High frequency criteria for Boolean functions
(with an application to percolation)

Christophe Garban
ENS Lyon and CNRS

Workshop on Discrete Harmonic Analysis
Newton Institute, March 2011
Plan

- Spectrum of Boolean functions
- Motivations (percolation ...)
- Randomized algorithms
- A theorem by Schramm and Steif
- Noise sensitivity of percolation
- Where exactly does the spectrum of percolation localize? (Work with G. Pete and O. Schramm)
Spectrum of a Boolean function

Let $f : \Omega_n = \{-1, 1\}^n \to \{-1, 1\}$ be a Boolean function
Spectrum of a Boolean function

Let \(f : \Omega_n = \{-1, 1\}^n \to \{-1, 1\} \) be a Boolean function

\[
f = \sum_{S \subset \{1, \ldots, n\}} \hat{f}(S) \chi(S),
\]

with \(\chi(S) := \prod_{i \in S} x_i. \)
Spectrum of a Boolean function

Let \(f : \Omega_n = \{-1, 1\}^n \rightarrow \{-1, 1\} \) be a Boolean function

\[
f = \sum_{S \subset \{1, \ldots, n\}} \hat{f}(S) \chi(S),
\]

with \(\chi(S) := \prod_{i \in S} x_i \).

These functions form an orthonormal basis for \(L^2(\{-1, 1\}^n) \) endowed with the uniform measure \(\mu = (1/2\delta_1 + 1/2\delta_{-1})^\otimes n \).

The Fourier coefficients \(\hat{f}(S) \) satisfy

\[
\hat{f}(S) := \langle f, \chi_S \rangle = \mathbb{E}[f \chi_S]
\]

Parseval tells us

\[
\|f\|_2^2 = \sum_S \hat{f}(S)^2
\]
Energy spectrum of a Boolean function

For any Boolean or real-valued function \(f : \{-1, 1\}^n \rightarrow \{0, 1\} \) or \(\mathbb{R} \), we define its energy spectrum \(E_f \) to be

\[
E_f(k) := \sum_{S : |S| = k} \hat{f}(S)^2 \quad \forall 1 \leq k \leq n
\]
Energy spectrum of a Boolean function

For any Boolean or real-valued function $f : \{-1, 1\}^n \rightarrow \{0, 1\}$ or \mathbb{R}, we define its energy spectrum E_f to be

$$E_f(k) := \sum_{S: |S|=k} \hat{f}(S)^2 \quad \forall 1 \leq k \leq n$$
Energy spectrum of a Boolean function

For any Boolean or real-valued function \(f : \{−1, 1\}^n \to \{0, 1\} \) or \(\mathbb{R} \), we define its **energy spectrum** \(E_f \) to be

\[
E_f(k) := \sum_{S : |S| = k} \hat{f}(S)^2 \quad \forall 1 \leq k \leq n
\]

The total Spectral mass here is

\[
\sum_{|S| \neq 0} \hat{f}(S)^2 = \text{Var}[f]
\]
Energy spectrum of Majority

Let $\text{MAJ}_n(x_1, \ldots, x_n) := \text{sign}(\sum x_i)$.
Energy spectrum of Majority

Let $\text{MAJ}_n(x_1, \ldots, x_n) := \text{sign}(\sum x_i)$.

Its energy spectrum can be computed explicitly. It has the following shape:

$$\sum |S| = k \overbrace{\text{MAJ}_n(S)}^{2}$$

$$\approx \frac{1}{k^{3/2}}$$
Energy spectrum of Majority

Let $\text{MAJ}_n(x_1, \ldots, x_n) := \text{sign}(\sum x_i)$.

Its energy spectrum can be computed explicitly. It has the following shape:

$$\sum_{|S|=k} \overbrace{\text{MAJ}_n(S)^2}^{\approx \frac{1}{k^{3/2}}}$$
Noise stability

Let $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$ be a Boolean function. For any $\epsilon > 0$, if $\omega_n = (x_1, \ldots, x_n)$ is sampled uniformly in Ω_n, let ω_n^ϵ be the noised configuration obtained out of ω_n by resampling each bit with probability ϵ.

