Near-critical Ising model

Christophe Garban ENS Lyon and CNRS

8th World Congress in Probability and Statistics

Istanbul, July 2012

C. Garban (ENS Lyon and CNRS)

Near-critical Ising model

Plan

1 Near-critical behavior, case of percolation

Notion of correlation length L(p)

Plan

1 Near-critical behavior, case of percolation

- Notion of correlation length L(p)
- 2 Near-critical Ising model as the temperature varies
 - ► Joint work with H. Duminil-Copin and Gábor Pete.

Plan

- 1 Near-critical behavior, case of percolation
 - Notion of correlation length L(p)
- 2 Near-critical Ising model as the temperature varies
 - ► Joint work with H. Duminil-Copin and Gábor Pete.
- 3 Near-critical Ising model as the external magnetic field varies
 - ► Joint work with F. Camia and C. Newman.

- percolation
- FK percolation
- ► Ising model etc ...

- percolation
- FK percolation
- Ising model etc ...

- percolation
- FK percolation
- Ising model etc ...

- percolation
- FK percolation
- Ising model etc ...

Consider your favorite statistical physics model, for example:

- percolation
- FK percolation
- ► Ising model etc ...

Sub-critical

- percolation
- FK percolation
- ► Ising model etc ...

$$T = T_c$$
 and $h = 0$

$$T = T_c$$
 and $h > 0$

Consider your favorite statistical physics model, for example:

percolation

Sub-critical

- FK percolation
- ► Ising model etc ...

$$T = T_c$$
 and $h = 0$

 $T = T_c$ and h > 0

What happens if $T \approx T_c$ or $h \approx 0$??

$$p = p_c + \delta p$$

$$p = p_c + \delta p$$

$$p = p_c + \delta p$$

$$L(p) = \left|\frac{1}{p - p_c}\right|^{\nu + o(1)}$$

$$p = p_c + \delta p$$

$$L(p) = \left|\frac{1}{p - p_c}\right|^{\nu + o(1)}$$

Example (critical percolation):

Theorem (Smirnov-Werner 2001):

$$L(p) = \left|\frac{1}{p - p_c}\right|^{4/3 + o(1)}$$

Percolation:

$$P_p(\omega) = p^o \, (1-p)^c$$

 $o = o(\omega) = ext{Nb} ext{ of open ed}$
 $c = c(\omega) = ext{Nb} ext{ of closed ed}$

FK Percolation (or random cluster model)

Percolation:

$$P_p(\omega) = p^o \, (1-p)^c$$

 $_{o\,=\,o(\omega)\,=\,$ Nb of open ed
 $_{c\,=\,c(\omega)\,=\,}$ Nb of closed ed

FK Percolation (or random cluster model)

Percolation:

$$P_p(\omega) = p^o \, (1-p)^c$$

 $o = o(\omega) = \operatorname{Nb}$ of open ed

FK Percolation (or random cluster model)

Fix a parameter $q \ge 1$

Percolation:

$$P_p(\omega) = p^o \, (1-p)^c$$

 $_{o\,=\,o(\omega)\,=\,$ Nb of open ed
 $_{c\,=\,c(\omega)\,=\,}$ Nb of closed ed

FK Percolation (or random cluster model) Fix a parameter $q \ge 1$ $P_{q,p}(\omega) \sim p^o(1-p)^c \ q^{\sharp \text{clusters}}$

Percolation:

$$P_p(\omega) = p^o \, (1-p)^c$$

 $o = o(\omega) = ext{Nb} ext{ of open ed}$
 $c = c(\omega) = ext{Nb} ext{ of closed ed}$

FK Percolation (or random cluster model)

Fix a parameter $q \geq 1$ $P_{q,p}(\omega) \sim p^o (1-p)^c \; q^{\sharp \text{clusters}}$

Theorem (Kesten 1980)

