable bound for the
probability that diam(S ∩ U) is small while S ∩ U 6= ∅. To deal with the
case where S ∩ U has a few different well-separated clusters, we will prove a
generalization of (3.5). The more involved part of the proof will be to classify
the possible cluster structures of S and sum up the bounds corresponding
to each possibility.

Proof of Proposition 4.2. Let A be a finite collection of disjoint (topo-
logical) annuli in the plane; we call this an annulus structure. We say
that a set S ⊂ R2 is compatible with A if it is contained in R2 \⋃A and
intersects the inner disk of each annulus in A. Define h(A) as the probability
that each annulus in A has the four-arm event. By independence on disjoint
sets, we have

h(A) =
∏

A∈A
h(A) . (4.1)

Suppose that A is a set of annulus structures A, where each annulus A ⊂ A
is contained in Q, and A has the property that each S ∈ S(r, k) must be
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compatible with at least one A ∈ A. We claim that this set A satisfies

P
[
S ∈ S(r, k)

]
≤
∑

A∈A

h(A)2. (4.2)

For this, it is clearly sufficient to verify the following lemma, which is a
generalization of (3.5) from Lemma 3.2.

Lemma 4.3. For any annulus structure A with
⋃A ⊂ Q,

P
[
S is compatible with A

]
≤ h(A)2.

Proof. We write f(θ, η) for the value of f , where θ is the configuration
inside

⋃A and η is the configuration outside. For each θ, let Fθ be the
function of η defined by Fθ(η) := f(θ, η). If θ is such that there is an annulus
A ∈ A without the 4-arm event, then the connectivity of points ouside the
outer boundary of A does not depend on the configuration inside the inner
disk of A, and therefore Fθ does not depend on any of the variables in the
inner disk of A. Thus, if a subset of variables S is disjoint from

⋃A and
intersects this inner disk, then the corresponding Fourier coefficient vanishes:
F̂θ(S) = E[FθχS] = 0. Therefore, if we let W be the linear space of functions
spanned by {χS : S compatible with A}, and PW denotes the orthogonal
projection onto W , then PW Fθ 6= 0 implies the 4-arm event of θ in every
A ∈ A.

Now, observe that PW f = PW E[f | η], because for all g ∈ W we have
E
[
E[f | η] g

]
= E

[
E[f g | η]

]
= E[f g]. Next, note that E[f | η] = Eθ[Fθ],

where the right hand side is an expectation w.r.t. θ, hence is still a function
of η. Thus, PW f = PW Eθ[Fθ] = Eθ[PW Fθ]. Consequently,

P
[
S is compatible with A

]
= ‖PW f‖2 = ‖Eθ[PW Fθ]‖2 ≤ Eθ

[
‖PWFθ‖

]2
.

For every θ, the function Fθ is bounded by 1 in absolute value. Therefore,
‖Fθ‖ ≤ 1 for every θ. This implies ‖PWFθ‖ ≤ 1 for every θ (the norm is the
L2 norm and PW is an orthogonal projection). Hence, we get

P
[
S is compatible with A

]
≤ Pθ

[
PW Fθ 6= 0

]2 ≤ h(A)2.

This proves the lemma.

A trivial but important instance of (4.2) is when A = {∅}: the empty
annulus structure ∅ is compatible with any S, while h(∅)2 = 1.



4. THE PROBABILITY OF A VERY SMALL SPECTRAL SAMPLE 143

Now, for each set S ∈ S(r, k) we construct a compatible annulus structure
A(S), such that the set A = A(r, k) = {A(S) : S ∈ S(r, k)} will be small
enough for (4.2) to imply Proposition 4.2. The main idea for this construction
is that the spectral sample tends to be clustered together, which can already
be foreseen in Lemma 4.3: each additional thick annulus (corresponding to
some part of the spectral sample far from all other parts) decreases the weight
h(A)2 by quite a lot — more than what can be balanced by the number of
essentially different ways that this can happen. (We will make this vague
description of clustering more precise after the end of the proof, in Remark
4.5.)

We now prepare to define the annulus structure A(S) corresponding to
an S ∈ S(r, k), based on the geometry of S. For this definition, we need to
first define what we call clusters of S. Set V = VS := (S ∩ U)r; the set
of squares in the r Z2 lattice which meet S ∩ U . For j ∈ N+ let Gj be the
graph on V , where two squares are joined if their distance is at most 2j r,
and let G0 be the graph on V with no edges. If j ∈ N+ and C ⊂ V is a
connected component of Gj, but is not connected in Gj−1, then C is called a
level j cluster of S. The level 0 clusters are the connected components of G0,
that is, the singletons contained in V . The level of a cluster C is denoted by
j(C) = jS(C). The diameter of a cluster C is clearly at most 2j(C)+2 r |C|.

Let C be a cluster in S at some level j = j(C). We now associate to C
two “bounding” squares, as follows. Choose a point z ∈ C in an arbitrary
but fixed way (say the lowest among the leftmost points of C). Let z′ be
a point with both coordinates divisible by 2j r, which is closest to z, with
ties broken in some arbitrary but fixed manner. Define the inner bounding
square B(C) as the square with edge-length |C| 2j+4 r centered at z′ (with
edges parallel to the coordinate axes). Note that C ⊂ B(C) and the distance
from C to ∂B(C) is at least 2j+3 |C| r − 2j r − 2j+2 |C| r ≥ 2j r.

If C 6= V is a cluster, then the smallest cluster in V that properly contains
C will be called the parent of C and denoted by Cp. In this case, let the
outer bounding square B̄(C) = B̄S(C) of C be the square concentric with
B(C) having sidelength (2j(Cp)−4 r) ∧ (a R/4). For the case C = V , we let
B̄(V ) be the square concentric with B(V ) having sidelength a R/4.

It is not necessarily the case that B̄(C) ⊃ B(C). Also, it may happen
that for two disjoint clusters C, C ′ we have B(C) ∩B(C ′) 6= ∅. However, we
do have the following important properties of these squares, which are easy
to verify:
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1. if C ′ $ C is a subcluster of C, then B̄(C ′) ⊂ B(C);

2. if C and C ′ are disjoint clusters, then B̄(C) ∩ B̄(C ′) = ∅;

3. B(C) depends only on C; and

4. B̄(C) depends only on j(C), B(C) and j(Cp).

In the case where r ≥ a R/4, Proposition 4.2 is an immediate consequence
of (2.3). Assume therefore that r < a R/4. Then we also have B̄(C) ⊂ U for
every cluster C.

Define A(C) = AS(C) := B̄(C) \ B(C). Define an annulus structure
A1(S) associated with S by

A1(S) :=
{
AS(C) : C is a cluster in S, AS(C) 6= ∅

}
.

By properties 1 and 2 above, the different annuli in A1(S) are disjoint. See
Figure 4.1. It is also clear that A1(S) is compatible with S. However, we
still need to modify A1(S) for it to be useful.

Figure 4.1: A cluster with three child clusters, two of which have empty
annuli.

It follows from (2.6) that the function γr(2
j r) is decaying exponentially,

in the sense that there are absolute constants c0, c1 > 0 such that

γr(2
j′r) ≤ c0 2−c1(j′−j) γr(2

j r) if j′ > j ≥ 0 . (4.3)

It would be rather convenient in the proof below to have γr(2
j+1 r) ≤ γr(2

j r).
However, we do not want to try to prove this. Instead, we use the function
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γ̄r(ρ) := infρ′∈[1,ρ] γr(ρ
′) in place of γ. Clearly, γ̄ also satisfies (4.3) and

γ̄r(ρ) ≤ γr(ρ) ≤ O(1) γ̄r(ρ).
A cluster C will be called overcrowded if

g(|C|) γ̄r(2
j(C) r) > 1 ,

with the constant ϑ > 0 in the definition of g(k) to be determined later. In
particular, clusters at level 0 are overcrowded. For each overcrowded cluster,
we remove from A1(S) all the annuli corresponding to its proper subclusters.
The resulting annulus structure will be denoted A(S), still compatible with
S. Finally, we set A = A(r, k, U, U ′) := {A(S) : S ∈ S(r, k)}.

We will show that, for some constant c0 > 0,
∑

A∈A

h(A)2 ≤ O(1) (k/a)c0 g(k) γ̄r(R) . (4.4)

This and (4.2) together imply Proposition 4.2 (with possibly a different choice
for the constant ϑ).

For each S, there is a natural tree structure on the clusters. The root is
V itself, and the parent Cp of each cluster C 6= V is also its parent in the
tree. We will use this tree structure to build the bound (4.4) inductively: we
will write each term h(A)2 as a product of weights corresponding to smaller
annulus structures, with the trivial annulus structures of overcrowded clusters
as the base step.

For a cluster C of S let A′(C) denote the subset of A(S) corresponding
to the proper subclusters of C. Note that A′(C) depends only on C; that is,
it is not effected by a modification of S, as long as C remains a cluster of S.
Also note that A′(V ) = A(S) \ {AS(V )}, where V = VS.

Fix some j, k ∈ N+. If B = B(C), where |C| = k and j(C) = j, then the
coordinates of B are divisible by 2j r and its side-length is k 2j+4r. For such
B, define

A(B, k, j) :=
{
A′(S) : S ∈ S(r, k), B(VS) = B, jS(VS) = j

}
,

and
H(j, k) := sup

B

∑

A∈A(B,k,j)

h(A)2.

(Note that the sum on the right may depend on B, since it may happen, for
example, that B 6⊂ U ′.) Define J(k) := max{j ∈ N : g(k) γ̄r(2

j r) > 1} =
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O(ϑ) log2
2(k + 2). If j ≤ J(k), then every S ∈ S(r, k) with jS(VS) = j and

BS(VS) = B has VS overcrowded. Hence, in this case, A(B, k, j) = {∅} or
A(B, k, j) = ∅ and thus

∀j ≤ J(k) H(j, k) ≤ 1 . (4.5)

On the other hand, we will show by induction on j that

∀j ∈ N H(j, k) ≤
(
g(k) γ̄r(2

j r)
)1.99

. (4.6)

Before proving (4.6), let us demonstrate that it implies (4.4). If jS(VS) =
j (and S ∈ S(k, r)), then the number of possible choices for B(VS) is at most(
2R/(2j r)

)2
. If A(VS) 6= ∅, then the probability of the 4-arm event in A(VS)

is at most O(1) α4

(
k 2j r, a R

)
, by (2.3). Therefore,

∑

A∈A

h(A)2 ≤ O(1)

⌈log2(2R/r)⌉∑

j=0

(
R

2jr

)2

α4

(
k 2j r, a R

)2
H(j, k) .

Now, we use the quasi-multiplicativity of the 4-arm event, (2.3), (4.5) and
(4.6) to rewrite this as

∑

A∈A

h(A)2 ≤
⌈log2(2R/r)⌉∑

j=0

O(1) (k/a)c0
γ̄r(R)

γ̄r(2jr)
H(j, k) (4.7)

≤ O(1) (k/a)c0 γ̄r(R)
( ∑

j≤J(k)

1

γ̄r(2jr)
+
∑

j>J(k)

g(k)1.99 γ̄r(2
j r)0.99

)
,

for some finite constant c0. Because (4.3) holds for γ̄, the first sum is domi-
nated by a constant times the summand corresponding to j = J(k) and the
second sum is dominated by a constant times the summand corresponding
to j = J(k) + 1. Since γ̄r(2

J(k) r) > 1/g(k) and γ̄r(2
J(k)+1 r) ≤ 1/g(k), we

get the bound claimed in (4.4).

In order to complete the proof of Proposition 4.2, all that remains is to
establish (4.6). The proof of this inequality will be inductive and somewhat
similar to the proof of (4.4) from (4.6), but there are some important dif-
ferences. In passing from (4.6) to (4.4), we lost the power 1.99. Such a loss
would not be sustainable if it had to be repeated in every inductive step.
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What saves us in the following proof of (4.6) is that clusters that are not
singletons have more than one child cluster. This results in almost squaring
the estimate at each inductive step, which makes the proof work.

We now proceed to prove (4.6) by induction. Since γ̄ is non-increasing, (4.6)
holds for all j ≤ J(k). We now assume that j > J(k) and that (4.6) holds for
all smaller values of j. Fix some square B such that A(B, k, j) 6= ∅. Observe
that if BS(VS) = B, then S has some d = d(S) ≥ 2 children in its tree of clus-
ters (we know d 6= 0 because j > J(k)). Fix some d ∈ {2, 3, . . .}, k1, . . . , kd,
j1, . . . , jd and sub-squares B1, . . . , Bd such that there is some S ∈ S(k, r)
with jS(VS) = j, BS(VS) = B, and having cluster children C1, . . . , Cd with
|Ci| = ki, j(Ci) = ji and B(Ci) = Bi. Note that Ai := AS(Ci) does not
depend on the choice of S satisfying the above (by property 4 of squares
noted previously).

Let A′ = A′(d, k1, . . . , kd, B1, . . . , Bd) denote the set of all elements of
A(B, k, j) that arise from such an S. Note that every A ∈ A

′ is of the form
{A1, . . . , Ad} ∪

⋃d
i=1Ai, where Ai ∈ A(Bi, ki, ji). For such an A, we have

by (4.1)

h(A) =
d∏

i=1

(
h(Ai) h(Ai)

)
.

Hence,

∑

A∈A′

h(A)2 ≤
∑

A1∈A(B1,k1,j1)

∑

A2∈A(B2,k2,j2)

· · ·
∑

Ad∈A(Bd,kd,jd)

d∏

i=1

(
h(Ai) h(Ai)

)2

=

d∏

i=1

(
h(Ai)

2
∑

A∈A(Bi,ki,ji)

h(A)2
)

=

d∏

i=1

(
h(Ai)

2 H(ji, ki)
)
.

Now, h(Ai) = O(1) α4(ki 2
ji r, 2j r), where we use the convention that α4(ρ, ρ′) =

1 if ρ ≥ ρ′. Furthermore, given B, d, j1, . . . , jd and k1, . . . , kd, there are no
more than O(1) (k 2j−ji)2 possible choices for Bi. Hence, summing the above
over all such choices, we get

H(j, k) ≤
k∑

d=2

∑

(j1,...,jd)

(k1,...,kd)

d∏

i=1

(
O(k 2j−ji)2 α4(ki 2

ji r, 2j r)2 H(ji, ki)
)
.
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The inductive hypothesis (4.6) for each of the pairs (ji, ki) implies H(ji, ki) ≤
γ̄r(2

ji r) g(ki) when ji > J(ki), and this also obviously holds when ji ≤
J(ki). We now use this, together with the quasi-multiplicativity and the
RSW estimate (2.3), as before, to obtain

H(j, k) ≤
k∑

d=2

∑

(j1,...,jd)

(k1,...,kd)

d∏

i=1

(
O(k)2 k

O(1)
i

γ̄r(2
jr)

γ̄r(2jir)
γ̄r(2

ji r) g(ki)
)

≤
k∑

d=2

∑

(j1,...,jd)

(k1,...,kd)

d∏

i=1

(
O(k)O(1) γ̄r(2

j r) g(ki)
)

≤
k∑

d=2

(
O(k)O(1) j γ̄r(2

j r)
)d ∑

(k1,...,kd)

d∏

i=1

g(ki) .

(4.8)

Since log2
2(x + 2) is concave on [0,∞), it follows that when k1 + · · ·+ kd = k,

we have
∏d

i=1 g(ki) ≤ g(k/d)d. Since for a fixed d the number of possible
d-tuples (k1, . . . , kd) is clearly bounded by kd, the above gives

H(j, k) ≤
k∑

d=2

(
c kc j γ̄r(2

j r) g(k/d)
)d

,

for some constant c. Noting that g(k/d) ≤ g(k/2), and setting

Φ = Φ(j, k) := c kc j γ̄r(2
j r) g(k/2),

we then get H(j, k) ≤ Φ2 + Φ3 + Φ4 + · · · = Φ2/(1 − Φ). Consequently,
the proof of (4.6) and of Proposition 4.2 are completed by the following
lemma.

Lemma 4.4. For all ǫ ∈ (0, 1/2), if ϑ in the definition of g is chosen suffi-
cently large (depending only on ǫ), then for all k ∈ N+ and all j > J(k),

Φ(j, k) <
(
g(k) γ̄r(2

j r)
)1−ǫ

/2 (4.9)

and Φ(j, k) < 1/2.

Proof. The estimate Φ < 1/2 follows from (4.9), since g(k) γ̄r(2
j r) ≤ 1.

Write

Φ/
(
g(k) γ̄r(2

j r)
)1−ǫ

= c kc γ̄r(2
j r)ǫ j g(k/2)ǫ

(
g(k/2)/g(k)

)1−ǫ

. (4.10)
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Since (4.3) holds for γ̄ and γ̄r(2
J(k)+1 r) g(k) ≤ 1, we have γ̄r(2

j r)ǫg(k/2)ǫ ≤
γ̄r(2

j r)ǫg(k)ǫ ≤ O(1) 2−ǫ c1(j−J(k)). Hence, j γ̄r(2
j r)ǫg(k/2)ǫ ≤ Oǫ

(
J(k) + 1

)
.

As we noted before, J(k) = O(ϑ) log2
2(k + 2). Hence, (4.10) gives

Φ/
(
g(k) γ̄r(2

j r)
)1−ǫ ≤ Oǫ(ϑ) log2

2(k + 2) kc
(
g(k/2)/g(k)

)1/2

.

It is easy to verify that the right hand side tends to 0 as ϑ→∞, uniformly
in k ∈ N+. This completes the proof.

For later use, let us point out that having an exponent larger than 1
in (4.6) was important when we derived the bound (4.4), but not for the
induction. In (4.8), we used only the bound (4.6) with the exponent 1. This
was sufficient because of d ≥ 2.

Remark 4.5. Our proof shows a clustering effect for spectral samples of
very small size. Firstly, a positive proportion of our main upper bound (4.4)
comes from annulus structures with a single overcrowded cluster, as it is
clear from (4.7). Moreover, the contribution from sets with large diameter
is small: for any d ≤ R

r
, the calculation in (4.7) implies immediately that if

k ≤ O(1) log2 d, then

P
[
S ∈ S(r, k), diam(S ) > rd

]
≤ γr(R) γr(rd)1+o(1) d o(1)

(of course, the exponent 0.99 in (4.7) can be modified to 1+o(1)). Recall that
(4.3) says γr(rd) < O(1) d−c1 for some c1 > 0. Since we will see in Section 5
that Lemma 3.2 is sharp, and will handle the boundary issues in Subsection
4.3, we easily obtain that P

[
1 ≤ |Sr| ≤ k

]
≥ P

[
|Sr| = 1

]
≥ O(1)γr(R).

Therefore the above bound gives for k ≤ O(1) log2 d that

P
[
diam(S ) > rd

∣∣∣ 1 ≤ |Sr| ≤ k
]
≤ γr(rd) 1+o(1) .

To illustrate this formula (with r = 1), if one is looking for spectral samples
of size less than log R, then they have small diameter:

P
[
diam(S ) > Rα

∣∣∣ 1 ≤ |S | ≤ log R
]
≤ γ(Rα)1+o(1),

which for the triangular lattice gives R−α/2+o(1).
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Remark 4.6. Our strategy proving Proposition 4.1 also works for pivotals,
showing

P
[
|Pr| = k

]
≤ g(k) α6(r, R) (R/r)2 .

The only difference is that we need to replace the factor α4(r, R)2, coming
from Lemma 3.2 and its generalization Lemma 4.3, with α6(r, R). The reason
for this factor is that having pivotals in the inner disk of an annulus but no
pivotals in the annulus itself corresponds to the 6-arm event in the annulus.
On Z2 it is known that α6(r, R) (R/r)2 ≤ O(1) (R/r)ǫ for some ǫ > 0 [SS05,
Corollary A.8]; on the triangular lattice, α6(r, R) (R/r)2 = (r/R)11/12+o(1)

[SW01]. Thus the clustering effect for pivotals is expressed here in the fol-
lowing way:

P
[
diam(P) > Rα

∣∣∣ 1 ≤ |P| ≤ log R
]
≤ R2αα6(R

α)1+o(1),

which for the triangular lattice gives R−
11
12

α+o(1).

4.3 Handling boundary issues

Proof of Proposition 4.1. Since the proof is rather similar to that of
Proposition 4.2, we will just indicate the necessary modifications.

First of all, we need the half-plane and quarter-plane j-arm events.
So let α+

j (r, R) be the probability of having j disjoint arms of alternating
colors connecting ∂B(0, r) to ∂B(0, R) inside the half-annulus (B(0, R) \
B(0, r))∩(R×R+). Similarly, α++

j (r, R) is the probability of having j arms of
alternating colors connecting ∂B(0, r) to ∂B(0, R) inside the quarter-annulus
(B(0, R) \ B(0, r)) ∩ (R+ × R+). As before, we let α+

j (R) := α+
j (2j, R) and

similarly for α++
j . The RSW and quasi-multiplicativity bounds (2.1, 2.2)

hold for these quantities, as well.
The reason for these definitions is that if x is a point on one of the sides

of [0, R]2 such that its distance from the other sides is at least r′, then the
percolation configuration inside B(x, r) has an effect on the crossing event
only if we have the 3-arm event in the half-annulus (B(x, r′)\B(x, r))∩[0, R]2.
Similarly, if x is one of the corners of [0, R]2, and r′ ≤ R, then we need the
2-arm event in the quarter-annulus (B(x, r′) \ B(x, r)) ∩ [0, R]2 in order for
the configuration inside B(x, r) to have any effect.

In the annulus structures we are going to build, we will have to consider
clusters that are close to a side or even to a corner of [0, R]2. These will be
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called side and corner clusters (defined precisely below). To understand the
contribution of such clusters, we define

γ+
r (ρ) := (ρ/r) α+

3 (r, ρ)2 and γ++
r (ρ) := α++

2 (r, ρ)2.

The function γ+
r plays a role similar to γr, but in relation to the side clusters.

Similarly, γ++
r relates to the corner clusters. The motivation for the linear

prefactor of ρ/r in the definition of γ+
r is that (up to a constant factor) the

number of different ways to choose a square of some fixed size whose center
is on a line segment of length ρ and whose position on the line segment is
divisible by ρ′ is ρ/ρ′, when ρ > ρ′ > 0. Such a prefactor is not necessary in
the case of γ++

r , because it corresponds to a corner, and there is no choice in
placing a square of a fixed size into a fixed corner.

As we will see, the key reason for the boundary ∂[0, R]2 to play no signif-
icant role in the behavior of the spectral sample is that there is a δ > 0 and
a constant c such that when r ≤ ρ′ ≤ ρ

γ+
r (ρ)

γ+
r (ρ′)

≤ c
( γr(ρ)

γr(ρ′)

)1+δ

and
γ++

r (ρ)

γ++
r (ρ′)

≤ c
( γr(ρ)

γr(ρ′)

)1+δ

. (4.11)

We now prove these inequalities. Firstly, it is known that

α+
3 (ρ′, ρ) ≍ (ρ′/ρ)2, (4.12)

see [Wer07, First exercise sheet]. Hence γ+
r (ρ)/γ+

r (ρ′) ≍ (ρ′/ρ)3. Secondly,
observe that

α++
2 (ρ′, ρ)2 ≤ α+

4 (ρ′, ρ) ≤ α+
3 (ρ′, ρ) α+

1 (ρ′, ρ) ≤ O(1) α+
3 (ρ′, ρ) (ρ′/ρ)ǫ,

(4.13)
with some ǫ > 0, where the second step used Reimer’s inequality [Rei00] (or
color-switching and the BK inequality), and the third step used RSW for
the 1-arm half-plane event. Therefore, γ++

r (ρ)/γ++
r (ρ′) ≤ O(1)(ρ′/ρ)2+ǫ. On

the other hand, (2.6) implies that γr(ρ)/γr(ρ
′) ≥ (ρ′/ρ)2−ǫ′ for some ǫ′ > 0.

Combining these upper and lower bounds we get (4.11).

After these preparations, we define S(r, k) as the set of all S ⊂ I such
that |Sr| = k. The set V = VS is defined as Sr. As it turns out, we will
need to limit the diameters of the clusters. For that purpose, set j̄ = j̄k :=
⌊log2(R/(k r))⌋ − 5 and J := {0, 1, . . . , j̄}. Clearly, we may assume without
loss of generality that j̄ > 0. The clusters at level 0 are once again the sets of
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the type C = {x}, where x ∈ V . If j ∈ J , then an interior cluster at level
j is defined as a connected component C ⊂ V of Gj such that the distance
from C to ∂([0, R]2) is larger than 2j r and C is not connected in Gj−1. The
interior clusters at level 0 are just the connected components of G0; that is,
the singletons in V . Inductively, we define the side clusters: a connected
component C ⊂ V of Gj is a side cluster at level j ∈ J if it is within distance
2j r of precisely one of the four boundary edges of [0, R]2 and it is not a side
cluster at any level j′ ∈ {1, 2, . . . , j−1}. Likewise, a corner cluster at level
j ∈ J is a connected component C ⊂ V of Gj that is within distance 2j r of
precisely two adjacent boundary edges of [0, R]2, but is not a corner cluster
at any level j′ ∈ {1, 2, . . . , j − 1}. Finally, the unique top cluster has level
j̄ +1 (by definition) and consists of all of V . With these choices, when j ∈ J
every connected component of Gj is either an interior, side, or corner cluster,
and this is the reason for setting the upper bound j̄.

Note that the top cluster contains at least one cluster (which could be a
side cluster or a corner cluster or an interior cluster), a corner cluster contains
at least one side or interior cluster, and possibly also a corner cluster, a side
cluster contains an interior cluster or at least two side clusters (but no corner
clusters), and an interior cluster at level j > 0 contains at least two interior
clusters (and no side or corner clusters).

The inner and outer bounding squares associated with the clusters are
defined as before, except that the squares associated with side clusters are
centered at points on the corresponding edge and squares associated with
corner clusters are centered at the corresponding corner, which is the meeting
point of the two sides of [0, R]2 closest to the cluster. There are no squares
associated with the top cluster. The annulus associated with each cluster
(other than the top cluster, which does not have its own annulus) is the
annulus between its outer square and its inner square, provided that the
outer square strictly contains the inner square.

We define γ̄+
r (ρ) := infρ′∈[r,ρ] γ

+
r (ρ) and similarly for γ̄++

r . The exponential
decay (4.3) holds for these functions as well. As before, clusters (even side or
corner clusters) are considered overcrowded if they satisfy g(|C|) γr(2

j r) > 1,
and the annulus structure A(S) is defined as above.

There are some modifications necessary in the definition of h(A) in order
for (4.2) to still hold in the present setting. For a side annulus A define h(A)
as the probability of the 3-arm crossing event within A∩ [0, R]2 between the
two boundary components of A, and for a corner annulus define h(A) as the
probability of the 2-arm crossing event within A ∩ [0, R]2 between the two
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boundary components of A. With these modifications, (4.2) still holds, and
the proof is essentially the same.

The definition of H(j, k) is similar to the one in the proof of Propo-
sition 4.2, but now the supremum only refers to interior squares. (In the
definition of A(B, k, j), we presently restrict to such S so that VS is an inte-
rior cluster at level j, in addition to being the top cluster, and when we write
B(VS), it is understood as the inner square defined for an interior cluster.)
We also define H+(j, k), H++(j, k), which refer to the supremum over side
and corner squares, respectively. We also set

H�(R, k) :=
∑

S∈S(k,r)

h
(
A(S)

)2
,

and our goal is to show that this quantity is at most g(k) γr(R).
We first prove a similar bound on H+(j, k). It is convenient to separate

the annulus structures A′(S) where BS(VS) = B and B is a side square into
those where VS has a single child cluster and into those where VS has at least
two child clusters. In the case of a single child cluster, that child has to be
an interior cluster, and using (4.6), the argument giving (4.4) now gives the
bound ∑

A
h(A)2 ≤ O(1) kO(1)g(k) γ̄r(2

j r) ,

where the sum extends over such (single interior cluster child) annulus struc-
tures. By increasing the constant ϑ in the definition of g, we may then
incorporate the factor O(1) kO(1) into g. The bound on the sum over the
annulus structures with at least two child clusters can now be established
by induction on j, in almost the same way that (4.6) was proved by induc-
tion. The main difference here is that the children can fall into two types,
which slightly complicates the calculations but adds no significant difficulties.
(Indeed, since each square among Bi at level ji (i = 1, 2, . . . , d) can either
correspond to a side cluster or an interior cluster, each factor in the first row
of (4.8) presently needs to be replaced by

O(k)2 k
O(1)
i

( γ̄r(2
jr)

γ̄r(2jir)
+

γ̄+
r (2jr)

γ̄+
r (2jir)

)
γ̄r(2

ji r) g(ki) .

Thanks to (4.11), the fraction featuring γ̄+ is dominated by a constant times
the other fraction and is therefore certainly inconsequential.) A point worth
noting is that in the inductive prove of (4.6) we only used the inductive
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hypothesis with exponent 1 in place of 1.99. In our present situation, this
is what we have at our disposal in the base step of the induction, since the
induction now has to be started from overcrowded clusters or side clusters
with a single child cluster.

Summing up the two types, we conclude (by changing ϑ again, if nec-
essary) that H+(j, k) ≤ g(k) γ̄r(2

j r). Of course, in this type of argument
we should not change ϑ at every induction step, for then it may end up
depending on R. But we have not committed any such offence.

We can show H++(j, k) ≤ g(k) γ̄r(2
j r) similarly. We separate the annulus

structures into those with a single child at the top level that is an interior
cluster, those with a single child that is a side cluster, and those with several
children at the top level. The first type is handled as in the bound for
H+(j, k). The second type is handled similarly, but now we do not have
the exponent 1.99 as in (4.6), but only the exponent 1 that we showed for
H+(j, k). So, we use instead the fact that δ > 0 in (4.11). The argument
bounding the third type uses induction as in the multi-child case of H+(j, k).

Finally, the bound for H�(R, k) follows in the same way, using our previ-
ous bounds for H+(j, k) and H++(j, k) together with (4.11). The last small
difference is that the child clusters of the top cluster (at some levels ji) have
outer bounding squares of size ≍ r2j̄, but the number of ways to place each
of these clusters is ≍ (R/(r2ji))2, instead of ≍ (2j̄/2ji)2. But R/(r2j̄) ≍ k,
so this discrepancy gives only an O(k2) factor for each child cluster, which
can be absorbed into g(k) in the usual way. This completes the proof.

4.4 The radial case

In this subsection, we will consider the spectral sample S = Sf , where f
is the indicator function (not the ±1-indicator function) of the ℓ-arm event
in the annulus [−R, R]2 \ [−ℓ, ℓ]2 and ℓ = 1 or ℓ ∈ 2 N+. Thus, E

[
f
]

=
E
[
f 2
]
≍ αℓ(R). Instead of the probability measure for S that we have

worked with so far, it will be easier notationally to use the un-normalized
measure Q

[
S = S

]
:= f̂(S)2.

For any S ⊂ R2, we let S∗ := S ∪ {0}, and define Sr as before. In
particular, S ∗

r is the set of r-squares whose intersection with S ∗ is nonempty.
We are going to prove the following analogue of Proposition 4.1:

Proposition 4.7. Let ℓ = 1 or ℓ ∈ 2 N+, and let S denote the spectral
sample of the indicator function of the ℓ-arm event in the annulus [−R, R]2 \
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[−ℓ, ℓ]2. Then there is some ϑ∗ = ϑ∗ℓ > 0 such that

Q
[
|Sr| = k

]
≤ g∗(k) αℓ(r, R)2 αℓ(r).

holds with g∗(k) := 2ϑ∗ log2
2(k+2) for all k ∈ N+ and all R ≥ r ≥ ℓ.

Proof. The main difference from the square crossing case is that we will
use centered annulus structures, which have two kinds of annuli: annuli
centered at the origin (0), for which we are interested in the ℓ-arm event, and
annuli with outer square disjoint from 0, for which we are interested in the
4-arm event. Each centered annulus structure is required to have an annulus
centered at 0 whose inner square does not contain any other annuli. The
inner radius of the annulus structure is defined as the inner radius of this
innermost centered annulus. For a centered annulus structure A, we define
h∗(A) to be the probability of having the 4-arm event in the annuli with
outer square disjoint from 0 and the ℓ-arm event in the annuli centered at 0.
Now, we have the following analogue of Lemma 4.3.

Lemma 4.8. For any centered annulus structure A with inner radius rA,

Q
[
S
∗ is compatible with A

]
≤ αℓ(rA) h∗(A)2.