The noise stability of f is given by

$$S^\epsilon(f) := \mathbb{P}[f(\omega) = f(\omega^\epsilon)]$$

It is easy to check that

$$S^\epsilon(f) = \sum_S \hat{f}(S)^2 (1 - \epsilon)^{|S|}$$

$$= \mathbb{E}[f]^2 + \sum_{k \geq 1} E_f(k)(1 - \epsilon)^k$$
What can be said on the spectrum in general?

Here is a deep result by Bourgain:

Theorem (Bourgain, 2001)
If f is a balanced Boolean function with low influences, then
$$\sum |S| \geq k^\hat{f}(S)^2 \geq 1/\sqrt{k},$$
if k is not "too large".

Theorem ("Majority is Stablest" Mossel, O’Donnell and Oleszkiewicz, 2005)
If f is a balanced Boolean function with low influences, then
$$S_\epsilon(f) \lesssim 2\pi \arcsin(1-\epsilon) C.$$
What can be said on the spectrum in general?

Here is a deep result by Bourgain:

Theorem (Bourgain, 2001)

If f is a balanced Boolean function with low influences, then

$$
\sum_{|S|>k} |\hat{f}(S)|^2 \gtrsim \frac{1}{\sqrt{k}},
$$

if k is not “too large”.

Theorem ("Majority is Stablest" Mossel, O'Donnell and Oleszkiewicz, 2005)

If f is a balanced Boolean function with low influences, then

$$
S_{\epsilon}(f) \lesssim 2\epsilon \arcsin(1-\epsilon)
$$
What can be said on the spectrum in general?

Here is a deep result by Bourgain:

Theorem (Bourgain, 2001)

If f *is a balanced Boolean function with low influences, then*

$$\sum_{|S|>k} |\hat{f}(S)|^2 \gtrsim \frac{1}{\sqrt{k}},$$

if k *is not “too large”.*

Theorem (“Majority is Stablest” Mossel, O’Donnell and Oleszkiewicz, 2005)

If f *is a balanced Boolean function with low influences, then*

$$\mathbb{S}^\epsilon(f) \lesssim \frac{2}{\pi} \arcsin(1 - \epsilon)$$
Recognizing high frequency behavior

In what follows, we will be interested in Boolean (or real-valued) functions which are highly sensitive to small perturbations (or small noise). Such functions are called noise sensitive. They are such that most of their Fourier mass is localized on high frequencies. In particular, their energy spectrum should look as follows

$$\sum_{|S|=k} \hat{f}(S)^2 \gg 1$$
Question we wish to address in this talk
Question we wish to address in this talk

You’re given a Boolean function
\[f : \{-1, 1\}^n \rightarrow \{-1, 1\} \]
You’re given a Boolean function $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$

Can you find an efficient criterion which ensures that its spectrum has the following shape?

$k \cdots \cdots \cdots \cdots \gg 1$
Question we wish to address in this talk

You’re given a Boolean function

\[f : \{-1, 1\}^n \rightarrow \{-1, 1\} \]

Can you find an efficient criterion which ensures that its spectrum has the following shape?

\[\gg 1 \]
Let us start with a visual “experiment”

Let A be a subset of the square in the plane.

Question: Can you tell whether the set A is noise sensitive or not?
Let us start with a visual “experiment”

Let A be a subset of the square in the plane.

Question: Can you tell whether the set A is noise sensitive or not?
Let us start with a visual “experiment”

Let A be a subset of the square in the plane.

Question: Can you tell whether the set A is noise sensitive or not?
Let us start with a visual “experiment”

Let A be a subset of the square in the plane.

Question: Can you tell whether the set A is noise sensitive or not?
Let us start with a visual “experiment”

Let A be a subset of the square in the plane.

Question: Can you tell whether the set A is noise sensitive or not?

C. Garban (ENS Lyon) High frequency criteria for Boolean functions 10 / 23
Motivations for high spectra

• Influences of Boolean functions, Sharp thresholds...