Percolation:

$$P_p(\omega) = p^o \, (1-p)^c$$

 $_{o\,=\,o(\omega)\,=\, ext{Nb} ext{ of open ed}}$
 $_{c\,=\,c(\omega)\,=\, ext{Nb} ext{ of closed ed}}$

FK Percolation (or random cluster model)

Fix a parameter $q \geq 1$ $P_{q,p}(\omega) \sim p^o (1-p)^c \; q^{\sharp \text{clusters}}$

Theorem (Kesten 1980) $p_c(\mathbb{Z}^2) = \frac{1}{2}$

Theorem (Beffara, Duminil-Copin 2010)
$$p_c(q) = rac{\sqrt{q}}{1+\sqrt{q}}$$

Notion of correlation length (precise definition)

Definition

Fix $\rho > 0$. For any $n \ge 0$, let R_n be the rectangle $[0, \rho n] \times [0, n]$. If $p > p_c$, then define for all $\epsilon > 0$ and all "boundary conditions" ξ around R_n ,

$$\mathcal{L}^{\xi}_{\rho,\epsilon}(p) := \inf_{n>0} \left\{ \mathbb{P}^{\xi}_{p}(\text{there is a left-right crossing in } R_{n}) > 1 - \epsilon \right\}$$

This suggests $L(p) \approx |p - p_c|^{-4/3}$

Sharp threshold

To analyze the behavior of the correlation length, it is useful to rely on Russo's formula: if $\phi_n(p) := \mathbb{P}_p($ there is a left-right crossing in $R_n)$, then

$$\begin{split} \frac{d}{dp}\phi_n(p) &= \mathbb{E}_p\big(\text{ Number of pivotal points in } \omega_p \big) \\ &= \sum_{x \in R_n} \mathbb{P}_p(x \text{ is a pivotal point } \big) \end{split}$$

This point of view also leads to the identity

 $|\boldsymbol{p}-\boldsymbol{p}_c| L(\boldsymbol{p})^2 \alpha_4(L(\boldsymbol{p})) \asymp 1$

What about the correlation length for FK-Ising percolation ?

What about the correlation length for FK-Ising percolation ?

In a work in progress with H. Duminil-Copin, we establish that the number of pivotal points for FK percolation (q = 2) in a square Λ_L of diameter L is of order:

 $I^{13/24}$

This suggests that L(p) should scale like

$$L(p) \approx \left| \frac{1}{p - p_c(2)} \right|^{24/13}.$$

What about the correlation length for FK-Ising percolation ?

In a work in progress with H. Duminil-Copin, we establish that the number of pivotal points for FK percolation (q = 2) in a square Λ_L of diameter L is of order:

1 13/24

This suggests that L(p) should scale like

$$L(p) \approx \left| \frac{1}{p - p_c(2)} \right|^{24/13}.$$

But this does not match with related results known since Onsager which suggest that L(p) should instead scale like $\left|\frac{1}{p-p_c}\right| \ll \left|\frac{1}{p-p_c}\right|^{24/13}$!!

So what is wrong here !?

C. Garban (ENS Lyon and CNRS)

Monotone couplings of FK percolation, q = 2

Grimmett constructed in 1995 a somewhat explicit **monotone coupling** of FK percolation configurations $(\omega_p)_{p \in [0,1]}$. This monotone coupling differs in several essential ways from the standard monotone coupling (q = 1):

Monotone couplings of FK percolation, q = 2

Grimmett constructed in 1995 a somewhat explicit **monotone coupling** of FK percolation configurations $(\omega_p)_{p \in [0,1]}$. This monotone coupling differs in several essential ways from the standard monotone coupling (q = 1):

1 The edge-intensity has a singularity near p_c .
Grimmett constructed in 1995 a somewhat explicit **monotone coupling** of FK percolation configurations $(\omega_p)_{p \in [0,1]}$. This monotone coupling differs in several essential ways from the standard monotone coupling (q = 1):

1 The edge-intensity has a singularity near p_c . Yet, this is only a logarithmic singularity, namely $\frac{d}{dp}\mathbb{P}_p(e \text{ is open }) \approx \log |p - p_c|^{-1}$.