Proof. Similarly to the proof of Lemma 4.3, we divide the set of relevant
bits into parts: θ is the configuration inside

⋃A, while η0 is the configu-
ration inside the inner disk of the smallest centered annulus, and η1 is the
configuration neither in θ nor in η0. As before, Fθ is the function defined
by Fθ(η0, η1) := f(θ, η0, η1); furthermore, W is the linear space of functions
spanned by {χS : S∗ compatible with A}, and PW denotes the orthogonal
projection onto W . Now, PWFθ 6= 0 implies the 4-arm event in every in-
terior non-centered A ∈ A, the ℓ-arm event in every centered A ∈ A, and
the 3-arm event in every boundary (or corner) annulus. (Note that this
uses the fact that when ℓ 6= 1 we are considering the alternating arms
event. In particular, we are restricted to ℓ ∈ {1} ∪ 2 N+.) Moreover, for
any θ, we have Fθ(η0, η1) = 0 if η0 does not have the ℓ-arm event. Thus,
‖PWFθ‖2 ≤ ‖Fθ‖2 = E[F 2

θ ] ≤ αℓ(rA). Altogether, similarly to the proof of
Lemma 4.3,

Q
[
S
∗ is compatible with A

]
= ‖PWf‖2 ≤ Eθ

[
‖PWFθ‖

]2

≤ Pθ
[
PWFθ 6= 0

]2
αℓ(rA) ≤ h∗(A)2 αℓ(rA),
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which proves the lemma.

Note that a centered annulus structure compatible with S is also com-
patible with S

∗, but not necessarily vice versa, hence the lemma is stronger
with S ∗ than it would be with S ; this strengthening will be crucial for us
in the sequel.

Analogously to Subsection 4.2, for each S ⊂ [−R, R]2 with |Sr| = k
we will build a centered annulus structure A(S) that is compatible with S∗

(but not necessarily with S itself!) and that has rA(S) ≥ r. Furthermore,
the collection A∗(R, k) of all these centered annulus structures will be small
enough to have ∑

A∈A∗(R,k)

h∗(A)2 ≤ g∗(k) αℓ(r, R)2. (4.14)

The combination of (4.14) with Lemma 4.8 proves Proposition 4.7.
To construct the annulus structure A(S), we take V = VS to be S∗r , set

j̄ := ⌊log2(R/(kr))⌋− 5, and define the clusters exactly as in Subsection 4.3.
A cluster is called centered if it contains 0. In constructing the inner and
outer bounding squares, we use the additional rule that for centered clusters
C the inner bounding square must be centered at 0. (Note that this is just
a special case of the “arbitrary but fixed way” of choosing a vertex z ∈ C.)

The centered analogue of γr(ρ) is now γ∗r (ρ) := αℓ(r, ρ)2. We again let
γ̄∗r (ρ) := infρ′∈[r,ρ] γ

∗
r (ρ
′), and we note the exponential decay (4.3) for γ̄∗r (r2

j)
in j. A non-centered cluster C is called overcrowded if g(|C|) γ̄r(r2

j(C)) > 1,
with the function g(k) of Proposition 4.1. A centered cluster is overcrowded
if g∗(|C|) γ̄∗r(r2

j(C)) > 1. We define J(k) as before, using g(k), and similarly
define J∗(k), using g∗(k). In particular, γ̄∗r (r2

J∗(k)) g∗(k) ≍ 1.
Using these notions of overcrowded, we get our annulus structure A(S).

The collection of them for all S ⊂ I with |S| ≤ k is A
∗(R, k).

We define H(j, k) similarly as before, but now only for interior inner
bounding squares that do not contain 0. We similarly define the quantities
H+(j, k) and H++(j, k) for side and corner squares not containing 0. Finally,
we let H∗(j, k) be the analogous quantity where the inner bounding square
is required to be centered. We will show that there is some constant δ > 0,
depending only on ℓ, such that, for j ∈ {J∗(k), . . . , j̄},

H∗(j, k) ≤
(
g∗(k) γ̄∗r (r2

j)
)1+δ

. (4.15)

This implies (4.14) (with a possibly larger constant ϑ∗) in exactly the same
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way as in Subsection 4.2 the bound (4.6) implied (4.4) (with the small addi-
tional care regarding the cutoff j̄ that we have seen in Subsection 4.3).

As usual, we prove (4.15) by induction on j. We may assume that
j > J∗(k). Recall that H∗(j, k) is defined as a sum, where each summand
corresponds to a centered annulus structure. Suppose that A is a centered
annulus structure contributing to the sum, where A = A(S) for some S ⊂ I
with |Sr| = k. Let j∗ be j(C∗), where C∗ is the largest proper centered
subcluster of S∗r , and let k∗ = |C∗ ∩ Sr|. Every such A can be formed as a
union of the topmost (centered) annulus in A, a centered annulus structure
A∗ for (j∗, k∗), and the annulus structure A′ formed by dropping from A all
the centered annuli. Moreover,

h∗(A)2 ≍ (k + 2)O(1) h∗(A∗)2 h(A′)2 αℓ(r 2j∗ , r 2j)2.

The sum over such A with j∗ and k∗ fixed is bounded by

(k + 2)O(1) αℓ(r 2j∗ , r 2j)2
(∑

A∗

h∗(A∗)2
)(∑

A′

h(A′)2
)
,

where the sums run over the appropriate collections of annulus structures.
The first sum is bounded by H∗(j∗, k∗), and the proof of (4.4), possibly
incorporating boundary clusters, shows that the second factor is bounded by
g(k − k∗) γ̄r(r 2j), with possibly a different choice of the constant ϑ implicit
in g. (Note that the annulus structure A′ may have just one annulus whose
outer square is roughly at the scale corresponding to j. For that reason, it is
of the type estimated in (4.4), rather than the type estimated in (4.6).) The
induction hypothesis therefore gives

H∗(j, k) ≤ (k + 2)O(1)
∑

k∗,j∗

αℓ(r2
j∗, r2j)2 g∗(k∗) γ̄∗r (r2

j∗) g(k − k∗) γ̄r(r2
j)

≤ (k + 2)O(1) g(k) g∗(k) j γ̄r(r2
j) γ̄∗r (r2

j) .

If δ > 0 is small enough, then j γ̄r(r2
j) ≤ O(1) γ̄∗r(r2

j)δ. Given this δ,
if ϑ∗ is large enough, we also have O(1) (k + 2)O(1)g(k) ≤ g∗(k)δ. Thus, our

last upper bound is at most
(
g∗(k) γ̄∗r (r2

j)
)1+δ

, so (4.15) is proved, and our
proof of Proposition 4.7 is complete.
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5 Partial independence in spectral sample

5.1 Setup and main statement

Let S denote the spectral sample of the ±1 indicator function of having a
percolation left-right crossing in [0, R]2 (in either of our two favorite lattices).
In order to prove that |S | is rarely much smaller than its mean it would be
useful to have some independence of the following kind: if B1, B2 are two
distant squares, then we would expect that

P
[
S ∩B1 = S1

∣∣ S ∩B1 6= ∅, S ∩ B2 = S2

]
≍

P
[
S ∩B1 = S1

∣∣ S ∩B1 6= ∅
]
.

It turns out that it is hard to control such correlations. Nevertheless, we will
prove a weaker independence result that will be enough for our purposes.

Consider some box B of radius r inside [0, R]2. (Recall from Section 2.1
that a box B(x, r) of radius r is the union of tiles whose centers are in
x + [−r, r)2.) We want to understand the behaviour of S in B. Because of
boundary issues, we will actually look at S in a smaller concentric box B′,
of radius r/3.

We saw in (3.7) that O(1) E
[
|S ∩ B′|

∣∣ S ∩ B 6= ∅
]
≥ r2 α4(r). In this

section, we will strengthen this by proving that |S ∩ B′| is at least of this
size with a uniform positive probability, moreover, this remains true when
we add S ∩W = ∅ to the conditioning, where W is an arbitrary set in the
complement of B:

P
[
|S ∩ B′| ≥ c r2α4(r)

∣∣ S ∩ B 6= ∅, S ∩W = ∅
]

> a , (5.1)

with some fixed constants c, a > 0. However, the following stronger statement
is closer to what we actually need.

Proposition 5.1. Let S be the spectral sample of the ±1-indicator function
of the left-right crossing event in Q = [0, R]2. Let B be a box of some radius
r. Let B′ be the concentric box with radius r/3, and assume that B′ ⊂ Q. We
also assume that r ≥ r̄, where r̄ > 0 is some universal constant. Fix any set
W ⊂ R2 \B, and let Z be a random subset of I that is independent from S ,
where each element of I is in Z with probability 1/(α4(r) r2) independently.
(By (2.6), α4(r) r2 ≥ 1 if r̄ is sufficiently large.) Then

P
[
S ∩ B′ ∩ Z 6= ∅

∣∣ S ∩ B 6= ∅, S ∩W = ∅
]

> a ,
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where a > 0 is a universal constant.

The estimate (5.1) follows immediately from the proposition, since

P
[
S ∩ B′ ∩ Z 6= ∅

∣∣ S ∩ B′, S ∩ B 6= ∅, S ∩W = ∅
]

= 1−
(
1− r−2 α4(r)

−1
)|S∩B′|

.

It is important to note that in the proposition the constant a > 0 is
independent of the position of the box B relative to the square [0, R]2. Such
a uniform control over the domain is harder to achieve in the case of general
quads. Still, after proving this uniform result for the square we will prove
a local version (Proposition 5.11) for general quads. We will also prove a
radial version (Proposition 5.12), which will be important for the application
to exceptional times of dynamical percolation.

The proof of the proposition is straightforward once we have the following
bounds on the first and second moments. Recall the definition of λB,W right
before Lemma 2.2.

Proposition 5.2 (First moment). Assume the setup of Proposition 5.1.
There is an absolute constant c1 > 0 such that for any x ∈ B′ ∩ I,

P
[
x ∈ S , S ∩W = ∅

]
≥ c1 E

[
λ2

B,W

]
α4(r). (5.2)

Proposition 5.3 (Second moment). Let S be the spectral sample of f =
fQ, where Q ⊂ R2 is some arbitrary quad. Let z ∈ Q and r > 0. Set
B := B(z, r) and B′ := B(z, r/3). Suppose that B(z, r/2) ⊂ Q. Then for
every x, y ∈ B′ ∩ I we have

P
[
x, y ∈ S , S ∩W = ∅

]
≤ c2 E

[
λ2

B,W

]
α4(|x− y|) α4(r) , (5.3)

where c2 <∞ is an absolute constant.

Proof of Proposition 5.1 (assuming the first and second moment esti-
mates). Consider the random variable

Y := |S ∩B′ ∩ Z| 1{S∩W=∅}.

Since Z is independent from S and P[x ∈ Z] = 1/(α4(r) r2), we obtain by
summing (5.2) over all x ∈ B′ ∩ I that O(1) E[Y ] ≥ E

[
λ2

B,W

]
. On the other
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hand, summing (5.3) over all x, y ∈ B′ ∩ I, similarly to the second moment
estimate in Lemma 3.1, gives

E[Y 2] ≤
diagonal term︷ ︸︸ ︷

O(1) E
[
λ2

B,W

]
α4(r) r2 P

[
x ∈ Z

]
+

off-diagonal term︷ ︸︸ ︷
O(1) E

[
λ2

B,W

]
α4(r)

2 r4 P
[
x ∈ Z

]2

≤ O(1) E
[
λ2

B,W

]
,

by our choice of P
[
x ∈ Z

]
. Note that this choice is of the smallest possible

order that does not make the diagonal term the leading contribution. Now,
by Cauchy-Schwarz,

P
[
Y > 0

]
≥ E[Y ]2

E
[
Y 2
] ≥ E[λ2

B,W ]
2

O(1) E[λ2
B,W ]

=
E
[
λ2

B,W

]

O(1)
. (5.4)

The proposition now follows from Lemma 2.2.

Remark 5.4. P
[
S ∩B 6= ∅, S ∩W = ∅

]
is obviously not smaller than the

left hand side of (5.4). Therefore, (5.4) and Lemma 2.2 imply that in the
present setting

P
[
S ∩B 6= ∅, S ∩W = ∅

]
≍ E

[
λ2

B,W

]
. (5.5)

The definition of λB,W easily gives

E
[
λ2

B,∅
]

= α�(B,Q) and λB,Bc = α�(B,Q) . (5.6)

Combining these with (5.5), we get that for B as above, approximate equal-
ities hold in Lemma 3.2, i.e.,

P
[
S ∩ B 6= ∅

]
≍ α�(B,Q) and P

[
∅ 6= S ⊆ B

]
≍ α�(B,Q)2 . (5.7)

5.2 Bounding the second moment

Due to the way in which λB,W was defined, it is generally easier to obtain
λB,W as an upper bound up to constants, than as a lower bound up to
constants. Consequently, the second moment estimate is easier to prove, and
for this reason we start with that.
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Proof of Proposition 5.3. Let θ denote the restriction of ω to the
complement of W ∪ {x, y}. Then Lemma 2.1 gives

P
[
x, y ∈ S , S ∩W = ∅

]
= P

[
S ∩ (W ∪ {x, y}) = {x, y}

]

= E
[
E
[
χ{x,y}(ω) f(ω)

∣∣ θ
]2]

.
(5.8)

Set
g(θ) := E

[
χ{x,y}(ω) f(ω)

∣∣ θ
]
.

Then E
[
g2
]

is the quantity that we need to estimate. Since B ∩W = ∅, the
information in θ includes the configuration in B \ {x, y}. If ω does not have
the 4 arm event from the tile of x to distance |x−y|/4, then flipping ωx does
not effect f(ω), and hence g(θ) = 0. A similar statement holds for y. Also, if
the box B̃ of radius 2 |x−y| centered at (x+y)/2 does not intersect ∂B, then
g(θ) = 0 unless ω has the 4 arm event in the corresponding annulus B \ B̃.
Let Ax, Ay and Ax,y denote the indicator functions for the 4-arm event in the
corresponding 3 annuli, where we take Ax,y = 1 if B̃∩∂B 6= ∅. Then we have
g(θ) = 0 if Ax Ay Ax,y = 0.

We now argue that |g(θ)| ≤ λB,W . For this purpose, write

g = E
[
χ{x,y}f

∣∣ F(W∪{x,y})c

]
= E

[
E[χ{x,y}f | F{x,y}c ]

∣∣ FW c

]
.

Clearly,
∣∣E[χ{x,y}f | F{x,y}c ]

∣∣ ≤ 1Λ{x,y} ≤ 1ΛB
, where Λ· is as defined above

Lemma 2.2. Taking conditional expectation given FW c then gives
∣∣∣∣E
[
E[χ{x,y}f | F{x,y}c ]

∣∣∣ FW c

]∣∣∣∣ ≤ E
[∣∣E[χ{x,y}f | F{x,y}c ]

∣∣
∣∣∣ FW c

]
≤ λB,W .

Since the left hand side is |g|, we get |g| ≤ λB,W .
Putting together the above, we arrive at |g(θ)| ≤ Ax Ay Ax,y λB,W . Thus,

g(θ)2 ≤ Ax Ay Ax,y λ2
B,W . Independence on disjoint sets then gives

E
[
g2
]
≤ α4(|x− y|/4)2 α4(2 |x− y|, r/3) E

[
λ2

B,W

]
.

The proposition now follows from the familiar properties of α4.

5.3 Reformulation of first moment estimate

Before proving the first moment estimate (Proposition 5.2), we explain how
it can be reformulated as a quasi-multiplicativity property analogous to the
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quasi-multiplicativity property of the j-arm events (2.2). Recall that

E
[
λ2

B,W

]
= E

[
P
[
ΛB

∣∣ FW c

]2]
.

It is not apriori clear how to work with E
[
λ2

B,W

]
, but here is a useful observa-

tion about this quantity. Let ω′ and ω′′ be two critical percolation configura-
tions which coincide on W c but are independent on W . Let A�(B,Q) denote
the set of percolation configurations ω for which the 4-arm event occurs in
the annulus Q \ B with the appropriately colored arms terminating on the
correct boundary arcs of Q; that is, the primal (white) arms terminating on
the two distinguished arcs of ∂Q and the dual (black) arms terminating on
the two complementary arcs. Then

E
[
λ2

B,W

]
= P

[
ω′, ω′′ ∈ ΛB

]
= P

[
ω′, ω′′ ∈ A�(B,Q)

]
;

that is, E
[
λ2

B,W

]
is just the probability that the corresponding 4 arm event

occurs in both ω′ and ω′′. Lemma 2.1 gives

P
[
x ∈ S , S ∩W = ∅

]
= E

[
E[f χx | F(W∪{x})c ]2

]
.

Now, if f is a monotone increasing function taking values in {−1, 1}, then

E[f χx | F{x}c ] = 1Λ{x}, (5.9)

and

E[f χx | F(W∪{x})c ] = E
[
E[f χx | F{x}c ]

∣∣∣ FW c

]
= E

[
1Λ{x}

∣∣ FW c

]
= λx,W .

Hence,

P
[
x ∈ S , S ∩W = ∅

]
= E

[
λ2

x,W

]
= P

[
ω′, ω′′ ∈ A�(x,Q)

]
,

where A�(x,Q) has the obvious meaning. Likewise, since W ∩ B = ∅, we
have ω′ = ω′′ in B, and so,

α4(r) ≍ P
[
ω′, ω′′ ∈ A4(x, B)

]
,

where A4(x, B) is the 4-arm event (which does not pay attention to any
distinguished arcs on ∂B). Hence (5.2) can be rewritten as

P
[
ω′, ω′′ ∈ A�(x,Q)

]
≥ c1 P

[
ω′, ω′′ ∈ A4(x, B)

]
P
[
ω′, ω′′ ∈ A�(B,Q)

]
.

(5.10)
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To see that this is indeed a quasi-multiplicativity property, observe that if
we take W = ∅ and replace the events with A� by the corresponding events
with A4, then this essentially the same as the case j = 4 in the left inequality
of (2.2).

It turns out that with a few extra twists, a proof which gives the quasi-
multiplicativity estimates (2.2) generalizes to give (5.10). This will be ex-
plained in the next subsections.

Remark 5.5. Proposition 5.1 generalizes to the radial setting, in which we
consider the event of a crossing from the origin to a large distance away.
However, at present it does not generalize to the radial 2-arm event where
a vacant crossing and an occupied crossing occur simultaneously. The only
argument in the proof that does not generalize to the 2-arm event is (5.9),
which is not true for non-monotone functions. Instead, we have

E[f χx | F{x}c ] = 1M+
x
− 1M−

x
, (5.11)

where M+
x is the event that x is monotonically pivotal (i.e., f(ω+

{x}) = 1 =

−f(ω−{x})) and M−
x is the event that x is anti-monotonically pivotal. The

problem with such functions is that for the first moment we would need
to bound from below E

[
E[1M+

x
− 1M−

x
| FW c]2

]
. This expression is easily

controlled from above by E
[
λ2

x,W

]
, but not from below due to cancellations

between M+
x and M−

x . These cancellations are far from being negligible, thus
there is no hope to get O(1)E

[
E[1M+

x
− 1M−

x
| FW c]2

]
≥ E

[
λ2

x,W

]
for general

W . For instance, if W = {x}c and f is an even function (f(−ω) = f(ω)) like
the 2-arm indicator function for site percolation on the triangular grid, then

P
[
S = {x}

]
= E

[
E
[
1M+

x
− 1M−

x

]2]
= 0. This “unfortunate” cancellation

between events M+
x and M−

x is the reason of the breakdown of our methods
for such events.

5.4 Quasi-multiplicativity for coupled configurations

Rather than proving specifically the inequality (5.10), we first address a
related statement which is somewhat cleaner. In the following, W is any
fixed subset of I, and ω′, ω′′ are the above coupled configurations, which are
independent in W and agree on I \W . The annulus B(0, R) \ B(0, r) will
be denoted by A(r, R). Let j ∈ N+ be either 1 or an even number and let
Aj(r, R) denote the set of configurations ω that satisfy the alternating j-arm
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event in the annulus A(r, R). Set

βW
j (r, R) := P

[
ω′, ω′′ ∈ Aj(r, R)

]
.

We will prove the following quasi-multiplicativity result:

Proposition 5.6 (Quasi-multiplicativity). Let j ∈ N+ be either one or an
even integer, and let W ⊂ I. Then

βW
j (r1, r2) βW

j (r2, r3) ≤ Cj βW
j (r1, r3)

holds for every 0 < r1 < r2 < r3 satisfying r2 ≥ r̄j, where Cj and r̄j are finite
constants depending only on j (and in particular, not on W ).

Note that the opposite inequality with Cj = 1 holds by independence on
disjoint sets.

To prepare for the proof of the proposition, we first need to prove a few
lemmas. The first observation is the following monotonicity property:

βW2
j (r, R) ≤ βW1

j (r, R) if W1 ⊂W2 . (5.12)

Indeed, since

βW
j (r, R) = E

[
P[ω ∈ Aj(r, R) | FW c]2

]
,

the claimed monotonicity follows by the orthogonality property of martingale
increments.

The case j = 1 in Proposition 5.6 easily follows from the Russo-Seymour-
Welsh theorem and from the Harris-FKG inequality. In the following, we will
restrict to the case j = 4, since the other even values of j are essentially the
same.

Let δ be some small positive constant, and let r0 > 0. We say that r > r0

is δ-good if βW
4 (r0, 2 r) ≥ δβW

4 (r0, r). Of course, this notion of good depends
on W, δ and r0.

Lemma 5.7. Fix r0, δ > 0 and W ⊂ I. Then there is a constant r̄ = r̄(δ) >
0, which depends only on δ, such that if r > r0 is δ-good and r ≥ r̄, then for
every r′ > r

β
W∪A(r,r′)
4 (r0, r

′) ≥ c βW
4 (r0, r) (r/r′)d,

where c = c(δ) > 0 depends only on δ and d is a universal constant.

The proof of this lemma will rely on Lemmas A.2 and A.3 from [SS05].
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Proof. Assume that r is δ-good. Then βW
4 (r0, 2 r) ≥ δ βW

4 (r0, r). Set

X ′ := P
[
ω′ ∈ A4(r0, 2 r)

∣∣ ω′B(0,r)

]
,

X ′′ := P
[
ω′′ ∈ A4(r0, 2 r)

∣∣ ω′′B(0,r)

]
.

Then

β4(r0, 2 r) = P
[
ω′, ω′′ ∈ A4(r0, 2 r)

]

= E
[
P[ω′, ω′′ ∈ A4(r0, 2 r) | ω′B(0,r), ω

′′
B(0,r)]

]
.

(5.13)

Now, since

P[ω′, ω′′ ∈ A4(r0, 2 r) | ω′B(0,r), ω
′′
B(0,r)]

≤ P[ω′ ∈ A4(r0, 2 r) | ω′B(0,r), ω
′′
B(0,r)] = X ′,

and a similar relation holds with X ′′, we have

P[ω′, ω′′ ∈ A4(r0, 2 r) | ω′B(0,r), ω
′′
B(0,r)] ≤ X ′ ∧X ′′ =: X̃,

where X̃ = X ′ ∧ X ′′ denotes the minimum of X ′ and X ′′. Because r is
δ-good, (5.13) now gives E

[
X̃
]
≥ δ βW

4 (r0, r). Since {X̃ > 0} ⊂ {ω′, ω′′ ∈
A4(r0, r)}, and the latter event has probability βW

4 (r0, r), this gives

E
[
X̃
∣∣ ω′, ω′′ ∈ A4(r0, r)

]
≥ δ . (5.14)

Now let ω̃′ and ω̃′′ be two percolation configurations that have the same
law as ω that are independent of each other outside of B(0, r) and inside
B(0, r) they satisfy ω̃′ = ω′ and ω̃′′ = ω′′. Let s′ be the least distance between
the endpoints on ∂B(0, 2 r) of any pair of disjoint interfaces of ω̃′ that cross
the annulus A(r, 2 r). (Take s′ = ∞ if there is at most one such interface.)
We claim that r/s′ is tight, in the following sense: for every ǫ > 0 there is a
constant M = Mǫ, depending only on ǫ, such that P

[
r/s′ > M

]
< ǫ. This is

proved, for example, in [SS05, Lemma A.2]. We use this with ǫ = δ/2. Thus,
we have

P
[
s′ < r/M

]
< δ/2 . (5.15)

This property will be referred to below as the “separation of arms” phe-
nomenon.

Assume now that r ≥ 100 M =: r̄. Then when s′ ≥ r/M , we know that
s′ is substantially larger than the lattice mesh. Observe that the distance
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between the endpoints on ∂B(0, 2 r) of any two disjoint interfaces of ω̃′ that
cross A(r0, 2 r) is at least s′ (since every such interface also crosses A(r, 2 r)),
and if ω′ ∈ A4(r0, 2 r) then there exist at least four such interfaces. Let Lk

denote the sector {ρ eiθ : ρ > 0, θ ∈ [π k/4, π (k + 1)/4]}. Let Z ′ denote the
event that in ω′ for each k ∈ {0, 2, 4, 6} there is a crossing from ∂B(0, r0) to
∂B(0, 8 r) in Lk ∪A(r0, 4 r), which is white when k ∈ {0, 4} and black when
k ∈ {2, 6}. By the proof of [SS05, Lemma A.3], we know (see Figure 5.1)
that there is a constant c0 = c0(M) > 0 such that

P
[
Z ′
∣∣ ω̃′B(0,r), ω̃′ ∈ A4(r0, 2 r), s′ ≥ r/M

]
≥ c0 . (5.16)

+
−

+ −

+−

−

+

L0

L2

L4

L6

r0

r

4r

8r

2r

r

2M

−

−

+

+

Figure 5.1: How to use “separation of arms” in order to get equation (5.16).

Note that s′ is independent from ω̃′B(0,r) = ω′B(0,r). Therefore, (5.15) gives

P
[
s′ ≥ r/M, ω̃′ ∈ A4(r0, 2 r)

∣∣ ω′B(0,r)

]

≥ P
[
ω̃′ ∈ A4(r0, 2 r)

∣∣ ω′B(0,r)

]
− P

[
s′ < r/M

∣∣ ω′B(0,r)

]

≥ X̃ − δ/2 .

Together with (5.16), this shows that

P
[
Z ′
∣∣ ω′B(0,r)

]
≥ c0 (X̃ − δ/2) .
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Now let Z ′′ be defined as Z ′, but with ω̃′′ replacing ω̃′. Since ω̃′ and ω̃′′ are
conditionally independent given (ω′B(0,r), ω

′′
B(0,r)), we get

P
[
Z ′, Z ′′

∣∣ ω′B(0,r), ω′′B(0,r)

]
≥ c2

0

(
(X̃ − δ/2)+

)2
, (5.17)

where (x)+ denotes x∨0. Since
(
(X̃− δ/2)+

)2
is a convex function of X̃, we

get from Jensen’s inequality and (5.14)

E
[(

(X̃ − δ/2)+

)2 ∣∣ ω′, ω′′ ∈ A4(r0, r)
]
≥ δ2/4 .

Thus, taking the expectation of both sides of (5.17) gives

P
[
Z ′, Z ′′

]
≥ c2

0 (δ2/4) P
[
ω′, ω′′ ∈ A4(r0, r)

]
= c2

0 (δ2/4) βW
4 (r0, r) . (5.18)

This clearly implies the statement of the lemma in the case r′ ≤ 8 r. Assume
therefore that r′ > 8 r. Note that Z ′ ∩ Z ′′ is monotone increasing inside
(L0∪L4) \B(0, 6 r) and monotone decreasing in (L2∪L6) \B(0, 6 r). Hence,
it is positively correlated with the event Z̃ that for each of ω̃′ and ω̃′′ there
are white paths separating ∂B(0, 6 r) from ∂B(0, 8 r) in each of L0 and L4,
and similar black paths in L2 and L6, and moreover, there are black paths in
each of L2 and L6 joining ∂B(0, 6 r) and ∂B(0, r′) and white paths in each
of L0 and L4 joining ∂B(0, 6 r) and ∂B(0, r′). By the Russo-Seymour-Welsh
theorem (see Figure 5.2), P

[
Z̃
]
≥ c1 (r/r′)d for some absolute constants

c1 > 0 and d <∞.
Taking c := c1 c2

0 δ2/4, we obtain P
[
Z ′, Z ′′, Z̃

]
≥ c βW

4 (r0, r) (r/r′)d. The

lemma follows, since Z ′ ∩ Z ′′ ∩ Z̃ ⊂ {ω̃′, ω̃′′ ∈ A4(r0, r
′)}.

Lemma 5.8. There are absolute constants δ0 > 0 and R̄ > 0 such that

βW
4 (r0, 2 ρ) ≥ δ0 βW

4 (r0, ρ) (5.19)

holds if 0 < r0 ≤ ρ and ρ ≥ R̄ and

βW
4 (ρ/2, r0) ≥ δ0 βW

4 (ρ, r0) (5.20)

holds if R̄ ≤ ρ < r0.

Proof. We start by proving the first claim. Let r̄, d and c(δ) be as in
Lemma 5.7. Let δ ∈ (0, 2−d−1). Let r ≥ r̄ ∨ r0, and assume for now that r is
δ-good. Then by Lemma 5.7 and the monotonicity property (5.12), we have

βW
4 (r0, r

′) ≥ c(δ) βW
4 (r0, r) (r/r′)d, (5.21)
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r
′

8r

6r
r0

L2
L0

L4

L6

Figure 5.2: A realization of the event Z̃. The black color corresponds to
arms in ω̃′, while the red color corresponds to arms in ω̃′′.

for every r′ ≥ r. Set ρk := 2k r, and let k̄ := inf{k ∈ N+ : ρk is δ-good}, with
k̄ :=∞ if this set is empty. If m ∈ N+ and m ≤ k̄, then by the definition of
k̄ and by (5.21) with r′ := ρm, we have

βW
4 (r0, ρ1) δm−1 > βW

4 (r0, ρm)

≥ c(δ) βW
4 (r0, r) 2−dm

≥ c(δ) βW
4 (r0, ρ1) 2−dm.

Now, since δ < 2−d−1, the above gives 2−(d+1)(m−1) ≥ c(δ) 2−dm, which implies
2d+1 ≥ c(δ) 2m. Hence, k̄ is bounded by some finite constant depending only
on δ (recall that d is a universal constant). We may conclude that δ-good
radii appear in scales with bounded gaps, since the same argument may be
applied with r replaced by ρk̄. If ρ is in the range (r, ρk̄), then we have the
estimate

βW
4 (r0, 2 ρ)

βW
4 (r0, ρ)

≥ βW
4 (r0, 2 ρk̄)

βW
4 (r0, r)

(5.21)

≥ c(δ) 2−d(k̄+1),

which means that ρ is δ0-good with δ0 := c(δ) 2−d(k̄+1). The same statement
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would apply to any ρ ≥ r, as above r the δ-good radii appear in scales with
bounded gaps.

The proof of (5.19) is nearly complete. It only remains to be shown that
there are constants δ, R̄ > 0 that do not depend on r0 such that R̄ ∨ r0 is
δ-good (recall that the definition of δ-good in Lemma 5.7 above depends on
r0). (Then we can start the above argument with r := R̄ ∨ r0.) Clearly,
βW

4 (r, 2 r) is bounded from below once r ≥ R0, where R0 is some absolute
constant. We take R̄ > R0, and hence the case r0 ≥ R̄ is covered. It is easy
to take care of the case r0 < R̄ by choosing δ sufficiently small, since this
reduces to finitely many possible annuli, due to the lattice discretization.

To prove (5.20), we follow a similar argument but with annuli growing
towards 0 rather than towards infinity. For this, a corresponding analogue of
Lemma 5.7 is needed. Since the proofs in this case are essentially the same,
they are omitted.

Proof of Proposition 5.6. As remarked above, we only prove the case
j = 4, since j = 1 is very easy and the proof for the case j = 4 applies with
no essential changes to all even j.

If r2 ≤ 4 r1 or r3 ≤ 4 r2, then the claim follows from Lemma 5.8. Hence,
assume that r1 < r2/4 and 4 r2 < r3. By the monotonicity property (5.12),
it suffices to prove

O(1) β
W∪A(r2/4,4 r2)
4 (r1, r3) ≥ βW

4 (r1, r2/4) βW
4 (4 r2, r3) .

This follows from the proof of Lemma 5.7: we just need to apply the same
argument twice, once going outwards from 0 and using (5.19) with r0 := r1

and ρ := r2/4 to verify that r2/4 is δ0-good, and once going inwards towards
0 and using (5.20) with r0 := r3 and ρ := 4 r2. The easy details are left to
the reader.

