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> Notion of correlation length L(p)

Near-critical Ising model as the temperature varies

» Joint work with H. Duminil-Copin and Gabor Pete.
Near-critical Ising model as the external magnetic field varies

» Joint work with F. Camia and C. Newman.
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P = pc+0p

v+o(1)

L(p) = |2

Example (critical perco-
lation):

Theorem (Smirnov-
Werner 2001):

L(p) = [451/5+
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The models we shall consider

Percolation:

Py(w) =p° (1 —p)*°

FK Percolation (or random
cluster model)

Fix a parameter ¢ > 1

0 = o(w) = Nb of open ed Pq,p (w) ~ po(l _ p)C qﬁclusters

¢ = ¢(w) = Nb of closed ed

Theorem (Kesten
1980)

pC(ZQ) =

‘J_/l Theorem  (Beffara,
— Duminil-Copin 2010)

j— —\;\ pc(Q) = %@




Notion of correlation length (precise definition)

Definition

Fix p > 0.

For any n > 0, let R, be the rectangle [0, pn] x [0, n]. If p > pc, then
define for all € > 0 and all “boundary conditions” £ around R,,

L5 (p) == ,Lr;% {Pg (there is a left-right crossing in R,) > 1 — e}
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Estimating the correlation length, case of critical percolation

R, : pn

Pivotal points

One notices a change in the probability of
left-right crossing when:
lp = pe| n*/* = 1

This suggests L(p) ~ |p — p.|~4/3



Sharp threshold

To analyze the behavior of the correlation length, it is useful to rely on
Russo’s formula: if ¢,(p) := IP’p( there is a left-right crossing in R,,), then

CZJ(b,,(p) = E,( Number of pivotal points in w,)

= Z P, (x is a pivotal point )
XGRn

This point of view also leads to the identity

|p = pe| L(p)*ca(L(p)) = 1
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What about the correlation length for FK-Ising percolation 7

In a work in progress with H. Duminil-Copin, we establish that the number
of pivotal points for FK percolation (g = 2) in a square A, of diameter L is

of order:
Ll3/24

This suggests that L(p) should scale like

1 24/13

C. Garban (ENS Lyon and CNRS) Near-critical Ising model 9 /19



What about the correlation length for FK-Ising percolation 7

In a work in progress with H. Duminil-Copin, we establish that the number
of pivotal points for FK percolation (g = 2) in a square A, of diameter L is
of order:

Ll3/24
This suggests that L(p) should scale like

1
L(p) ~ 24/13
(o) |p - pc(2)|

But this does not match with related results known since Onsager which

suggest that L(p) should instead scale like ‘

So what is wrong here 17
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Monotone couplings of FK percolation, g = 2

Grimmett constructed in 1995 a somewhat explicit monotone coupling of
FK percolation configurations (wp)pe(o,1)- This monotone coupling differs
in several essential ways from the standard monotone coupling (g = 1):
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The location of these clouds of edges highly depend on the current
configuration w, (— hint of an interesting self-organized mechanism).
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Monotone couplings of FK percolation, g = 2

Grimmett constructed in 1995 a somewhat explicit monotone coupling of
FK percolation configurations (wp)pe(o,1)- This monotone coupling differs
in several essential ways from the standard monotone coupling (g = 1):

The edge-intensity has a singularity near pc.
Yet, this is only a logarithmic singularity, namely
dipPp(e is open ) =< log |p — pc| 7.

As p increases, one can prove that “clouds” of several edges appear
simultaneously !

The location of these clouds of edges highly depend on the current
configuration w, (— hint of an interesting self-organized mechanism).

Most remains unknown regarding the structure of these random clouds.
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What we can prove

Theorem (Duminil-Copin, G., Pete, 2011)

Fix g = 2. For every ¢,p > 0, there is a constant ¢ = c(e,p) > 0 s.t.

1

1 1
c—8F1 —1
|P— pc|

§
< Lp,e(p) S C —— |

for all p # pc, whatever the choice of the boundary condition & is.

og ———
|P—Pc| |P—Pc|
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Techniques behind the proof: Smirnov's observable

b b

[Fp(e)] = Ppafe € 7)



“Near-harmonicity” of Smirnov's observable

Theorem (Smirnov, exact harmonicity at criticality)

For g =2 and p = pc(2) = v2/(1 + V/2), once
restricted to a proper sub-lattice (NE pointing
edges), the observable F,_ is harmonic:

Ach(eX) =0
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“Near-harmonicity” of Smirnov's observable

Theorem (Smirnov, exact harmonicity at criticality)

For g =2 and p = pc(2) = v2/(1 + V/2), once
restricted to a proper sub-lattice (NE pointing
edges), the observable F,_ is harmonic:

Ach(eX) =0

Theorem (Beffara, Duminil-Copin)
When p < pc, the observable F, is now massive harmonic: namely

AFp(ex) = m(p) Fp(ex)

where the mass m(p) < |p — pc|?.
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Upper-bound on the correlation length
Fix p,e > 0. For any p > p., we want to find a scale n so that the
rectangle R, is crossed horizontally with high probability (> 1 — ¢).

p* < pe.<pand[p—p|=|p*—p

Random Walk interpretation: at
each step in the bulk, the mass
of the particle is divided by 14+m

|[Epe(e)]

Recall m(p*) < [p* — pe|* < |p — pe|?