Grimmett constructed in 1995 a somewhat explicit **monotone coupling** of FK percolation configurations $(\omega_p)_{p \in [0,1]}$. This monotone coupling differs in several essential ways from the standard monotone coupling (q = 1):

- 1 The edge-intensity has a singularity near p_c . Yet, this is only a logarithmic singularity, namely $\frac{d}{dp}\mathbb{P}_p(e \text{ is open }) \approx \log |p - p_c|^{-1}$.
- 2 As *p* increases, one can prove that "**clouds**" of several edges appear simultaneously !

Grimmett constructed in 1995 a somewhat explicit **monotone coupling** of FK percolation configurations $(\omega_p)_{p \in [0,1]}$. This monotone coupling differs in several essential ways from the standard monotone coupling (q = 1):

- **1** The **edge-intensity** has a singularity near p_c . Yet, this is only a logarithmic singularity, namely $\frac{d}{dp}\mathbb{P}_p(e \text{ is open }) \simeq \log |p - p_c|^{-1}$.
- 2 As *p* increases, one can prove that "**clouds**" of several edges appear simultaneously !
- **3** The location of these clouds of edges highly depend on the current configuration ω_p (\rightarrow hint of an interesting *self-organized mechanism*).

Grimmett constructed in 1995 a somewhat explicit **monotone coupling** of FK percolation configurations $(\omega_p)_{p \in [0,1]}$. This monotone coupling differs in several essential ways from the standard monotone coupling (q = 1):

- 1 The edge-intensity has a singularity near p_c . Yet, this is only a logarithmic singularity, namely $\frac{d}{dp}\mathbb{P}_p(e \text{ is open }) \simeq \log |p - p_c|^{-1}$.
- 2 As *p* increases, one can prove that "**clouds**" of several edges appear simultaneously !
- **3** The location of these clouds of edges highly depend on the current configuration ω_p (\rightarrow hint of an interesting *self-organized mechanism*).

Most remains unknown regarding the structure of these random clouds.

What we can prove

Theorem (Duminil-Copin, G., Pete, 2011)

Fix q = 2. For every $\epsilon, \rho > 0$, there is a constant $c = c(\epsilon, \rho) > 0$ s.t.

$$c \, rac{1}{|
ho-
ho_c|} \leq L^{\xi}_{
ho,\epsilon}(
ho) \leq c^{-1} rac{1}{|
ho-
ho_c|} \, \sqrt{\log rac{1}{|
ho-
ho_c|}}$$

for all $p \neq p_c$, whatever the choice of the boundary condition ξ is.

"Near-harmonicity" of Smirnov's observable

Theorem (Smirnov, exact harmonicity at criticality)

For q = 2 and $p = p_c(2) = \sqrt{2}/(1 + \sqrt{2})$, once restricted to a proper sub-lattice (NE pointing edges), the observable F_{p_c} is harmonic:

$$\Delta F_{p_c}(e_X) = 0$$

"Near-harmonicity" of Smirnov's observable

Theorem (Smirnov, exact harmonicity at criticality)

For q = 2 and $p = p_c(2) = \sqrt{2}/(1 + \sqrt{2})$, once restricted to a proper sub-lattice (NE pointing edges), the observable F_{p_c} is harmonic:

$$\Delta F_{p_c}(e_X) = 0$$

Theorem (Beffara, Duminil-Copin)

When $p < p_c$, the observable F_p is now massive harmonic: namely

$$\Delta F_p(e_X) = m(p) F_p(e_X),$$

where the mass $m(p) \asymp |p - p_c|^2$.

Fix $\rho, \epsilon > 0$. For any $p > p_c$, we want to find a scale *n* so that the rectangle R_n is crossed horizontally with high probability $(> 1 - \epsilon)$.

Fix $\rho, \epsilon > 0$. For any $p > p_c$, we want to find a scale *n* so that the rectangle R_n is crossed horizontally with high probability $(> 1 - \epsilon)$.

