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Boolean functions

Definition
A Boolean function is a function

f : {−1, 1}n → {0, 1} OR {−1, 1}

Example: Majority

f (x1, . . . , xn) = sign(
n∑

i=1

xi )
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A concrete situation : VOTING SCHEMES

Imagine one has n people labelled 1, . . . , n which are deciding between
candidates A and B according to a certain procedure or voting scheme.
This procedure can be represented by a Boolean function

f : {−1, 1}n → {0, 1}

For instance, you may think of
A = Al Gore
B = Bush
n ≈ 108
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Noise stability

Suppose the election is “well-balanced” between A and B . One may thus
consider the actual configuration of votes as a random

ω = (x1, . . . , xn) ∈ {−1, 1}n ,

sampled according to the uniform measure. The outcome of the election
should be f (ω).

In fact due to inevitable errors in the recording of the votes, the outcome is
f (ωε) instead. Here ωε is a “slight perturbation” of ω.

Informal definition
Noise stability corresponds to

P
[
f (ω) 6= f (ωε)

]
being “small” .
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Percolation

Sub-critical (p < pc) critique (pc) Super-critical (p > pc)

δZ2
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Question
How does critical percolation “react” to perturbations ?
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Large clusters are very sensitive to “noise”
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Large scale properties are encoded by Boolean functions of
the ‘inputs’

b · n

a · n

Let fn : {−1, 1}O(1)n2 → {0, 1}
be the Boolean function
defined as follows

fn(ω) :=

{
1 if there is a left-right crossing
0 else

Informal definition
Noise sensitivity corresponds to fn(ω) and fn(ωε) being very little correlated
(i.e. Cov(fn(ω), fn(ωε)) being very small).
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Applications to dynamical percolation

Informal definition
This is a very simple (stationary) dynamics on percolation configurations.

Each hexagon (or edge) switches color at the times of a Poisson Point
Process.
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Applications to Sub-Gaussian fluctuations

Informal definition (First Passage Percolation)

Let 0 < a < b. Define the random metric on the graph Zd as follows: for
each edge e ∈ Ed , fix its length τe to be a with probability 1/2 and b with
probability 1/2.

It is well-known that the random ball

Bω(R) := {x ∈ Zd , dist
ω

(0, x) ≤ R}

has an asymptotic shape.

Question
What are the fluctuations around this
asymptotic shape ?
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What will be our main tools ?

• Some concepts which arised in computer science: influence of a
variable, etc

• Discrete Fourier analysis



In the same way as a function f : R/Z → R can
be decomposed into Fourier series, we will see that
a Boolean function f : {−1, 1}n → {0, 1} can be
naturally decomposed into

f =
∑
S

f̂ (S)χS


Fact
f being noise sensitive will correspond to f being of “High frequency”.

• Hypercontractivity
• Randomized algorithms
• Viewing the “frequencies of percolation” as random fractals of the
plane.
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