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Near criticality
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Notion of correlation length (informal)
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lation):
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Theorem (Smirnov-
Werner 2001):
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Notion of correlation length (precise definition)

Definition
Fix ρ > 0.
For any n ≥ 0, let Rn be the rectangle [0, ρn]× [0, n]. If p > pc , then
define for all ε > 0 and all “boundary conditions” ξ around Rn,

Lξρ,ε(p) := inf
n>0

{
P ξ

p
(
there is a left-right crossing in Rn

)
> 1− ε

}

C. Garban (ENS Lyon and CNRS) Near-critical Ising model 6 / 19



Estimating the correlation length, case of critical percolation
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Sharp threshold

To analyze the behavior of the correlation length, it is useful to rely on
Russo’s formula: if φn(p) := Pp

(
there is a left-right crossing in Rn

)
, then

d
dp
φn(p) = Ep

(
Number of pivotal points in ωp

)

=
∑

x∈Rn

Pp
(
x is a pivotal point

)

This point of view also leads to the identity

|p − pc | L(p)2α4(L(p)) � 1
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What about the correlation length for FK-Ising percolation ?

In a work in progress with H. Duminil-Copin, we establish that the number
of pivotal points for FK percolation (q = 2) in a square ΛL of diameter L is
of order:

L13/24

This suggests that L(p) should scale like

L(p) ≈ | 1
p − pc(2)

|24/13 .

But this does not match with related results known since Onsager which
suggest that L(p) should instead scale like | 1

p−pc
| � | 1

p−pc
|24/13 !!

So what is wrong here !?

C. Garban (ENS Lyon and CNRS) Near-critical Ising model 9 / 19



What about the correlation length for FK-Ising percolation ?

In a work in progress with H. Duminil-Copin, we establish that the number
of pivotal points for FK percolation (q = 2) in a square ΛL of diameter L is
of order:

L13/24

This suggests that L(p) should scale like

L(p) ≈ | 1
p − pc(2)

|24/13 .

But this does not match with related results known since Onsager which
suggest that L(p) should instead scale like | 1

p−pc
| � | 1

p−pc
|24/13 !!

So what is wrong here !?

C. Garban (ENS Lyon and CNRS) Near-critical Ising model 9 / 19



What about the correlation length for FK-Ising percolation ?

In a work in progress with H. Duminil-Copin, we establish that the number
of pivotal points for FK percolation (q = 2) in a square ΛL of diameter L is
of order:

L13/24

This suggests that L(p) should scale like

L(p) ≈ | 1
p − pc(2)

|24/13 .

But this does not match with related results known since Onsager which
suggest that L(p) should instead scale like | 1

p−pc
| � | 1

p−pc
|24/13 !!

So what is wrong here !?

C. Garban (ENS Lyon and CNRS) Near-critical Ising model 9 / 19



Monotone couplings of FK percolation, q = 2

Grimmett constructed in 1995 a somewhat explicit monotone coupling of
FK percolation configurations (ωp)p∈[0,1]. This monotone coupling differs
in several essential ways from the standard monotone coupling (q = 1):

1 The edge-intensity has a singularity near pc .
Yet, this is only a logarithmic singularity, namely
d
dpPp

(
e is open

)
� log |p − pc |−1.

2 As p increases, one can prove that “clouds” of several edges appear
simultaneously !

3 The location of these clouds of edges highly depend on the current
configuration ωp (→ hint of an interesting self-organized mechanism).

Most remains unknown regarding the structure of these random clouds.
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What we can prove

Theorem (Duminil-Copin, G., Pete, 2011)

Fix q = 2. For every ε, ρ > 0, there is a constant c = c(ε, ρ) > 0 s.t.

c
1

|p − pc |
≤ Lξρ,ε(p) ≤ c−1 1

|p − pc |

√
log

1
|p − pc |

for all p 6= pc , whatever the choice of the boundary condition ξ is.
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Techniques behind the proof: Smirnov’s observable
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“Near-harmonicity” of Smirnov’s observable

Theorem (Smirnov, exact harmonicity at criticality)

For q = 2 and p = pc(2) =
√
2/(1 +

√
2), once

restricted to a proper sub-lattice (NE pointing
edges), the observable Fpc is harmonic:

∆Fpc (eX ) = 0

X E

S

W

N

Theorem (Beffara, Duminil-Copin)

When p < pc , the observable Fp is now massive harmonic: namely

∆Fp(eX ) = m(p) Fp(eX ) ,

where the mass m(p) � |p − pc |2.
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Upper-bound on the correlation length
Fix ρ, ε > 0. For any p > pc , we want to find a scale n so that the
rectangle Rn is crossed horizontally with high probability (> 1− ε).

