Near-critical Ising model

Christophe Garban
ENS Lyon and CNRS

8th World Congress in Probability and Statistics

Istanbul, July 2012

Plan

1 Near-critical behavior, case of percolation

- Notion of correlation length $L(p)$

Plan

1 Near-critical behavior, case of percolation

- Notion of correlation length $L(p)$

2 Near-critical Ising model as the temperature varies

- Joint work with H. Duminil-Copin and Gábor Pete.

Plan

1 Near-critical behavior, case of percolation

- Notion of correlation length $L(p)$

2 Near-critical Ising model as the temperature varies

- Joint work with H. Duminil-Copin and Gábor Pete.

3 Near-critical Ising model as the external magnetic field varies

- Joint work with F. Camia and C. Newman.

Near criticality

Consider your favorite statistical physics model, for example:

- percolation
- FK percolation
- Ising model etc ...

Near criticality

Consider your favorite statistical physics model, for example:

- percolation
- FK percolation
- Ising model etc ...

Near criticality

Consider your favorite statistical physics model, for example:

- percolation
- FK percolation
- Ising model etc ...

$\begin{array}{ll}\text { Critical } & \begin{array}{l}p=p_{c} \\ T=T_{c}\end{array}\end{array}$

Near criticality

Consider your favorite statistical physics model, for example:

- percolation
- FK percolation
- Ising model etc ...

Super-critical $\begin{aligned} & p>p_{c} \\ & T<T_{c}\end{aligned}$

Near criticality

Consider your favorite statistical physics model, for example:

- percolation
- FK percolation
- Ising model etc ...

Sub-critical

Near criticality

Consider your favorite statistical physics model, for example:

- percolation
- FK percolation
- Ising model etc ...

Sub-critical

$$
T=T_{c} \text { and } h=0
$$

$T=T_{c}$ and $h>0$

Near criticality

Consider your favorite statistical physics model, for example:

- percolation
- FK percolation
- Ising model etc ...

Sub-critical

$$
T=T_{c} \text { and } h=0
$$

$T=T_{c}$ and $h>0$

What happens if $T \approx T_{c}$ or $h \approx 0$??

Notion of correlation length (informal)

$$
p=p_{c}+\delta p
$$

Notion of correlation length (informal)

$$
p=p_{c}+\delta p
$$

Notion of correlation length (informal)

$$
\begin{aligned}
& p=p_{c}+\delta p \\
& L(p)=\left|\frac{1}{p-p_{c}}\right|^{\nu+o(1)}
\end{aligned}
$$

Notion of correlation length (informal)

$$
\begin{aligned}
& p=p_{c}+\delta p \\
& L(p)=\left|\frac{1}{p-p_{c}}\right|^{\nu+o(1)}
\end{aligned}
$$

Example (critical percolation):

Theorem
(Smirnov-
Werner 2001):

$$
L(p)=\left|\frac{1}{p-p_{c}}\right|^{4 / 3+o(1)}
$$

The models we shall consider

Percolation:

$$
\begin{aligned}
P_{p}(\omega) & =p^{o}(1-p)^{c} \\
& o=o(\omega)=\mathrm{Nb} \text { of open ed } \\
& c=c(\omega)=\mathrm{Nb} \text { of closed ed }
\end{aligned}
$$

FK Percolation (or random cluster model)

The models we shall consider

Percolation:

$$
\begin{aligned}
P_{p}(\omega) & =p^{o}(1-p)^{c} \\
& o=o(\omega)=\mathrm{Nb} \text { of open ed } \\
& c=c(\omega)=\mathrm{Nb} \text { of closed ed }
\end{aligned}
$$

FK Percolation (or random cluster model)

The models we shall consider

Percolation:

$$
\begin{aligned}
P_{p}(\omega) & =p^{o}(1-p)^{c} \\
& o=o(\omega)=\mathrm{Nb} \text { of open ed } \\
& c=c(\omega)=\mathrm{Nb} \text { of closed ed }
\end{aligned}
$$

FK Percolation (or random cluster model)