Although this will not be needed in the following, we note that the fol-
lowing generalization of Proposition 5.6 to arbitrary sequences of crossings
holds. (This can be proved by combining the above arguments with the proof
of [SS05, Proposition A.5].)

Proposition 5.9. Let j ∈ N+ and fix a color sequence X ∈ {black, white}j.
For any set W ⊂ I, the probabilities for the existence in both coupled con-
figurations ω′ and ω′′, of j crossings whose colors match this sequence in
counterclockwise order satisfy the inequalities in Proposition 5.6.
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5.5 Proof of first moment estimate

Proof of Proposition 5.2. As remarked in Subsection 5.3, the proof of
the first moment estimate reduces to proving (5.10). We will now explain
how the proof of Proposition 5.6 needs to be adapted to give (5.10).

Fix some x ∈ I that is relevant for the left-right crossing in Q = [0, R]2.
Let x+ be the closest point to x on ∂Q and let x++ be the closest point to x
among the four corners of Q. Set R+ := ‖x− x+‖∞ and R++ := ‖x− x++‖.
We now define

Br :=





B(x, r), r̄ ≤ r ≤ R+/8,

B(x+, r), 8 R+ ≤ r ≤ R++/8,

B(x++, r), 8 R++ ≤ r ≤ R/8,

where r̄ > 1 is some fixed constant, and let R denote the set of r for which
Br is defined; that is, R := [r̄, R+/8] ∪ [8 R+, R++/8] ∪ [8 R++, R/8]. Given
any r ∈ R, define r̃ := inf(R ∩ [2 r, R]). Then we say that r is δ-good if
P
[
ω′, ω′′ ∈ A4(x, Br̃)

]
≥ δ P

[
ω′, ω′′ ∈ A4(x, Br)

]
. The proof that there is a

universal constant δ such that every r ∈ R satisfying 2 r ≤ supR is δ-good
proceeds like the proof of (5.19) with a few minor changes. The fact that
some of the boxes considered are not concentric with each other is of no con-
sequence. The only significant modification needed is that in the argument
corresponding to Lemma 5.7, if Br ∩ ∂Q 6= ∅, then the interfaces considered
are in the intersection of the corresponding annulus and Q and the definition
of s′ needs to be modified. In the adapted proof, s′ is defined as the least
distance between any two distinct points that are either endpoints on ∂Br̃ of
the interfaces or points in the intersection ∂Br̃ ∩ ∂Q. The remaining details
are left to the reader, as is the similar proof that P

[
ω′, ω′′ ∈ A�(Br̆,Q)

]
≥

δ P
[
ω′, ω′′ ∈ A�(Br,Q)

]
when r̆ = sup(R∩ [r̄, r/2]) ≥ r̄. The proof of (5.10)

then follows as in the proof of Proposition 5.6.

Remark 5.10. In the applications, we will need to apply Proposition 5.1 to
a set of boxes B that form a grid covering Q. Since we need each B′ to be
contained in Q, there is some care needed in placing the grid of boxes. In
fact, for some radii r, this is actually impossible. There are several alternative
solutions to this problem. The easiest solution is to restrict r to the set of
radii that admit grids of boxes that cover Q well. This happens, for example,
when r divides R. However, this solution has the drawback of not being
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easily adaptable to other settings, for example, to the setting in which Q
is a rectangle or some smooth perturbation of a rectangle. For this reason,
we now describe a somewhat different solution. Let V be a maximal set of
points in Q such that the distance between any pair of distinct points in V
is at least r and the distance between any v ∈ V to the closest point on ∂Q
is at least r. Consider the intrinsic metric dQ on Q, where dQ(x, x′) is the
infimum length of any curve in Q connecting x and x′. Let (Tv : v ∈ V )
denote the Voronoi tiling associated with V and with this metric, and let
Bv denote the union of the lattice tiles meeting Tv. If we assume that Q
is “reasonably nice”, then the maximal dQ-diameter of any Bv is O(r). (Of
course, we assume r > 1.) This will be the case, for example, when Q is
a rectangle whose smaller sidelength is larger than 2 r, or more generally, if
Q = RQ0 for a piecewise smooth quad Q0 and R > c(Q0)r. Now observe
that the disk of radius r/4 around each v ∈ V is contained in the interior
of Tv and is bounded away from ∂Q. We may define B′v as the union of the
lattice tiles that meet this disk. The statement and proof of Proposition 5.1
hold with Bv and B′v replacing B and B′, though the constants will depend
on the upper bound we have for diam(Bv)/r.

5.6 A local result for general quads

In this subsection, we prove the following local result, which is a key step in
estimates for noise sensitivity in the case of general quads.

Proposition 5.11. Let Q ⊂ R2 be some quad, and let U be an open set
whose closure is contained in the interior of Q. For R > 0, let S := SfRQ

be the spectral sample of fRQ, the ±1 indicator function for the crossing event
in RQ. Then, there is a constant r̄ = r̄(U,Q) such that for any box B ⊂ R U
of radius r ∈ [r̄, R diam(U)] and any set W with W ∩B = ∅, we have

P
[
SfRQ ∩B′ ∩ Z 6= ∅

∣∣ SfRQ ∩ B 6= ∅, SfRQ ∩W = ∅
]
≥ a(U,Q) ,

where B′ is concentric with B and has radius r/3, the random set Z is defined
as in Proposition 5.1, and a(U,Q) > 0 is a constant that depends only on U
and Q.

Proof. Here, the main new issue to deal with is that the quad Q is general;
but, in contrast to the situation in Proposition 5.2, the box B is bounded
away from ∂Q, which simplifies parts of the proof.
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The second moment estimate (Proposition 5.3) applies in the present
setup. We now prove the corresponding first moment estimate.

In the following discussion, the constants are allowed to depend on U
and Q. We start by proving the analogue of (5.20). Let K be a com-
pact set contained in the interior of Q and containing the closure of U
in its interior. Let M denote the set of all squares S ⊂ K that inter-
sect U while the concentric square of twice the radius is not contained
in the interior of K. Then M is a compact set of squares in the natu-
ral topology, and the radius of the squares in M is bounded away from
zero. Fix some S ∈ M . Let B(R S) denote the union of the lattice tiles
that meet R S. A simple application of the Russo-Seymour-Welsh theorem
shows that lim infR→∞ P

[
ω′, ω′′ ∈ A�

(
B(R S), RQ

)]
> 0. Moreover, the

same estimate holds in a neighborhood of S; that is, there is a set V ⊂ M
that contains S and is open in the topology of M , and there is a constant
R0 = R0(V, U,Q) > 0 such that

inf
R≥R0

inf
S′∈V

P
[
ω′, ω′′ ∈ A�

(
B(R S ′), RQ

)]
> 0 .

Since M is compact, this cover of M by open subsets V has a finite subcover,
and therefore there is some constant R1 = R1(U,Q) such that

inf
R≥R1

inf
S∈M

P
[
ω′, ω′′ ∈ A�

(
B(R S), RQ

)]
> 0 .

It is clear that there is some constant b > 1 such that for every S ∈ M the
concentric square whose radius is b times the radius of S is still contained
in Q. The above then shows that there is a constant δ > 0 such that for all
R ≥ R1 and all S ∈M ,

P
[
ω′, ω′′ ∈ A�

(
B(R S), RQ

)]
≥ δ P

[
ω′, ω′′ ∈ A�

(
B(R Sb), RQ

)]
, (5.22)

where Sb denotes the square concentric with S whose radius is b times the
radius of S. Let M̂ denote the set of squares that are contained in and
concentric with some square in M . Once we have (5.22) for all S ∈ M , we
can conclude as in the proof of (5.20) in Lemma 5.8 that the same holds with
possibly a different constant δ for every S ∈ M̂ such that diam(R S) ≥ r̄, for
some constant r̄ > 0. For this, the powers of 2 that were used in the proof
of (5.19) and (5.20) (for example, for the definition of the notion of “good”)
need to be replaced by powers of b, but this is of little consequence. We also
need here a version of Lemma 5.7 for the events A�(B(RSb), RQ), but that
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can be proved the same way as the original version, using [SS05, Lemmas
A.2, A.3] and (5.22). Finally, the restriction that R ≥ R1 may be avoided by
taking r̄ sufficiently large. Thus, the analogue of (5.20) is established.

Based on (5.19) and the above analogue of (5.20), we obtain the analogue
of (5.10) for the current setup, yielding the first moment estimate. (Note that
we do not need to adapt the outward bound (5.19) to this local result.) The
proof of the current proposition from the first and second moment estimates
follows as in the proof of Proposition 5.1.

5.7 The radial case

For the study of the set of exceptional times for dynamical percolation, we
will need some concentration for the spectral samples of the “radial” indicator
function. For this purpose, the following analog of Proposition 5.1 for the
radial setting will be useful.

Proposition 5.12. Let f = fR be the 0-1 indicator function of the exis-
tence of a white crossing between the two boundary components of the an-
nulus [−R, R]2 \ [−1, 1]2, and let S = Sf be its spectral sample with law
P
[
S = S

]
= f̂(S)2/‖f‖2. Also let W ⊂ I. Let B be a box of some radius r

that does not intersect W and let B′ be the concentric box with radius r/3.
Suppose that B′ ⊂ [−R, R]2 and B ∩ [−4 r, 4 r]2 = ∅. We also assume that
r ≥ r̄, where r̄ > 0 is some universal constant. Then

P
[
S ∩ B′ ∩ Z 6= ∅

∣∣ S ∩ B 6= ∅, S ∩W = ∅
]

> a,

where Z is as in Proposition 5.1 and a > 0 is a universal constant.

Proof. The proof will be similar to the above proofs. For this reason, we
will be brief and leave many details to the reader. Let z be the center of the
box B, and set r1 := |z| > 4r. Assume first that r1 < R/3. We then consider
the three annuli B(0, r1/3) \B(0, 1), B(0, R) \B(0, 3 r1) and B(z, r1/3) \B.
In order for ΛB to hold, it is necessary that the 1-arm event occurs in the
first two annuli and that the 4-arm event occurs in the third annulus. Thus,

P
[
B ∩S 6= ∅ = S ∩W

]
≤ 4 E

[
λ2

B,W

]

≤ 4 P
[
ω′, ω′′ ∈ A1

(
B(0, 1), B(0, r1/3)

)]
×

P
[
ω′, ω′′ ∈ A1

(
B(0, 2 r1), B(0, R)

)]
×

P
[
ω′, ω′′ ∈ A4

(
B, B(z, r1/3)

)]
. (5.23)



174 CHAPTER V. FOURIER SPECTRUM OF PERCOLATION

Now, using quasi-multiplicativity for coupled configurations and the sep-
aration of arms as before, for x ∈ B′ we have the first moment estimate

P
[
x ∈ S , S ∩W = ∅

]
≥ c1 βW

1 (1, r1/3) βW
4 (x, r1/3) βW

1 (2r1, R)

≥ c2 βW
1 (1, r1/3) α4(r) βW

4 (r, r1/3)βW
1 (2r1, R)

≥ c3 α4(r) E
[
λ2

B,W

]
, (5.24)

where (5.23) is used for the last step. One can easily prove the analogous
second moment estimate, and the claim now follows as in the proof of Propo-
sition 5.1.

Suppose now that r1 > 2 R/3. In this case, we need to consider a different
system of annuli. Let d denote the distance from B to ∂B(0, R) and let z′

denote a closest point to B on ∂B(0, R). In the annulus B(0, R/3) \B(0, 1)
we consider the 1-arm event, in the annulus B(z, r+d/2)\B we consider the
4-arm event, and in the intersection of B(0, R) with B(z′, R/3) \B(z′, 5 r +
d) (assuming that this is nonempty), we consider the 3-arm event between
∂B(z′, R/3) and ∂B(z′, 5 r + d). Again, the claim follows.

In the intermediate case R/3 ≤ r1 ≤ 2 R/3, we need to consider the 1-arm
event in B(0, R/6) \ B(0, 1) and the 4-arm event in B(z, R/6) \ B, and the
claim likewise follows.

6 A large deviation result

In order to deduce Theorem 1.1 from the results of Sections 5 and 4, we will
need the following general result.

Proposition 6.1. Let n ∈ N+, let x and y be random variables in {0, 1}n,
and set X :=

∑n
j=1 xj and Y :=

∑n
j=1 yj. Suppose that a.s. yi ≤ xi for each

i ∈ [n] and that there is a constant a ∈ (0, 1] such that for each j ∈ [n] and
every I ⊂ [n] \ {j} we have

P
[
yj = 1

∣∣ yi = 0 ∀i ∈ I
]
≥ a P

[
xj = 1

∣∣ yi = 0 ∀i ∈ I
]
. (6.1)

Then
P
[
Y = 0

∣∣ X > 0
]
≤ a−1 E

[
e−aX/e

∣∣ X > 0
]
. (6.2)

For completeness, we will also show below that

P
[
Y ≤ t

]
≤ P

[
X < (e/a) (t + s)

]
+
(
et−1/s

)
E
[
e−a X/e

]
(6.3)

holds for every t ≥ 0 and s > 0. However, we do not have an application for
this inequality.
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Proof. We may write our assumption (6.1) as follows

P
[
yj = 1, yi = 0 ∀i ∈ I

]
≥ a P

[
xj = 1, yi = 0 ∀i ∈ I, j /∈ I

]
, (6.4)

where the restriction j /∈ I is no longer necessary. This gives us many
inequalities, which we will average out in a useful manner. Fix λ ∈ (0, 1).
Now multiply (6.4) by λn−|I| (1−λ)|I| and sum over all choices of j ∈ [n] and
I ⊂ [n], to get

E
[
Y λY

]
≥ a E

[
X λY +1

]
.

This may be rewritten as E[Z] ≥ 0, where Z := (Y − a λ X) λY . At this
point, we choose λ := e−1. In order to bound Z from above by a function of
X only, we maximize Z over Y , and get the bound Z ≤ exp(−1 − a X/e).
On X = 0, we also have Y = 0 and Z = 0, while on Y = 0 < X, Z ≤ −a e−1

holds. Therefore, E[Z] ≥ 0 gives

a e−1 P
[
Y = 0 < X

]
≤ E

[
1X>0 exp(−1− a X/e)

]
.

Dividing by a e−1 P
[
X > 0

]
, we obtain (6.2).

We now prove (6.3). Set r := (e/a) (t + s), Z+ := max(Z, 0) and Z− :=
Z−Z+. Note that on the event {X ≥ r, Y ≤ t} we have Z ≤ −s e−t. Hence,

E
[
Z−
]
≤ −s e−t P

[
X ≥ r, Y ≤ t

]
≤ −s e−t

(
P[Y ≤ t]− P[X < r]

)
.

On the other hand, E
[
Z+

]
≤ E

[
exp(−1− a X/e)

]
. Since 0 ≤ E[Z] =

E
[
Z+

]
+ E

[
Z−
]
, (6.3) follows.

7 The lower tail of the spectrum

In this section, we prove Theorem 1.1 and a few related results.

7.1 Local version

As in Section 4, we start with a version which avoids the issues involving the
boundary.

Theorem 7.1. Consider some quad Q, and let S = SfRQ be the spectral
sample of fRQ, the ±1 indicator function for the crossing event in RQ. Let
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U ⊂ Q be open, and let U ′ ⊂ U ′ ⊂ U . Then, for some constants r̄ =
r̄(U ′, U,Q) > 0 and q(U ′, U,Q) > 0, for any r ∈ [r̄, R diam(U)],

P
[
0 < |SfRQ ∩ RU | ≤ r2 α4(r), SfRQ ∩ RU ⊂ RU ′

]

≤ q(U ′, U,Q)
R2 α4(R)2

r2 α4(r)2
. (7.1)

Proof. Let the distance between U ′ and the complement of U be δ > 0.
Then, with no loss of generality, we may assume that r ≤ δR/10. (Otherwise,
r/R remains bounded away from 0, so, by choosing q(U ′, U,Q) large enough
compared to δ, the upper bound in (7.1) becomes larger than 1, and we are
done.) Consider the tiling of the plane by r × r squares given by the grid
r Z2, recall from the end of Section 2.1 that each square gives a box that
together form a tiling of the plane, and let {B1, B2, . . . , Bn} be the set of
those boxes that intersect RU ′. Let U ′′ ⊂ U such that RU ′′ ⊃ ⋃n

j=1 Bj but
the distance of U ′′ to the complement of U is at least δ/2. Let Z be a subset
of I ∩RU ′′, where each bit i ∈ RU ∩ I is in Z with probability 1/(r2α4(r)),
independently from each other and from S . Let yj be the indicator function
of the event

S ∩ Bj ∩ Z 6= ∅ ,

and let xj be the indicator function of the event S ∩ Bj 6= ∅. Let P̃ denote
the law of S conditioned on the event S ∩(RU \RU ′′) = ∅, and let Ẽ denote
the corresponding expectation operator. For every I ⊂ {1, . . . , n} and every
j ∈ {1, . . . , n} \ I, we get by Proposition 5.11 that

P̃
[
yj = 1

∣∣ yi = 0 ∀i ∈ I
]
≥ a P̃

[
xj = 1

∣∣ yi = 0 ∀i ∈ I
]
,

for some constant a = a(U ′′,Q) > 0. Therefore, the large deviation result
(Proposition 6.1) gives

P̃
[
S ∩ Z = ∅ 6= S ∩ RU

]
≤ a−1 Ẽ

[
e−aX/e 1X>0

]
,

where X :=
∣∣{j : S ∩Bj 6= ∅}

∣∣. We may rewrite this as

P
[
S ∩ Z = ∅ 6= S ∩ RU ⊂ RU ′′

]

≤ a−1

∞∑

k=1

e−ak/e P
[
X = k, S ∩RU ⊂ RU ′′

]
.
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We estimate the terms P
[
X = k, S ∩RU ⊂ RU ′′

]
using Proposition 4.2 and

get the bound

P
[
S ∩ Z = ∅ 6= S ∩ RU ⊂ RU ′′

]
≤ O(1)

∞∑

k=1

e−ak/e g(k) γr(R)

= O(1) γr(R) ,

(7.2)

where g is as defined in the proposition and the constants implied by the
O(1) terms may depend on (U ′, U,Q).

Now, by the choice of Z, for |S ∩ RU ′′| ≤ r2α4(r) we have

P
[
S ∩ Z = ∅

∣∣ S
]

=

(
1− 1

r2α4(r)

)|S∩RU ′′|
≥ c

for some absolute constant c > 0, and hence

c P
[
|S ∩RU ′′| ≤ r2α4(r), ∅ 6= S ∩ RU ⊂ RU ′′

]

≤ P
[
S ∩ Z = ∅ 6= S ∩ RU ⊂ RU ′′

]

≤ O(1) γr(R) by (7.2).

Since RU ′ ⊂ RU ′′, this implies (7.1).

7.2 Square version

We prepare for the proof of Theorem 1.1 by first showing that

E|SfR
| ≍ R2 α4(R) . (7.3)

Note that this also implies (1.5) for the triangular lattice. First, the lower
bound on E|SfR

| follows immediately from Lemma 3.1. For the upper bound,
we will need to consider the half-plane 3-arm events and the quarter-plane
2-arm events that were discussed in Section 4.3. Let Q = [0, R]2, f = fQ
and S = Sf . Let x ∈ I be an input bit of f . If x is at distance r0 from
the closest edge of [0, R]2, and at distance r1 from the closest corner, then
by (3.6) and quasi-multiplicativity, we have

P
[
x ∈ S

]
= α4(x,Q) ≍ α4(r0) α+

3 (r0, r1) α++
2 (r1, R) .

Now observe that α+
3 (r0, r1) ≤ O(1) α4(r0, r1) follows from (4.12), and (2.6).

Thus, α4(r0) α+
3 (r0, r1) ≤ O(1) α4(r1). Moreover, α++

2 (r1, R) ≤ O(r1/R),
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by (4.13) and (4.12). Since the number of x ∈ I with r1 ∈ [2j , 2j+1) is
O(22j), we get

E|S | =
∑

x∈I
P
[
x ∈ S

]
≤
⌈log2 R⌉∑

j=0

O(22j) α4(2
j)

2j

R

=
α4(R)

R

⌈log2 R⌉∑

j=0

O(23j)

α4(2j, R)

(2.6)

≤ α4(R)

R

⌈log2 R⌉∑

j=0

O(23j)

(2j/R)2
= O(R2) α4(R) .

Thus, we get (7.3).

Proof of Theorem 1.1. The proof of

P
[
0 < |S | < r2 α4(r)

]
≤ O(1) γr(R) , (7.4)

for 1 ≤ r ≤ R, is very similar to the proof of Theorem 7.1, with some
small modifications, which we now discuss. Note that the set of x ∈ I that
are relevant for f are all within distance at most 2 from [0, R]2. Note that
we may assume, without loss of generality, that r ≥ r̄ for some absolute
constant r̄, and that (R + 4)/r ∈ N+. Let {B1, B2, . . . , Bn} be the set of
boxes corresponding to the tiling of [−2, R + 2]2 by r × r squares. In the
proof of Theorem 7.1 we are now allowed to take RU = RU ′ = RU ′′ =
[−2, R + 2]2, by replacing the appeal to Propositions 5.11 and 4.2 with an
appeal to Propositions 5.1 and 4.1, respectively. This gives (7.4).

We now show that the inequality in (7.4) is actually an equality up to
constants. Let N be the set of indices i such that the r-box Bi is at least at
distance R/10 from the boundary ∂[0, R]2. Consider the events

Vi :=
{
|S ∩ Bi| ≥ C r2α4(r)

}
,

Wi :=
{
S ∩Bi 6= ∅, S ⊆ Bi

}
,

for i ∈ N . As we will see in a moment, we may take the constant C large
enough so that P

[
Vi|Wi

]
≤ 1/2. This will follow from Markov’s inequality,

once we know that

E
[
|S ∩Bi|

∣∣∣ Wi

]
≤ O(1) r2α4(r). (7.5)

Firstly, for each i ∈ N ,

P
[
Wi

] (5.7)≍ α�(Bi, [0, R]2)2 (2.4)≍ α4(r, R)2 .
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Secondly, we need a good upper bound on P
[
x ∈ S , S ⊆ Bi

]
. We know

this equals E
[
λ2

x,Bc
i

]
, see e.g. Subsection 5.3, and, similarly to Lemma 3.2,

one can easily show that it is at most α4(x, Bi) α�(Bi, [0, R]2)2. Summing up
for all x ∈ Bi, and using the above estimate on P[Wi], we get (7.5).

So, we have P
[
V c

i

∣∣Wi

]
≥ 1/2. Note that the events V c

i ∩Wi for different
i’s are disjoint, hence

P
[
0 < |S | ≤ C r2α4(r)

]
≥
∑

i∈N
P
[
V c

i ∩Wi

]
≥ c (R/r)2 α4(r, R)2 ,

for some c > 0, and the lower bound is proved.

Remark 7.2. For the triangular lattice, the following variant of (1.6) may
also be established:

lim sup
R→∞

P
[
0 < |SfR

| ≤ λ E|SfR
|
]
≍ λ2/3, and

lim inf
R→∞

P
[
0 < |SfR

| ≤ λ E|SfR
|
]
≍ λ2/3,

(7.6)

holds for every λ ∈ (0, 1], where the implied constants do not depend on λ.
In view of Theorem 1.1, this follows from the fact that

lim
R→∞

α4(t R, R) ≍ t5/4, t ∈ (0, 1] ,

which holds since the limit of critical percolation is described by SLE6 (this
is explained in [SW01]), and the probabilities for the corresponding events
for SLE are determined up to constant factors [LSW01a] and have no lower
order corrections to the power law.

7.3 Radial version

We also have the following radial version, where S is the spectral sample of
the 0-1 indicator function f of the crossing event from ∂[−1, 1]2 to ∂[−R, R]2,
so that E

[
f 2
]
≍ α1(R). Recall that we have the measures P

[
S = S

]
=

Q
[
S = S

]
/E
[
f 2
]

= f̂(S)2/E
[
f 2
]
.

Theorem 7.3. Let S be as above, and let r ∈ [1, R]. Then

Q
[
|S | < α4(r) r2

]
≤ O(1)

α1(R)2

α1(r)
, P

[
|S | < α4(r) r2

]
≤ O(1)

α1(R)

α1(r)
.
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Proof. Again, the bits relevant for f are contained in [−R′, R′]2, where
R′ = R + 2. We may assume that r is such that R′/r ∈ N+ and r ∈ [r̄, R/8]
for some fixed constant r̄ > 0, which guarantees that k := α4(r) r2 > 1. Take
a subdivision of [−R′, R′]2 into boxes {Bj} of side-length r, and let K denote
the union of the boxes that intersect [−4r, 4r]2. We now let Z be the random
set in I ∩ [−R′, R′]2 \K where each bit is in Z with probability 1/k, and Z
is independent from S . We also let X := |{j : S ∩ Bj 6= ∅, Bj 6⊂ K}| =
|(S \ K)r|. Note that |Sr| − X is bounded by the number of boxes in K,
which is bounded by a constant.

Exactly as before, Propositions 5.12 and 6.1 give that

P
[
S ∩ Z = ∅ 6= S \K

]
≤ a−1E

[
e−aX/e 1X>0

]
,

with some absolute constant a > 0. We can use Proposition 4.7 to bound each
P
[
X = n

]
, n ∈ N+, and the argument that finished the proof of Theorem 7.1

above now gives

P
[
0 < |S \K| < k

]
≤ O(1) P

[
S ∩ Z = ∅ 6= S \K

]
≤ O(1) α1(r, R) .

Finally, observe that

P
[
|S | < k

]
≤ P

[
S ⊂ K

]
+ P

[
0 < |S \K| < k

]

≤ P
[
S
∗ is compatible with [−R′, R′]2 \K

]
+ O(1) α1(r, R)

≤ O(1) α1(r, R) + O(1) α1(r, R) by Lemma 4.8 ,

and the theorem is proved.

7.4 Concentration of the quad spectral sample

This section will be devoted to the following analog of (1.3) in the setting of
more general quads, showing that the spectral sample is concentrated.

Proposition 7.4. Let Q ⊂ R2 be a quad and for R > 0 let SfRQ denote
the spectral sample of fRQ, the ±1-indicator function of the crossing event of
RQ. Then

lim
t→∞

inf
R>1

P
[
|SfRQ | ∈

[
t−1 R2 α4(R), t R2 α4(R)

]
∪ {0}

]
= 1 .
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We do not presently prove that E|SfRQ | ≍ R2 α4(R) as R →∞, though
we tend to believe that this holds.

The main technical difficulty in the case of a general quad Q compared to
a square is the boundary: our explicit computations in Subsection 4.3 do not
apply to a general quad (even if it has piecewise smooth boundary). Thus,
the proof will begin by showing that even in a general quad the spectral
sample is unlikely to be very close to ∂Q.

Proof. For every fixed δ > 0 we can find a quad Q′ that is contained in the
interior of Q and such that

lim sup
R→∞

P
[
fRQ 6= fRQ′

]
< δ . (7.7)

This is easy to see, and also worked out in detail in [SS]. Let U ′, U ⊂ Q be
open sets satisfying Q′ ⊂ U ′ ⊂ U ′ ⊂ U .

Now, (7.7) and (2.7) imply that for all large enough R, the laws of the
spectral samples SfRQ and SfRQ′ have a total variation distance at most

4
√

δ, and
P
[
SfRQ ⊆ RU ′

]
≥ 1− 4

√
δ . (7.8)

Theorem 7.1 can now be invoked to get

lim
t→∞

lim sup
R→∞

P
[
SfRQ ⊆ RU ′, 0 < |SfRQ | < t−1 R2 α4(R)

]
= 0 .

In conjunction with (7.8), this gives

lim sup
t→∞

lim sup
R→∞

P
[
0 < |SfRQ| < t−1 R2 α4(R)

]
≤ 4
√

δ ,

and since δ was an arbitrary positive number,

lim
t→∞

lim sup
R→∞

P
[
0 < |SfRQ | < t−1 R2 α4(R)

]
= 0 . (7.9)

In the other direction, it is easy to see that E|SfRQ ∩ RQ′| = O(R2) α4(R),
as R → ∞. Therefore, Markov’s inequality and (7.8) imply that for all
sufficiently large R,

P
[
|SfRQ| > t R2 α4(R)

]
≤ 4
√

δ + O(1/t) ,

where the implied constant may depend on δ but not on R. Thus,

lim
t→∞

lim sup
R→∞

P
[
|SfRQ | > t R2 α4(R)

]
= 0 . (7.10)
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Since for every R0 ∈ (1,∞) we obviously have

lim
t→∞

sup
R∈[1,R0]

P
[
|SfRQ | /∈

[
t−1 R2 α4(R), t R2 α4(R)

]
∪ {0}

]
= 0 ,

the proposition follows immediately from (7.9) and (7.10).

8 Applications to noise sensitivity

We are ready to prove Corollary 1.2 and Theorem 1.3, together with some
generalizations.

8.1 Noise sensitivity in a square and a quad

Proof of Corollary 1.2. Let IR denote the set of bits on which fR

depends, and write ǫ = ǫR. Recall from (1.2) that if y is an ǫ-noisy version
of x ∈ {−1, +1}IR, then

ΨR := E
[
fR(y)fR(x)

]
− E[fR(x)]2 =

|IR|∑

k=1

(1− ǫ)k P
[
|SfR

| = k
]
. (8.1)

Breaking the sum over k in (8.1) into parts (j − 1)/ǫ < k ≤ j/ǫ, with
j = 1, 2, . . . , we get

ΨR ≤
∞∑

j=1

(1− ǫ)(j−1)/ǫ P
[
(j − 1)/ǫ < |SfR

| ≤ j/ǫ
]

≤
∞∑

j=1

e1−j P
[
0 < |SfR

| ≤ j/ǫ
]
.

(8.2)

Recall that r2 α4(r)→∞ as r →∞, by (2.6). For s ≥ 1, let ρ(s) be the least
r ∈ N+ such that r2 α4(r) ≥ s, and let γ(r) := r2 α4(r)

2. The properties of
α4, namely (2.3) and (2.6), imply that

s ≤ ρ(s)2 α4

(
ρ(s)

)
≤ O(s) for s ≥ 1, (8.3)

and then

O(1) γ
(
ρ(s′)

)
/γ
(
ρ(s)

)
≥ (s/s′)O(1) for s′ ≥ s ≥ 1. (8.4)
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Now set ρj := ρ(j/ǫ). Then, for j ∈ N+,

P
[
0 < |SfR

| ≤ j/ǫ
]
≤ P

[
0 < |SfR

| ≤ ρ2
j α4(ρj)

]

≤ O(1) γ(R)/γ(ρj) by (7.4)

≤ O(1) γ(R) jO(1)/γ(ρ1) by (8.4).

Therefore (8.2) gives
ΨR ≤ O(1) γ(R)/γ(ρ1) . (8.5)

If limR→∞ E|SfR
| ǫR = ∞, then by (7.3) and the usual properties of α4 we

have R/ρ(1/ǫ) → ∞ as well as γ(R)/γ(ρ1) = γ(R)/γ
(
ρ(1/ǫ)

)
→ 0, which

together with (8.5) proves (1.7).
Now assume that ǫR E|SfR

| → 0. Applying (1.2) and Jensen’s inequality,
we get

E
[
fR(x) fR(y)

]
= E

[
(1− ǫ)|SfR

|
]
≥ (1− ǫ)E|SfR

| → 1 ,

as R→∞. Since fR(x) fR(y) ≤ 1 = fR(x)2, (1.8) follows.

Suppose that we are in the setting of the triangular grid, and ǫ = t/E|SfR
|,

where t > 1. Then with the above notations, we have by (7.6) and (8.2) that
lim supR→∞ΨR ≤ O(1) t−2/3. Using the fact that we also have lower bounds
in Theorem 1.1, it is easy to see that

lim sup
R→∞

ΨR ≍ t−2/3 ≍ lim inf
R→∞

ΨR . (8.6)

In a forthcoming paper we plan to use this to show that in the appropriate
scaling limit of critical dynamical percolation, the crossing events in the unit
square at time 0 and at time t have correlations that decay like t−2/3 as
t→∞.

We also have the following generalization for the ±1-indicator function of
the left-right crossing in scaled versions of an arbitrary fixed quad Q.