We want this probability under P_p to be $> 1 - \epsilon$

Fix $\rho, \epsilon > 0$. For any $p > p_c$, we want to find a scale *n* so that the rectangle R_n is crossed horizontally with high probability $(> 1 - \epsilon)$.

$$R_n$$
 : $p^* < p_c < p$ and $|p - p_c| \asymp |p^* - p_c|$

We want this probability under P_p to be $> 1 - \epsilon$

By duality, this is the same as having a VERTICAL crossing for the dual FK configuration (under P_{p^*}) with probability $< \epsilon$

Fix $\rho, \epsilon > 0$. For any $p > p_c$, we want to find a scale *n* so that the rectangle R_n is crossed horizontally with high probability $(> 1 - \epsilon)$.

$$R_n$$
 : $p^* < p_c < p$ and $|p - p_c| \asymp |p^* - p_c|$

We want this probability under P_p to be $> 1 - \epsilon$

By duality, this is the same as having a VERTICAL crossing for the dual FK configuration (under P_{p^*}) with probability $< \epsilon$

Fix $\rho, \epsilon > 0$. For any $p > p_c$, we want to find a scale *n* so that the rectangle R_n is crossed horizontally with high probability $(> 1 - \epsilon)$.

$$R_n$$
 : $p^* < p_c < p$ and $|p - p_c| symp |p^* - p_c|$

We want this probability under P_p to be $> 1 - \epsilon$

By duality, this is the same as having a VERTICAL crossing for the dual FK configuration (under P_{p^*}) with probability $< \epsilon$

Fix $\rho, \epsilon > 0$. For any $p > p_c$, we want to find a scale *n* so that the rectangle R_n is crossed horizontally with high probability $(> 1 - \epsilon)$.

 $p^* < p_c < p$ and $|p - p_c| \asymp |p^* - p_c|$

Fix $\rho, \epsilon > 0$. For any $p > p_c$, we want to find a scale *n* so that the rectangle R_n is crossed horizontally with high probability $(> 1 - \epsilon)$.

$$p^* < p_c < p$$
 and $|p - p_c| symp |p^* - p_c|$

Recall $m(p^*) \asymp |p^* - p_c|^2 \asymp |p - p_c|^2$

If scale $n \gg |p - p_c|^{-1}$, then the RW does more than $|p - p_c|^{-2}$ steps and thus, in average its mass goes to zero.

Fix $\rho, \epsilon > 0$. For any $p > p_c$, we want to find scales n so that the rectangle R_n is NOT crossed horizontally with high probability (i.e. with prob $< 1 - \epsilon$).

 R_n :

Fix $\rho, \epsilon > 0$. For any $p > p_c$, we want to find scales *n* so that the rectangle R_n is NOT crossed horizontally with high probability (i.e. with prob $< 1 - \epsilon$).

 R_n :

We want this probability under P_p to be $< 1 - \epsilon$

Fix $\rho, \epsilon > 0$. For any $p > p_c$, we want to find scales *n* so that the rectangle R_n is NOT crossed horizontally with high probability (i.e. with prob $< 1 - \epsilon$).

We want this probability under P_p to be $< 1 - \epsilon$

By duality, this is the same as having a VERTICAL crossing for the dual FK configuration (under P_{p^*}) with probability $> \epsilon$

Fix $\rho, \epsilon > 0$. For any $p > p_c$, we want to find scales *n* so that the rectangle R_n is NOT crossed horizontally with high probability (i.e. with prob $< 1 - \epsilon$).

We want this probability under P_p to be $< 1 - \epsilon$

By duality, this is the same as having a VERTICAL crossing for the dual FK configuration (under P_{p^*}) with probability $> \epsilon$

Fix $\rho, \epsilon > 0$. For any $p > p_c$, we want to find scales *n* so that the rectangle R_n is NOT crossed horizontally with high probability (i.e. with prob $< 1 - \epsilon$).