Fix a parameter $q \geq 1$

The models we shall consider

Percolation:

$$
\begin{aligned}
P_{p}(\omega) & =p^{o}(1-p)^{c} \\
& o=o(\omega)=\mathrm{Nb} \text { of open ed } \\
& c=c(\omega)=\mathrm{Nb} \text { of closed ed }
\end{aligned}
$$

FK Percolation (or random cluster model)

Fix a parameter $q \geq 1$

$$
P_{q, p}(\omega) \sim p^{o}(1-p)^{c} q^{\sharp c l u s t e r s}
$$

The models we shall consider

Percolation:

$$
\begin{aligned}
P_{p}(\omega) & =p^{o}(1-p)^{c} \\
& o=o(\omega)=\mathrm{Nb} \text { of open ed } \\
& c=c(\omega)=\mathrm{Nb} \text { of closed ed }
\end{aligned}
$$

FK Percolation (or random cluster model)

Fix a parameter $q \geq 1$

$$
P_{q, p}(\omega) \sim p^{o}(1-p)^{c} q^{\sharp c l u s t e r s}
$$

The models we shall consider

Percolation:

$$
\begin{aligned}
P_{p}(\omega) & =p^{o}(1-p)^{c} \\
& o=o(\omega)=\mathrm{Nb} \text { of open ed } \\
& c=c(\omega)=\mathrm{Nb} \text { of closed ed }
\end{aligned}
$$

FK Percolation (or random cluster model)

Fix a parameter $q \geq 1$
$P_{q, p}(\omega) \sim p^{o}(1-p)^{c} q^{\sharp c l u s t e r s}$

Theorem (Kesten 1980)

$$
p_{c}\left(\mathbb{Z}^{2}\right)=\frac{1}{2}
$$

Theorem (Beffara, Duminil-Copin 2010)

$$
p_{c}(q)=\frac{\sqrt{q}}{1+\sqrt{q}}
$$

Notion of correlation length (precise definition)

Definition

Fix $\rho>0$.
For any $n \geq 0$, let R_{n} be the rectangle $[0, \rho n] \times[0, n]$. If $p>p_{c}$, then define for all $\epsilon>0$ and all "boundary conditions" ξ around R_{n},

$$
L_{\rho, \epsilon}^{\xi}(p):=\inf _{n>0}\left\{\mathbb{P}_{p}^{\xi}\left(\text { there is a left-right crossing in } R_{n}\right)>1-\epsilon\right\}
$$

Estimating the correlation length, case of critical percolation

In critical percolation:
$\#$ (Pivotal points)
$\approx n^{2} \alpha_{4}(n) \approx n^{3 / 4}$

Estimating the correlation length, case of critical percolation

$$
\begin{aligned}
& p=p_{c}+\delta p \\
& \omega_{p_{c}+\delta p} \gg \omega_{p_{c}}
\end{aligned}
$$

Pivotal points

One notices a change in the probability of left-right crossing when:

$$
\left|p-p_{c}\right| n^{3 / 4} \approx 1
$$

Estimating the correlation length, case of critical percolation

$$
\begin{aligned}
& p=p_{c}+\delta p \\
& \omega_{p_{c}+\delta p} \gg \omega_{p_{c}}
\end{aligned}
$$

ρn

Pivotal points

In critical percolation:
$\#($ Pivotal points)
$\approx n^{2} \alpha_{4}(n) \approx n^{3 / 4}$
One notices a change in the probability of left-right crossing when:
$\left|p-p_{c}\right| n^{3 / 4} \approx 1$
This suggests $L(p) \approx\left|p-p_{c}\right|^{-4 / 3}$

Estimating the correlation length, case of critical percolation

One notices a change in the probability of left-right crossing when:
$\left|p-p_{c}\right| n^{3 / 4} \approx 1$
This suggests $L(p) \approx\left|p-p_{c}\right|^{-4 / 3}$

Sharp threshold

To analyze the behavior of the correlation length, it is useful to rely on Russo's formula: if $\phi_{n}(p):=\mathbb{P}_{p}$ (there is a left-right crossing in R_{n}), then

$$
\begin{aligned}
\frac{d}{d p} \phi_{n}(p) & =\mathbb{E}_{p}\left(\text { Number of pivotal points in } \omega_{p}\right) \\
& =\sum_{x \in R_{n}} \mathbb{P}_{p}(x \text { is a pivotal point })
\end{aligned}
$$

This point of view also leads to the identity

$$
\left|p-p_{c}\right| L(p)^{2} \alpha_{4}(L(p)) \asymp 1
$$

What about the correlation length for FK-Ising percolation?