Corollary 8.1. Assume that ǫR ∈ (0, 1) is such that ǫR R2α4(R) → ∞ as
R→∞, and y is an ǫR-noisy version of x. Then

E
[
fRQ(y) fRQ(x)

]
− E

[
fRQ(x)

]
E
[
fRQ(y)

]
→ 0 .

On the other hand, if ǫR R2α4(R)→ 0, then

E
[
fRQ(y) fRQ(x)

]
− E

[
fRQ(x)2

]
→ 0 .
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Proof. First assume ǫR R2α4(R)→∞. Given δ > 0, by Proposition 7.4 we
have

inf
R>1

P
[
0 < |SfRQ| < t−1 R2 α4(R)

]
< δ

if t ≥ t1(δ) is large enough. Now let R be large enough so that ǫR R2α4(R) >
t2. Then, by (8.1),

ΨR ≤ δ +
∑

|S|≥R2α4(R)/t

f̂(S)2 (1− ǫR)|S|

≤ δ +

(
1− t2

R2 α4(R)

)R2α4(R)/t

≤ δ + O(1) exp(−t) ,

which is at most 2δ if t ≥ t2(δ). We can choose R large enough with respect
to this new t, and hence ΨR → 0 is proved.

Now assume ǫR R2α4(R)→ 0. Given δ > 0, by Proposition 7.4 we have

inf
R>1

P
[
|SfRQ| > t R2 α4(R)

]
< δ

if t ≥ t1(δ) is large enough. Now let R be so large that ǫR R2α4(R) < t−2.
Then, by (1.2), for S = SfRQ ,

E
[
fRQ(y) fRQ(x)

]
≥ E

[
(1− ǫR)|S |

∣∣∣ |S | < tR2α4(R)
]

P
[
|S | < tR2α4(R)

]

≥
(

1− t−2

R2 α4(R)

)tR2α4(R)

(1− δ)

≥ exp(−O(1)/t) (1− δ) .

This is arbitrarily close to E
[
fRQ(x)2

]
= 1 for t large; hence we are done.

8.2 Resampling a fixed set of bits

We now prove a general version of Theorem 1.3. If y ∈ Ω = {−1, 1}I is a noisy
version of x, then yj = xj, except on a small random set of j ∈ I. We may
consider a variation of this situation, where we have some fixed deterministic
set U ⊂ I, and we take yj = xj for j ∈ U and take the restriction of y
to U c := I \ U be independent from x (and y is uniform in Ω). Although
this setup was mentioned in [BKS99], the techniques developed there and
in [SS05] fell short of being able to handle this variation. Now, we can
analyse this variation without difficulty, and prove the following proposition:
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Proposition 8.2. Let Q ⊂ R2 be some quad and for R > 1 let fR = fRQ be
the ±1-indicator function of the crossing event in RQ (either in Z2 or in the
triangular lattice). For every R > 1, let UR ⊂ I be some set of bits, and let
rR be the maximal radius of any disk contained in RQ that is disjoint from
U c

R := I \ UR. If

lim
R→∞

rR√
R2 α4(R)

= 0 , (8.7)

then the family (UR)R>0 is asymptotically clueless in the sense that

lim
R→∞

∥∥E[fR | FUR
]− E[fR]

∥∥ = 0 .

On the other hand, if
lim

R→∞

∣∣U c
R

∣∣α4(R) = 0 , (8.8)

then (UR)R>0 is asymptotically decisive in the sense that

lim
R→∞

∥∥E[fR | FUR
]− fR

∥∥ = 0 ,

which means that there is asymptotically no loss of information about the
crossing fR.

Notice that even though the convergence of E
[
fRQ

]
is not known in Z2

for general quads or even rectangles other than squares, our definitions of
being asymptotically clueless or decisive still make perfect sense.

Note that O(1) |U c
R| ≥ (R/rR)2 and there are examples where |U c

R| ≍
(R/rR)2. Thus, in some sense the conditions (8.7) and (8.8) are nearly com-
plementary. However, the following two examples are not covered. Suppose
that Q is the unit square, and for each R we take UR to be the set of bits
contained in the left half of the square RQ. It is left to the reader to verify
that in this case UR is neither asymptotically decisive, nor asymptotically
clueless.

In the second example, we take Q to be the unit square again, and let
UR be the set of bits outside of the disk of radius ρR centered at the center
of the square RQ. Then UR is asymptotically decisive as long as ρR/R→ 0,
but this does not follow from the proposition. However, Remark 8.5 below
does give a general statement which covers this example.

Remark 8.3. When (UR)R>1 is asymptotically clueless, it is immediate to see
that if xR and yR are two coupled percolation configurations which coincide
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on UR, but are independent elsewhere, then

lim
R→∞

E
[
fR(xR)fR(yR)

]
− E

[
fR

]2
= 0.

On the other hand, if (UR)R>0 is asymptotically decisive, then

lim
R→∞

E
[
fR(xR)fR(yR)

]
− E

[
f 2

R

]
= 0.

Proof of Proposition 8.2. By (2.9) and orthogonality of martingale
differences, we have

P
[
∅ 6= SfR

⊂ UR

]
= E

[
E[fR | FUR

]2 − E[fR]2
]

= E
[(

E[fR | FUR
]− E[fR]

)2]
.

Thus, (UR)R>0 is asymptotically clueless if and only if the spectral sample of
fR satisfies P

[
∅ 6= SfR

⊂ UR

]
→ 0. Similarly,

P
[
SfR

6⊂ UR

]
= E

[
f 2

R − E[fR | FUR
]2
]

= E
[(

E[fR | FUR
]− fR

)2]
.

Hence, a necessary and sufficient condition for (UR) to be asymptotically
decisive is that P

[
SfR

⊂ UR

]
→ 1.

We now consider the simpler case in which Q = [0, 1]2, and assume (8.7).
Since the proof is rather similar to the proof of Theorem 1.1, we will be brief
here, and only indicate some of the essential points and the arguments where
a more substantial modification is necessary. As in Section 7.2, subdivide
[−2, R + 2]2 into boxes B1, B2, . . . , Bm2 of radius (R + 4)/(2 m), where m =
mR ∈ N tends to infinity as R → ∞, but very slowly. As above let B′j
denote the box concentric with Bj whose radius is a third of the radius of
Bj. Let HR ⊂ U c

R be a maximal subset of U c
R with the property that the

distance between any two distinct elements in HR is at least rR. Then for
some constant C every disk of radius C rR in RQ contains a point of HR,
but a disk of radius smaller than rR/2 contains at most one point of HR.
Let xj be the indicator function of the event SfR

∩Bj 6= ∅ and let yj be the
indicator function of the event

SfR
∩B′j ∩HR 6= ∅ .
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Our goal is to prove that for each I ⊂ {1, . . . , m2} and every j ∈
{1, . . . , m2} \ I,

P
[
yj = 1

∣∣ yi = 0 ∀i ∈ I
]
≥ a P

[
xj = 1

∣∣ yi = 0 ∀i ∈ I
]
, (8.9)

holds with some absolute constant a > 0. We mimic the proof of Proposi-
tion 5.1. Fix such j and I, and set n := |B′j ∩HR|, W := HR ∩

⋃
i∈I B′i and

Y :=
∣∣SfR

∩B′j ∩HR

∣∣. Using Proposition 5.2, we get

O(1) E
[
Y 1SfR

∩W=∅
]
≥ E

[
λ2

B,W

]
α4(R/m) n ,

and Proposition 5.3 can be used to obtain

E
[
Y 2 1SfR

∩W=∅
]
≤ O(1) E

[
λ2

B,W

]
α4(R/m)2 n2 ,

provided that lim infR→∞ α4(R/m) n > 0 and hence the diagonal term is
dominated by a constant times the off-diagonal term. (Intuitively, we need
that the “density” of the set HR inside the box Bj of radius R/m is good
enough to see pivotals once the box has any of them.) Since n ≍ R2 (m rR)−2,
this follows from (8.7), provided that mR tends to ∞ sufficiently slowly.
Then, (8.9) follows from the Cauchy-Schwarz second moment bound.

Using Propositions 4.1 and 6.1, and following the proof of the concentra-
tion Theorem 1.1, we have for R large enough that

P
[
∅ 6= SfR

⊂ UR

]
≤ O(1) γR/m(R)

(2.6)−→
R→∞

0 .

By the above, it follows that (UR) is asymptotically clueless.

For the case of a general quad, we can do the same trick as in Section 7.4
and in the proof of Corollary 8.1. For any δ > 0, there is a quad Q′ contained
in the interior of Q such that for R large enough

P
[
SfR

⊆ RQ′
]

> 1− δ . (8.10)

We may assume with no loss of generality that Q′ is smooth. The above
arguments (for the square) can easily be adapted to show that

lim sup
R→∞

P
[
∅ 6= SfR

⊂ UR ∩ RQ′
]

= 0 ,
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because the distance from RQ′ to the complement of RQ is bounded below
by a positive constant times R. In combination with (8.10), this gives

lim sup
R→∞

P
[
∅ 6= SfR

⊂ UR

]
≤ δ .

Since the left hand side does not depend on δ, we may let δ tend to 0 and
deduce the first claim of the proposition.

For the other direction, let Q′ and δ satisfy (8.10), as before. Let ρ0 > 0
denote the distance from ∂Q′ to ∂Q. Then for x ∈ I ∩ (RQ′), we have
P
[
x ∈ SfR

]
≤ O(1) α4(ρ0 R). Thus,

E
[
|SfR

∩ U c ∩ (RQ′)|
]
≤ |U c|α4(ρ0 R) .

If we assume (8.8), then this tends to zero as R→∞. Thus,

lim
R→∞

P
[
SfR
∩ U c ∩ (RQ′) 6= ∅

]
= 0 ,

and (8.10) gives
lim sup

R→∞
P
[
SfR
∩ U c 6= ∅

]
≤ δ .

Once again, since δ > 0 is arbitrary, this completes the proof.

Proof of Theorem 1.3. The Theorem follows immediately from Proposi-
tion 8.2 and Remark 8.3.

Remark 8.4. Recall that we used the random set Z in Sections 5 and 7, with
P[x ∈ Z] = 1/(α4(r) r2), just as a tool to measure the size of S . However, in
the spirit of our above proof, in place of U c

r , we can think of Z as the actual
set of bits being resampled.

Remark 8.5. It may be concluded from a slight variation on the proof of
Proposition 8.2 that in the setting of the triangular grid if the Hausdorff
limit F := limR→∞ U c

R/R exists and has Hausdorff dimension strictly less
than 5/4, then UR is asymptotically decisive. Indeed, assuming that s :=
dim(F ) < 5/4, for every ǫ > 0 may find a countable collection of points zj

and radii ρj, such that
∑

j ρs+ǫ
j < ǫ and the union of the disks with these

centers and radii contains a neighborhood of F . The probability that SfR

comes within distance O(1) ρj R of R zj is bounded by O(1) ρ
5/4−ǫ
j , if zj is

not too close to the boundary of Q and R is sufficiently large. A sum bound
and the above argument for dealing with a neighborhood of the boundary of
Q complete the proof.
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Remark 8.6. We obtain here a somewhat sharp result for “sensitivity to selec-
tive noise”, though it would be even more satisfying to have a necessary and
sufficient condition for a family (UR)R>1 to be asymptotically clueless. We be-
lieve that (UR) is asymptotically clueless if and only if P

[
∅ 6= PR ⊂ UR

]
→ 0,

where PR is the set of pivotals. Similarly, (UR) should be asymptotically
decisive if and only if P

[
PR ⊂ UR

]
→ 1. In other words, even though PR

and SR are asymptotically quite different (compare, e.g., Remark 4.6 with
Proposition 4.1), they should have the same polar sets.

Remark 8.7. Tsirelson [Tsi04] distinguishes two types of noise sensitivities:
micro and block sensitivities, where the latter is stronger than the micro
sensitivity we have been considering so far. He gives the following illustrative
examples. Consider the two functions on {−1, 1}n: f1 = 1√

n

∑n
i=1 xi and

f2 = 1√
n

∑n−n1/2

i=1

∏i+n1/2

k=i xk. Both correspond to renormalized random walks
which converge to Brownian motion, but the first is stable while the second is
noise-sensitive. Block sensitivity is defined as follows: instead of resampling
the bits one by one, each with probability ǫ, we resample simultaneously
blocks of bits. For δ > 0, divide the n bits into about δ−1 blocks of about δn
bits: Bi := N ∩

[
i δ n, (i + 1) δ n

)
. Each block is now resampled (i.e., all bits

within the block) with probability ǫ. A sequence of functions is block sensitive
if for any fixed ǫ > 0, the limsup as n goes to infinity of the correlation in
this block procedure is bounded by a function of δ which goes to 0 when δ
goes to 0. It is easy to see that the sequence of functions f2 (n = 1, 2, . . . )
is not block-sensitive. This is related to the fact that the sensitivity of f2

is “localized”, in the sense that its spectral sample Sf2 , when rescaled by
1/n, converges in law to a finite (random) set of points. As we will see in
Section 10, this is not at all the case with the spectral sample of percolation.
It is easy to check that percolation crossing events are indeed block sensitive.

9 Applications to dynamical percolation

In this section, we prove Theorems 1.4 and 1.5.

As in Subsection 7.3, we consider the 0-1 indicator function f = fR of
the percolation crossing event from ∂([−1, 1]2) to ∂([−R, R]2). Then E

[
f
]

=
E
[
f 2
]
≍ α1(R). We let ωt be the dynamical percolation configuration at
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time t, started at the stationary distribution at t = 0. Recall that we have

E
[
f(ω0) f(ωt)

]
=

∞∑

k=0

e−kt
∑

|S|=k

f̂(S)2, t > 0 . (9.1)

As in Subsection 8.1, for s ≥ 1 define ρ(s) as the least r ∈ N+ such that
r2 α4(r) ≥ s, and break the sum over k in (9.1) into parts according to
the j ∈ N satisfying j/t ≤ k < (j + 1)/t. Then use Theorem 7.3 and the
estimates (2.6) and (2.3), to get

E
[
f(ω0) f(ωt)

]
≤ O(1)

α1(R)2

α1(ρ(1/t))
= O(1)

E[f(ω0)
2]

α1(ρ(1/t))
. (9.2)

Let E denote the set of exceptional times t ∈ [0,∞) for the event that
the origin is in an infinite open cluster. To give a lower bound on the Haus-
dorff dimension of E , a well-known technique is Frostman’s criterion, see
e.g. [Per01, Theorem 6.6] or [Mat95, Theorem 8.9]. Combined with a com-
pactness argument, it gives the following; see [SS05, Theorem 6.1]. For any
γ > 0, let

Mγ(R) :=

∫ 1

0

∫ 1

0

E
[
fR(ω0) fR(ωt)

]

E
[
fR(ω0)

]2 |t− s|γ
dt ds . (9.3)

If supR Mγ(R) < ∞, then E ∩ [0, 1] is nonempty with positive probability,
and on this event a.s. its dimension is at least γ. It is easy to see that there
is a constant d such that dimH(E ) = d a.s. Therefore, supR Mγ(R) <∞ also
implies dimH(E ) ≥ γ almost surely.

Proof of Theorem 1.4. To start with, we have ρ(s) = s4/3+o(1), by (2.5).
Secondly,

α1(r) = r−5/48+o(1)

by [LSW02]. Thus, translation invariance and (9.2) give

E
[
f(ωs) f(ωt)

]
/E
[
f(ω)

]2 ≤ O(1) |t− s|−(4/3)(5/48)+o(1),

as |t − s| → 0. Therefore, as long as γ < 1 − (4/3) (5/48), we have
supR Mγ(R) < ∞. The above discussion therefore gives dimH(E ) ≥ 31/36
a.s. The matching upper bound is given by Theorem 1.9 of [SS05]. This
implies statements 1 of the Theorem.
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The proof of Statement 2 is similar. For the 0-1 indicator function f+

of the crossing event between radius 1 and R in a half plane one gets the
following analog of Theorem 7.3: if k ∈ N+ satisfies k ≤ α4(r) r2, then

Q
[
|Sf+ | < k

]
≤ O(1)

α+
1 (R)2

α+
1 (r)

.

The proof is similar to the proof of Theorem 7.3, and is left to the reader.
The bound corresponding to (9.2) is then

E
[
f+(ω0)f

+(ωt)
]

E
[
f+(ω0)2

] = O(1) α+
1

(
ρ(1/t)

)−1
. (9.4)

By [SW01, Theorem 3], we have α+
1 (r) = r−ξ+

1 +o(1), with ξ+
1 = 1/3. The

proof of the lower bound of 1 − (4/3) ξ+
1 on the Hausdorff dimension then

proceeds as above. For the upper bound, we refer to [SS05, Theorem 1.13].
This proves part 2.

For the proof of the third part, we now let f be the indicator function of
the event that there is a white crossing in the upper half plane and a black
crossing in a translation of the lower half plane from some fixed radius r0 to
radius R. The translation is chosen so that the percolation configurations
in the two half planes are independent, and r0 is chosen so that the event
has positive probability for all R > r0. Then by independence (and since the
choice of r0 is insignificant), we get from (9.4)

E
[
f(ω0)f(ωt)

]

E
[
f(ω0)2

] = O(1) α+
1

(
ρ(1/t)

)−2
.

Thus, in this case we get the lower bound of 1/9 for the corresponding Haus-
dorff dimension, which completes the proof.

Proof of Theorem 1.5. Let f = fR be the indicator function for the exis-
tence of an open crossing from 0 to ∂([−R, R]2). We will apply the relation
between α1, α4 and α5 that comes from the k = 2 case of Proposition 12.1 in
our Appendix. Since α5(r) ≍ r−2 (see [KSZ98, Lemma 5] or [SS05, Corollary
A.8]), the estimate (12.1) says that there are some constants c1, ǫ > 0 such
that

α1(r) α4(r) > c1r
ǫ−2, (9.5)
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holds for all r > 1. Thus,

E
[
f(ω0) f(ωt)

]

E
[
f(ω0)

]2 ≤ O(1)

α1

(
ρ(1/t)

) by (9.2)

≤ O(1) ρ(1/t)2−ǫ α4

(
ρ(1/t)

)
by (9.5)

≤ O(1)

t
ρ(1/t)−ǫ by (8.3)

≤ O(1) tǫ/2−1,

where the last inequality follows from the definition of ρ. Therefore, if we
take γ ∈ (0, ǫ/2), then supR Mγ(R) <∞, and the set of exceptional times for
having an infinite cluster almost surely has a positive Hausdorff dimension.

Finally, note that if there were exceptional times with two distinct infinite
white clusters with positive probability, then there would also be times with
the 4-arm event from the origin to infinity. It was shown in [SS05] that this
does not happen on the triangular lattice, and that there are no exceptional
times on Z2 with three infinite white clusters. However, one can also easily
prove the stronger result for Z2. Recall that (2.6) implies that α4(r)

2 r2 <
O(1) r−ǫ for some ǫ > 0. This implies that the expected number of pivotals for
the 4-arm event between radius 4 and R tends to zero as R→∞. (One should
also take into account the sites near the outer boundary and near the inner
boundary. Indeed, the total expected number of pivotals is O(1) R2 α4(R)2.)
Hence [SS05, Theorem 8.1] says that there are a.s. no exceptional times for
the 4-arm event even on Z2.

10 Scaling limit of the spectral sample

Given η > 0 let µη denote the law of Bernoulli(1/2) site percolation on the
triangular grid Tη of mesh η. Let ω denote a sample from µη. Given a quad
Q ⊂ C, we can consider the event thatQ is crossed by ω. To make this precise
in the case where Q is not adapted to the grid, we may consider the white
and black coloring of the hexagonal grid dual to Tη, as in Subsection 2.1. We
let fQ denote the ±1 indicator function of the crossing event. Let µ̂Qη denote
the law of the spectral sample of fQ, that is, if X is a collection of subsets of
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the vertices of Tη, then

µ̂Qη (X ) =
∑

S∈X
f̂Q(S)2.

Let d0 denote the spherical metric on Ĉ = C∪{∞} (with diameter π). If
S1, S2 ⊂ Ĉ are closed and nonempty, let dH(S1, S2) be the Hausdorff distance
between S1 and S2 with respect to the underlying metric d0. If S 6= ∅, define
dH(∅, S) = dH(S, ∅) := π, and set dH(∅, ∅) = 0. Then dH is a metric on the
set S of closed subsets of Ĉ. Since (S \ {∅}, dH) is compact, the same holds
for (S, dH). We may consider the probability measure µ̂Qη as a Borel measure
on (S, dH).

Theorem 10.1. Let Q be a piecewise smooth quad in C. Then the weak
limit µ̂Q := limηց0 µ̂Qη (with respect to the metric dH) exists. Moreover, it is
conformally invariant, in the sense that if φ is conformal in a neighborhood
of Q and Q′ := φ(Q), then µ̂Q = µ̂Q

′ ◦ φ.

As mentioned in the introduction, the existence of the limit follows from
Tsirelson’s theory and [SS]. Nevertheless, we believe that our exposition
below might be helpful.

Remark 10.2. The proof of the existence of the limit also works for sub-
sequential scaling limits of critical bond percolation on Z2: if ηj ց 0 is a
sequence along which bond percolation on ηj Z2 has a limit (in the sense
of [SS], say), then the corresponding spectral sample measures also have a
limit. (The existence of such sequences {ηj} follows from compactness.)

In the proof of Theorem 10.1, we will use the following result.

Proposition 10.3 ([SS]). Let Q be a piecewise smooth quad in C. Suppose
that α ⊂ C is a finite union of finite length paths, and that α ∩ ∂Q is finite.
Then for every ǫ > 0 there is a finite collection of piecewise smooth quads
Q1,Q2, . . . ,Qn ⊂ C \ α and a function g : {−1, 1}n → {−1, 1} such that

lim
ηց0

µη

[
fQ(ω) 6= g

(
fQ1(ω), fQ2(ω), . . . , fQn(ω)

)]
< ǫ .

Another result from [SS] that we will need is that for any finite se-
quence Q1,Q2, . . . ,Qn of piecewise smooth quads in C, the law of the vector(
fQ1(ω), fQ2(ω), . . . , fQn(ω)

)
under µη has a limit as η ց 0, and that this

limiting joint law is conformally invariant.
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Proof of Theorem 10.1. Let U ⊂ C be an open set such that ∂U is a
disjoint finite union of smooth simple closed paths and ∂U ∩ ∂Q is finite. In
order to establish the existence of the limit µ̂Q, it is clearly enough to show
that for every such U the limit

W (Q, U) := lim
ηց0

µ̂Qη
(
S ⊂ U

)

exists, and for the conformal invariance statement, it suffices to show that
W
(
Q′, φ(U)

)
= W (Q, U).

Fix some ǫ > 0 arbitrarily small. In Proposition 10.3, take α := ∂U and
let Q1, . . . ,Qn and g be as guaranteed there. Let J :=

{
j ∈ {1, 2, . . . , n} :

Qj ⊂ U
}

and J ′ := {1, . . . , n} \ J . Then Qj ∩ U = ∅ when j ∈ J ′. Set x :=(
fQ1(ω), . . . , fQn(ω)

)
∈ {−1, 1}n, and let xJ and xJ ′ denote the restrictions of

x to J and J ′, respectively. Then for all η sufficiently small xJ ′ is independent
from ωU and xJ is determined by ωU .

Let G = G(ω) := g(x), let νη be the law of x under µη, and let ν :=
limηց0 νη. By (2.9), we have for all η sufficiently small

Wη(G, U) :=
∑

S⊂U

Ĝ(S)2 = E
[
E
[
G(ω)

∣∣ ωU

]2]
.

We may write g(x) as a sum

g(x) =
∑

y∈{−1,1}J
1xJ=y gy(xJ ′)

with some functions gy : {−1, 1}J ′ → {−1, 1}. Then

Wη(G, U) =
∑

y

νη(xJ = y) νη[gy]
2 −→

ηց0

∑

y

ν(xJ = y) ν[gy]
2.

(Here, ν[gy] denotes the expectation of gy with respect to ν, and similarly for
νη.) Hence, W (G, U) := limηց0 Wη(G, U) exists.

By (2.7), we have
∣∣µ̂Qη (S ⊂ U)−Wη(G, U)

∣∣ ≤ 4 µη(G 6= fQ)1/2 .

For η sufficiently small, the right hand side is smaller than 4
√

ǫ, by our choice
of g. Since W (G, U) = limηց0 Wη(G, U), we conclude that

∣∣µ̂Qη (S ⊂ U)−W (G, U)
∣∣ < 5

√
ǫ
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for all η sufficiently small. (But we cannot say that limηց0 µ̂Qη (S ⊂ U) =
W (G, U), since G depends on ǫ.) This implies

lim sup
ηց0

µ̂Qη (S ⊂ U)− lim inf
ηց0

µ̂Qη (S ⊂ U) ≤ 10
√

ǫ .

Since ǫ is an arbitrary positive number, this establishes the existence of the
limit W (Q, U). The proof of conformal invariance is similar, and left to the
reader.

We now describe some a.s. properties of the limiting law.

Theorem 10.4. If S is a sample from µ̂Q, then a.s. S is contained in
the interior of Q and for every open U ⊂ C, if U ∩ S 6= ∅, then U ∩ S

has Hausdorff dimension 3/4. In particular, S is a.s. homeomorphic to a
Cantor set, unless it is empty.

Proof. It follows from (7.8) from Subsection 7.4 that S is µ̂Q-a.s. contained
in the interior of Q. Now fix some open U whose closure is contained in the
interior of Q. Fix η > 0 and let Sη denote a sample from µ̂Qη . Let λη denote
the counting measure on Sη ∩U divided by η−2 α4(1, 1/η). We may consider
λη as a random point in the metric space of Borel measures on Q with the
Prokhorov metric. By the estimate (3.6), we have lim supηց0 E

[
λη(U)

]
<∞.

Therefore, the law of λη is tight as η ց 0. Likewise, the law of the pair
(Sη, λη) is tight. Hence, there is a sequence ηj → 0 such that the law of the
pair (Sηj

, ληj
) converges weakly as j →∞. Let (S , λ) denote a sample from

the weak limit. Then λ is a.s. a measure whose support is contained in S .

Now let B ⊂ U be a closed disk. Let B′ ⊂ B be a concentric open
disk with smaller radius, and let δ denote the distance from ∂B′ to ∂B.
Theorem 7.1 with B′ and B in place of U ′ and U implies that λ(B) > 0
a.s. on the event ∅ 6= S ∩ B ⊂ B′. (Note that ∅ 6= S ∩ B ⊂ B′ is an
open condition on S , since it is equivalent to having ∅ 6= S ∩ B′ and
S ∩ (B \ B′) = ∅.) But B \ B′ can be covered by O(δ−1) disks of radius
δ. By (3.4) and (2.5), for each of these radius δ disks, the probability that
S intersects it is O(δ5/4+o(1)). Therefore, P

[
S ∩ B 6⊂ B′

]
= O(δ1/4+o(1)).

In particular, we have P
[
S ∩B 6= ∅, λ(B) = 0

]
= o(1) as δ ց 0; that is,

P
[
S ∩ B 6= ∅, λ(B) = 0

]
= 0. By considering a countable collection of disks

covering U it follows that on U∩S 6= ∅ we have λ(U) > 0 a.s. The correlation
estimate (3.3) and the asymptotics α4(r) = r−5/4+o(1) from (2.5) imply that
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for η > 0 and every s > −3/4 we have

E
[∫

U

∫

U

(
|x− y| ∨ η

)s
dλη(x) dλη(y)

]
= O(1) .

This implies that a.s.
∫

U

∫

U

|x− y|s dλ(x) dλ(y) <∞ .

Therefore, Frostman’s criterion implies that the Hausdorff dimension of S

is a.s. at least 3/4 on the event S ∩ U 6= ∅. By Lemma 3.2, the expected
number of disks of radius r needed to cover S ∩ U is bounded by r3/4+o(1).
Hence, the Hausdorff dimension of U ∩S is a.s. at most 3/4 on the event
U ∩S 6= ∅. This proves the claim for any fixed U . The assertion for every
U then follows by considering a countable basis for the topology (i.e., disks
having rational radius and centers with rational coordinates).

Remark 10.5. It would be interesting to prove the weak convergence of the
law of (Sη, λη) as η ց 0.

Note that the proof above shows that for any subsequential scaling limit
(S , λ) of (Sη, λη), the support of the measure λ a.s is the whole S .

Proof of Theorem 1.6. Since [0, R]2 is a square, we have E
[
fR

]
→

0 a.s. Therefore P
[
SfR

= ∅
]
→ 0. Consequently, the claims follow from

Theorems 10.1 and 10.4.

11 Some open problems

Here is a list of some questions and open problems:

1. For any Boolean function f : {−1, 1}n → {−1, 1}, define its spectral
entropy Ent(f) to be

Ent(f) =
∑

S⊂{1,...,n}
f̂(S)2 log

1

f̂(S)2
.

Friedgut and Kalai conjectured in [FK96] that there is some absolute
constant C > 0 such that for any Boolean function f ,

Ent(f) ≤ C
∑

S⊂{1,...,n}
f̂(S)2|S| = E

[
|Sf |

]
;
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in other words, that the spectral entropy is controlled by the total
influence. As was pointed out to us by Gil Kalai, it is natural to test
the conjecture in the setting of percolation: if fR is the ±1-indicator
function of the left-right crossing in the square [0, R]2, is it true that
Ent(fR) = O(R2α4(R))?

2. Our paper deals with noise sensitivity of percolation and its applica-
tions to dynamical percolation. One could ask similar questions about
the Ising model, for which a natural dynamics is the Glauber dynamics.
For instance, Broman and Steif ask in [BS06, Question 1.8] if there exist
exceptional times for the Ising model on Z2 at β = βc for which there is
an infinite up-spin cluster. Since SLE3 (which is supposedly the scal-
ing limit of critical Ising interfaces, see Smirnov’s recent breakthrough
[Smi06]) does not have double points, there should be very few pivotals,
and thus such exceptional times should not exist, but the missing ar-
gument is a quasi-multiplicativity property for the probabilities of the
alternating 4-arm events in the Ising model. Similar questions can be
asked for the FK model, Potts models, etc.

3. Prove the weak convergence of the law of (Sη, λη); see Remark 10.5. In
a forthcoming paper [GPS], we will prove the weak convergence of the
law of (Pη, λ̃η), where λ̃η is the counting measure on the set of pivotals
renormalized by η−2α4(1, 1/η).

4. Prove that PR and SR asymptotically have the same “polar sets”. See
Remark 8.6 for a more precise description.

5. Prove that the laws of PR and SR are asymptotically mutually singu-
lar, or that their scaling limits are singular. Remark 4.6 suggests that
this should be the case, since both these sets should be statistically self
similar, in some sense.

6. Do we have E
[
|SRQ|

]
= E

[
|PRQ|

]
≍ R2α4(R) for any quad Q ⊂ C,

as R goes to infinity? (See Proposition 7.4).

7. In the same fashion, prove that the sharp concentration as in Theo-
rem 1.1 still holds for general quads. With our techniques, this would
require a uniform control over the domain on the constants involved in
Proposition 5.11, as well as a statement analogous to Proposition 4.1
for the case of general quads.
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8. Prove that the main statement in Section 5 (Proposition 5.1) still holds
for non-monotone functions such as the ℓ-arm annulus crossing events.
(See Subsection 5.3 for an explanation why we needed the monotonicity
assumption for the first moment.) If such a generalization was proved,
then it would imply in particular that for the triangular lattice the set
of exceptional times with both infinite black and white clusters has
dimension 2/3 a.s., strengthening the last statement in Theorem 1.4.

For ℓ > 1, there is a further small complication when ℓ is odd: a bit
can be pivotal for the ℓ-arm event even without having the exact 4-
arm event around its tile. (That is why we restricted Proposition 4.7
to the ℓ ∈ {1} ∪ 2N+ case.) Resolving this technicality and the non-
monotonicity problem would imply the existence of exceptional times
where there are polychromatic three arms from 0 to infinity (the di-
mension of this set of exceptional times would then be 1/9). We cannot
prove the existence of such times with the results of the present paper.

9. Let us conclude with a computational problem: find any “efficient”
algorithmic way to sample S in the case of percolation, say (in order,
for instance, to make pictures of it), or prove that such an algorithm
does not exist.

12 Appendix: an inequality for multi-arm prob-

abilities

We prove here an estimate regarding the multi-arm crossing probabilities for
annuli in critical bond percolation on Z2, which is due to Vincent Beffara
(private communication) and included here with his permission.