 $p^* < p_c < p \text{ and } |p - p_c| \asymp |p^* - p_c|$

Fix $\rho, \epsilon > 0$. For any $p > p_c$, we want to find scales *n* so that the rectangle R_n is NOT crossed horizontally with high probability (i.e. with prob $< 1 - \epsilon$).

 $p^* < p_c < p$ and $|p - p_c| \asymp |p^* - p_c|$

Fix $\rho, \epsilon > 0$. For any $p > p_c$, we want to find scales *n* so that the rectangle R_n is NOT crossed horizontally with high probability (i.e. with prob $< 1 - \epsilon$).

 $p^* < p_c < p$ and $|p - p_c| \asymp |p^* - p_c|$

Ising model

To each configuration $\sigma \in \{-1,1\}^{N^2}$, one associates the Hamiltonian

 $H_h(\sigma) := -\sum_{i \sim j} \sigma_i \sigma_j - h \sum \sigma_i$

Ising model

To each configuration $\sigma \in \{-1,1\}^{N^2}$, one associates the Hamiltonian

$$H_h(\sigma) := -\sum_{i\sim j} \sigma_i \sigma_j - h \sum \sigma_i$$

And we define:

 $P_{\beta,h}(\sigma) \propto e^{-\beta H_h(\sigma)}$

Ν	++ -++-++ +-+-+ -++-++ -++-++ ++-+ ++-++ ++-+ ++-+ ++-++ +++-+ +++-+
---	---

N

Ising model

To each configuration $\sigma \in \{-1,1\}^{N^2}$, one associates the Hamiltonian

$$H_h(\sigma) := -\sum_{i \sim j} \sigma_i \sigma_j - h \sum \sigma_i$$

And we define:

 $P_{\beta,h}(\sigma) \propto e^{-\beta H_h(\sigma)}$

The Ising model is intimately related with FK percolation (q = 2) via the following identity: If h = 0,

$$E_{eta}(\sigma_x\sigma_y) = P_{p,q=2}[x\leftrightarrow y]$$
 with $1-p = e^{-2eta}$

C. Garban (ENS Lyon and CNRS)

Near-critical Ising model

Classical near-critical results

Theorem (Kesten - Smirnov/Werner)

For site percolation on the triangular lattice,

 $heta(p) := \mathbb{P}ig[0 \leftrightarrow \infty ig] = ig| p - p_c ig|^{5/36 + o(1)}$ as $p \searrow p_c$

Classical near-critical results

Theorem (Kesten - Smirnov/Werner)

For site percolation on the triangular lattice,

$$heta(p) := \mathbb{P}ig[0 \leftrightarrow \infty ig] = |p - p_c|^{5/36 + o(1)}$$
 as $p \searrow p_c$

Theorem (Onsager, 1944)

For Ising model on \mathbb{Z}^2 :

 $\langle \sigma_0
angle^+_eta st |eta - eta_c|^{1/8}$ as $eta \searrow eta_c$

C. Garban (ENS Lyon and CNRS)

Near-critical Ising model

Theorem (Camia, G., Newman)

Consider Ising model on \mathbb{Z}^2 at β_c with a positive external magnetic field h > 0, then

 $\langle \sigma_0 \rangle_{\beta_c,h} \asymp h^{\frac{1}{15}}$

Theorem (Camia, G., Newman)

Consider Ising model on \mathbb{Z}^2 at β_c with a positive external magnetic field h > 0, then

 $\langle \sigma_0 \rangle_{\beta_c,h} \asymp h^{rac{1}{15}}$

Rough idea of proof:

► Lower bound: prove that the correlation length L(h) ≈ h^{-8/15} and conclude using

$$\langle \sigma_0
angle_{eta_c,h} \gtrsim lpha_1^{\mathrm{FK}}(\mathcal{L}(h)) \asymp \mathcal{L}(h)^{-1/8} \asymp h^{1/15}$$

Theorem (Camia, G., Newman)