What about the correlation length for FK-Ising percolation ?

In a work in progress with H . Duminil-Copin, we establish that the number of pivotal points for FK percolation $(q=2)$ in a square Λ_{L} of diameter L is of order:

This suggests that $L(p)$ should scale like

$$
L(p) \approx\left|\frac{1}{p-p_{c}(2)}\right|^{24 / 13}
$$

What about the correlation length for FK-Ising percolation ?

In a work in progress with H . Duminil-Copin, we establish that the number of pivotal points for FK percolation $(q=2)$ in a square Λ_{L} of diameter L is of order:

This suggests that $L(p)$ should scale like

$$
L(p) \approx\left|\frac{1}{p-p_{c}(2)}\right|^{24 / 13}
$$

But this does not match with related results known since Onsager which suggest that $L(p)$ should instead scale like $\left|\frac{1}{p-p_{c}}\right| \ll\left|\frac{1}{p-p_{c}}\right|^{24 / 13}$!! So what is wrong here!?

Monotone couplings of FK percolation, $q=2$

Grimmett constructed in 1995 a somewhat explicit monotone coupling of FK percolation configurations $\left(\omega_{p}\right)_{p \in[0,1]}$. This monotone coupling differs in several essential ways from the standard monotone coupling $(q=1)$:

Monotone couplings of FK percolation, $q=2$

Grimmett constructed in 1995 a somewhat explicit monotone coupling of FK percolation configurations $\left(\omega_{p}\right)_{p \in[0,1]}$. This monotone coupling differs in several essential ways from the standard monotone coupling $(q=1)$:

1 The edge-intensity has a singularity near p_{c}.

Monotone couplings of FK percolation, $q=2$

Grimmett constructed in 1995 a somewhat explicit monotone coupling of FK percolation configurations $\left(\omega_{p}\right)_{p \in[0,1]}$. This monotone coupling differs in several essential ways from the standard monotone coupling $(q=1)$:

1 The edge-intensity has a singularity near p_{c}. Yet, this is only a logarithmic singularity, namely $\frac{d}{d p} \mathbb{P}_{p}(e$ is open $) \asymp \log \left|p-p_{c}\right|^{-1}$.

Monotone couplings of FK percolation, $q=2$

Grimmett constructed in 1995 a somewhat explicit monotone coupling of FK percolation configurations $\left(\omega_{p}\right)_{p \in[0,1]}$. This monotone coupling differs in several essential ways from the standard monotone coupling $(q=1)$:

1 The edge-intensity has a singularity near p_{c}. Yet, this is only a logarithmic singularity, namely $\frac{d}{d p} \mathbb{P}_{p}(e$ is open $) \asymp \log \left|p-p_{c}\right|^{-1}$.
2 As p increases, one can prove that "clouds" of several edges appear simultaneously!

Monotone couplings of FK percolation, $q=2$

Grimmett constructed in 1995 a somewhat explicit monotone coupling of FK percolation configurations $\left(\omega_{p}\right)_{p \in[0,1]}$. This monotone coupling differs in several essential ways from the standard monotone coupling $(q=1)$:

1 The edge-intensity has a singularity near p_{c}. Yet, this is only a logarithmic singularity, namely $\frac{d}{d p} \mathbb{P}_{p}(e$ is open $) \asymp \log \left|p-p_{c}\right|^{-1}$.
2 As p increases, one can prove that "clouds" of several edges appear simultaneously!
3 The location of these clouds of edges highly depend on the current configuration $\omega_{p}(\rightarrow$ hint of an interesting self-organized mechanism).

Monotone couplings of FK percolation, $q=2$

Grimmett constructed in 1995 a somewhat explicit monotone coupling of FK percolation configurations $\left(\omega_{p}\right)_{p \in[0,1]}$. This monotone coupling differs in several essential ways from the standard monotone coupling ($q=1$):

1 The edge-intensity has a singularity near p_{c}. Yet, this is only a logarithmic singularity, namely $\frac{d}{d p} \mathbb{P}_{p}(e$ is open $) \asymp \log \left|p-p_{c}\right|^{-1}$.
2 As p increases, one can prove that "clouds" of several edges appear simultaneously!
3 The location of these clouds of edges highly depend on the current configuration ω_{p} (\rightarrow hint of an interesting self-organized mechanism).