Proposition 12.1. Fix k ∈ N+ and consider bond percolation on Z2 with
parameter p = 1/2. There are constants, C, ǫ > 0, which may depend on k,
such that for all 1 < r < R,

α2k+1(r, R) ≤ C α1(r, R) α2k(r, R) (r/R)ǫ. (12.1)

The method of proof can be generalized to give a few similar results.
However, new ideas seem to be necessary for the corresponding statement
with k = 1/2. The case k = 1/2 is of particular significance: it was proved
in [SS05] that it implies the existence of exceptional times for Bernoulli(1/2)
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bond percolation on Z2. In the present paper we prove their existence us-
ing (12.1) instead.

Proof. For simplicity of notation, we will restrict the proof to the case k = 2,
which is the case we need, but the proof very easily carries over to the general
case. Let A(r, R) denote the annulus which is the closure of B(0, R)\B(0, r).
If we have the 4-arm event in A(r, R), i.e., four crossings of alternating colors
between the two boundary components of A(r, R), with white (primal) and
black (dual) colors on the tiles given in Subsection 2.1, then there are at
least 4 interfaces γ1, γ2, γ3, γ4 separating these clusters. These interfaces are
simple paths on the grid Z2 +(1/4, 1/4) in A(r, R), and each of them has one
point on each boundary component A(r, R).

Let γ = (γ1, γ2, γ3) be a triple of 3 simple paths that can arise as 3
consecutive interfaces in cyclic order. Let Aγ denote the event that these are
actual interfaces between crossing clusters. Let S := Sγ denote the connected
component of A(r, R) \ (γ1 ∪ γ3) that does not contain γ2, and let Bγ denote
the event that Aγ occurs and there are at least two disjoint primal crossings
in S. Our first goal is to prove that

P
[
Bγ

∣∣ Aγ

]
≤ O(1) α1(r, R) (r/R)ǫ, (12.2)

with some constant ǫ > 0.
Note that onAγ, we have in S at least one primal crossing and at least one

dual crossing, which are adjacent to γ1 and γ3. For the sake of definiteness,
we will assume that the primal crossing is adjacent to γ1 and the dual crossing
is adjacent to γ3. (This can be determined from γ.) Let S ′ = S ′γ denote the
set of edges in S that are not adjacent to γ1. Then given Aγ, we have Bγ

if and only if there is a primal crossing also in S ′. Therefore, (12.2) follows
once we show that for every such γ the probability that there is a crossing
in S ′ is bounded by the right hand side of (12.2).

We may consider a percolation configuration ω in the whole plane and
also restrict it to S ′. Let ωρ denote the restriction of ω to B(0, ρ), for any
ρ ∈ [r, R]. Write ρ ↔ ρ′ for the event that there is a crossing of ω between

the two boundary component of the annulus A(ρ, ρ′), and write ρ
D↔ ρ′ for

the existence of such a crossing within some specified set D. We will prove
that for some constant a ∈ (0, 1) and every ρ and ρ′ satisfying r ∨ 100 ≤ ρ ≤
ρ′/8 ≤ R/8 we have

P
[
r

S′
↔ ρ′

∣∣ ωρ, r ↔ R
]
≤ a . (12.3)
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Using induction, this implies (12.2) with ǫ = log8(1/a).
The interface γ1 crosses the annulus A(3 ρ, 4 ρ) one or more times. Let w

denote the winding number around 0 of one of these crossings, that is, the
signed change of the argument along the crossing divided by 2 π. Suppose
that β is a simple path in A(3 ρ, 4 ρ) with one endpoint on each boundary
component of the annulus and let wβ denote the winding number of β. If
β∩γ1 = ∅, then we may adjoin to β∪γ1 two arcs on the boundary components
of the annulus to form a simple closed curve which has winding number in
{0,±1}. Therefore, we see that |w − wβ| > 3 implies β ∩ γ1 6= ∅.

2ρ

3ρ

4ρ

5ρ

Figure 12.1: The event Dj with j = 1.

Let Dj denote the event that there is a dual crossing in ω of A(3 ρ, 4 ρ)
with winding number in the range [j − 1/2, j + 1/2], and there are primal
circuits in A(2 ρ, 3 ρ) and in A(4 ρ, 5 ρ), each of them separating the two
boundary component of its annulus, and these primal circuits are connected
to each other in ω; see Figure 12.1. By the RSW theorem, there is constant
δ > 0 such that P

[
D±10

]
≥ δ. We claim that

P
[
D±10

∣∣ r ↔ R, ωρ

]
≥ δ . (12.4)

If we condition of D10, and we further condition on the outermost primal
circuit α0 in A(2 ρ, 3 ρ) and on the innermost primal circuit α1 in A(4 ρ, 5 ρ),
then the configuration inside α0 and the configuration outside α1 remains un-
biased, and if additionally α0 is connected to the inner boundary component
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of A(r, R) and α1 is connected to the outer boundary component of A(r, R),
then we also have r ↔ R. This implies P

[
r ↔ R

∣∣ ωρ, D10

]
≥ P

[
r ↔ R

∣∣ ωρ

]
.

The same holds for D−10, and since D±10 is independent of ωρ, the inequal-
ity (12.4) easily follows.

Now note that if Dj holds, then every primal crossing of A(3 ρ, 4 ρ) in ω
is with winding number in the range [j − 4, j + 4]. Hence, if |j − w| > 7,

then Dj ∩{3 ρ
S′
↔ 4 ρ} = ∅. Consequently, at least one of the two events D±10

is disjoint from {ρ S′
↔ 4 ρ}. This gives (12.3) with a := 1 − δ. As we have

argued before, (12.2) follows.
The 5-arm crossing event is certainly contained in

⋃
γ P
[
Bγ

]
, where the

union ranges over all γ as above. Hence, (12.2) gives

α5(r, R) ≤ O(1) (r/R)ǫ α1(r, R) E
[∑

γ

1Aγ

]
. (12.5)

If X is the number of interfaces crossing the annulus A(r, R) (which is nec-
essarily even), then

∑
γ 1Aγ is bounded by X3 1X≥4. Since for all j ∈ N

we have P
[
X ≥ j

]
≤ O(1) (r/R)j ǫ0 with some constant ǫ0 > 0 (by RSW

and BK) and P
[
X ≥ 4

]
≥ (r/R)ǫ1/O(1) for some ǫ1 ∈ (0,∞), we have

E
[
X3 1X≥4

]
≤ O(1) P

[
X ≥ 4

]
when R > 2 r, say. Therefore,

E
[∑

γ

1Aγ

]
≤ E

[
X3 1X≥4

]
≤ O(1) P

[
X ≥ 4

]
= O(1) α4(r, R) .

When combined with (12.5), this proves the proposition in the case k = 2.
The general case is similarly obtained.





Chapter VI

Scaling limit of near-critical and
dynamical percolation

Ongoing project with Gábor Pete and Oded Schramm.

This chapter is about an ongoing project where we plan to prove that
near-critical percolation and dynamical percolation, properly renormalized,
have a scaling limit. We will provide here two theorems (of independent
interest) which as we will explain, will constitute key steps in the larger
project.
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1 Introduction

As we motivated in the global introduction, near-critical percolation is a
way to extend our understanding of the critical point to the properties of
percolation in the “neighborhood” of the phase transition.

For simplicity, in this chapter we will mostly restrict our study to the
case of the triangular grid. Some partial results remain valid for Z2 (for
instance concerning subsequential scaling limits of Z2 percolation but we will
not discuss these in detail here). The mesh of the grid will be denoted by η
(rather than 1/n in the global introduction), so our configurations will be on
the grids ηT.

In order to make our models of dynamical percolation and near-critical
percolation look more similar, we will define our coupling of near-critical
configurations in a slightly different way as we did in the (global) introduc-
tion (where we defined a coupling (ω̂n

λ)λ∈R, by “slowing down” the standard
coupling on percolation configurations).

More precisely, for any η > 0, let (ωη(λ))λ∈R be the coupling of configu-
rations defined as follows: start with a critical site percolation ωη(0) on the
rescaled grid ηT, and along the “time dynamic” λ > 0, independently for each
site x ∈ ηT, let x switch from closed to open at rate qη := η2α4(η, 1)−1; as
well, along the negative axis, let each site independently switch from open to
closed at the same rate qη. This means that for any fixed parameter λ ∈ R,
the configuration ωη(λ) follows the law of i.i.d site percolation on the rescaled
grid ηT, with parameter

pη(λ) :=
1

2
+

1

2
(1− exp(−λη2α4(η, 1)−1) ∼ 1

2
+

1

2
λ η2α4(η, 1)−1.

So we are indeed in the near-critical regime we introduced in the global intro-
duction. It is straightforward to check that both descriptions are equivalent
at the limit η → 0 (up to a factor of 2 in our definitions).

We pan to prove that these near-critical percolation configurations have a
scaling limit when the mesh η goes to zero. Since we do not focus on a single
interface but rather on the whole percolation process, we need to have a good
way to “look at” our configurations; a way that would remain significant in
the limit. Indeed, at the scaling limit, we will not have “bits” any more, so
what are we willing to keep ? There are several possibilities here, each having
there own advantages.
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• In [Aiz95], Aizenman suggested to use the random set of all open paths
of the percolation configuration (and to use tightness arguments to
control this rather wild set).

• In [CN06], Camia and Newman suggested to keep all the interface loops
around the clusters, and proved that “seen as a set of nested loops”,
discrete percolation configurations have a scaling limit when the mesh
η goes to zero, to a continuum percolation which consists of nested
SLE6 loops. This is a rather natural generalization of the description
of one interface via SLE6.

• In [SS], Schramm and Smirnov, inspired by Tsirelson’s theory of noises,
suggested to keep the information about connectivity by considering the
random set consisting of all the quads (or tubes) that are crossed by
the configuration. They prove that percolation has a scaling limit in
that sense (with the help of elegant topological arguments), and that
it leads to a noise in the sense of Tsirelson.

Of course all these “descriptions” are related to each other. A common
point in all these choices is that one keeps only “macroscopic” information.
Depending on the problem one is facing, a setup might be more adapted than
some other.

For the particular purpose of our work, the third one seems more appro-
priate to us. Indeed, since it is intimately related with “noising” a continuum
percolation, is is natural to follow Tsirelson’s approach: knowing that contin-
uum percolation can be seen as a noise means that the filtration of the con-
tinuum percolation process factorizes well (which is obvious on the discrete
level but very non trivial once at the scaling limit). In particular, one can
resample the continuum configuration “box by box” (say for small boxes of
sidelength ǫ) at some rate as one does with discrete percolation. For instance,
using this procedure, Tsirelson defines a generalized Ornstein-Uhlenbeck op-
erator (note though that in our case of a black noise, that operator is trivial).
An other reason being that if we want to prove, say, ergodicity of dynamical
percolation at the scaling limit, with the third setup, it boils down to proving
asymptotic noise sensitivity of crossing events, and it is easier to read noise
sensitivity using the Spectrum measure of some crossing event rather than
some property about interfaces for instance.
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Therefore we will define in section 3 a topology T on the space H of all
percolation configurations (which includes both discrete and continuum type
of percolation configurations). It is proved in [SS] that the topological space
(H , T ) is compact.

In the larger project, we plan to prove that near-critical models have a
scaling limit. More exactly

Theorem 1.1. For any fixed level λ 6= 0, near-critical percolation configu-
rations ωη(λ) on η T have a scaling limit when η → 0 (under the topology T
on the space of configurations H ).

From [NW08], we know that in our limiting model, the interfaces between
the clusters are singular with respect to SLE6 (this was proved to hold for any
subsequential limit in [NW08] and therefore holds for the (unique) scaling
limit above). In particular, the scaling limit in the above theorem 1.1 is
different from the scaling limit at criticality (scaling limit of ωη(0)).

We plan to prove more than the “fixed-level” near-critical percolation
scaling limit. Indeed one can consider the process (ωη(λ))λ∈R as a cádlág
process R → H. We equip the space of such processes with the topology of
locally uniform convergence that we denote T̂ . We plan to prove

Theorem 1.2. The rescaled family of (monotone) configurations (ωη(λ))λ∈R

seen as random cádlág processes on H have a scaling limit when η → 0.
They converge in law under the topology of locally uniform convergence (T̂ )
to a (monotone) family of continuum percolations (ω(λ))λ∈R.

Using the same approach, one can prove that dynamical percolation has
a scaling limit (dynamical percolation scaling limit was also among the con-
jectures in [CFN06]). As was explained in the global introduction, when we
rescale the lattice (η goes to zero), because of the noise sensitivity of percola-
tion, on has to slow down the time. The right scaling (up to constant) is as fol-
lows: Let (ωη(t))t≥0 be a dynamical percolation on ηT, where each site x ∈ ηT
is updated according to a Poisson clock of rate qη := η2α4(η, 1)−1 = η3/4+o(1).
We plan to prove

Theorem 1.3. The rescaled dynamical percolation processes (ωη(t))t≥0 seen
as random cádlág processes on H have a scaling limit when η → 0. They
converge in law under the topology of locally uniform convergence (T̂ ) to a
continuum dynamical percolation (ω(t))t≥0 (or (ωt)t≥0).
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Let us now explain how we plan to prove these results and what are the
steps we include in this chapter. Our project partly follows (and prove) a
program developed by Camia, Fontes and Newman in [CFN06]. They had the
idea to build the limiting coupling of near-critical configurations (ω(λ))λ∈R

out of the critical “slice” ω(0). To sample ω(λ) (for some λ > 0, say) using
ω(0), many “sites” should switch (in a random way) from closed to open;
the trouble is: there are no sites anymore in the limit, except somehow the
pivotal points (still “visible” at the scaling limit). In [CFN06], the authors
explain that it should be enough in principle to follow the status of these
“important” points. Assuming it is enough, we still have to sample which
points among the set of all important points will switch from the ω(0) to the
ω(λ) configuration. If we look at the set of all pivotal points (at the scaling
limit), it is easy to see that it is a.s. a dense set of dimension 3/4, and one
can check that infinitely (though countably many) of these sites will switch
from closed to open. If one starts with some configuration ω(0) and that
infinitely many of its pivotal points switch, it is hard to “read” what will be
the configuration ω(λ).

This is why we need to introduce some “cut-off”; a natural one is to
consider for any small ǫ > 0, the set of pivotal points which are important
at least up to distance ǫ (i.e. the set of points x which satisfy a four-arms
event in B(x, ǫ)); let Pǫ denote this random set of ǫ-important points in C.
This is still some set of dimension 3/4, but at least is not dense and has nice
random “geometries”. More importantly it turns out that on any compact
set, only finitely many points in Pǫ will switch from closed to open.

The counterpart of working with such a cut-off is that not only we need
to prove that it is enough to follow the status of pivotal points (as explained
above), but we need more, i.e. to prove that if we only follow the status of the
ǫ-important points then we can predict with good accuracy (when ǫ → 0)
what is the configuration ω(λ). Of course following only the ǫ-important
points will not allow us to predict the small scales connectivities of ω(λ),
but if for any δ > 0, we can predict with high accuracy when ǫ → 0 all the
connectivity properties of ω(λ) up to a precision of δ, then we are fine.

Let us return to the discrete picture to gain some intuition. If η is some
small mesh, let Xǫ

η be the number of ǫ-important closed points for ωη(0)
in the square [0, 1]2. Xǫ

η is of order O(1)η−2α4(η, ǫ). Each point among
these Xǫ

η points independently switches from closed to open with probability
1 − exp(−λη2α4(η, 1)−1) ∼ λη2α4(ǫ, 1)−1. Therefore the total number of
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switches in the unit square is well approximated (when η → 0) by a Poisson

variable of parameter λ
Xǫ

η

η−2α4(η,1)
. Hence as was argued in [CFN06], the pivotal

points which switch from ω(0) to ω(λ) correspond to a certain “Poissonian”
cloud over the set of pivotal points, according to some limiting counting
measure on this set of pivotal points.

We summarize the program/strategy as follows:

• Prove that in order to predict with good accuracy what is the configu-
ration ω(λ), it is enough to follow the status of pivotal points (at the
scaling limit) which are at least ǫ-important for the configuration ω(0)
(ǫ being chosen sufficiently small depending on the accuracy we want).
Furthermore we need a discrete version of this statement in order to
prove the scaling limit of our discrete configurations to the continuous
one.

• In order to sample which points among the ǫ-important points (in ω(0))
will switch, define a natural “counting” measure on the set Pǫ of all ǫ-
important points of ω(0). This measure should be the scaling limit of
the normalized counting measures on the set of ǫ-important points for
the ωη(0)-configurations.

The same program applies for the scaling limit of dynamical percolation
(ωt)t≥0.

Let us first explain the issues behind the first item and the result we
prove. What we need to rule out if one follows only points which initially
were at least ǫ-importants is what we might call “cascade of importance”. For
instance, it could be that some point in ω(0) is of very small importance (for
ω(0)), but that under the λ-“evolution” it gets “promoted” to a much larger
importance. Not only it could, but it actually happens everywhere! Indeed
each time a “big” pivotal switches, there are many points around which are
promoted while many others are retrograded. So we cannot avoid such sharp
changes of importance. Fortunately for us, even though some points that
we are not looking at (were less than ǫ-important in ω(0)) get promoted, in
order to affect our prediction of ω(λ), they would also need to switch their
status. And we will prove that it is very unlikely that between level 0 and
level λ, there is some point of initial (ω(0)) very small importance which gets
promoted and also switches its status between ω(0) and ω(λ). If we prove
that such points do not exist with high probability, then it will be possible
with good accuracy to predict things following only the ǫ-important points.
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This is essentially the statement we will prove. Since its statement requires
some additional notations, we refer to section 2 and in particular to Lemma
2.2 and Proposition 2.3 for more precise statements.

x, λ1

y, λ2

x, t2

y, t1

Figure 1.1: Two “cascade” configurations: on the left at λ = 0, there is no
Left-Right crossing and both points x and y have low importance but at the
level λ2 > λ1, there is a left-right crossing that we could not predict if we are
not looking at low important points. Similarly, on the right, with t1 < t2,
the low important point y switches first then followed by the important one.
If one does not look at low important points one would wrongly predict that
the left-right crossing stops to occur, while it still does thanks to y. Note that
the second configuration could occur only for dynamical percolation which
does not have monotonicity in its dynamic.

The pictures 1.1 represent situations both for near-critical and dynamical
percolation where cascade of importance would prevent us from predicting
with good accuracy the outcome ω(λ) or ωt.

These pictures represent the extreme case where one has some point x
of macroscopic (O(1)) importance, as well as a closeby point y, initially of
importance less than ǫ but promoted in between, both of them switching
their status between levels 0 and λ (or between times 0 and t). Let us
estimate what is the probability of this extreme “bad” situation. In the
square [0, 1]2, there are O(1)η−2× ǫ2η−2 ways to choose the pair (x, y). Now
x and y are respectively 1-important and ǫ-important (to be rigorous, one
should sum over the distances and thus importances 2kη, 1 ≤ k ≤ log2(ǫ/η)
between x and y) with probability O(1)α4(η, 1) × α4(η, ǫ). Finally x and
y both switch their status with probability O(1)η4α4(η, 1)−2. All together,
the probability of the above situation is bounded by O(1)ǫ2α4(ǫ, 1)−1 (here
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we used quasimultiplicativity property) and this goes to zero when ǫ goes to
zero, uniformly in η < ǫ.

Of course this example is just an extreme case, and we need to control
all types of multi-cascades which could occur at different scales.

Now for the second statement, for any ǫ > 0, we consider the (random)
counting measure µǫ

η on the ǫ-important points normalized by η2α4(η, 1)−1.
Hence µǫ

η is defined as follows

µǫ
η = µǫ

η(ωη) =
∑

x∈ηT is ǫ-important

δxη
2α4(η, 1)−1.

We will prove the following Theorem

Theorem 1.4. When η → 0, the random variable (ωη, µ
ǫ
η) converges in law

to some (ω, µǫ), where ω is the scaling limit of critical percolation, and the
Borel measure µǫ = µǫ(ω) is a measurable function of ω.

We will provide a proof for both theorems. For the complete proof of
the scaling limit, one would still need to “bring pieces” together, which still
requires some further work. Nevertheless we hope to convince the reader
with these two results, that the program is now close from completion.

The remaining of the chapter is structured as follows: in section 2 we
prove the results which show that there are no “cascade of importance”. In
section 3 we describe the setup of the scaling limit (i.e. the topological
space (H , T )). Then in section 4 we provide a coupling result which will
be needed in the proof of convergence of the discrete counting measures.
Section 5 provides the proof of this convergence. Finally section 6 derives
the conformal covariance properties of this limiting measure.

2 Stability

Given a percolation configuration ω and a site z, let Z(z) = Zω(z) denote the
maximal radius r such that the four arms event holds from the hexagon of z
to distance r away. This is also the maximum r for which changing the value
of ω(z) will change the white connectivity in ω between two white points at
distance r away from z, or will change the black connectivity between two
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black points at distance r away from z. The quantity Z(z) will also be called
the importance of z in ω.

Fix λ ≥ 0. Let X = Xλ be a random collection of sites independent from
the percolation configuration ω, where each site is in X with probability qλ

independently, and qλ is chosen so that the expected number of 1-important
points in X ∩ [0, 1]2 is λ. (This only works for η smaller than some positive
constant depending on λ.) Note that qλ is of order λ η2 α4(1)−1. Let Ω(ω, X)
denote the set of percolation configurations ω′ such that ω′(x) = ω(x) for all
x /∈ X. Let A4(z, r, r

′) denote the 4-arm event in the annulus A(z, r, r′).

Lemma 2.1. Set ri := 2i η, N := ⌊log2(1/η)⌋. Let Wz(i, j) denote the
event that there is some ω′ ∈ Ω(ω, X) satisfying A4(z, ri, rj). Then for every
integers i, j satisfying 0 ≤ i < j < N and every z ∈ R2

P
[
Wz(i, j)

]
≤ C1 α4(ri, rj) , (2.1)

where C1 = C1(λ) is a constant that may depend only on λ.

Proof. Let D denote the event that ω does not satisfy A4(z, ri+1, rj−1).
Suppose that Wz(i, j) ∩ D holds, and let ω′ ∈ Ω(ω, X) satisfy A4(z, ri, rj).
Let Y0 := X \ A(z, ri+1, rj−1), and let {x1, x2, . . . , xm} be some ordering of
X ∩ A(z, ri+1, rj−1). Let Yk = Y0 ∪ {x1, x2, . . . , xk}, k = 1, 2, . . . , m, and
let ωk be the configuration that agrees with ω′ on Yk and is equal to ω
elsewhere. Then ω0 does not satisfy A4(z, ri+1, rj−1), and therefore also does
not satisfy A4(z, ri, rj). On the other hand, ωm = ω′ satisfies A4(z, ri, rj).
Let q ∈ {1, 2, . . . , m} be minimal with the property that A4(z, ri, rj) holds
in ωq, and let n ∈ N ∩ [i + 1, j − 2] be chosen so that xq ∈ A(z, rn, rn+1).
Then xq is pivotal in ωq for A4(z, ri, rj). Since B(xq, rn−1) ⊂ A(z, ri, rj), this
implies that ωq satisfies A4(xq, 2 η, rn−1). Hence, we get the bound

P
[
Wz(i, j), D

]
≤

j−2∑

n=i+1

∑

x∈A(z,rn,rn+1)

P
[
x ∈ X, Wx(1, n− 1), Wz(i, j)

]
.

SinceWz(i, j) ⊂ Wz(i, n−1)∩Wz(n+2, j) and since B(x, rn−1) ⊂ A(z, rn−1, rn+2),
independence on disjoint sets gives

P
[
x ∈ X, Wx(1, n− 1), Wz(i, j)

]

≤ P
[
x ∈ X, Wx(1, n− 1), Wz(i, n− 1), Wz(n + 2, j)

]

= P[x ∈ X] P
[
Wx(1, n− 1)

]
P
[
Wz(i, n− 1)

]
P
[
Wz(n + 2, j)

]
.
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Now set bj
i := supz P

[
Wz(i, j)

]
. The above gives

P
[
Wz(i, j), D

]
≤ O(λ)

j−2∑

n=i+1

(rn/η)2 η2 α4(1)−1 bn−1
1 bn−1

i bj
n+2 .

Since P
[
Wz(i, j)

]
≤ P

[
¬D
]
+P
[
Wz(i, j), D)

]
, The above shows that for some

absolute constant C0 > 0, we have

bj
i/C0 ≤ α4(ri, rj) + λ

j−2∑

n=i+1

r2
n α4(1)−1 bn−1

1 bn−1
i bj

n+2

≤ α4(ri, rj) + λ α4(1)−1

j−1∑

n=i+1

r2
n bn−1

1 bn−1
i bj

n+2.

(2.2)

We now claim that (2.1) holds with some fixed constant C1 = C1(λ), to be
later determined. This will be proved by induction on j, and for a fixed j by
induction on j − i. In the case where j − i ≤ 5, say, this can be guaranteed
by an appropriate choice of C1. Therefore, assume that the claim holds for
all smaller j and for the same j with all larger i. The inductive hypothesis
can be applied to estimate the right hand side of (2.2), to yield

bj
i ≤ C0 α4(ri, rj) +

+ λ C0 C3
1 α4(1)−1

j−1∑

n=i+1

r2
n α4(r1, rn−1) α4(ri, rn−1) α4(rn+2, rj) .

By the familiar multiplicative properties of α4, we obtain

bj
i ≤ C2 α4(ri, rj)

(
1 + λ C3

1

j−1∑

n=i+1

r2
n

α4(rn, 1)

)
, (2.3)

for some constant C2. Since O(1) α4(rn, 1) > r2−ǫ
n for some constant ǫ > 0, it

is clear that when N − j is larger than some fixed constant M = M(λ) ∈ N,
we have

λ (2 C2)
3

j−1∑

n=i+1

r2
n

α4(rn, 1)
≤ 1 .

This shows that (2.3) completes the inductive step if we choose C1 = 2 C2

and if N − j > M . (Note that in the proof of the induction step when
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N − j > M , we have not relied on the inductive assumption in which this
condition does not hold.) To handle the case N − j ≤M , we just note that
bj
i ≤ bN−M−1

i , and the estimate that we have for bN−M−1
i is within a constant

factor (depending on λ) of our claimed estimate for bj
i , since M depends only

on λ.

Set

ZX(z) := sup
ω′∈Ω(ω,X)

Zω′(z) .

Lemma 2.2. For every site z and every ǫ and r satisfying 2 η < ǫ < 24 ǫ <
r ≤ 1, we have

P
[
ZX(z) ≥ r, Zω(z) ≤ ǫ

]
≤ Oλ(1) ǫ2 α4(ǫ) α4(r, 1)−1 .

The proof uses some of the ideas going into the proof of Lemma 2.1 as
well as the estimate provided by that lemma.

Proof. Fix z, ǫ and r as above. Suppose that ZX(z) ≥ r and Zω(z) ≤ ǫ
both hold. Let ω′ ∈ Ω(ω, X) be such that Zω′(z) ≥ r. Let x1, x2, . . . , xm be
the sites in Bη(z, ǫ) where ω′ 6= ω. (We use some arbitrary but fixed rule to
choose ω′ and the sequence xj among the allowable possibilities.) For each
j = 0, 1, . . . , m, let ωj denote the configuration that agrees with ω′ on every
site different from xj+1, xj+2, . . . , xm, and agrees with ω on xj+1, . . . , xm.
Then ωm = ω′ and Zω0(z) < ǫ. Let k be the first j such that Zωj

(z) > r.
Fix some site x satisfying rx := |z − x| ≤ ǫ. In order for ZX(z) ≥ r,

Zω(z) ≤ ǫ and xk = x to hold, the following four events must occur: x ∈
X, ZX(z) ≥ rx/2, ZX(x) ≥ rx/2, and Wz(2 + ⌈log2 rx⌉, ⌊log2 r⌋) (using
the notation of Lemma 2.1). We have P

[
x ∈ X

]
= qλ = O(λ) η2 α4(1)−1,

while the probabilities of the latter three events are bounded by Lemma 2.1.
Combining these bounds, we get

P
[
ZX(z) ≥ 1, Z(z) ≤ ǫ, xk = x

]
≤ Oλ(1) α4(r

x)2 η2 α4(1)−1 α4(r
x, r)

= Oλ(1) α4(r
x) η2 α4(r, 1)−1 .

Summing this bound over all sites x satisfying |z − x| ≤ ǫ yields the lemma.

A quad is defined as a simple close path, or, more specifically, as an
injective continuous map from the unit circle ∂U to R2. The closure of the
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domain surrounded by a quad Q will be denoted by Q̂. The boundary ∂Q̂ of
Q̂ is partitioned into four distinguished arcs denote by

∂jQ :=
{
Q(ei θ+jπ/2) : θ ∈ [0, π/2]

}
, j ∈ {0, 1, 2, 3} .

We say that Q is crossed by a percolation configuration ω, if there is an ω-
white path inside Q̂ that connects ∂0Q and ∂2Q. If r > 0 is smaller than the
minimal distance from ∂0Q to ∂2Q, then we say that ω is r-almost crossed
by ω, if there is an ω-white path in the r-neighborhood of Q̂ that comes
within distance r of each of the two arcs ∂0Q and ∂2Q.

Proposition 2.3. Let λ and X be as above, and fix some quad Q. Let r > 0
be smaller than the minimal distance between ∂0Q and ∂2Q, and suppose that
0 < η < 2 η < ǫ < 25 ǫ < r ≤ 1. Then the probability that there are some
ω′, ω′′ ∈ Ω(ω, X) such that (a) Q is crossed by ω′, (b) Q is not r-almost
crossed by ω′′, and (c) ω′(z) = ω′′(z) for every site z satisfying Zω(z) ≥ ǫ is
at most

Oλ,Q(ǫ2) α4(ǫ, 1)−1 α4(r, 1)−1.

Proof. Suppose that there are such ω′ and ω′′. Let Y denote the set
of sites whose hexagons are contained in the r-neighborhood of ∂0Q ∪ ∂2Q,
and let {x1, x2, . . . , xm} denote the sites not in Y whose hexagons intersect
Q̂. For j = 0, 1, . . . , m, let ωj denote the configuration that agrees with
ω′ on Y ∪ {xj+1, xj+2, . . . , xm}, and agrees with ω′′ elsewhere. Then Q is

crossed by ω0 (since ω0 agrees with ω′ on all hexagons intersecting Q̂), but
is not r-almost crossed by ωm (since ωm agrees with ω′′ on all hexagons
except those contained in the r-neighborhood of ∂0Q ∪ ∂2Q). Let k be the
least index j such that there is no ωj-white path connecting ∂0Q and ∂2Q

within the r-neighborhood of Q̂. Then ωk−1 and ωk differ only in the color
of xk. Since a flip of xk modifies the connectivity between ∂0Q and ∂2Q
within the r-neighborhood of Q̂, and since the hexagon of xk intersects Q̂
and is not contained in the r-neighborhood of ∂0Q ∪ ∂2Q, it follows that
Zωk−1

(xk) > r/2. Consequently, ZX(xk) > r/2. If x is any site, then in
order to have x = xk, we must have (i) ZX(x) > r/2, (ii) Zω(x) < ǫ, (iii)
x ∈ X, and (iv) the hexagon of x intersects Q̂. There are OQ(η−2) sites
satisfying (iv). The event (iii) has probability qλ and is independent from
the intersection of (i) and (ii), while Lemma 2.2 bounds the probability of
this intersection. The proposition now follows easily by summing the bound
we get for P[xk = x] over all possible x.
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3 Setup of the scaling limit

3.1 Setup for static percolation

First of all, we define what we mean by the scaling limit of critical percolation.
We will work with the setup introduced in [SS], which describes the scaling
limit using “left-right” crossing events in generalized quadrilaterals.

Let D ⊂ Ĉ = C ∪ {∞} be open. A quad in D is a homeomorphism Q
from [0, 1]2 into D. The space of all quads in D, denoted by QD, can be
equipped with the uniform metric d(Q1,Q2) := supz∈[0,1]2 |Q1(z)−Q2(z)|. A
crossing of a quad Q is a connected closed subset of [Q] := Q([0, 1]2) that
intersects both Q({0} × [0, 1]) and Q({1} × [0, 1]).