Consider Ising model on \mathbb{Z}^2 at β_c with a positive external magnetic field h > 0, then

 $\langle \sigma_0 \rangle_{\beta_c,h} \asymp h^{rac{1}{15}}$

Rough idea of proof:

► Lower bound: prove that the correlation length L(h) ≈ h^{-8/15} and conclude using

$$\langle \sigma_0
angle_{eta_c,h} \gtrsim lpha_1^{
m FK}(L(h)) \asymp L(h)^{-1/8} \asymp h^{1/15}$$

Upper bound:

Theorem (Camia, G., Newman)

Consider Ising model on \mathbb{Z}^2 at β_c with a positive external magnetic field h > 0, then

 $\langle \sigma_0 \rangle_{\beta_c,h} \asymp h^{rac{1}{15}}$

Rough idea of proof:

► Lower bound: prove that the correlation length L(h) ≈ h^{-8/15} and conclude using

$$\langle \sigma_0
angle_{eta_c,h} \gtrsim lpha_1^{\mathrm{FK}}(L(h)) \asymp L(h)^{-1/8} \asymp h^{1/15}$$

 Upper bound: rely on a kind of strong "convexity" property satisfied by the Ising model, namely the GHS inequality.
Theorem (**GHS** inequality, Griffiths, Hurst, Sherman, 1970) $Z_{\beta,h} := \sum_{\sigma} e^{-\beta H(\sigma) + h \sum \sigma_x} \text{ is such that}$ $\partial_h^3 (\log Z_{\beta,h}) \le 0$ Theorem (**GHS** inequality, Griffiths, Hurst, Sherman, 1970) $Z_{\beta,h} := \sum_{\sigma} e^{-\beta H(\sigma) + h \sum \sigma_x} \text{ is such that}$ $\partial_h^3 (\log Z_{\beta,h}) \le 0$

$$\partial_h^3 \left[\log(\sum e^{-\beta_c H + h \sum \sigma_x}) \right] \le 0$$

C. Garban (ENS Lyon and CNRS)

Near-critical Ising model

19 / 19

Theorem (**GHS** inequality, Griffiths, Hurst, Sherman, 1970) $Z_{\beta,h} := \sum_{\sigma} e^{-\beta H(\sigma) + h \sum \sigma_x} \text{ is such that}$ $\partial_h^3(\log Z_{\beta,h}) \leq 0$

$$\partial_{h}^{3} \left[\log\left(\sum e^{-\beta_{c}H + h \sum \sigma_{x}}\right) \right] \leq 0$$

$$\Leftrightarrow \quad \partial_{h}^{2} \left[\frac{\sum_{\sigma} (\sum \sigma_{x}) e^{-\beta_{c}H + h \sum \sigma_{x}}}{\sum_{\sigma} e^{-\beta_{c}H}} \right] \leq 0$$

C. Garban (ENS Lyon and CNRS)

Near-critical Ising model

19 / 19

Theorem (**GHS** inequality, Griffiths, Hurst, Sherman, 1970) $Z_{\beta,h} := \sum_{\sigma} e^{-\beta H(\sigma) + h \sum \sigma_x} \text{ is such that}$ $\partial_h^3(\log Z_{\beta,h}) \leq 0$

$$\begin{split} &\partial_{h}^{3} \big[\log(\sum e^{-\beta_{c}H + h \sum \sigma_{x}}) \big] \leq 0 \\ \Leftrightarrow & \partial_{h}^{2} \big[\frac{\sum_{\sigma} (\sum \sigma_{x}) e^{-\beta_{c}H + h \sum \sigma_{x}}}{\sum_{\sigma} e^{-\beta_{c}H}} \big] \leq 0 \\ \Leftrightarrow & \partial_{h}^{2} \big[\mathbb{E}_{\beta_{c},h} \big(\sum \sigma_{x} \big) \big] \leq 0 \end{split}$$

C. Garban (ENS Lyon and CNRS)

Near-critical Ising model

19 / 19