Most remains unknown regarding the structure of these random clouds.

What we can prove

Theorem (Duminil-Copin, G., Pete, 2011)

Fix $q=2$. For every $\epsilon, \rho>0$, there is a constant $c=c(\epsilon, \rho)>0$ s.t.

$$
c \frac{1}{\left|p-p_{c}\right|} \leq L_{\rho, \epsilon}^{\xi}(p) \leq c^{-1} \frac{1}{\left|p-p_{c}\right|} \sqrt{\log \frac{1}{\left|p-p_{c}\right|}}
$$

for all $p \neq p_{c}$, whatever the choice of the boundary condition ξ is.

Techniques behind the proof: Smirnov's observable

"Near-harmonicity" of Smirnov's observable

Theorem (Smirnov, exact harmonicity at criticality)
For $q=2$ and $p=p_{c}(2)=\sqrt{2} /(1+\sqrt{2})$, once restricted to a proper sub-lattice (NE pointing edges), the observable $F_{p_{c}}$ is harmonic:

$$
\Delta F_{p_{c}}\left(e_{X}\right)=0
$$

"Near-harmonicity" of Smirnov's observable

Theorem (Smirnov, exact harmonicity at criticality)
For $q=2$ and $p=p_{c}(2)=\sqrt{2} /(1+\sqrt{2})$, once restricted to a proper sub-lattice (NE pointing edges), the observable $F_{p_{c}}$ is harmonic:

$$
\Delta F_{p_{c}}\left(e_{X}\right)=0
$$

Theorem (Beffara, Duminil-Copin)

When $p<p_{c}$, the observable F_{p} is now massive harmonic: namely

$$
\Delta F_{p}\left(e_{X}\right)=m(p) F_{p}\left(e_{X}\right),
$$

where the mass $m(p) \asymp\left|p-p_{c}\right|^{2}$.

Upper-bound on the correlation length

Fix $\rho, \epsilon>0$. For any $p>p_{c}$, we want to find a scale n so that the rectangle R_{n} is crossed horizontally with high probability ($>1-\epsilon$).

$$
R_{n}:
$$

Upper-bound on the correlation length

Fix $\rho, \epsilon>0$. For any $p>p_{c}$, we want to find a scale n so that the rectangle R_{n} is crossed horizontally with high probability ($>1-\epsilon$).

$$
R_{n}:
$$

We want this probability under P_{p} to be $>1-\epsilon$

Upper-bound on the correlation length

Fix $\rho, \epsilon>0$. For any $p>p_{c}$, we want to find a scale n so that the rectangle R_{n} is crossed horizontally with high probability ($>1-\epsilon$).

$$
R_{n}: \quad p^{*}<p_{c}<p \text { and }\left|p-p_{c}\right| \asymp\left|p^{*}-p_{c}\right|
$$

We want this probability under P_{p} to be $>1-\epsilon$
By duality, this is the same as having a VERTICAL crossing for the dual FK configuration (under $P_{p^{*}}$) with probability $<\epsilon$

Upper-bound on the correlation length

Fix $\rho, \epsilon>0$. For any $p>p_{c}$, we want to find a scale n so that the rectangle R_{n} is crossed horizontally with high probability ($>1-\epsilon$).

$$
R_{n}: \quad \quad p^{*}<p_{c}<p \text { and }\left|p-p_{c}\right| \asymp\left|p^{*}-p_{c}\right|
$$

We want this probability under P_{p} to be $>1-\epsilon$
By duality, this is the same as having a VERTICAL crossing for the dual FK configuration (under $P_{p^{*}}$) with probability $<\epsilon$

Upper-bound on the correlation length

Fix $\rho, \epsilon>0$. For any $p>p_{c}$, we want to find a scale n so that the rectangle R_{n} is crossed horizontally with high probability $(>1-\epsilon)$.