If scale n > |p — p.|™*, then the RW does more than |p — p |2

steps and thus, in average its mass goes to zero.
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Lower-bound on the correlation length
Fix p,e > 0. For any p > p., we want to find scales n so that the rectangle
R, is NOT crossed horizontally with high probability (i.e. with prob
<1l—e).

p* < pe<pand |p—pe| = [p*—pe

Introduce N :=Nb of lower points
connected to the top

Using the RW interpretation, Using the RSW proof at p. from
show that E,-[N] > c¢/n Duminil-Copin, Hongler, Nolin,
By (N?) < B, (N?) < c'n



Ising model

To each configuration o € {—1,1}*, one
associates the Hamiltonian

Hy(o) == —>_,;0i0;—h Y o
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Ising model P

To each configuration o € {—1, 1}N2, one Sttt

associates the Hamiltonian N et

Hy(o) = — Eiwj oio; —h > o e

And we define:

Py p(0) oc e H)

The Ising model is intimately related with FK percolation (¢ = 2) via the
following identity: If h =0,

EQ(UxO'y> - Pp.,q:Z[CU — y] with 1 —p = e~ 20

(
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Classical near-critical results

Theorem (Kesten - Smirnov/Werner)

For site percolation on the triangular lattice,

0(p) :==P[0 = oo] = [p — pc[¥**+°M asp\ pc
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Classical near-critical results

Theorem (Kesten - Smirnov/Werner)

For site percolation on the triangular lattice,

0(p) :==P[0 = oo] = [p — pc[¥**+°M asp\ pc

Theorem (Onsager, 1944)

For Ising model on 7?:

(o0)§ =< 18— Be|"® as B\ B

C. Garban (ENS Lyon and CNRS) Near-critical Ising model 17 / 19



Average magnetization under small external field

Theorem (Camia, G., Newman)

Consider Ising model on Z? at (3. with a positive external magnetic field
h > 0, then

1
(00)g.,h < h15
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Average magnetization under small external field

Theorem (Camia, G., Newman)

Consider Ising model on Z? at (3. with a positive external magnetic field
h > 0, then

1
<O-O>A‘3€7h = h15

Rough idea of proof:

> Lower bound: prove that the correlation length L(h) = h=8/1> and
conclude using

<Uo>ﬁc,h 2 afK(L(h)) = L(h)_1/8 — pL/15
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Consider Ising model on Z? at (3. with a positive external magnetic field
h > 0, then

1
<O-O>A‘3€7h = h15

Rough idea of proof:

> Lower bound: prove that the correlation length L(h) = h=8/1> and
conclude using

<Uo>ﬁc,h 2 afK(L(h)) = L(h)_1/8 — pL/15

» Upper bound:
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Average magnetization under small external field

Theorem (Camia, G., Newman)

Consider Ising model on 72 at (3. with a positive external magnetic field
h > 0, then

1
<O-O>A‘3€7h = h15

Rough idea of proof:

> Lower bound: prove that the correlation length L(h) = h=8/1> and
conclude using

<Uo>ﬁc,h 2 afK(L(h)) = L(h)_1/8 — pL/15

» Upper bound: rely on a kind of strong “convexity” property satisfied by
the Ising model, namely the GHS inequality.
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Theorem (GHS inequality, Griffiths, Hurst, Sherman, 1970)
Zgp =, e PHOI+hox s such that

82 (Iog Zﬁ,h) <0
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Theorem (GHS inequality, Griffiths, Hurst, Sherman, 1970)
Zgp =, e PHOI+hox s such that

82 (Iog Z@h) <0

33 [log(3 e feHHh o)) <

> o3 ox)e erttha ox
Al S A <0
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Theorem (GHS inequality, Griffiths, Hurst, Sherman, 1970)
Zgp =, e PHOI+hox s such that

82 (Iog Z@h) <0

o3 [Iog(z e PeHth2 o] <0

82 [Zo‘(z O-X)eiﬁt-HJrhzax < 0
h Za e—BcH -

& Of[Es n(D_ox)] <0

=
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