• Dynamical percolation

• Fluctuations for natural random metrics on \mathbb{Z}^d (First passage percolation).
Motivations for high spectra

- Influences of Boolean functions, Sharp thresholds..
Motivations for high spectra

- Influences of Boolean functions, Sharp thresholds ..
- Dynamical percolation
Motivations for high spectra

- Influences of Boolean functions, Sharp thresholds ..
- Dynamical percolation
- **Fluctuations** for natural random metrics on \mathbb{Z}^d (First passage percolation).
Dynamical percolation
Dynamical percolation

ω₀:
Dynamical percolation

\[\omega_0 \rightarrow \omega_t: \]
Key step: percolation is noise sensitive
Key step: percolation is noise sensitive
Large scale properties are encoded by Boolean functions of the ‘inputs’
Large scale properties are encoded by Boolean functions of the ‘inputs’
Large scale properties are encoded by Boolean functions of the ‘inputs’

Let \(f_n : \{-1, 1\}^{O(1)n^2} \rightarrow \{0, 1\} \) be the Boolean function defined as follows.
Large scale properties are encoded by Boolean functions of the ‘inputs’

Let $f_n : \{-1, 1\}^{O(1)n^2} \rightarrow \{0, 1\}$ be the Boolean function defined as follows

$$f_n(\omega) := \begin{cases} 1 & \text{if there is a left-right crossing} \end{cases}$$
Large scale properties are encoded by Boolean functions of the ‘inputs’

Let $f_n : \{-1, 1\}^{O(1)n^2} \to \{0, 1\}$ be the Boolean function defined as follows

$$f_n(\omega) := \begin{cases} 1 & \text{if there is a left-right crossing} \\ 0 & \text{else} \end{cases}$$
The energy spectrum of macroscopic events

Question: how does the energy spectrum of the above Boolean functions $f_n, n \geq 1$ look?
The energy spectrum of macroscopic events

Question: how does the energy spectrum of the above Boolean functions $f_n, n \geq 1$ look?

\[\sum_{|S|=k} |\hat{f}_n(S)|^2 \]

At which speed does the Spectral mass “spread” as the scale n goes to infinity?
The energy spectrum of macroscopic events

Question: how does the energy spectrum of the above Boolean functions $f_n, n \geq 1$ look?

At which speed does the Spectral mass “spread” as the scale n goes to infinity?
Informal definition (First Passage Percolation)

Let $0 < a < b$. Define the random metric on the graph \mathbb{Z}^d as follows: for each edge $e \in \mathbb{E}^d$, fix its length τ_e to be a with probability $1/2$ and b with probability $1/2$.

It is well-known that the random ball $B_\omega(R) := \{x \in \mathbb{Z}^d, \text{dist}_\omega(0, x) \leq R\}$ has an asymptotic shape. Question: What are the fluctuations around this asymptotic shape?
Informal definition (First Passage Percolation)

Let $0 < a < b$. Define the **random metric** on the graph \mathbb{Z}^d as follows: for each edge $e \in E^d$, fix its length τ_e to be a with probability $1/2$ and b with probability $1/2$.

It is well-known that the random ball

$$B_\omega(R) := \{ x \in \mathbb{Z}^d, \text{dist}_\omega(0, x) \leq R \}$$

has an **asymptotic shape**.
Informal definition (First Passage Percolation)

Let $0 < a < b$. Define the random metric on the graph \mathbb{Z}^d as follows: for each edge $e \in \mathbb{E}^d$, fix its length τ_e to be a with probability $1/2$ and b with probability $1/2$.

It is well-known that the random ball

$$B_\omega(R) := \{x \in \mathbb{Z}^d, \text{dist}_\omega(0, x) \leq R\}$$

has an asymptotic shape.