$$
R_{n}:
$$

$$
p^{*}<p_{c}<p \text { and }\left|p-p_{c}\right| \asymp\left|p^{*}-p_{c}\right|
$$

We want this probability under P_{p} to be $>1-\epsilon$
By duality, this is the same as having a VERTICAL crossing for the dual FK configuration (under $P_{p^{*}}$) with probability $<\epsilon$

Upper-bound on the correlation length

Fix $\rho, \epsilon>0$. For any $p>p_{c}$, we want to find a scale n so that the rectangle R_{n} is crossed horizontally with high probability ($>1-\epsilon$).

$$
p^{*}<p_{c}<p \text { and }\left|p-p_{c}\right| \asymp\left|p^{*}-p_{c}\right|
$$

Upper-bound on the correlation length

Fix $\rho, \epsilon>0$. For any $p>p_{c}$, we want to find a scale n so that the rectangle R_{n} is crossed horizontally with high probability $(>1-\epsilon)$.

$$
p^{*}<p_{c}<p \text { and }\left|p-p_{c}\right| \asymp\left|p^{*}-p_{c}\right|
$$

Recall $m\left(p^{*}\right) \asymp\left|p^{*}-p_{c}\right|^{2} \asymp\left|p-p_{c}\right|^{2}$
If scale $n \gg\left|p-p_{c}\right|^{-1}$, then the RW does more than $\left|p-p_{c}\right|^{-2}$ steps and thus, in average its mass goes to zero.

Lower-bound on the correlation length

Fix $\rho, \epsilon>0$. For any $p>p_{c}$, we want to find scales n so that the rectangle R_{n} is NOT crossed horizontally with high probability (i.e. with prob $<1-\epsilon$).
R_{n} :

Lower-bound on the correlation length

Fix $\rho, \epsilon>0$. For any $p>p_{c}$, we want to find scales n so that the rectangle R_{n} is NOT crossed horizontally with high probability (i.e. with prob $<1-\epsilon$).
R_{n} :

We want this probability under P_{p} to be $<1-\epsilon$

Lower-bound on the correlation length

Fix $\rho, \epsilon>0$. For any $p>p_{c}$, we want to find scales n so that the rectangle R_{n} is NOT crossed horizontally with high probability (i.e. with prob $<1-\epsilon$).
R_{n} :

$$
p^{*}<p_{c}<p \text { and }\left|p-p_{c}\right| \asymp\left|p^{*}-p_{c}\right|
$$

We want this probability under P_{p} to be $<1-\epsilon$
By duality, this is the same as having a VERTICAL crossing for the dual FK configuration (under $P_{p^{*}}$) with probability $>\epsilon$

Lower-bound on the correlation length

Fix $\rho, \epsilon>0$. For any $p>p_{c}$, we want to find scales n so that the rectangle R_{n} is NOT crossed horizontally with high probability (i.e. with prob $<1-\epsilon$).
R_{n} :

$$
p^{*}<p_{c}<p \text { and }\left|p-p_{c}\right| \asymp\left|p^{*}-p_{c}\right|
$$

We want this probability under P_{p} to be $<1-\epsilon$
By duality, this is the same as having a VERTICAL crossing for the dual FK configuration (under $P_{p^{*}}$) with probability $>\epsilon$

Lower-bound on the correlation length

Fix $\rho, \epsilon>0$. For any $p>p_{c}$, we want to find scales n so that the rectangle R_{n} is NOT crossed horizontally with high probability (i.e. with prob $<1-\epsilon$).

$$
p^{*}<p_{c}<p \text { and }\left|p-p_{c}\right| \asymp\left|p^{*}-p_{c}\right|
$$

Introduce $N:=\mathrm{Nb}$ of lower points connected to the top

Lower-bound on the correlation length

Fix $\rho, \epsilon>0$. For any $p>p_{c}$, we want to find scales n so that the rectangle R_{n} is NOT crossed horizontally with high probability (i.e. with prob $<1-\epsilon$).

$$
p^{*}<p_{c}<p \text { and }\left|p-p_{c}\right| \asymp\left|p^{*}-p_{c}\right|
$$