From the point of view of crossings, there is a natural partial order on
QD: we write Q1 ≤ Q2 if any crossing of Q2 contains a crossing of Q1.
See Figure 3.1. A subset S ⊂ QD is called hereditary if whenever Q ∈ S
and Q′ ∈ QD satisfies Q′ ≤ Q , we also have Q′ ∈ S. The collection of
all closed hereditary subsets of QD will be denoted by HD. Any discrete
percolation configuration ωη of mesh η > 0, considered as a union of the
topologically closed percolation-wise open hexagons in the plane, naturally
defines an element S(ωη) of HD: the set of all quads for which ωη contains
a crossing. Thus, in particular, critical percolation induces a probability
measure on HD, which will be denoted by Pη.

Q1

Q2

Figure 3.1: Two quads, Q1 ≤ Q2.

Hereditary subsets can be thought of as Dedekind cuts in the setting of
partially ordered sets (instead of totally ordered sets, as usual). It can be
therefore hoped that by introducing a natural topology, HD can be made
into a compact metric space. Indeed, let us consider the following subsets
of HD. For any Q ∈ QD, let ⊟Q := {S ∈ HD : Q ∈ S}, and for any open
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U ⊂ QD, let �U := {S ∈ HD : S ∩ U = ∅}. It is easy to see that these
sets have to be considered closed if we want HD to be compact, therefore
we define TD to be the minimal topology that contains every ⊟

c
Q and �

c
U as

open sets. It is proved in [SS] that for any nonempty open D, the topological
space (HD, TD) is compact, Hausdorff, and metrizable. Furthermore, for
any dense Q0 ⊂ QD, the events {⊟Q : Q ∈ Q0} generate the Borel σ-
field of HD. It is then proved that the scaling limit of Pη exists as a Borel
probability measure on HC, i.e., for any finite collection of events ⊟Q and ⊟

c
Q,

the joint probabilities converge. In this section, we will denote the scaling
limit measure by P0.

Of course, the choice of the space HD already poses restrictions on what
events one can work with. Note, for instance, that A := {∃ neighborhood
U of the origin 0 ∈ C s.t. all quads Q ⊂ U are crossed} is clearly in the
Borel σ-field of (HD, TD), and it is easy to see that P0[A] = 0, but if the
sequence of η-lattices is such that 0 is always the center of a hexagonal tile,
then Pη[A] = 1/2. Similarly, using events like A, one can easily write down
a Borel-measurable event in (HD, TD) that will mean, for any η > 0, the
event that there are more open than closed η-hexagons in the percolation
configuration ωη in D, but in the scaling limit it will be a trivial event, with
no meaning similar to “majority of the bits is open”, and having P0-measure
0 or 1 (depending on the exact definition). Therefore, it is important to
know that for a lot of natural events this problem does not occur. For any
topological annulus A ⊂ D with piecewise smooth boundaries, we define the
(alternating) 4-arm event in A as the existence of disjoint quads Qi ⊂ A,
i = 1, 2, 3, 4, with Qi({0} × [0, 1]) ⊂ ∂2A and Qi({1} × [0, 1]) ⊂ ∂1A for
i = 1, 3, while Qi([0, 1]× {0}) ⊂ ∂2A and Qi([0, 1]× {1}) ⊂ ∂1A for i = 2, 4,
ordered cyclically around A according to their indices, such that the odd
ones are crossed, while the even ones are not crossed (which means they
contain dual crossings between the boundary pieces of A). The definitions of
alternating (or polychromatic, in general) and monochromatic k-arm events
in A are of course analogous.

Lemma 3.1. Let A ⊂ D be a piecewise smooth topological annulus. Then
the 1-arm and alternating 4-arm events in A, denoted by A1 and A4, are
measurable w.r.t. the scaling limit of critical percolation in D, moreover,
limη→0 Pη[Ai] = P[Ai].

Proof. Using a countable dense subset of QD, it is clear that Ai is in the
Borel σ-field of (HD, TD). So we prove limη→0 Pη[Ai] = P[Ai], starting with
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the i = 4 case. It is enough to show that if A4 holds in ωη, then for any ǫ > 0
there is a δ > 0 such that with conditional probability at least 1−ǫ, uniformly
in η, there are four quads with disjoint δ-neighborhoods that contain the four
arms — then we can detect the four arms with disjoint quads (as required)
even in the scaling limit.

Indeed, if we have A4 in ωη, then let us choose 4 alternating arms ar-
bitrarily, then consider the counterclockwise boundaries of their connected
components (in their own color). It is easy to see that if two of these bound-
aries come δ-close to each other, then we have a 6-arm event from this δ-ball
to the boundaries of A. However, using the 6-arm probabilities in the plane
and 3-arm probabilities in the half-plane, we see that this happens in A only
with a probability that goes to 0 as δ goes to 0, uniformly in η. Therefore,
the four quads that the annulus is divided into by the four counterclockwise
boundaries have the properties we required, and we are done.

For A1, the above proof does not work, because if there is no closed cross-
ing in A, i.e., there is an open circuit, then the “counterclockwise boundary
of the component of the open crossing” is not well-defined. So, let us take a
radial exploration interface: start from the inner boundary ∂1A, with open
hexagons on the right, closed hexagons on the left of the interface. If the
interface makes a clockwise loop around ∂1A, then we have discovered a
closed circuit, so there is no open crossing. Whenever the interface makes a
counterclockwise all-around-loop, let us pretend that the last closed hexagon
discovered was open, so turn to the right before it, and continue the interface.
This interfaces reaches ∂2A if and only if there is an open crossing. Given
this event, erase chronologically the counterclockwise all-around-loops it has
completed. The resulting interface has an open (non-simple) crossing path
on its right without all-around-loops. Taking the right (clockwise) boundary
of it, we get a simple open path. Now if this path comes δ-close to itself,
that is already a 6-arm whole-plane event, which happens in the annulus only
with probability oδ→1(1), uniformly in η. In particular, this open path does
not make an all-around-loop in the scaling limit, and hence we can detect it
with the event of crossing a quad, and we are done.

Remark 3.2. Recall that [SS] proved the η → 0 convergence of the Pη-
probability of the intersection of any finite set of quad crossing and non-
crossing events. Therefore, the proof of the above lemma can be extended to
the convergence of the joint Pη-distribution of any finite set of macroscopic
4-arm events: the main point is that, in the scaling limit, the planar 6-arm
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and half-plane 3-arm events do not occur anywhere in the finite set of annuli,
hence the convergence of quad crossings and non-crossings really measures
what we want.

With similar arguments, one can show that a half-plane exploration inter-
face in the scaling limit has the properties that characterize chordal SLE6,
hence it has SLE6 as a scaling limit. See [SS] for more details.

3.2 Setup for dynamical percolation

Now, dynamical percolation is a probability measure on càdlàg paths R −→
HD; i.e., at a switch time t ∈ R we define S(ωt) to be the configuration after
the switch. We equip this set of paths with the topology of locally uniform
convergence (uniform convergence on compact subsets of R), and will prove
that the properly scaled process has a weak limit w.r.t. this topology.

4 Coupling argument

Let us consider some annulus A = A(u, v) of inner radius u and outer radius
v > u. Let ωη be a percolation configuration on the triangular grid of mesh
η inside A. Call Γ the set of percolation interfaces which cross A (it might
be that there are no such interfaces, in which case Γ = ∅). We will need to
measure how well separated the interfaces are on the inside boundary ∂1A.
For that purpose we define a measure of the (interior) quality Q(ωη) =
Q(Γ) to be the least distance between the endpoints of Γ on ∂1A normalized
by u. More precisely, if there are p ≥ 2 interfaces crossing A and if x1, . . . , xp

denote the endpoints of these interfaces on ∂1A, then we define

Q(ωη) = Q(Γ) =
1

u
inf
k 6=l
|xk − xl|,

and if Γ = ∅, we define Q(Γ) to be +∞.
We define similarly the exterior quality Q+(ωη) = Q+(Γ) to be the

least distance between the endpoints of Γ on ∂2A normalized by v (and set
to be ∞ if there are no such interfaces). For any α > 0, let T α(u, v) be the
event that the quality Q(Γ) is bigger than α; also, T α

+ (u, v) will denote the
event that Q+(Γ) > α.

For a square of radius R, we define a notion of faces around that square.
Let x1, . . . , x4 be four distinct points on the square of radius R chosen in
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a counterclockwise order. We will adopt here cyclic notation, i.e., for any
j ∈ Z, we have xj = xi if j ≡ i[4]. For any i ∈ Z, let θi be a simple
path of hexagons joining xi to xi+1, i.e., a sequence of hexagons h1, . . . , hn

such that hi and hj are neighbors if and only if |i − j| = 1. We assume
furthermore that there are no hexagons in θi which are entirely contained
in the square of radius R (they might still intersect ∂1A) and that all the
hexagons in θi are white (=open) if i is odd and black (=closed) otherwise.
If a set of paths Θ = {θ1, . . . , θ4} satisfies the above conditions, Θ will be
called a configuration of faces with endpoints x1, . . . , x4. We define similarly
the quality of a configuration of faces Q(Θ) to be the least distance between
the endpoints of the faces, normalized by R.

Let G(u, v) be the event that there are exactly 4 alternating arms from
radius u to v and no extra arm crossing A. In particular, on the event G(u, v),
the set of interfaces Γ consists of exactly 4 interfaces, and furthermore any
two consecutive interfaces have to share at least one hexagon in common (if
not there would be at least 5 arms from u to v). It is easy to see that on
the event G(u, v), the 4 interfaces of Γ induce a natural configuration of faces
Θ = Θ(Γ) at radius u with same endpoints x1, . . . , x4 as Γ. More precisely,
if H is the set of all the hexagons neighboring the 4 interfaces in Γ, then by
the definition of G(u, v), the connected component of C \ H which contains
the center of the annulus A is a bounded domain; the set of hexagons which
lie on the boundary of this domain form the 4 faces of Θ. As we will do
later, if we condition on the event G(u, v), we might as well condition on the
configuration of faces Θ. (Notice that by definition, on the event G(u, v), we
have Q(Γ) = Q(Θ)).

If we are given a square of radius R and a configuration of faces Θ =
{θ1, . . . , θ4} around that square; D = DΘ will denote the bounded component
of C\Θ (this is a finite set of η-hexagons). Call U = UΘ the random variable
which is set to be one if there is an open crossing from θ1 to θ3 inside DΘ

and 0 otherwise. For any radius r < R, let AΘ(r, R) be the event that there
are open arms from the box of radius r to the open faces θ1 and θ3 and there
are closed arms from r to the closed faces θ2, θ4 (in other words, if one starts
4 interfaces in DΘ at the endpoints of Θ at radius R, then these interfaces
go all the way to radius r).

Let Q be the square of radius 1 around the origin. As a particular case
of the above, for any η < r < 1, we define A0(r, 1) to be the event that there
are open arms from the square of radius r to the left and right edges of Q and
there are closed arms from r to the top and bottom edges of Q. Similarly,
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U0 will be the indicator function of a left-right crossing in Q.

Proposition 4.1. Let α > 0, τ ∈ {0, 1}, and let A = A(r, R) be the annulus
centered around 0 with radii 100η < 10r < R ≤ 1. Assume we are given
any configuration of faces Θ = {θ1, . . . , θ4} around the square of radius R
satisfying Q(Θ) > α. Let νΘ be the law of the percolation configuration
inside DΘ conditioned on the events AΘ(r, R) and {UΘ = τ}.

Let ν0 be the law of the percolation configuration in the square Q under
the conditioning that A0(r, 1) and {U0 = 1} hold.

Then if τ = 1 there is a coupling of the conditional laws νΘ, ν0 so that with
(conditional) probability at least 1 − (r/R)k(α), the event G(r, R) is satisfied
for both configurations and the induced faces at radius r: Θ(r) and Θ0(r)
are identical. If τ = 0, there is also such a coupling except that the faces
Θ(r) and Θ0(r) are (with probability at least 1− (r/R)k(α)) identical but with
reversed color. Here, the exponent k = k(α) only depends on the quality of
the initial configuration of faces Θ.

Figure 4.1: Successful coupling of νΘ and ν0 when τ = 0: the four interfaces
induce the same configuration of faces at radius r, only with reversed colors.

Remark 4.2. The proposition also holds if the annulus A is not centered
around the origin, but there are issues here coming from the discrete lattice:
indeed the set of η-hexagons intersecting a square S is not invariant under
translations of the square S. We will deal with this issue in the next section.
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Proof of Proposition 4.1. We first prove the proposition in the case where
τ = 1; the case τ = 0 will need an additional color switching argument. Let
N = ⌊log4(

R
r
)⌋. For 0 ≤ i ≤ N , let ri = 4N−ir.

Let ωΘ and ω0 be percolation configurations in DΘ and the square Q
sampled according to νΘ and ν0. For all 1 ≤ i ≤ N , let Γi = Γi(ωΘ) denote
the set of interfaces from the 4 endpoints of Θ inside DΘ until they reach
radius ri; also let Υi = Υi(ωΘ) denote the set of all interfaces crossing from
2ri to ri (therefore by definition of νΘ, there are at least 4 such interfaces).
Define in the same way the set of interfaces Γi

0 = Γi
0(ω0) and Υi

0 = Υi
0(ω0).

Let 0 ≤ i < N ; assume that we sampled under νΘ the set of interfaces Γi

and that we sampled under ν0 the set of interfaces Γi
0. It is straightforward

to check that the initial configurations of faces, Θ and ∂Q, plus the sets of
interfaces Γi and Γi

0 induce two configurations of faces, Θi and Θi
0, around

radius ri. Now the law of νΘ in DΘi conditioned on the explored interfaces
Γi is exactly the same as the law of the percolation in DΘi conditioned on
AΘi(r, ri) and {UΘi = τ = 1} (a law which depends only on the faces in Θi).
Let νi (and similarly νi

0) denote this law. Let ǫ > 0, whose value will be
fixed later on. Let W i be the event that the set of interfaces Γi has quality
at least ǫ > 0 (W i = {Q(Γi) > ǫ}). Define similarly the event W i

0. There
is a slight abuse of notation here, since we defined the quality only for a
set of interfaces inside an annulus, but it of course generalizes to the case of
interfaces starting at the endpoints of 4 faces until they reach some smaller
radius. Note that ¬W i ⊂ {Q(Υi) ≤ ǫ}, which will be useful later on in the
analysis.

Define Ri to be the event that for a percolation configuration in the
annulus A(ri+1, 2ri+1), the set of all its interfaces which cross the annulus

satisfies the events G(ri+1, 2ri+1), T 1/4(ri+1, 2ri+1) and T 1/4
+ (ri+1, 2ri+1) (in

particular if Ri holds, then there are exactly 4 interfaces crossing from 2ri+1

to ri+1). Now we sample the sets of interfaces Υi+1 and Υi+1
0 according to the

laws νi and νi
0. Note that conditioning on Υi+1 (or Υi+1

0 ) determines the color
of the hexagons neighboring the interfaces in Υi+1 (Υi+1

0 ). Let then Si (Si
0)

be the union of all hexagons whose color is determined by Υi+1 (Υi+1
0 ). Let S

be a possible value for Si such that Ri holds (i.e. the interfaces determined
by S satisfy Ri). Let mS be the number of hexagons that are in S. Clearly,
without conditioning, P

[
Si = S

]
= 2−mS . We claim that if W i holds then

there is a universal constant c = c(ǫ) > 0 such that:

2−mS/c ≤ P
[
Si = S

∣∣ AΘi(r, ri), UΘi = τ, Θi
]

= νi[Si = S] ≤ c 2−mS . (4.1)
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Also, if W i
0 holds then for the same constant c = c(ǫ):

2−mS/c ≤ νi
0[S

i
0 = S] ≤ c 2−mS . (4.2)

Indeed, on the event Wi,

νi[Si = S] =
P
[
AΘi(r, ri), UΘi = τ

∣∣ Si = S, Θi
]
P
[
Si = S

∣∣ Θi
]

P
[
AΘi(r, ri), UΘi = τ | Θi

]

= 2−mS
P
[
AΘi(r, ri), UΘi = τ

∣∣ Si = S, Θi
]

P
[
AΘi(r, ri), UΘi = τ | Θi

] .

Since S satisfies the event Ri, conditioning on it implies that the arms which
cross the annulus A(ri+1, 2ri+1) are well-separated. The separation of arms
phenomenon is a very useful tool introduced by Kesten [Kes87] in order
to prove for example quasi-multiplicativity of multi-arms events. See, for
instance, [SS05] or [Nol07] for more details on the concept of separation of
arms and how to use it. Applied to our setting, it implies that we can glue
interfaces (using RSW and FKG) on both ends of A(ri+1, 2ri+1) with a cost
of only a constant factor, hence there is a positive constant C = C(ǫ) > 0
such that

α4(r, ri)/C ≤ P
[
AΘi(r, ri), UΘi = τ

∣∣ Si = S, Θi
]
≤ Cα4(r, ri)

α4(r, ri)/C ≤ P
[
AΘi(r, ri), UΘi = τ | Θi

]
≤ Cα4(r, ri) .

This implies our claim (4.1). Now by summing the claim (4.1) over the
different S for which Ri holds, we get that if W i holds then:

P
[
Ri

∣∣ AΘi(r, ri), UΘi = τ | Θi
]
≥ 1

c
P
[
Ri

]
.

We now use the following easy fact, which is part of the folklore, though we
are not aware of an explicit proof in the literature:

Lemma 4.3. In the annulus A = A(r, 2r), there is a uniformly positive prob-
ability to have exactly 4 disjoint alternating arms crossing A, with uniformly
positive distances between the endpoints of the resulting 4 interfaces on the
two boundaries of A. That is, P

[
Ri

]
> c for an absolute constant c > 0.

Proof. Let us provide two proofs, the first using Reimer’s inequality [Rei00],
the second being longer, but completely elementary.
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Consider A4, the alternating 4-arm event in A, and B = {there is an
arm (open or closed) from ∂1A to ∂2A}. Then, by Reimer, P[A4�B] =
P[polychromatic 5 arms in A] ≤ P[A4] P[B]. But Russo-Seymour-Welsh im-
plies P[Bc] > c > 0, so we get P[A4 \ A4�B] = P[exactly 4 arms in A] >
(1− c)P[A4] > c′ > 0, and we are done.

For the elementary proof, we first show that in the square there is a
uniformly positive probability of the event that there is a unique left-right
crossing (which is the same as having at least one pivotal open bit), with a
pivotal in the left two thirds sub-rectangle R of the square, and from this
pivotal there are closed arms inside R to the upper and lower sides of R. See
the left picture in Figure 4.2. By RSW, there is a positive probability for a
left-right open crossing in R; the uppermost such crossing can be found by
running an exploration process from the upper left corner to the upper right
corner of R, with open bits on the right (below the interface), closed bits on
the left. Any point on this interface has a closed arm to the upper side of R.
Furthermore, this process did not explore anything below the open crossing
it finds, hence RSW can be applied to get with positive probability a closed
path inside the left half of R from the bottom of R to this interface. The bit
where this path hits the interface is a pivotal for the left-right crossing in R.
Now, again by RSW, with positive probability there is an open path inside
the right two thirds of the square from the interface we have discovered in
R to the right side of the square. This open path can be glued to the open
crossing found by that interface, to produce the desired open crossing of the
square.

Now let us divide the annulus A into four congruent sectors. Each sector
is a nice quad, so we can translate the previous paragraph to get the following:
with positive probability, each of the odd sectors contains a pivotal bit for
an open crossing between the sides of the quad that are part of the annulus
boundaries, and the closed arms emanating from these pivotals are contained
in A(4r/3, 2r). Similarly, with positive probability, each of the even sectors
contain a pivotal bit for a closed crossing between the sides at radii r and 2r,
and the open arms emanating from these pivotals are contained in A(r, 5r/3).
Moreover, with a small strengthening of the previous paragraph, with positive
probability we can achieve that in the odd sectors the endpoints of the two
open arms emanating from the pivotal we find are at a distance at most r/10
from the midpoints of their respective sides, while the endpoints of the two
closed arms are in A(5r/3, 2r). Similarly, in the even sectors the endpoints
of the closed are arms are at most r/10 away from the midpoints of their
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Figure 4.2: Constructing exactly four arms in an annulus.

sides, while the endpoints of the open arms are in A(r, 4r/3). Then, using
RSW and FKG, with positive probability we can glue the closed arms within
A(5r/3, 2r) with closed paths to get closed barriers that make sure that any
open arm from r to 2r must go through on of the pivotals in the odd sectors.
Similarly, we can glue the open arms within A(r, 4r/3) to obtain open barriers
that force any close arm from r to 2r to go through one of the pivotals in the
even sectors. Altogether, with positive probability we achieved that there are
only 4 disjoint arms, and their endpoints are well-separated. With further
gluing we can also easily make sure that the resulting four interfaces have
well-separated endpoints, and the proof is complete. See the right picture in
Figure 4.2.

Thus, there is a positive c2 = c2(ǫ) > 0 so that on W i:

P
[
Ri

∣∣ AΘi(r, ri), UΘi = τ, Θi
]
≥ c2. (4.3)

Similarly, on W i
0:

P
[
Ri

∣∣ AΘi
0
(r, ri), UΘi

0
= 1, Θi

]
≥ c2. (4.4)
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The construction of the coupling between νΘ and ν0 works as follows. We
proceed by induction on i ≥ 1. Assume we explored the sets of interfaces Γi

and Γi
0 (interfaces up to radius ri) according to some coupling of νΘ and ν0.

We want to sample the continuations Γi+1 and Γi+1
0 of these interfaces up to

radius ri+1 according to what have been explored so far, i.e., according to
the laws νi and νi

0. If W i or W i
0 does not hold, then we sample Γi+1 \Γi and

Γi+1
0 \ Γi

0 independently, according to νi and νi
0. Else, if both W i and W i

0

hold, then by (4.3) and (4.4), with positive probability for both νi and νi
0,

the sets of all interfaces crossing from ri+1 to 2ri+1 satisfy Ri. Furthermore,
by (4.1) and (4.2), any set of interfaces satisfying Ri has about the same
probability under νi or νi

0. This allows us to sample Γi+1 under νi and Γi+1
0

under νi
0 and to couple these samples so that the conditional probability of

the event Si := {Υi+1 = Υi+1
0 ∈ Ri} is greater than some absolute constant

c3 = c3(ǫ). Notice here that some care is needed since it is not Υi+1 that we
are sampling according to νi, but rather Γi+1 \ Γi; indeed Υi+1 could consist
of more than 4 interfaces, but as we have seen, with positive probability there
are only 4 of them, and in that case we have Υi+1 ⊂ Γi+1. It is easy to check
that if Si holds then the interfaces Γi+1 and Γi+1

0 induce exactly the same
configuration of faces Θi+1 = Θi+1

0 at radius ri+1.

The induction stops when Si has occurred or when i reaches N , whichever
happens first. Let i∗ ≤ N denote the index where the induction stopped. Call
S the event that the induction stopped at i∗ < N , i.e., the event that the
coupling succeeded. If i∗ < N , then the configurations of faces at radius ri∗+1

are identical for both partially discovered configurations under the coupled
νΘ and ν0. Let us call this configuration of faces Θ∗. In both configurations,
what remains to be sampled in DΘ∗ depends only on the faces Θ∗, and since
we assumed τ = 1, they follow exactly the same law. Therefore, we can sam-
ple identically for νΘ and ν0 and conditioned on Θ∗ the 4 interfaces which
start at the 4 endpoints of Θ∗ until they reach radius r. These interfaces,
plus the faces Θ∗ if needed, define the same faces around r for the coupled
νΘ and ν0, as desired. It now remains to prove that the coupling succeeds
(event S) with high probability. Let ν̂ denote the law of the coupling (νΘ, ν0)
we have just constructed.

We want to bound from above the probability ν̂(¬S) = ν̂(i∗ = N). Let
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(ωΘ, ω0) be sampled according to ν̂ = (νΘ, ν0); for any 1 ≤ i < N , define

X i = 1{Q(Υi)>ǫ}

X i
0 = 1{Q(Υi

0)>ǫ}.

Let Z i = X iX i
0, and Z = Z1 + . . .+Z i∗−1. If Z i = 1, then in the construction

of the coupling ν̂, both events W i and W i
0 hold; therefore if the coupling did

not succeed yet, it will succeed at scale i with probability at least c3(ǫ) > 0,
as discussed above. By the definition of ν̂ and Z, we deduce that for any
k ≥ 0,

ν̂(Z ≥ k) ≤ (1− c3(ǫ))
k . (4.5)

For any 1 ≤ i < N , call M i = 1 − Z i and let M := M1 + . . .MN−1. Note
that on the event {i∗ = N}, we have M + Z = N − 1. Hence,

ν̂(i∗ = N) ≤ ν̂(M ≥ N/3) + ν̂(Z ≥ N/3). (4.6)

In words: if the coupling fails (i∗ = N), then either Z is large, so a lot of
times we had a good chance to couple but failed at all of them, or we were
not that many times in a good position to couple, hence M is large.

In order to bound ν̂(M ≥ N/3), let us introduce for any 1 ≤ i < N ,

Y i = 1−X i = 1{Q(Υi)≤ǫ}
Y i

0 = 1−X i
0 = 1{Q(Υi

0)≤ǫ}

Y = Y 1 + . . . + Y N−1

Y0 = Y 1
0 + . . . + Y N−1

0 .

By definition, M ≤ Y + Y0, so that

ν̂(M ≥ N/3) ≤ ν̂(Y ≥ N/6) + ν̂(Y0 ≥ N/6)

= νΘ(Y ≥ N/6) + ν0(Y0 ≥ N/6). (4.7)

Now, using the definition of νΘ as a conditional probability measure, we write

νΘ(Y ≥ N/6) = P
[
Y ≥ N/6

∣∣ AΘ(r, R), UΘ = τ, Θ
]

≤ P
[
Y ≥ N/6

]

P
[
AΘ(r, R), UΘ = τ | Θ

]

≤ C(α)

α4(r, R)
P
[
Y ≥ N/6

]
,
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by quasi-multiplicativity and taking into account the fact that Q(Θ) > α.
Using standard techniques (mainly the 3-arms exponent in H known for

triangular lattice as well as for Z2), we obtain that if the mesh η is small
enough (we supposed r > 10η), then there is a function h(ǫ) such that for
all 0 ≤ i < N , P

[
Q(Υi) ≤ ǫ

]
< h(ǫ) uniformly in η < r/10, and furthermore

h(ǫ) goes to zero when ǫ goes to zero (see Lemma A.2 in [SS05] for an actual
proof of a stronger result). We want to bound P

[
Y 1 + . . . Y N−1 ≥ N/6

]
under

the unconditional probability measure on percolation configurations in the
annulus A(r, R). By independence on disjoint sets, under P the variables Y i

are independent, each satisfying P
[
Y i = 1

]
< h(ǫ). Hence Y is dominated by

a Binomial variable B(N−1, h(ǫ)). By a standard Large Deviations estimate,
for all ǫ > 0 small enough so that h(ǫ) < 1/10, there is a function g(ǫ), going
to zero when ǫ→ 0, such that:

P
[
Y ≥ N/6

]
≤ P

[
B(N − 1, h(ǫ)) ≥ N/6

]

≤ g(ǫ)N .

Therefore,

νΘ(Y ≥ N/6) ≤ C(α)α4(r, R)−1g(ǫ)N

≤ O(1)C(α)(R/r)2elog(g(ǫ)) ⌊log4(R
r

)⌋.

We can now fix the value of the parameter ǫ so that

νΘ(Y ≥ N/6) ≤ C(α)
r

R
,

for some new constant C(α) > 0. Similarly (maybe by changing ǫ and C(α),
which we can still do), we have that

ν0(Y0 ≥ N/6) ≤ C(α)
r

R
.

Therefore, by combining the above estimates on (4.7) with (4.5), the
bound (4.6) becomes

ν̂(i∗ = N) ≤ (1− c3(ǫ))
N/3 + 2C(α)

r

R
.

Since ǫ was chosen depending on the “quality” α, this can be written

ν̂(i∗ = N) ≤
( r

R

)k(α)
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for some exponent k(α) > 0, which proves Proposition 4.1 in the case τ = 1.

It remains to prove the case where τ = 0. The proof follows the exact
same lines as in the case τ = 0, plus the following color switching argument
(we keep the same notations). In the construction of the coupling ν̂, suppose
we are at scale i < N and that we already sampled Γi and Γi

0. If bothW i and
W i

0 hold, this allows us to sample Γi+1 \Γi under νi and Γi+1
0 \Γi+1

0 under νi
0

and to couple these samples so that the conditional probability of the event
S̃i := {¬Υi+1 = Υi+1

0 ∈ Ri} is greater than some absolute constant c3(ǫ),
where ¬Υ is the color-switched of Υ. With the same proof, the coupling
succeeds with probability 1 − (r/R)k(α), and one ends up, as desired, with
two identical faces Θ(r) and Θ0(r) with reversed color.

Remark 4.4. The proof adapts easily to the case of Z2, even for the color
switching argument which sometimes can be troublesome with Z2.

We will also need the following proposition, which is very similar to Propo-
sition 4.1.

Proposition 4.5. Let Ω be some piecewise smooth simply connected with
0 ∈ Ω. Let d > 0 be the distance from 0 to the boundary ∂Ω and d′ = d ∧ 1.
For any 0 < r < d′ call A(r, ∂Ω) the event that there are four (alternating)
arms from the square of radius r to the boundary ∂Ω. Call also A(r, 1) the
event that there are four arms from radius r to radius 1. For any 10η < r <
d′

10
, call ν the law on the percolation configurations conditioned on the event
A(r, ∂Ω) and call ν0 the law conditioned on the event A(r, 1).

Then, there is a coupling of the conditional laws ν, ν0, such that with
(conditional) probability at least 1 − (r/d′)k, the event G(r, d′/2) (as defined
previously) is satisfied for both configurations and the induced faces at radius
r are identical. Here k > 0 is some absolute exponent.

Proof. This is proved in the same way as Proposition 4.1. The only differ-
ence is that whenever in that proof we used RSW to connect arms to the
faces of Θ with a positive probability that depended on the quality Q(Θ) ≥ α,
we now do not have the restriction to use this fixed configuration of arms,
hence we get a uniform positive probability, independently of everything.
Consequently, the exponent k > 0 is an absolute constant now.
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5 A measure on pivotals which is measurable

with respect to the scaling limit

In this section we define a natural scaling limit of the counting measure on
pivotals, normalized so that the expected measure of the points in [0, 1]2

which are 1-important is one.
Of course, on the discrete level, for a given configuration, any point is

pivotal (or important) on some scale (only η if it is surrounded by 5 hexagons
of the same color, for example); so in order to keep a meaningful measure
at the limit, we need to keep track of points in the mesh which are pivotals
on a macroscopic scale. Section 2 tells us roughly that there is no loss of
information if we keep track of all points which are at least ǫ-important.
So we are interested in the scaling limit of the following (random) counting
measures in the plane, parametrized by the scale “cut-off” ρ > 0:

µρ
η :=

∑

x: ρ−important

δx η2α4(η, 1)−1. (5.1)

But for convenience, we will actually consider measures which are defined
in a somewhat less symmetric way, but will turn out to be less sensitive to
local effects in our proof. This needs some definitions:

Definition 5.1. Let A be some closed topological annulus of the plane; the
bounded component of Ac will be called its inside face; ∂1A and ∂2A will
be its inner and outer boundaries. We will say that A is a proper annulus
if its inner and outer boundaries are piecewise smooth curves.

Definition 5.2. Let H be a family of proper annuli in the plane. It will be
called an enhanced tiling if the collection of the inner boundaries form a
locally finite tiling of the plane. The inner diameter of H will be

diam
1
H := sup

∆: inside face ∈H
{diam ∆}.

The outer diameter of H will be

diam
2
H := sup

A∈H
{diam A}.

Let A be some proper annulus of the plane with inside face ∆; a point
x ∈ ∆ in the triangular grid of mesh η is called A-important if there are 4
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arms in ωη from x to the outer boundary ∂2A of A. We define the following
measure:

µA
η := µA

η (ωη) =
∑

x∈∆: A-important

δx η2α4(η, 1)−1 . (5.2)

Now, let H be some enhanced tiling, then define

µHη := µHη (ωη) =
∑

A∈H
µA

η . (5.3)

Note that in the so defined measure µHη , we do not count the points which
might lie on the boundary ∂1A of some annulus A ∈ H, but this has no
effect: indeed for a fixed proper annulus A, it is straightforward to check that
when η goes to 0, the probability that there is some A-important hexagon x
intersecting ∂1A is going to zero.

