Lectures on noise sensitivity and percolation Christophe Garban and Jeffrey E. Steif

Clay summer school, Buzios 2010

Boolean functions

Definition

A Boolean function is a function

$$f: \{-1,1\}^n \to \{0,1\} \text{ OR } \{-1,1\}$$

Boolean functions

Definition

A Boolean function is a function

$$f: \{-1,1\}^n \to \{0,1\}$$
 OR $\{-1,1\}$

Example: Majority

$$f(x_1,\ldots,x_n) = \operatorname{sign}(\sum_{i=1}^n x_i)$$

A concrete situation : VOTING SCHEMES

Imagine one has *n* people labelled $1, \ldots, n$ which are deciding between candidates *A* and *B* according to a certain procedure or *voting scheme*. This procedure can be represented by a Boolean function

$$f:\{-1,1\}^n\to\{0,1\}$$

A concrete situation : VOTING SCHEMES

Imagine one has *n* people labelled $1, \ldots, n$ which are deciding between candidates *A* and *B* according to a certain procedure or *voting scheme*. This procedure can be represented by a Boolean function

$$f: \{-1,1\}^n \to \{0,1\}$$

For instance, you may think of

$$\begin{cases} A = AI \text{ Gore} \\ B = Bush \\ n \approx 10^8 \end{cases}$$

Noise stability

Suppose the election is "well-balanced" between A and B. One may thus consider the actual configuration of votes as a **random**

$$\omega = (x_1, \ldots, x_n) \in \{-1, 1\}^n$$
,

sampled according to the **uniform measure**. The outcome of the election should be $f(\omega)$.

Noise stability

Suppose the election is "well-balanced" between A and B. One may thus consider the actual configuration of votes as a **random**

$$\omega = (x_1,\ldots,x_n) \in \{-1,1\}^n,$$

sampled according to the **uniform measure**. The outcome of the election should be $f(\omega)$.

In fact due to inevitable errors in the recording of the votes, the outcome is $f(\omega^{\epsilon})$ instead. Here ω^{ϵ} is a "slight **perturbation**" of ω .

Informal definition Noise stability corresponds to

 $\mathbb{P}[f(\omega) \neq f(\omega^{\epsilon})]$ being "small".

Case of the majority function

If $f(\omega) = \operatorname{sign}(\sum x_i)$,

Case of the majority function

If $f(\omega) = \operatorname{sign}(\sum x_i)$,

Percolation

Sub-critical $(p < p_c)$

Percolation

Sub-critical $(p < p_c)$

Super-critical $(p > p_c)$

Percolation

Sub-critical $(p < p_c)$

Critical (p_c)

Super-critical $(p > p_c)$

Question

How does critical percolation "react" to perturbations ?

 ω :

 $\omega \to \omega^{\epsilon}$:

Large clusters are very sensitive to "noise"

Large clusters are very sensitive to "noise"

 $a \cdot n$

Let $f_n : \{-1, 1\}^{O(1)n^2} \rightarrow \{0, 1\}$ be the Boolean function defined as follows

Let
$$f_n: \{-1,1\}^{O(1)n^2} \rightarrow \{0,1\}$$

be the Boolean function
defined as follows

$$f_n(\omega) := \left\{ egin{array}{cc} 1 & ext{ if there is a left-right crossing} \end{array}
ight.$$

Let $f_n : \{-1, 1\}^{O(1)n^2} \rightarrow \{0, 1\}$ be the Boolean function defined as follows

$$a \cdot n$$

$$f_n(\omega) := \begin{cases} 1 & \text{if there is a left-right crossing} \\ 0 & \text{else} \end{cases}$$

Let
$$f_n : \{-1, 1\}^{O(1)n^2} \rightarrow \{0, 1\}$$

be the Boolean function
defined as follows

$$a \cdot n$$

$$f_n(\omega) := \begin{cases} 1 & \text{if there is a left-right crossing} \\ 0 & \text{else} \end{cases}$$

Informal definition

Noise sensitivity corresponds to $f_n(\omega)$ and $f_n(\omega^{\epsilon})$ being very little correlated (i.e. $\operatorname{Cov}(f_n(\omega), f_n(\omega^{\epsilon}))$ being very small).

Applications to dynamical percolation

Informal definition

This is a very simple (stationary) dynamics on percolation configurations.

Applications to dynamical percolation

Informal definition

This is a very simple (stationary) dynamics on percolation configurations. Each hexagon (or edge) switches color at the times of a Poisson Point Process.

How is it related to Noise Sensitivity ?

How is it related to Noise Sensitivity ?

Applications to Sub-Gaussian fluctuations

Informal definition (First Passage Percolation)

Let 0 < a < b. Define the random metric on the graph \mathbb{Z}^d as follows: for each edge $e \in \mathbb{E}^d$, fix its length τ_e to be a with probability 1/2 and b with probability 1/2.

Applications to Sub-Gaussian fluctuations

Informal definition (First Passage Percolation)

Let 0 < a < b. Define the random metric on the graph \mathbb{Z}^d as follows: for each edge $e \in \mathbb{E}^d$, fix its length τ_e to be a with probability 1/2 and b with probability 1/2.

It is well-known that the random ball

$$B_{\omega}(R) := \{x \in \mathbb{Z}^d, \operatorname{dist}_{\omega}(0, x) \leq R\}$$

has an asymptotic shape.

Applications to Sub-Gaussian fluctuations

Informal definition (First Passage Percolation)

Let 0 < a < b. Define the random metric on the graph \mathbb{Z}^d as follows: for each edge $e \in \mathbb{E}^d$, fix its length τ_e to be a with probability 1/2 and b with probability 1/2.

It is well-known that the random ball

$$B_{\omega}(R) := \{x \in \mathbb{Z}^d, \operatorname{dist}_{\omega}(0, x) \leq R\}$$

has an asymptotic shape.

Question

What are the fluctuations around this asymptotic shape ?

• Some concepts which arised in computer science: **influence** of a variable, etc

- Some concepts which arised in computer science: **influence** of a variable, etc
- Discrete Fourier analysis

- Some concepts which arised in computer science: **influence** of a variable, etc
- Discrete Fourier analysis

(In the same way as a function $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}$ can be decomposed into Fourier series, we will see that a Boolean function $f : \{-1,1\}^n \to \{0,1\}$ can be naturally decomposed into

$$f=\sum_{S}\hat{f}(S)\chi_{S}$$

- Some concepts which arised in computer science: **influence** of a variable, etc
- Discrete Fourier analysis

In the same way as a function $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}$ can be decomposed into Fourier series, we will see that a Boolean function $f : \{-1,1\}^n \to \{0,1\}$ can be naturally decomposed into

$$f=\sum_{S}\hat{f}(S)\chi_{S}$$

Fact

f being noise sensitive will correspond to f being of "High frequency".

- Some concepts which arised in computer science: **influence** of a variable, etc
- Discrete Fourier analysis

•

- Some concepts which arised in computer science: **influence** of a variable, etc
- Discrete Fourier analysis
- Hypercontractivity

- Some concepts which arised in computer science: **influence** of a variable, etc
- Discrete Fourier analysis
- Hypercontractivity
- Randomized algorithms

- Some concepts which arised in computer science: **influence** of a variable, etc
- Discrete Fourier analysis
- Hypercontractivity
- Randomized algorithms
- Viewing the "frequencies of percolation" as **random fractals** of the plane.