Introduce $N:=\mathrm{Nb}$ of lower points connected to the top

Using the RW interpretation, show that $E_{p^{*}}[N]>c \sqrt{n}$

Lower-bound on the correlation length

Fix $\rho, \epsilon>0$. For any $p>p_{c}$, we want to find scales n so that the rectangle R_{n} is NOT crossed horizontally with high probability (i.e. with prob $<1-\epsilon$).

$$
p^{*}<p_{c}<p \text { and }\left|p-p_{c}\right| \asymp\left|p^{*}-p_{c}\right|
$$

Introduce $N:=\mathrm{Nb}$ of lower points connected to the top

Using the RW interpretation, Using the RSW proof at p_{c} from show that $E_{p^{*}}[N]>c \sqrt{n} \quad$ Duminil-Copin, Hongler, Nolin, $E_{p^{*}}\left(N^{2}\right) \leq E_{p_{c}}\left(N^{2}\right)<c^{-1} n$

Ising model

To each configuration $\sigma \in\{-1,1\}^{N^{2}}$, one associates the Hamiltonian

$$
H_{h}(\sigma):=-\sum_{i \sim j} \sigma_{i} \sigma_{j}-h \sum \sigma_{i}
$$

Ising model

To each configuration $\sigma \in\{-1,1\}^{N^{2}}$, one associates the Hamiltonian

$$
H_{h}(\sigma):=-\sum_{i \sim j} \sigma_{i} \sigma_{j}-h \sum \sigma_{i}
$$

And we define:

$$
P_{\beta, h}(\sigma) \propto e^{-\beta H_{h}(\sigma)}
$$

Ising model

To each configuration $\sigma \in\{-1,1\}^{N^{2}}$, one associates the Hamiltonian

$$
H_{h}(\sigma):=-\sum_{i \sim j} \sigma_{i} \sigma_{j}-h \sum \sigma_{i}
$$

And we define:

$$
P_{\beta, h}(\sigma) \propto e^{-\beta H_{h}(\sigma)}
$$

The Ising model is intimately related with FK percolation $(q=2)$ via the following identity: If $h=0$,

$$
E_{\beta}\left(\sigma_{x} \sigma_{y}\right)=P_{p, q=2}[x \leftrightarrow y] \text { with } 1-p=e^{-2 \beta}
$$

Classical near-critical results

Theorem (Kesten - Smirnov/Werner)
For site percolation on the triangular lattice,

$$
\theta(p):=\mathbb{P}[0 \leftrightarrow \infty]=\left|p-p_{c}\right|^{5 / 36+o(1)} \quad \text { as } p \searrow p_{c}
$$

Classical near-critical results

Theorem (Kesten - Smirnov/Werner)

For site percolation on the triangular lattice,

$$
\theta(p):=\mathbb{P}[0 \leftrightarrow \infty]=\left|p-p_{c}\right|^{5 / 36+o(1)} \quad \text { as } p \searrow p_{c}
$$

Theorem (Onsager, 1944)
For Ising model on \mathbb{Z}^{2} :

$$
\left\langle\sigma_{0}\right\rangle_{\beta}^{+} \asymp\left|\beta-\beta_{c}\right|^{1 / 8} \quad \text { as } \beta \searrow \beta_{c}
$$

Average magnetization under small external field

Theorem (Camia, G., Newman)

Consider Ising model on \mathbb{Z}^{2} at β_{c} with a positive external magnetic field $h>0$, then

$$
\left\langle\sigma_{0}\right\rangle_{\beta_{c}, h} \asymp h^{\frac{1}{15}}
$$

Average magnetization under small external field

Theorem (Camia, G., Newman)

Consider Ising model on \mathbb{Z}^{2} at β_{c} with a positive external magnetic field $h>0$, then

$$
\left\langle\sigma_{0}\right\rangle_{\beta_{c}, h} \asymp h^{\frac{1}{15}}
$$

Rough idea of proof:

- Lower bound: prove that the correlation length $L(h) \asymp h^{-8 / 15}$ and conclude using

$$
\left\langle\sigma_{0}\right\rangle_{\beta_{c}, h} \gtrsim \alpha_{1}^{\mathrm{FK}}(L(h)) \asymp L(h)^{-1 / 8} \asymp h^{1 / 15}
$$