Rn :

ωp

Rn :

We want this probability under Pp to be > 1− ε

ωp

We want this probability under Pp to be > 1− ε
By duality, this is the same as having a VERTICAL crossing for the dual
FK configuration (under Pp∗) with probability < ε

ωp∗

Rn : p∗ < pc < p and |p− pc| � |p∗ − pc|

We want this probability under Pp to be > 1− ε
By duality, this is the same as having a VERTICAL crossing for the dual
FK configuration (under Pp∗) with probability < ε

ωp∗

Rn : p∗ < pc < p and |p− pc| � |p∗ − pc|

We want this probability under Pp to be > 1− ε
By duality, this is the same as having a VERTICAL crossing for the dual
FK configuration (under Pp∗) with probability < ε

ωp∗

Rn :

e

|Fp∗(e)|
∆Fp∗(e) = m(p∗)Fp∗(e)

p∗ < pc < p and |p− pc| � |p∗ − pc|

e

|Fp∗(e)|
∆Fp∗(e) = m(p∗)Fp∗(e)

Random Walk interpretation: at
each step in the bulk, the mass
of the particle is divided by 1+m

p∗ < pc < p and |p− pc| � |p∗ − pc|

e

|Fp∗(e)|
∆Fp∗(e) = m(p∗)Fp∗(e)

Random Walk interpretation: at
each step in the bulk, the mass
of the particle is divided by 1+m

Recall m(p∗) � |p∗ − pc|2 � |p− pc|2

n

If scale n � |p − pc|−1, then the RW does more than |p − pc|−2

steps and thus, in average its mass goes to zero.

p∗ < pc < p and |p− pc| � |p∗ − pc|
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Ising model

To each configuration σ ∈ {−1, 1}N2
, one

associates the Hamiltonian

Hh(σ) := −∑
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The Ising model is intimately related with FK percolation (q = 2) via the
following identity: If h = 0,

Eβ(σxσy) = Pp,q=2[x↔ y] with 1− p = e−2β
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Classical near-critical results

Theorem (Kesten - Smirnov/Werner)

For site percolation on the triangular lattice,

θ(p) := P
[
0↔∞

]
= |p − pc |5/36+o(1) as p ↘ pc

Theorem (Onsager, 1944)

For Ising model on Z2:

〈σ0〉+β � |β − βc |1/8 as β ↘ βc

C. Garban (ENS Lyon and CNRS) Near-critical Ising model 17 / 19



Classical near-critical results

Theorem (Kesten - Smirnov/Werner)

For site percolation on the triangular lattice,

θ(p) := P
[
0↔∞

]
= |p − pc |5/36+o(1) as p ↘ pc

Theorem (Onsager, 1944)

For Ising model on Z2:

〈σ0〉+β � |β − βc |1/8 as β ↘ βc

C. Garban (ENS Lyon and CNRS) Near-critical Ising model 17 / 19



Average magnetization under small external field

Theorem (Camia, G., Newman)

Consider Ising model on Z2 at βc with a positive external magnetic field
h > 0, then

〈σ0〉βc ,h � h
1
15

Rough idea of proof:
I Lower bound: prove that the correlation length L(h) � h−8/15 and

conclude using

〈σ0〉βc ,h & αFK
1 (L(h)) � L(h)−1/8 � h1/15

I Upper bound: rely on a kind of strong “convexity” property satisfied by
the Ising model, namely the GHS inequality.
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Theorem (GHS inequality, Griffiths, Hurst, Sherman, 1970)

Zβ,h :=
∑

σ e−βH(σ)+h
P
σx is such that

∂3
h
(
logZβ,h

)
≤ 0

∂3
h
[
log(

∑
e−βcH+h

P
σx )
]
≤ 0

⇔ ∂2
h
[∑

σ(
∑
σx)e−βcH+h

P
σx

∑
σ e−βcH

]
≤ 0

⇔ ∂2
h
[
Eβc ,h

(∑
σx
)]
≤ 0
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