We will now prove that for any fixed proper annulus A, the random
measure µA

η (ωη) has a scaling limit µA when η goes to zero, and moreover
µA = µA(ω) is a measurable function of the continuum percolation ω, as
defined in Section 3. More precisely, we have the following theorem:

Theorem 5.3. Let A be a fixed proper annulus of the plane. When η → 0,
the random variable (ωη, µ

A
η ) converges in law to some (ω, µA), where ω is

the scaling limit of critical percolation, and µA = µA(ω) is a function of ω.

Proof. First we show that the family of variables (ωη, µ
A
η )η>0 is tight. In

Section 3, we defined ωη as a Borel measure on the compact separable metriz-
able space (HD, TD), hence (ωη)η>0 is obviously tight. It is a standard fact
that if (Xη)η>0, (Yη)η>0 are tight families of variables, then, in any coupling,
the coupled family of variables (Xη, Yη)η>0 is tight, as well. So, it is enough
to prove that the family of measures (µA

η )η>0 is tight. Since µA
η are finite

measures supported on the inside face ∆, proving tightness boils down to
proving

lim sup
η→0

E
[
µA

η (∆)
]

<∞ .

This is straightforward by the definition of µA
η . Indeed, let d > 0 be the

distance between ∂1A and ∂2A; a point in ∆ has to be d-important in order
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to be A-important. Therefore, if d′ = d ∧ 1/2:

E
[
µA

η (∆)
]

=
∑

x∈∆
P
[
x is A−important

]
η2 α4(η, 1)−1

≤
∑

x∈∆
α4(η, d′) η2 α4(η, 1)−1

≍ area(∆) α4(d
′, 1)−1 <∞.

The last inequality follows from quasi-multiplicativity and the fact that
α4(d

′, 1) = α
(η)
4 (d′, 1) depends on η but converges to the macroscopic proba-

bility α4(d
′, 1) (same notation) when η goes to zero. This proves tightness of

(ωη, µ
A
η )η>0.

Therefore, there exists some subsequential scaling limit (ω, µA) along
some subsequence (ηk)k>0, where ηk goes to 0. We will show that this µA

can actually be recovered from ω, which is the unique subsequential scaling
limit of (ωη)η>0, as we already know from Section 3. Consequently, the pair
(ω, µA) will also be unique.

Since the subsequential scaling limit µA is a measure, we will not need
to check sigma-additivity etc., only need to characterize uniquely the law
of this random measure. For this, it will be enough to determine, for any
ball B ⊂ ∆, the value of µA(B) as a function of ω. The strategy of the
proof is as follows. If η is a small mesh, we are interested in µA

η (B), that is,
in the number X = Xη of points inside B which are A-important (indeed,
by definition, µA

η (B) = X
η−2α4(η,1)

). We first need to show that X can be
“guessed” with arbitrary good precision from the macroscopic scale, since
only the macroscopic information is preserved in the scaling limit ω. In
order to do so, fix any grid of squares of side-length ǫ, and let Y = Y ǫ

η be the
number of squares Q in this grid which are contained in B and which satisfy
a 4-arms event from 2Q to ∂2A. We will prove the following lemma.

Lemma 5.4. For any proper annulus A, and for any ball B ⊂ ∆, if we fix
the ǫ-grid G to be the set of ǫ-squares centered at the points of the lattice
2ǫ eiθZ2 + a, with θ ∈ R and a ∈ C, then

E



(

Xη

E
[
Xη

] − Y ǫ
η

E
[
Y ǫ

η

]
)2

 = o(1)

when ǫ and η/ǫ go to zero, where the constants involved do not depend on the
choice of the parameters (θ, a) of the ǫ-grid G.
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After this, we will still have to show that these macroscopic approxima-
tions of µA

η (B) actually converge as ǫ → 0 and η/ǫ → 0: that limit will be
the unique limit µA(B). This will be done in Lemma 5.5.

Proof of Lemma 5.4. Let us start with a rough outline of the proof.
The main idea is that, conditioned on an ǫ-box Q to have the 4-arm event
to ∂2A, and conditioned on the entire percolation configuration outside an
enlarged box Q′, with side-length r ≫ ǫ, the distribution of the set of points
in Q that are A-important should be almost independent of the configuration
outside Q′ and of the location of the ǫ-box within the inner face ∆ of A. The
justification for this idea is, of course, our coupling results in Section 4. Thus,
if two ǫ-boxes are farther from each other than r ≫ ǫ, and both have the
4-arm event to ∂2A, i.e., they are both counted in Y , then their contributions
to X should be the same on average, and should be almost independent from
each other. On the other hand, if r ≪ 1, then there are much more pairs
of ǫ-boxes that are r-far from each other than those that are close. This
suggests that from Y we should be able to guess X with a small variance.

However, there are two issues about the above conditioning that need
some care. Firstly, to apply the coupling of Section 4, we cannot really con-
dition arbitrarily on the configuration outside Q′: we need to have only four
faces around Q′. Secondly, even after we condition on the entire configura-
tion outside some Q′i, the set of A-important points inside some Qj ⊂ (Q′i)

c

might still depend on the connections inside Q′i; so, we will have to condition
not just on (Q′i)

c and on having the 4-arm event from Qi to ∂2A, but also on
how the faces around Q′i are connected to each other from the inside. This
extra conditioning would be hard to handle if there were many faces around
Q′i, so, just like with the first issue, we need to have only four faces around
Q′i. To solve this problem, we will take an intermediate box Q′′i between Qi

and Q′i, with side-length γ satisfying ǫ ≪ γ ≪ r, and argue that having at
least 5 arms in the thick annulus Q′i \ Q′′i is much more costly than having
only 4, hence with good probability there are only 4 faces around Q′′i , and we
can start the coupling from there. And then we can also condition on how
the 4 arms around Q′′i are connected to each other: this is the reason why
we had the conditioning on {UΘ = τ} in Proposition 4.1.

In the following, a box B(q, r) centered at q (which will usually be the
center of a tile) of radius r will denote the set of tiles whose center is included
inside eiθ[−r, r)2+q. Let us consider in particular the square Q0 in G centered
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around a (Q0 = B(a, ǫ) is not necessarily in B). Let x0 be the number of
points inside Q0 which are (B(a, 1) \Q0)-important. Following the notations
of Section 4, call A0(2ǫ, 1) the event that there are 4 arms from B(a, 2ǫ)
to ∂B(a, 1); as well, call U0 the indicator function that there is a left-right
crossing in B(a, 1) (here, the “left side” of B(a, 1) is the image of the usual
left side after multiplying by eiθ).

We define
β = E

[
x0

∣∣ A0(2ǫ, 1), U0 = 1
]
. (5.4)

The lemma will follow from the following claim:

E
[
(X − β Y )2

]
= o(E

[
X2
]
), (5.5)

when ǫ and η/ǫ go to 0. Indeed, assuming we have proved (5.5), and using
the fact that there is a constant C > 0 (which might depend on the sets A

and B) such that E
[
X2
]

< CE
[
X
]2

and E
[
Y 2
]

< CE
[
Y
]2

, we have

E
[
X − β Y

]
≤
√

E
[
(X − βY )2

]
by Jensen’s inequality

≤
√

o(E
[
X2
]
) by (5.5)

≤ o(E
[
X
]
) by second moment for X . (5.6)

This allows us to conclude as follows:
∥∥∥∥∥

X

E
[
X
] − Y

E
[
Y
]
∥∥∥∥∥

2

≤
∥∥∥∥∥
X − β Y

E
[
X
]
∥∥∥∥∥

2

+

∥∥∥∥∥
β Y

E
[
X
] − Y

E
[
Y
]
∥∥∥∥∥

2

≤ o(1) +
|βE
[
Y
]
− E

[
X
]
|

E
[
X
]
E
[
Y
]

√
E
[
Y 2
] by (5.5) and second

moment for X

≤ o(1) by (5.6) and second moment for Y.

It will be helpful to keep in mind the following easy estimates:






β ≍ ǫ2η−2α4(η, ǫ)
E
[
X
]
≍ η−2α4(η, 1)

E
[
X2
]
≍ η−4α4(η, 1)2 .

We now start proving claim (5.5). Let S1, . . . , Sp denote the list of ǫ-
squares in the grid G which are contained in B. For each square Si, let Qi be
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the set of η-tiles whose center is included in Si (to avoid multiple allocation,
each square is considered to be [−ǫ, ǫ)2, this convention being mapped by
z 7→ eiθz + a). Therefore, the set of η-tiles inside B is partitioned into the
“tiling” {Qi}i plus some boundary (or exterior) η-tiles which are at distance at
most 2ǫ from ∂B. Let Qext be the set of these η-tiles. Because of issues coming
from the discrete lattice (mesh η), we need to change slightly our definition
of Y . For each 1 ≤ i ≤ p, let qi be the closest η-tile, in any reasonable
sense, to the center of Qi; define yi to be the indicator function of the event
that there are 4 arms from B(qi, 2ǫ) to ∂2A. Notice that the tiles B(qi, 2ǫ)
for 1 ≤ i ≤ p are all translate of each other and are identical to B(a, 2ǫ)
which is used in the definition of β. This will be relevant when we will apply
the coupling argument (Proposition 4.1) to our situation. We now define
Y := y1 + . . . + yp. (Notice that, in the scaling limit, this definition matches
with our original one, which is the only relevant thing to us.) Similarly, for
any 1 ≤ i ≤ p, let xi be the number of A-important points inside Qi, and
let xext be the number of A-important points in Qext. So, the number X of
A-important points in B is X = x1 + . . . + xp + xext.

First, we briefly explain why the additional term xext has a negligible
contribution. Notice that the estimate of E

[
x2

ext

]
is similar to the second

moment of the number of points which are 1-important inside a band of
length 1 and width ǫ. Writing this second moment as a sum over couples of
points, it is easy to check that in this case the main contribution comes from
couples of points which are about ǫ-close (unlike the second moment for the
number of 1-important points in a square where the main contribution comes
from “distant” points). Therefore,

E
[
x2

ext

]
≤ O(1)ǫ−1ǫ4η−4α4(η, 1)2/α4(ǫ, 1)

≤ O(1)ǫ3α4(ǫ, 1)−1η−4α4(η, 1)2.

Since ǫ3α4(ǫ, 1)−1 = o(1), when ǫ goes to 0, this implies E
[
x2

ext

]
= o(E

[
X2
]
)

(when ǫ goes to 0, uniformly in η ∈ (0, ǫ)). Another way to check that E
[
x2

ext

]

is negligible is to notice that with probability going to 1 when ǫ goes to zero,
xext = 0 and when it is non zero it is obviously less (in average) than E

[
X2
]
.

Hence this allows us to restrict to X̄ = x1 + . . . + xp, since

‖X − βY ‖2 ≤ ‖X̄ − βY ‖2 + ‖xext‖2 ,

and it is enough to prove that

E
[
(X̄ − βY )2

]
= o(E

[
X2
]
).
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Now let us fix some δ > 0. We need to prove that for ǫ and η/ǫ small
enough, we have

E
[
(X̄ − βY )2

]
≤ δ E

[
X2
]
. (5.7)

Let us write

E
[
(X̄ − βY )2

]
=
∑

i,j

E
[
(xi − βyi)(xj − βyj)

]
; (5.8)

so, in order to prove (5.7), we need to control the correlations between the
number of A-important points in squares Qi and Qj . If the squares are close,
then xi and xj are highly correlated, and some correlation is still there even
if the squares are far away from each other, but at least in that case we will
control their dependence well enough. So, if r = r(δ) is any distance that we
will choose later depending on δ, it will be convenient to split the above sum
(5.8) into a “diagonal” term corresponding to nearby squares, plus a term
corresponding to distant squares:

E
[
(X̄ − βY )2

]
=

∑

d(Qi,Qj)≤r

E
[
(xi − βyi)(xj − βyj)

]
(5.9)

+
∑

d(Qi,Qj)>r

E
[
(xi − βyi)(xj − βyj)

]
.

First, we estimate from above the first (diagonal) term. Take any i, j such
that d(Qi, Qj) ≤ r. We want to bound from above E

[
(xi − βyi)(xj − βyj)

]

(note that this might as well be negative, in which case it would “help” us).
We have

E
[
(xi − βyi)(xj − βyj)

]
≤ E

[
xixj + β2yiyj

]
(5.10)

We deal with the term
∑

d(Qi,Qj)≤r E
[
xixj

]
, the other one being treated in

a similar way. There are O(1)ǫ−2 choices for the box Qi (where O(1) depends
on B). Choose one of the Qi boxes. For any k ≥ 0, such that 2kǫ < r, there
are O(1)22k boxes Qj satisfying 2kǫ ≤ d(Qi, Qj) < 2k+1ǫ. For any of these
boxes, we have

E
[
xixj

]
=

∑

x∈Qi, y∈Qj

P
[
x, y are A-important

]

≤ O(1)ǫ4η−4 α4(η, 1)2

α4(2kǫ, 1)
.
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So, this gives us
∑

d(Qi,Qj)≤r

E
[
xixj

]
≤ O(1)ǫ−2

∑

k≤log2(r/ǫ)

22kα4(2
kǫ, 1)−1ǫ4η−4α4(η, 1)2

≤ O(1)r2α4(r, 1)−1η−4α4(η, 1)2

≤ O(1)r2α4(r, 1)−1E
[
X2
]
.

Since r2α4(r, 1)−1 = o(1) when r goes to zero, by choosing r = r(δ) small
enough and by applying the same argument to the other term of (5.10), we
obtain that

∑
d(Qi,Qj)≤r E

[
(xi − βyi)(xj − βyj)

]
≤ δ/2E

[
X2
]
.

We now turn to the second term
∑

d(Qi,Qj)>r E
[
(xi − βyi)(xj − βyj)

]
in

(5.9). For the diagonal term, the strategy was to use the fact that there were
few terms in the sum, and that each of the terms were of reasonable size;
here we have many terms to deal with, so we need to proceed differently:
we will prove that if ǫ and η/ǫ are small enough, then for any i, j such that
l := d(Qi, Qj) > r we have:

E
[
(xi − βyi)(xj − βyj)

]
≤ δ

2
E
[
xixj

]
.

Let qi and qj be the respective centers of these squares. Let γ ∈ (2ǫ, r/4)
be some intermediate distance whose value will be fixed later. Following the
notations of Section 4, let Υ be the set of all interfaces crossing the annu-
lus B(qi, l/2) \ B(qi, γ). As previously, Q(Υ) will denote the least distance
between the endpoints of the interfaces on ∂B(qi, γ) renormalized by γ. Let
A4 = A4(γ, l/2) be the event that there are at least 4 arms of alternating
color in the annulus B(qi, l/2) \ B(qi, γ). Furthermore, let A5 be the event
that there are at least 5 arms in the same annulus, with four of them of al-
ternating color. Recall that G = G(γ, l/2) is the event that there are exactly
4 alternating arms (thus G = A4 \ A5), and T α = T α(γ, l/2) is the event
that {Q(Υ) > α}. We now define the following disjoint events:

{
Wi = G ∩ T α

Zi = A5 ∪ (A4 ∩ ¬T α) .

In order for (xi − βyi)(xj − βyj) to be non-zero, either Wi or Zi must hold.
We can thus write

E
[
(xi − βyi)(xj − βyj)

]
(5.11)

= E
[
(xi − βyi)(xj − βyj)1Zi

]
+ E

[
(xi − βyi)(xj − βyj)1Wi

]
.
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We first want to bound the first term. By definition, P
[
Zi

]
≤ P

[
A5

]
+

P
[
A4 ∩ ¬T α

]
. For the second event, notice that

A4 ∩ ¬T α = A4(γ, l/2) ∩ ¬T α(γ, l/2)

⊂ A4(2γ, l/2) ∩ ¬T α(γ, 2γ) ,

since there are more interfaces between radii γ and 2γ than between γ and
l/2, therefore the quality of the set of interfaces is smaller for the annulus
B(qi, 2γ) \ B(qi, γ). But as we mentioned in Section 4 (see also Lemma A.2
in [SS05]), there is a function h(α) such that (uniformly in η ∈ (0, ǫ/10)),
P
[
¬T α(γ, 2γ)

]
< h(α), and furthermore h(α) goes to zero when α goes to

zero. We then deduce (by independence on disjoint sets)

P
[
Zi

]
≤ O(1)α5(γ, l) + O(1)h(α)α4(γ, l). (5.12)

We have

E
[
(xi − βyi)(xj − βyj)1Zi

]
≤ E

[
(xixj + β2yiyj)1Zi

]

≤ P
[
Zi

]
E
[
xixj + β2yiyj

∣∣ Zi

]
.

Let Ai,j be the event that there are four arms from B(qj , 2ǫ) to B(qj, l/2),
four arms from B(qi, 2ǫ) to B(qi, γ) and four arms from B(

qi+qj

2
, l) to ∂2A.

By independence on disjoint sets, we can write

E
[
xixj + β2yiyj

∣∣ Zi

]
= P

[
Ai,j

∣∣ Zi

]
E
[
xixj + β2yiyj

∣∣ Zi,Ai,j

]

= P
[
Ai,j

]
E
[
xixj + β2yiyj

∣∣ Zi,Ai,j

]
.

In order to have more independence, let us introduce the number x̃i of points
in Qi which have four arms to ∂B(qi, 2ǫ); it is clear that xi ≤ x̃i. We define
x̃j in the same way. Then,

E
[
xixj + β2yiyj

∣∣ Zi

]
≤ P

[
Ai,j

]
E
[
x̃ix̃j + β2yiyj

∣∣ Zi,Ai,j

]

≤ O(1)α4(ǫ, γ)α4(ǫ, 1)(E
[
x̃ix̃j

]
+ β2)

≤ O(1)α4(ǫ, γ)α4(ǫ, 1)(ǫ/η)4α4(η, ǫ)2. (5.13)

≤ O(1)ǫ4η−4α4(η, 1)2

α4(γ, 1)
by quasi-multiplicativity.

Combining (5.12) and (5.13) gives the following bound on the first term
in (5.11):

E
[
(xi − βyi)(xj − βyj)1Zi

]
≤ O(1)

(
α5(γ, l)

α4(γ, l)
+ h(α)

)
ǫ4η−4α4(η, 1)2

α4(l, 1)
.
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On the other hand, it is easy to check that E
[
xixj

]
≍ ǫ4η−4 α4(η,1)2

α4(l,1)
, hence

E
[
(xi − βyi)(xj − βyj)1Zi

]
≤ O(1)

(
α5(γ, l)

α4(γ, l)
+ h(α)

)
E
[
xixj

]
. (5.14)

We need to bound now the second term E
[
(xi − βyi)(xj − βyj)1Wi

]
. We

will use for that purpose the coupling argument (Proposition 4.1). Indeed,
on the event Wi, there are exactly 4 arms crossing the annulus B(qi, l/2) \
B(qi, γ), therefore there are exactly 4 interfaces crossing this annulus and,
as we have seen in Section 4, they induce a configuration of faces Θ =
{θ1, . . . , θ4} at radius γ around qi (here θ1, θ3 are the open faces). As in
Section 4, let DΘ be the bounded component of C \ Θ (which is a finite set
of η-tiles) and let U = UΘ be the indicator function that there is an open
crossing from θ1 to θ3 in DΘ. Let FΘ be the σ-field generated by the tiles
in Dc

Θ. On the event Wi, we may condition on FΘ in order to “factorize”
the information in the Qi and Qj boxes, but notice that even if we condition
on FΘ (and thus, in particular, we know all the information inside Qj), the
number xj of A-important points in Qj might still depend on the connectiv-
ities inside Qi. That is why we also condition on UΘ which gives the only
information that is significant outside DΘ about what the connectivities are
inside DΘ. We end up with

E
[
(xi − βyi)(xj − βyj)1Wi

]
= P

[
Wi

]
E
[
(xi − βyi)(xj − βyj)

∣∣Wi

]

= P
[
Wi

]
E
[
E
[
(xi − βyi)(xj − βyj)

∣∣ FΘ, UΘ

] ∣∣Wi

]

= P
[
Wi

]
E
[
(xj − βyj)E

[
xi − βyi

∣∣ FΘ, UΘ

] ∣∣Wi

]
,

since xj −βyj is measurable with respect to the σ-field generated by FΘ and
UΘ (which allows us to “factorize” the Qi and Qj boxes). We have

∣∣∣E
[
(xi − βyi)(xj − βyj)1Wi

]∣∣∣ ≤ (5.15)

P
[
Wi

]
E
[
(xj + βyj)

∣∣E
[
xi − βyi

∣∣ FΘ, UΘ

]∣∣
∣∣∣Wi

]
.

As in Section 4, let AΘ = AΘ(2ǫ, γ) be the event that there are open arms
from B(qi, 2ǫ) to the open faces θ1, θ3 and closed arms from B(qi, 2ǫ) to the
closed faces θ2, θ4. Let XΘ be the event that there are open arms in Dc

Θ from
θ1, θ3 to ∂2A and closed arms from θ2, θ4 to ∂2A, so that on the event Wi we
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have

E
[
xi − βyi

∣∣ FΘ, UΘ

]
= 1XΘ

E
[
xi − βyi

∣∣ FΘ, UΘ

]

= 1XΘ
E
[
xi − β1AΘ

∣∣ FΘ, UΘ

]
(5.16)

= 1XΘ
P
[
AΘ

∣∣ UΘ

]
E
[
xi − β

∣∣ FΘ,AΘ, UΘ

]
,

by independence on disjoint sets and since on Wi ∩ XΘ, yi = 1AΘ
.

Recall that β = E
[
x0

∣∣ A0(2ǫ, 1), U0 = 1
]
. Recall also that, on the event

Wi, the faces are well-separated: Q(Θ) > α. Therefore one wishes to use the
coupling argument Proposition 4.1. Note that we will use here Proposition
4.1 in a slightly more general form since we have boxes which are rotated by
an angle θ. It is clear that the same proof as in Proposition 4.1 applies here
where the constant k(α) can be chosen independently of eiθ.

Finally, we need to be careful with the issues coming from the discrete
lattice: indeed, xi is the number of points in Qi which are A-important, but
β is defined as a (conditional) expected number of points in Q0 = B(a, ǫ),
or, by translation invariance, in B(qi, ǫ). However, Qi and B(qi, ǫ) do not
exactly coincide (at the boundary points). Hence let us introduce x̂i to be
the number of A-important points in B(qi, ǫ). We have

xi = x̂i +
∑

x∈Qi\B(qi,ǫ)

1x is A-important −
∑

y∈B(qi,ǫ)\Qi

1y is A-important.

There are O(1)ǫη−1 such boundary points, each of them on the event
Wi ∩ XΘ and conditioned on (AΘ, UΘ) are A-important with probability of
order O(1)α4(η, ǫ). Hence, on the event Wi ∩ XΘ, we have

E
[
xi|FΘ,AΘ, UΘ

]
= E

[
x̂i|FΘ,AΘ, UΘ

]
+ O(1)ǫη−1α4(η, ǫ). (5.17)

In order to apply Proposition 4.1, one needs to consider both cases UΘ = 1
and UΘ = 0. On the event Wi ∩ XΘ, if {UΘ = 1} holds, we have

E
[
x̂i − β

∣∣ FΘ,AΘ, UΘ

]
= E

[
x̂i

∣∣ FΘ,AΘ, UΘ = 1
]
−E
[
x0

∣∣ A0(2ǫ, 1), U0 = 1
]
.

Proposition 4.1 says that one can couple the probability measure conditioned
on AΘ, {UΘ = 1} with the probability measure conditioned on A0(2ǫ, 1) so
that with probability at least 1 − (2ǫ/γ)k(α), we have x̂i = x0. Let, as in
Section 4, S be the event that the coupling succeeds. Hence, on the event
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Wi ∩ XΘ ∩ {UΘ = 1},

|E
[
x̂i − β

∣∣ FΘ,AΘ, UΘ = 1
]
| (5.18)

≤
(

2ǫ

γ

)k(α) (
E
[
x̂i 1¬S

∣∣ FΘ,AΘ, UΘ = 1
]
+ E

[
x0 1¬S

∣∣ A0(2ǫ, γ), U0 = 1
])

.

Now let x̃i be the number of points in B(qi, ǫ) which have four arms to
∂B(qi, 2ǫ). Then x̂i ≤ x̃i and x̃i is independent of FΘ,AΘ. Thus

E
[
x̂i 1¬S

∣∣ FΘ,AΘ, UΘ = 1
]
≤ E

[
x̃i

∣∣ UΘ = 1
]
.

But recall that Q(Θ) > α, since we are on the event Wi. Therefore, as it
is straightforward to check, there is some c(α) > 0 such that P

[
UΘ = 1

]
∧

P
[
UΘ = 0

]
> c(α). This means that conditioning on either value of UΘ

cannot increase the expectation of a non-negative variable by a factor larger
than 1/c(α), hence

E
[
x̃i

∣∣ UΘ = 1
]
≤ Oα(1)ǫ2α4(ǫ, 1),

where Oα(1) depends on the quality threshold α. Also, by introducing x̃0,
the number of points in Q0 = B(a, ǫ) which have four arms to ∂B(a, 2ǫ), we
have that E

[
x0 1¬S

∣∣ A0(2ǫ, γ), U0 = 1
]
≤ O(1)ǫ2η−2α4(η, ǫ) (notice here that

there is no dependence upon α). Hence (5.18) becomes

|E
[
x̂i − β

∣∣ FΘ,AΘ, UΘ = 1
]
| ≤ Oα(1)

(
2ǫ

γ

)k(α)

ǫ2η−2α4(η, ǫ). (5.19)

Now, on the event Wi ∩ XΘ, if {UΘ = 0} holds, we have

E
[
x̂i − β

∣∣ FΘ,AΘ, UΘ

]
= E

[
x̂i

∣∣ FΘ,AΘ, UΘ = 0
]
−E
[
x0

∣∣ A0(2ǫ, 1), U0 = 1
]
.

Again using Proposition 4.1, one can couple the two conditional probabil-
ity measures so that, with probability at least 1− (2ǫ/γ)k(α), we have x̂i = x0

(here the colors are reversed but nevertheless the A-important points are the
same). In the exact same fashion, one ends up with

|E
[
x̂i − β

∣∣ FΘ,AΘ, UΘ = 0
]
| ≤ Oα(1)

(
2ǫ

γ

)k(α)

ǫ2η−2α4(η, ǫ). (5.20)
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Summarizing: on the event Wi, we have rewritten (5.16) as

E
[
xi − βyi

∣∣ FΘ, UΘ

]
(5.21)

=

{
1XΘ,UΘ=1 P

[
AΘ

∣∣ UΘ = 1
]
(E
[
xi|FΘ,AΘ, UΘ = 1

]
− β)

+ 1XΘ,UΘ=0 P
[
AΘ

∣∣ UΘ = 0
]
(E
[
xi|FΘ,AΘ, UΘ = 0

]
− β) ,

and have bounded its different factors. The last ingredient is that

P
[
AΘ

∣∣ UΘ

]
< Oα(1)α4(ǫ, γ) ,

which holds because, as we argued above, P
[
UΘ = 1

]
∧P
[
UΘ = 0

]
> c(α) > 0.

Therefore, combining (5.17),(5.19) and (5.20) in (5.21) gives (still on the
event Wi):

|E
[
xi − βyi

∣∣ FΘ, UΘ

]
| ≤ 1XΘ

Oα(1)α4(ǫ, γ)

((
2ǫ

γ

)k(α)

ǫ2η−2 + ǫη−1

)
α4(η, ǫ)

≤ Oα(1)ǫ2η−2α4(η, γ)
(
(2ǫ/γ)k(α) +

η

ǫ

)
.

It is straightforward to check that P
[
Wi

]
≤ O(1)α4(γ, l), hence (5.15)

becomes

|E
[
(xi − βyi)(xj − βyj)1Wi

]
|

≤ P
[
Wi

]
E
[
(xj + βyj)

∣∣E
[
xi − βyi

∣∣ FΘ, UΘ

]∣∣ ∣∣Wi

]

≤ Oα(1)ǫ2η−2α4(η, l)E
[
xj + βyj

∣∣Wi

] (
(2ǫ/γ)k(α) +

η

ǫ

)
.

In order to bound E
[
xj |Wi

]
, we introduce x∗j , the number of points in Qj

which have four arms to ∂B(qj , l/2), and we let G be the event that there
are four arms from B(

qi+qj

2
) to ∂2A. By definition, xj ≤ x∗j1G, therefore,

by independence on disjoints sets (x∗j and G do not depend on Wi), we

obtain E
[
xj

∣∣Wi

]
≤ O(1)ǫ2η−2α4(η, 1). Similar estimates for yi lead to

E
[
xj + βyj

∣∣Wi

]
≤ O(1)ǫ2η−2α4(η, 1), hence

|E
[
(xi − βyi)(xj − βyj)1Wi

]
| ≤ Oα(1)ǫ4η−4α4(η, 1)2

α4(l, 1)

(
(2ǫ/γ)k(α) +

η

ǫ

)

≤ C(α)E
[
xixj

] (
(2ǫ/γ)k(α) +

η

ǫ

)
,
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for some fixed constant C(α) > 0. The last expression combined with (5.11)
and (5.14) gives

E
[
(xi − βyi)(xj − βyj)

]

≤ O(1)E
[
xixj

]
(

α5(γ, l)

α4(γ, l)
+ h(α) + C(α)

(
2ǫ

γ

)k(α)

+ C(α)
η

ǫ

)
.

Let us then fix the “quality threshold” α = α(δ) so that O(1)h(α) < δ/8.
Recall we have already fixed r = r(δ) so that the diagonal term was less than
δ/2E

[
X2
]
. So we have γ < r(δ) < l. It is a standard fact (proved by the BK

inequality) that there is some d > 0 such that, for any γ < l, α5(γ,l)
α4(γ,l)

< (γ/l)d.

So, we fix γ so that O(1)α5(γ,l)
α4(γ,l)

< δ/8. Now by taking ǫ and η/ǫ small enough

one obtains E
[
(xi − βyi)(xj − βyj)

]
≤ δ/2E

[
xixj

]
, which ends the proof of

Lemma 5.4

We proved that we could guess X/E
[
X
]

from macroscopic observations
(Y/E

[
Y
]
), but the quantity we really need to guess is rather µA

η (B) =
X

η2α4(η,1)
. One can rewrite Lemma 5.4 in the following way:

E



(

X − Y

E
[
Y
]E
[
X
]
)2

 = o(E

[
X2
]
),

when ǫ and η/ǫ go to zero. But since E
[
X2
]
≍ η−4α4(η, 1)2, this implies

E



(

X

η−2α4(η, 1)
− Y

E
[
Y
] E

[
X
]

η−2α4(η, 1)

)2

 = o(1),

that is,

E




(

µA
η (B)− Y

E
[
Y
] E

[
X
]

η−2α4(η, 1)

)2


 = o(1). (5.22)

Thus, we need the following lemma.

Lemma 5.5. For any parameters a, θ of the grid G,

E
[
Xη

]

η−2α4(η, 1)
= (1 + o(1))

E
[
Y ǫ

η

]

(2ǫ)−2α4(2ǫ, 1)
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as ǫ→ 0, uniformly in η ∈ (0, ǫ/10) and a, θ. Moreover, the limits

lim
η→0

E
[
Xη

]

η−2α4(η, 1)
= m(A, B) > 0 ,

lim
ǫ→0

sup
η<ǫ/10

∣∣∣∣∣
E
[
Y ǫ

η

]

(2ǫ)−2α4(2ǫ, 1)
−m(A, B)

∣∣∣∣∣ = 0

exist, uniformly in a, θ.

Proof. We will use the same subdivision of the ball B into ǫ-squares
Q1, . . . , Qp as in the previous proof. The boundary terms will be treated
in the same way and we will make an extensive use of the other coupling,
Proposition 4.5. Note that here, again, we apply the proposition in a slightly
more general form than as it is stated, since our grid of squares is rotated by
eiθ, but it is easy to check that Proposition 4.5 applies to this setting, with
an exponent k > 0 that can be chosen independently of θ.