Average magnetization under small external field

Theorem (Camia, G., Newman)

Consider Ising model on \mathbb{Z}^{2} at β_{c} with a positive external magnetic field $h>0$, then

$$
\left\langle\sigma_{0}\right\rangle_{\beta c, h} \asymp h^{\frac{1}{15}}
$$

Rough idea of proof:

- Lower bound: prove that the correlation length $L(h) \asymp h^{-8 / 15}$ and conclude using

$$
\left\langle\sigma_{0}\right\rangle_{\beta_{c}, h} \gtrsim \alpha_{1}^{\mathrm{FK}}(L(h)) \asymp L(h)^{-1 / 8} \asymp h^{1 / 15}
$$

- Upper bound:

Average magnetization under small external field

Theorem (Camia, G., Newman)

Consider Ising model on \mathbb{Z}^{2} at β_{c} with a positive external magnetic field $h>0$, then

$$
\left\langle\sigma_{0}\right\rangle_{\beta c, h} \asymp h^{\frac{1}{15}}
$$

Rough idea of proof:

- Lower bound: prove that the correlation length $L(h) \asymp h^{-8 / 15}$ and conclude using

$$
\left\langle\sigma_{0}\right\rangle_{\beta_{c}, h} \gtrsim \alpha_{1}^{\mathrm{FK}}(L(h)) \asymp L(h)^{-1 / 8} \asymp h^{1 / 15}
$$

- Upper bound: rely on a kind of strong "convexity" property satisfied by the Ising model, namely the GHS inequality.

Theorem (GHS inequality, Griffiths, Hurst, Sherman, 1970)
$Z_{\beta, h}:=\sum_{\sigma} e^{-\beta H(\sigma)+h \sum \sigma_{X}}$ is such that

$$
\partial_{h}^{3}\left(\log Z_{\beta, h}\right) \leq 0
$$

Theorem (GHS inequality, Griffiths, Hurst, Sherman, 1970)
$Z_{\beta, h}:=\sum_{\sigma} e^{-\beta H(\sigma)+h \sum \sigma_{x}}$ is such that

$$
\partial_{h}^{3}\left(\log Z_{\beta, h}\right) \leq 0
$$

$$
\partial_{h}^{3}\left[\log \left(\sum e^{-\beta_{c} H+h \sum \sigma_{x}}\right)\right] \leq 0
$$

Theorem (GHS inequality, Griffiths, Hurst, Sherman, 1970)
$Z_{\beta, h}:=\sum_{\sigma} e^{-\beta H(\sigma)+h \sum \sigma_{X}}$ is such that

$$
\partial_{h}^{3}\left(\log Z_{\beta, h}\right) \leq 0
$$

$$
\begin{aligned}
& \partial_{h}^{3}\left[\log \left(\sum e^{-\beta_{c} H+h \sum \sigma_{x}}\right)\right] \leq 0 \\
\Leftrightarrow & \partial_{h}^{2}\left[\frac{\sum_{\sigma}\left(\sum \sigma_{x}\right) e^{-\beta_{c} H+h \sum \sigma_{x}}}{\sum_{\sigma} e^{-\beta_{c} H}}\right] \leq 0
\end{aligned}
$$

Theorem (GHS inequality, Griffiths, Hurst, Sherman, 1970)
$Z_{\beta, h}:=\sum_{\sigma} e^{-\beta H(\sigma)+h \sum \sigma_{x}}$ is such that

$$
\partial_{h}^{3}\left(\log Z_{\beta, h}\right) \leq 0
$$

$$
\begin{aligned}
& \partial_{h}^{3}\left[\log \left(\sum e^{-\beta_{c} H+h \sum \sigma_{x}}\right)\right] \leq 0 \\
\Leftrightarrow & \partial_{h}^{2}\left[\frac{\sum_{\sigma}\left(\sum \sigma_{x}\right) e^{-\beta_{c} H+h \sum \sigma_{x}}}{\sum_{\sigma} e^{-\beta_{c} H}}\right] \leq 0 \\
\Leftrightarrow & \partial_{h}^{2}\left[\mathbb{E}_{\beta_{c}, h}\left(\sum \sigma_{x}\right)\right] \leq 0
\end{aligned}
$$