Question

What are the fluctuations around this asymptotic shape?
Three different approaches to localize the Spectrum

\[\sum_{|S|=k} \hat{f}_n(S)^2 \]
Three different approaches to localize the Spectrum

\[\sum_{|S|=k} \hat{f}_n(S)^2 \]

- **Hypercontractivity**, 1998
 Benjamini, Kalai, Schramm

- **Randomized Algorithms**, 2005
 Schramm, Steif

- **Geometric study of the ’frequencies’**, 2008
 G., Pete, Schramm
Three different approaches to localize the Spectrum

\[\sum_{|S| = k} \hat{f}_n(S)^2 \]

- **Hypercontractivity**, 1998
 Benjamini, Kalai, Schramm

- **Randomized Algorithms**, 2005
 Schramm, Steif
Three different approaches to localize the Spectrum

\[\sum_{|S|=k} \hat{f}_n(S)^2 \]

- **Hypercontractivity**, 1998
 Benjamini, Kalai, Schramm

- **Randomized Algorithms**, 2005
 Schramm, Steif

- **Geometric study of the ‘frequencies’**, 2008
 G., Pete, Schramm
Three different approaches to localize the Spectrum

\[\sum_{|S|=k} \hat{f}_n(S)^2 \]

- **Hypercontractivity, 1998**
 Benjamini, Kalai, Schramm
 ↔ Gil’s talk

- **Randomized Algorithms, 2005**
 Schramm, Steif
 ↔ Rocco’s talk

- **Geometric study of the ‘frequencies’, 2008**
 G., Pete, Schramm
 ↔ Ryan’s talk
Randomized Algorithm (or randomized decision tree)

Consider a Boolean function $f : \{-1, 1\}^n \rightarrow \{0, 1\}$.

Randomized Algorithm (or randomized decision tree)

Consider a Boolean function $f : \{-1, 1\}^n \rightarrow \{0, 1\}$.

A randomized algorithm for f is an algorithm which examines the input bits one at a time until it finds what the output of f is.

If \mathcal{A} is such a randomized algorithm, let $J = J_\mathcal{A} \subset [n]$ be the random set of bits that are examined along the algorithm.
Randomized Algorithm (or randomized decision tree)

Consider a Boolean function $f : \{-1, 1\}^n \to \{0, 1\}$.

A randomized algorithm for f is an algorithm which examines the input bits one at a time until it finds what the output of f is.

If A is such a randomized algorithm, let $J = J_A \subset [n]$ be the random set of bits that are examined along the algorithm.

We are looking for algorithms which examine the least possible number of bits.
Consider a Boolean function $f : \{-1, 1\}^n \to \{0, 1\}$.

A randomized algorithm for f is an algorithm which examines the input bits one at a time until it finds what the output of f is.

If \mathcal{A} is such a randomized algorithm, let $J = J_\mathcal{A} \subset [n]$ be the random set of bits that are examined along the algorithm.

We are looking for algorithms which examine the least possible number of bits. This can be quantified by the revealment:

$$\delta = \delta_\mathcal{A} := \sup_{i \in [n]} \mathbb{P}[i \in J].$$
Examples

• For the Majority function Φ_n:
Examples

- For the Majority function Φ_n: $\tilde{\delta} \approx 1$
Examples

- For the Majority function Φ_n: $\delta \approx 1$
- Recursive Majority:
Percolation is very suitable to randomized algorithms
Percolation is very suitable to randomized algorithms.
Percolation is very suitable to randomized algorithms

\[f_n = 0 \]
Percolation is very suitable to randomized algorithms
Proposition (Schramm, Steif, 2005)

On the triangular lattice, a slight modification of the above randomized algorithm gives a small revealment for the left-right Boolean functions f_n of order

$$\delta_n \approx n^{-1/4}$$
How is it related with the Fourier expansion of f?
How is it related with the Fourier expansion of f?

Theorem (Schramm, Steif, 2005)

Let $f : \{-1, 1\}^n \to \mathbb{R}$ be a *real-valued* function.
How is it related with the Fourier expansion of f ?

Theorem (Schramm, Steif, 2005)

Let $f : \{-1, 1\}^n \to \mathbb{R}$ be a real-valued function. Let A be a randomized algorithm computing f whose revealment is $\delta = \delta_A$.
How is it related with the Fourier expansion of f?

Theorem (Schramm, Steif, 2005)

Let $f : \{-1, 1\}^n \to \mathbb{R}$ be a real-valued function. Let A be a randomized algorithm computing f whose revealment is $\delta = \delta_A$.

Then, for any $k = 1, 2, \ldots$ the Fourier coefficients of f satisfy

$$\sum_{|S|=k} \hat{f}(S)^2 \leq k \delta \|f\|^2$$