Using the same notations as in the previous proof, we have X = x1 +
. . . + xp + xext. We have already seen that E

[
x2

ext

]
is o(E

[
X2
]
) when ǫ→ 0,

uniformly in η < ǫ, therefore, by Jensen’s inequality, the second moment

estimate for E
[
X2
]

(i.e., E
[
X2
]

< CE
[
X
]2

), and E
[
X
]
≍ η−2α4(η, 1), we

obtain that E
[
xext

]
is o(η−2α4(η, 1)). Also, as in the previous proof, in order

to use the coupling argument (Proposition 4.5), we will need to be careful
with issues coming from the discrete lattice; but it will be somewhat simpler
here, so we will not need to use x̂1, . . . , x̂p as in (5.17). Let X̄ := x1 + . . .+xp;
it remains to show that

E
[
X̄
]

η−2α4(η, 1)
=

E
[
Y
]

(2ǫ)−2α4(2ǫ, 1)
+ oǫ→0(1) ,

where oǫ→0(1) goes to zero when ǫ goes to zero, uniformly in η < ǫ/10. For
any square Qi, let qi be the closest η-tile (closest in any reasonable sense)
to the center of Qi. For any η-tile x and r > 0, let A(x, r) be the event
that there are four (alternate) arms from x to ∂B(x, r); also, let A(x, ∂2A)
be the event that x is A-important, i.e., that there are four arms from x to
the exterior boundary of the annulus A. In particular, by definition, for any
η-tile x, P

[
A(x, 1)

]
= α4(η, 1). For any x ∈ Qi, let Ãx the annulus A shifted

by x − qi (so that the pair (qi, A) is a translate of the pair (x, Ãx)). Notice
that Ãx is shifted by less than 2ǫ, since qi, x ∈ Qi, a square of radius ǫ.
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E
[
X̄
]

η−2α4(η, 1)
=
∑

i

η2
∑

x∈Qi

P
[
x is A-important

]

α4(η, 1)
(5.23)

=
∑

i

η2
∑

x∈Qi

P
[
A(x, ∂2A)

]

P
[
A(x, 1)

]

=
∑

i

η2
∑

x∈Qi

P
[
A(x, ∂2A)

∣∣ A(B(x, 2ǫ), ∂2A)
]

P
[
A(x, 1)

∣∣ A(B(x, 2ǫ), 1)
] α4(B(x, 2ǫ), ∂2A)

α4(2ǫ, 1)
.

Now, if one applies Proposition 4.5 to the events A(B(x, 2ǫ), ∂2A) and
A(B(x, 2ǫ), 1), i.e., if one couples these two conditional probability measures
around the same square B(x, 2ǫ), one obtains

P
[
A(x, ∂2A)

∣∣ A(B(x, 2ǫ), ∂2A)
]

P
[
A(x, 1)

∣∣ A(B(x, 2ǫ), 1)
] = 1 + oǫ→0(1) . (5.24)

Now notice that

P
[
A(B(x, 2ǫ), ∂2A))

]
= P

[
A(B(x, 2ǫ), ∂2Ãx)

]
(1 + oǫ→0(1))

= P
[
A(B(qi, 2ǫ), ∂2A)

]
(1 + oǫ→0(1)) . (5.25)

Indeed,
A(B(x, 2ǫ), ∂2A))∆A(B(x, 2ǫ), ∂2Ãx)

holds only if there are four arms from B(x, 2ǫ) to B(x, d/2) (where d is the
distance between ∂1A and ∂2A), and if there is some ball of radius 2ǫ on ∂2A
which has three arms in A ∪ Ãx up to distance d/2. Using the fact that the
three arms exponent in H is two (also known for Z2), it is easy to show that

P
[
A(B(x, 2ǫ), ∂2A))∆A(B(x, 2ǫ), ∂2Ãx)

]
= oǫ→0(1)P

[
A(B(x, 2ǫ), ∂2Ãx)

]
,

implying the first line of (5.25). The second line follows by translation in-
variance. Now, writing (5.24) and (5.25) into (5.23) gives

E
[
X̄
]

η−2α4(η, 1)
=

∑

i

η2
∑

x∈Qi

P
[
A(B(qi, 2ǫ), ∂2A)

]

α4(2ǫ, 1)
(1 + oǫ→0(1))

=
∑

i

4ǫ2 P
[
A(B(qi, 2ǫ), ∂2A)

]

α4(2ǫ, 1)
(1 + oǫ→0(1)).
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Now, since there are O(1)ǫ−2 squares, and since the constants involved in the
various oǫ→0(1) are uniform in η < ǫ/10 and can be chosen independently of
Qi, we get

E
[
X̄
]

η−2α4(η, 1)
=

1

(2ǫ)−2α4(2ǫ, 1)

∑

i

P
[
A(B(qi, 2ǫ), ∂2A)

]
+ oǫ→0(1)

=
E
[
Y
]

(2ǫ)−2α4(2ǫ, 1)
+ oǫ→1(1),

which is the first statement of the Lemma. Note that the term on the right in
the above equation still depends on the mesh η, but it has a limit (given by
SLE computation) when η goes to zero. This and the last equation together
prove the Cauchy criterion for E

[
X
]
/(η−2α4(η, 1)), when η → 0, hence the

existence of a limit m(A, B) > 0 for E
[
X
]
/(η−2α4(η, 1)), and therefore also

for E
[
Y
]
/((2ǫ)−2α4(2ǫ, 1))).

Remark 5.6. We proved Lemmas 5.4 and 5.5 for any angle θ and any trans-
lation parameter a for the grid G of ǫ-squares. For more accurate notations,
one should have used Y ǫ,a,θ

η instead of just Y ǫ
η . Moreover, in Lemma 5.5, the

4-arm probabilities α4(2ǫ, 1) are with respect to a rotated and translated ǫ-
grid, with η mesh, so they should be denoted by αη,a,θ

4 . Summarizing, (5.22)
and Lemma 5.5 together imply that for any a, θ,

∥∥∥∥∥µ
A
η (B)− Y ǫ,a,θ

η

(2ǫ)−2αη,a,θ
4 (2ǫ, 1)

∥∥∥∥∥
2

= o(1), (5.26)

when ǫ and η/ǫ go to 0, uniformly in the parameters a, θ and the ball B ⊂ ∆.

Proof of Theorem 5.3, continued. The variable Y = Y ǫ,a,θ
η counts

how many of certain macroscopic 4-arm events hold. Therefore, Remark 3.2
implies that, as η goes to zero, Y ǫ,a,θ

η converges in law to a random variable
Y ǫ,a,θ that is measurable with respect to the scaling limit ω of critical per-
colation. Since ωη is a sequence of random variables on the separable space
(HD, TD), with weak limit ω, there exists a coupling of all the ωη and ω such
that ωη → ω almost surely. In this coupling, we then have, for any ǫ > 0,
proper annulus A and B ⊂ ∆, almost surely Y ǫ,a,θ

η → Y ǫ,a,θ.

Let us introduce the notations F a,θ
η (ǫ) := (2ǫ)−2αη,a,θ

4 (2ǫ, 1) and F (ǫ) :=
(2ǫ)−2α4(2ǫ, 1) for discrete and continuum percolation, so that F a,θ

η (ǫ) →
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F (ǫ) as η → 0. The dependence on a, θ is not shown here in the continuum
version on purpose: our proof of Lemma 5.5 shows that the translation by
a always plays a negligible role, while the dependence on the rotation dis-
appears in the limit because of the rotational invariance of the scaling limit
(proved only for the triangular lattice). Hence Y ǫ,a,θ

η /F a,θ
η (ǫ) → Y ǫ/F (ǫ)

a.s. This and having a uniform upper bound on the second moments of
Y ǫ,a,θ

η /F a,θ
η (ǫ) and Y ǫ/F (ǫ) imply that

lim
η→0

∥∥∥∥∥
Y ǫ,a,θ

η

F a,θ
η (ǫ)

− Y ǫ,a,θ

F (ǫ)

∥∥∥∥∥
2

= 0 .

Combining with (5.26), this gives that Y ǫ/F (ǫ) is a Cauchy sequence in L2

as ǫ→ 0. Hence it has a limit:

µA(B) := lim
ǫ→0

Y ǫ,a,θ

(2ǫ)−2α4(2ǫ, 1)
in L2. (5.27)

Clearly, this µA(B) = µA(B, ω) is the distributional limit of the discrete
variables µA

η (B, ωη), and Theorem 5.3 is proved.

Remark 5.7. In (5.27) we have only convergence in L2, not almost sure. We
expect here that the stronger version does hold. However, our proof does not
seem to yield this result, at least not without some additional work.

Note that it was convenient to introduce the measures µA
η for some proper

annulus A ⊂ C instead of working directly with µρ
η, the counting measure

on ρ-important points. Indeed, suppose that in the previous proof we were
working with ρ-important points instead of A-important points. Then, for
different points x, y inside some ǫ-square Qi, given some configuration of faces
around Qi, we might need quite different information about where these faces
are connected outside Qi if we want to know how x and how y has to be
connected to these faces from the inside in order to be ρ-important. Indeed,
if one of the four arms emanating from the faces around Qi goes to distance
ρ − ǫ but not to ρ, then it might happen that some points in Qi that are
connected “pivotally” to the four arms will be ρ-important while others will
not. A-important points are simpler to handle in this respect.

Nevertheless, Section 2 deals with the concept of ǫ-important points, so
we need to relate in some way the measures µA

η with the measures µρ
η. The

following partial order between enhanced tilings will handle this issue.
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Definition 5.8. Let us say that an enhanced tiling H refines another, H′,
denoted by H ≤ H′, if the following holds: for any pair of annuli A =
B2 \ B1 ∈ H and A′ = B′2 \ B′1 ∈ H′, if the inner faces B1 and B′1 intersect
each other, then B2 ⊂ B′2.

For example, one can consider the enhanced tiling

Hρ
η :=

{
B(x, ρ) \ {x} : all η-tiles x of D

}

in a domain D. Now, if H is an enhanced tiling with diam2H < ρ, then
H ≤ Hρ

η. On the other hand, if d(∂1A, ∂2A) > 2ρ for all A ∈ H, then
H ≥ Hρ

η.
The point of this definition is that if H ≤ H′, then we have the reversed

domination between the associated annulus-pivotal measures: µHη ≥ µH
′

η .
Therefore, there is a coupled pair (P,P ′) of Poisson samples from these mea-
sures such that P ⊃ P ′. In particular, if

{
H(ǫ) : ǫ ∈ I

}
is an ordered family

of enhanced tilings, i.e., H(δ) ≤ H(ǫ) whenever δ < ǫ, for δ, ǫ ∈ I ⊂ R+, then

for each η > 0 we get a family
{
µ
H(ǫ)
η : ǫ ∈ I

}
of increasing measures (as ǫ

decreases), called a filtered measure, and there is an associated increasing
family of Poisson samples

{
P(H(ǫ)) : ǫ ∈ I

}
.

If
{
H(ǫ)) : ǫ ∈ I

}
is an ordered family of enhanced tilings with diam2H(ǫ) =

ǫ and d(∂1A, ∂2A) > ǫ/2 for all A ∈ H(ǫ), then we have the following domi-
nations between the associated filtered measure and the ρ-pivotal measures.
For any ρ > 0, if η > 0 is small enough, then

µH(ρ)
η ≥ µH

ρ
η

η ≥ µH(ρ/4)
η . (5.28)

This will be our main tool for comparing annulus-pivotality to ρ-pivotality.

6 Conformal covariance of the “counting” mea-

sure on the pivotal points

Let Ω, Ω̃ be two simply connected domains of the plane, and let f : Ω→ Ω̃ be
some conformal map. By conformal invariance, the image ω̃ := f(ω) is also

a realization of continuum percolation in Ω̃. Consider some proper annulus
A ⊂ Ā ⊂ Ω. Since f is conformal on Ω, we have that f(A) is again a proper

annulus, and µf(A) is the scaling limit of µ
f(A)
η . We will prove the following:
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Theorem 6.1. Let f∗(µA(ω)) be the pushforward measure of µA. Then,
for almost all ω, the Borel measures µf(A)(ω̃) and f∗(µA(ω)) on f(∆) are
absolutely continuous w.r.t. each other, and their Radon-Nikodym derivative
satisfies, for any w = f(z) ∈ Ω̃,

dµf(A)(ω̃)

df∗(µA(ω))
(w) = |f ′(z))|3/4,

or equivalently, for any Borel set B ⊂ ∆,

µf(A)(f(B))(ω̃) =

∫

B

|f ′|3/4dµA(ω) .

Remark 6.2. Using the conformal invariance of the scaling limit, from the
almost sure equality in the theorem we get that µf(A)(f(B)) has the same
law as

∫
B
|f ′|3/4dµA.

On a heuristical level, the scaling exponent 3/4 comes from the fact that
µA is a “natural” measure supported on the set of pivotal points, which is
known to be of Hausdorff-dimension 3/4; see [Bef04]. Of course, to make this
explanation more grounded, one would also need to prove that the support
of the measure µA(ω) is exactly the set of A-important points of ω.

Since any conformal map is locally a rotation times a dilatation, we will,
as a warm-up, first check the theorem on these particular cases. This will
be much easier than the general case, mainly because the grid of ǫ-squares
that we used in defining the approximating macroscopic quantities Y ǫ is
preserved quite nicely under rotations and dilatations, while distorted by a
general conformal map f .

6.1 Rotational invariance

Let us consider some proper annulus A of the plane, some ball B ⊂ ∆, and
the rotation T : z 7→ exp(iθ) z by an angle θ. We need to show that

µA(B, ω) = µTA(TB, Tω) . (6.1)

By (5.27), the right hand side equals limǫ Y G(ǫ),TA(TB, Tω)/F (ǫ), an L2-
limit, where G(ǫ) is our usual grid of ǫ-squares. Or, by using a rotated grid,
it is also equal to limǫ Y TG(ǫ),TA(TB, Tω)/F (ǫ), which (by rotating back the
entire universe) is trivially the same as limǫ Y G(ǫ),A(B, ω)/F (ǫ), giving the
left hand side of (6.1), as desired.
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Remark 6.3. One might speculate that this type of rotational invariance
should hold even if we have a scaling limit ω without (or unproved) rotational
invariance (such as a subsequential limit of critical percolation on Z2), since
the backbone of the above argument seems to be the following: µA is a
function of ω, and the definition of this function in (5.27) does not depend
on any special orientation θ, hence if one rotates ω, then µA should get
rotated, as well. (Of course, rotational invariance would still be essential for
the equality in law, discussed in Remark 6.2.)

However, the rotational invariance of the scaling limit is in fact used here,
in a somewhat implicit way, through the fact that the normalization factor
F (ǫ) in (5.27) does not depend on θ. Indeed, without rotational invariance,
from (5.26) one can still prove a version of the approximation (5.27) for the
ǫ-grid rotated with any angle θ, where the normalization is not always the
same function F (ǫ), rather F θ(ǫ), coming from the four-arm probabilities in
a θ-rotated square annulus. But then, in the argument proving (6.1), one
would need

lim
ǫ→0

Y TG(ǫ),TA(TB, Tω)

F θ(ǫ)
= lim

ǫ→0

Y G(ǫ),A(B, ω)

F (ǫ)
,

which is not at all clear: for a fixed ǫ > 0, the numerators themselves are again
trivially equal (the annulus, the ball and the configuration are all rotated),
but the denominators are equal only in the presence of rotational invariance.
There might be equality in the ǫ → 0 limit, but we are not trying to show
this here.

We will see the same phenomenon in the proofs below: the conformal
covariance comes in some sense from the fact that the normalization factor
cannot be changed when applying a conformal map.

6.2 Scaling covariance

We show here the following special case of Theorem 6.1:

Proposition 6.4. Let A be some proper annulus of the plane and λ > 0
some scaling factor. Then, for any B ⊂ ∆:

µλA(λB, λω) = λ3/4µA(B, ω) . (6.2)

Proof. By (5.27), we have the L2-limits

µλA(λB, λω) = lim
ǫ→0

Y λǫ,λA(λB, λω)

F (λǫ)
= lim

ǫ→0

Y ǫ,A(B, ω)

F (λǫ)
,
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where the second equality is just a tautology even for fixed ǫ > 0. So, in order
to get the right side of (6.2), we need that limǫ→0 α4(λǫ, 1)/α4(ǫ, 1) = λ5/4.
By the scale invariance of the scaling limit, α4(λǫ, 1) = α4(ǫ, 1/λ). Therefore,
Proposition 6.4 follows from the next lemma.

Lemma 6.5. For any fixed r > 0,

lim
η→0

αη
4(η, r)

αη
4(η, 1)

= lim
ǫ→0

α4(ǫ, r)

α4(ǫ, 1)
= r−5/4 .

Remark 6.6. This lemma might appear obvious knowing the critical expo-
nent, but the probability αη

4(η, 1) is only known to be η5/4+o(1), so there could
be large but sub-polynomial factors, while α4(ǫ, 1) is known to be ǫ5/4 only
up to constant factors. Therefore, Lemma 6.5 is not a direct consequence of
the determination of the exponent, and, to our knowledge, is a new result in
itself.

Proof. We will use the coupling argument from Proposition 4.5. First we
prove that both limits exist, by showing that the sequences satisfy the Cauchy
criterion. Then we identify that the limit is r−5/4.

Suppose r < 1; the case r ≥ 1 is symmetric. Let 10η < γ < r
10

. Let
A(γ, r) and A(γ, 1) be the events that there are four alternate arms from
radius γ to radius r and from radius γ to radius 1. Applying Proposition 4.5,
one easily gets

αη
4(η, r)

αη
4(η, 1)

=
Pη

[
A(η, r)

∣∣ A(γ, r)
]

Pη

[
A(η, 1)

∣∣ A(γ, 1)
] α

η
4(γ, r)

αη
4(γ, 1)

= (1 + O(1)(γ/r)d)
αη

4(γ, r)

αη
4(γ, 1)

.

But for a fixed γ > 0, by SLE computation, αη
4(γ, r)/αη

4(γ, 1) has a limit
when η goes to zero, the limit being the ratio between the “macroscopic”
probabilities α4(γ, r)/α4(γ, 1). Therefore, one can rewrite the above equation
as

αη
4(η, r)

αη
4(η, 1)

=
α4(γ, r)

α4(γ, 1)
(1 + o(1)),

where o(1) goes to zero when γ goes to zero, uniformly in η < γ/10. This
proves the Cauchy criterion for

(
αη

4(η, r)/αη
4(η, 1)

)
η
. So, there is some ℓ

(which is easily seen to be positive and finite) so that αη
4(η, r)/αη

4(η, 1) goes
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to ℓ when η → 0. Furthermore, this also shows that the ratio of the macro-
scopic probabilities α4(γ, r)/α4(γ, 1) have a limit when γ → 0, and that they
converge to the same limit ℓ. It is easier to work with events at the scaling
limit (since at the scaling limit we can use scale invariance), so we identify ℓ
using limγ→0 α4(γ, r)/α4(γ, 1) = ℓ.

On the triangular grid it is known that

lim
n→∞

log α4(r
n, 1)

n
= log(r5/4). (6.3)

But one can write α4(r
n, 1) in the following way:

α4(r
n, 1) =

α4(r
n, 1)

α4(rn, r)

α4(r
n−1, 1)

α4(rn−1, r)
. . .

α4(r, 1)

1
.

Therefore,

log α4(r
n, 1)

n
=

1

n

n∑

k=1

log
α4(r

k, 1)

α4(rk, r)
. (6.4)

But, since rk goes to zero with k, we have that limk→∞ log α4(rk,1)
α4(rk ,r)

= log 1
ℓ
. By

the convergence of the Cesàro mean, the right hand side of (6.4) converges
to log 1

ℓ
, hence comparing with (6.3) gives that log 1

ℓ
= log(r5/4), which con-

cludes the proof.

6.3 Proof of the conformal covariance (Theorem 6.1)

The key step in the proof will be the following:

Lemma 6.7. There are absolute constants δ0 = δ0(A, Ω, Ω̃) > 0 and K =

K(A, Ω, Ω̃) > 0 so that almost surely (with respect to ω), for any ball or
square B ⊂ ∆ centered at z of radius δ ≤ δ0, we have

(1−Kδ)µA(B, ω)|f ′(z)|3/4 ≤ µf(A)(f(B), ω̃) ≤ (1 + Kδ)µA(B, ω)|f ′(z)|3/4.

Indeed, let us briefly show that Lemma 6.7 implies that a.s. µf(A) ≪
f∗(µA). Take any Borel set U such that f∗(µA)(U) = 0. For any ǫ > 0
there is some finite cover

⋃
i Bi of f−1(U) (also a Borel set) by disjoint open
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squares Bi, each of radius less than δ0, so that µA(
⋃

i Bi) ≤ ǫ. Therefore, by
Lemma 6.7,

µf(A)(U) ≤ (1 + Kδ0) sup
z∈∆
|f ′(z)|3/4 µA

(⋃

i

Bi

)

≤ (1 + Kδ0) H3/4 ǫ ,

where H := sup∆ |f ′| is finite, since ∆̄ is a compact set inside Ω where f
is conformal. By letting ǫ go to zero, this proves µf(A) ≪ f∗(µA). The
other direction is proved in the same way. Therefore, the two measures are
absolutely continuous, and it is straightforward from Lemma 6.7 that their
Radon-Nikodym derivative is indeed as in Theorem 6.1.

Proof of Lemma 6.7. Since Ā is a compact subset of Ω, we can define

Hf := supz∈A |f ′(z)| <∞
Lf := supz∈A |f ′′(z)| <∞.

(6.5)

Since also f(A) is a compact subset of Ω̃, we have

Hg := supw∈f(A) |g′(w)| <∞
Lg := supx∈f(A) |g′′(w)| <∞.

(6.6)

We will fix the value of δ0 > 0 later on. Let B = B(z0, δ) some ball of
radius δ ≤ δ0 centered at z0 and satisfying B ⊂ ∆.

For any parameters a ∈ C, θ ∈ [0, 2π), let G be the grid of ǫ-squares cen-
tered at a and rotated by eiθ. As in the previous sections, Y ǫ,a,θ = Y ǫ,a,θ(ω)
will be the random variable corresponding to the number of G-squares Q in-
side B for which 2Q is A-important for the configuration ω. Recall that (5.27)
gives an approximation to µA(B) using Y ǫ,a,θ, with a speed of convergence
that is independent of a, θ and also of the ball B.

In particular, for any ǫ > 0, if πǫ is any probability measure on the
parameters a, θ, we obtain the L2-limit

µA(B) = lim
ǫ→0

∫

a,θ

Y ǫ,a,θ

(2ǫ)−2α4(2ǫ, 1)
dπǫ(a, θ). (6.7)

In our setup we make the natural choice to define πǫ as the product mea-
sure of the normalized uniform measure on [−ǫ, ǫ]2 for a, times the normalized
uniform measure on [0, 2π] for θ. With this particular choice, it turns out



6. CONFORMAL COVARIANCE OF THE PIVOTAL MEASURE 253

that one can rewrite (6.7) in a nicer way. First let us define for any z ∈ B and
any ǫ, θ the random variable Xǫ

θ(z) to be the indicator function of the event
that the square of radius 2ǫ centered at z and rotated by eiθ is A-important.
We will show the following lemma:

Lemma 6.8. We have the L2-limit

µA(B) = lim
ǫ→0

∫

B×[0,2π)

Xǫ
θ(z)

α4(2ǫ, 1)
dA(z) dL(θ) ,

where dA is the (non-renormalized) area measure on B and dL is the nor-
malized Lebesgue measure on [0, 2π].

Proof. Recall that B = B(z0, δ). It is straightforward to check that, by the
definition of Y ǫ,a,θ, we have

∫

B(z0, δ − 4ǫ)
(0, 2π)

Xǫ
θ(z) dA(z) dL(θ) ≤

∫

[−ǫ, ǫ]2

(0, 2π)

Y ǫ,a,θ dA(a) dL(θ)

≤
∫

B(z0, δ)
(0, 2π)

Xǫ
θ(z) dA(z) dL(θ).

Since we have dπǫ(a, θ) = 1
4ǫ4

dA(a)dL(θ) with the above choice of the mea-
sure πǫ, the above inequalities can be rewritten as

∫

B(z0, δ − 4ǫ)
(0, 2π)

Xǫ
θ(z)

α4(2ǫ, 1)
dA(z) dL(θ) ≤

∫

[−ǫ, ǫ]2

(0, 2π)

Y ǫ,a,θ

(2ǫ)−2α4(2ǫ, 1)
dπǫ(a, θ)

≤
∫

B(z0, δ)
(0, 2π)

Xǫ
θ(z)

α4(2ǫ, 1)
dA(z) dL(θ).

So, is it enough to prove that the boundary effect

E :=

∫

B(z0, δ) \B(z0, δ − 4ǫ)
(0, 2π)

Xǫ
θ(z)

α4(2ǫ, 1)
dA(z) dL(θ)

is negligible when ǫ goes to zero. For each z ∈ ∆, the probability that Xǫ
θ(z)

equals 1 is of order O(1)α4(ǫ, 1) (where O(1) only depends on A). Since the
area of B(z0, δ) \B(z0, δ − 4ǫ) is of order δǫ, altogether we have

E
[
E
]
≤ O(1)δǫ,
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which completes the proof of Lemma 6.8.

For any z, θ and ǫ > 0, Bθ(z, ǫ) will denote the square of radius 2ǫ,
centered at z and rotated by eiθ; in particular Xǫ

θ(z) = 1Bθ(z,ǫ) is A-important.
Lemma 6.8 says that

µA(B) = lim
ǫ→0

1

α4(2ǫ, 1)

∫

B×[0,2π)

1Bθ(z,ǫ) is A-important dA(z) dL(θ).

Let us change variables in the following way:

{
z̃ = f(z)

θ̃ = θ + Im (log f ′(z))
or equivalently

{
z = g(z̃)

θ = θ̃ + Im (log g′(z̃)).

The Jacobian of the change of variables (z̃, θ̃) 7→ (z, θ), from R3 to R3, is
|g′(z̃)|2, one therefore has

∫

B×[0,2π)

1Bθ(z,ǫ) is A-important for ω dA(z) dL(θ) (6.8)

=

∫

f(B)×[0.2π)

1f(Bθ(z,ǫ)) is f(A)-important for ω̃ |g′(z̃)|2 dA(z̃) dL(θ̃) ,

since ω̃ is the continuum percolation satisfying ω̃ = f(ω).
Now, for any z ∈ B = B(z0, δ), by the definition of Hf , we have that

|f(z) − f(z0)| < Hf |z − z0| ≤ Hfδ; hence, if z̃0 := f(z0), then f(B) ⊂
B(z̃0, Hfδ). Now, by the definition of Lg, for any z̃ ∈ f(B), we have that
|g′(z̃)| ≤ |g′(z̃0)| + LgHfδ; here one needs to take δ small enough so that
B(z̃0, Hfδ) is still included in f(A). This gives, for any z̃ ∈ f(B),

|g′(z̃)|2 ≤ |g′(z̃0)|2 + 2LgHgHfδ + L2
gH

2
f δ

2

≤ |g′(z̃0)|2 + O(1)δ . (6.9)

Similarly, we have that |g′(z̃)|2 ≥ |g′(z̃0)|2 − O(1)δ.
Now notice that the 2ǫ-squares are very little distorted by f . Indeed, con-

sider some square Bθ(z, ǫ) (recall that it is the square of radius 2ǫ, centered
at z, rotated by θ); for any point u ∈ Bθ(z, ǫ) we have

|f(u)− f(z)− f ′(z)(z − u)| ≤ Lf
(4ǫ)2

2
,
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since |u− z| ≤
√

2 2ǫ ≤ 4ǫ. Therefore, if
{

ǫ̃1 = ǫ̃1(z) = |f ′(z)|ǫ− 4ǫ2Lf

ǫ̃2 = ǫ̃2(z) = |f ′(z)|ǫ + 4ǫ2Lf ,

then
Bθ̃(z̃, ǫ̃1) ⊂ f(Bθ(z, ǫ)) ⊂ Bθ̃(z̃, ǫ̃2). (6.10)

This and (6.9) imply the following upper bound (and the lower bound would
work in a similar way)
∫

f(B)×[0.2π)

1f(Bθ(z,ǫ)) is f(A)-important for ω̃ |g′(z̃)|2 dA(z̃) dL(θ̃)

≤
∫

f(B)×[0,2π)

1Bθ̃(z̃,ǫ̃2) is f(A)-important for ω̃ |g′(z̃)|2 dA(z̃) dL(θ̃)

≤
∫

f(B)×[0,2π)

X ǫ̃2
θ̃

(z̃)
(
|g′(z̃0)|2 + O(1)δ

)
dA(z̃) dL(θ̃).

Combined with (6.8), and using that there is a uniform lower bound on
|g′(z̃0)|2 , this leads to
∫

B×[0,2π)

Xǫ
θ(z)

α4(2ǫ, 1)
dA(z) dL(θ) (6.11)

≤ |g′(z̃0)|2
(
1 + O(1)δ

) α4(2ǫ̃2, 1)

α4(2ǫ, 1)

∫

f(B)×[0,2π)

X ǫ̃2
θ̃

(z̃)

α4(2ǫ̃2, 1)
dA(z̃) dL(θ̃).

Lemma 6.5 and the scale invariance of α4(·, ·) imply that

α4(2ǫ̃2, 1)

α4(2ǫ, 1)
=

α4

(
2|f ′(z)|ǫ + 8ǫ2Lf , 1

)

α4(2ǫ, 1)
ǫ→0−→ |f ′(z)|5/4.

Therefore, by letting the mesh ǫ (hence also the mesh ǫ̃2) go to 0 in (6.11),

and using Lemma 6.8 in both domains Ω, Ω̃, one ends up with

µA(B) ≤ |g′(z̃0)|2|f ′(z)|5/4
(
1 + O(δ)

)
µf(A)(f(B))

≤ |g′(z̃0)|3/4
(
1 + O(δ)

)
µf(A)(f(B)),

since we have a uniform control on how |f ′(z)| is close to |f ′(z0)| = |g′(z̃0)|−1

on the ball B(z, δ). This, together with the lower bound that is proved in
the same way, completes the proof of Lemma 6.7.

Note that we finally choose the threshold radius δ0 to be small enough so
that for any z ∈ ∆, the ball B(z, Hfδ0) is still inside f(A).
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7 Scaling limit of the counting measure on the

percolation cluters, interfaces and exterior

boundaries

The proof of the convergence of the counting measure on the set of pivotal
points (normalized by η2α4(ǫ, 1)−1) works in the exact same way in the fol-
lowing situation. Consider the exploration interface γη in H as well as its
natural parametrization (or length) that can be defined as a measure in the
following way

µη := η2α2(η, 1)−1
∑

e∈γη

δe ,

where we sum over the edges e (of the honeycomb lattice) which are along
the curve γη. Note the we normalize the measure with the two-arms proba-
bility rather than the four arms, which gives a normalization in η2α2(η, 1)−1 =
η7/4+o(1). This is natural since in average the interface γη∩D is O(1)η−2α2(η, 1) =
η−7/4+o(1) long. Using the same proof we obtain

Theorem 7.1. When η → 0, the random variable (γη, µη) converges in law
to some (γ, µ), where γ has the law of SLE6, and the Borel measure µ = µ(γ)
is a measurable function of the SLE6 γ.

The adaptations are straightforward: one uses a coupling argument with
two faces instead of four, and so on.

One can define this measure (or parametrization) in arbitrary simply
connected domains. Following section 6, one can prove that this natural
parametrization of the SLE6 has the following conformal covariance proper-
ties.

Theorem 7.2. Let f : Ω → Ω̃ be some conformal map. Let γ be some
chordal SLE6 in Ω and let µ denotes its parametrization measure; by con-
formal invariance γ̃ := f(γ) is also an SLE6 in Ω̃ with a parametrization
measure µ̃.

Let f∗(µ(γ)) be the pushforward measure of µ = µ(γ). Then for almost
all realization of γ, the Borel measures µ̃(γ̃) and f∗(µ(γ)) are absolutely con-
tinuous on the domain Ω̃, and their Radon-Nykodym derivative satisfies for
any z̃ = f(z) ∈ Ω̃,

dµ̃(γ̃)

df∗(µ(γ))
(z̃) = |f ′(z)|7/4 .
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As well, one can consider the scaling limit of the counting measure on,
say, the largest cluster in the disk, or on the clusters of diameter larger than
ǫ. This gives a limiting measure whose covariance cluster is in |f ′|91/48. The
same proof applies in this case as well, and is actually quite simpler since
one can use FKG.

Finally, we can consider the scaling limit of the counting measure on the
exterior boundaries of clusters. This gives at the limit a natural parametriza-
tion of the SLE8/3 curve. Here the proof needs some non trivial arrangements,
which will be detailed in our ongoing project. The reason being that the
three-arm event does not “disconnect” the information from one scale to the
other as well as in the case of the two and four arms events. Indeed, if one
detects a three arm event with two interfaces, on one side the two interfaces
will never touch each other, in particular we cannot use this notion of “faces”
which was convenient with the four arms case. Nevertheless it is feasible and
only requires some additional technicalities.
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