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Plan

• Spectrum of Boolean functions
• Motivations (percolation ...)
• Randomized algorithms
• A theorem by Schramm and Steif
• Noise sensitivity of percolation
• Where exactly does the spectrum of percolation localize ? (Work with
G. Pete and O. Schramm)
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Spectrum of a Boolean function
Let f : Ωn = {−1, 1}n → {−1, 1} be a Boolean function

f =
∑

S⊂{1,...,n}

f̂ (S)χ(S) ,

with χ(S) :=
∏

i∈S xi .

These functions form an othornormal basis for L2({−1, 1}n) endowed with
the uniform measure µ = (1/2δ1 + 1/2δ−1)⊗n.

The Fourier coefficients f̂ (S) satisfy

f̂ (S) := 〈f , χS〉 = E
[
f χS

]

Parseval tells us
‖f ‖22 =

∑

S

f̂ (S)2
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Energy spectrum of a Boolean function
For any Boolean or real-valued function f : {−1, 1}n → {0, 1} or R, we
define its energy spectrum Ef to be

Ef (k) :=
∑

S :|S |=k

f̂ (S)2 ∀ 1 ≤ k ≤ n

Ef(k)

k. . . . . .

k = 1 k = 2 k = n

Ef(k)

k. . . . . .

k = 1 k = 2 k = n

The total Spectral
mass here is
∑

|S|6=0

f̂(S)2 = Var[f ]
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Energy spectrum of Majority
Let MAJn(x1, . . . , xn) := sign(

∑
xi ).

Its energy spectrum can be computed explicitly. It has the following shape:

. . .

∑
|S|=k M̂AJn(S)2

1 5

k

n3

. . .

∑
|S|=k M̂AJn(S)2

1 5

k

n3

≈ 1
k3/2
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Noise stability

Let f : {−1, 1}n → {−1, 1} be a Boolean function.
For any ε > 0, if ωn = (x1, . . . , xn) is sampled uniformly in Ωn, let ωεn be
the noised configuration obtained out of ωn by resampling each bit with
probability ε.
The noise stability of f is given by

Sε(f ) := P
[
f (ω) = f (ωε)

]

It is easy to check that

Sε(f ) =
∑

S

f̂ (S)2(1− ε)|S |

= E
[
f
]2

+
∑

k≥1

Ef (k)(1− ε)k
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What can be said on the spectrum in general ?

Here is a deep result by Bourgain:

Theorem (Bourgain, 2001)
If f is a balanced Boolean function with low influences, then

∑

|S |>k

f̂ (S)2 &
1√
k
,

if k is not “too large”.

Theorem ( “Majority is Stablest” Mossel, O’Donnell and
Oleszkiewicz, 2005)
If f is a balanced Boolean function with low influences, then

Sε(f ) .
2
π
arcsin(1− ε)
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Recognizing high frequency behavior
In what follows, we will be interested in Boolean (or real-valued) functions
which are highly sensitive to small perturbations (or small noise). Such
functions are called noise sensitive.
They are such that most of their Fourier mass is localized on high
frequencies. In particular, their energy spectrum should look as follows

∑
|S|=k f̂(S)2

k. . . . . .

� 1



Question we wish to address in this talk

You’re given a

Boolean function

f : {−1, 1}n →
{−1, 1}

You’re given a

Boolean function

f : {−1, 1}n →
{−1, 1}

Can you find an

efficient criterion

which ensures that

its spectrum has

the following shape
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Let us start with a visual “experiment”

Let A be a subset of the square in the plane.
Question: Can you tell whether the set A is noise sensitive or not ?
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Motivations for high spectra

• Influences of Boolean functions, Sharp thresholds ..
• Dynamical percolation
• Fluctuations for natural random metrics on Zd (First passage
percolation).
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Dynamical percolation

ω0:
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Dynamical percolation
ω0 → ωt :
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Key step: percolation is noise sensitive
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Large scale properties are encoded by Boolean functions of
the ‘inputs’

b · n

a · n

Let fn : {−1, 1}O(1)n2 → {0, 1}
be the Boolean function
defined as follows

fn(ω) :=

{
1 if there is a left-right crossing
0 else
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The energy spectrum of macroscopic events
Question: how does the energy spectrum of the above Boolean functions
fn, n ≥ 1 look ?

∑
|S|=k f̂n(S)2

k. . . . . .

?

∑
|S|=k f̂n(S)2

k. . . . . .

? At which speed
does the Spectral
mass “spread” as
the scale n goes to
infinity ?
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Sub-Gaussian fluctuations in First-passage-percolation

Informal definition (First Passage Percolation)

Let 0 < a < b. Define the random metric on the graph Zd as follows: for
each edge e ∈ Ed , fix its length τe to be a with probability 1/2 and b with
probability 1/2.

It is well-known that the random ball

Bω(R) := {x ∈ Zd , distω(0, x) ≤ R}

has an asymptotic shape.

Question
What are the fluctuations around this
asymptotic shape ?
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Three different approaches to
localize the Spectrum

∑
|S|=k f̂n(S)2

k. . . . . .

?

• Hypercontractivity, 1998
Benjamini, Kalai, Schramm

↔ Gil’s talk

• Randomized Algorithms, 2005
Schramm, Steif

↔ Rocco’s talk

• Geometric study of the
‘frequencies’, 2008
G., Pete, Schramm

↔ Ryan’s talk
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Randomized Algorithm (or randomized decision tree)

Consider a Boolean function f : {−1, 1}n → {0, 1}.

A randomized algorithm for f is an algorithm which examines the intput
bits one at a time until it finds what the output of f is.

If A is such a randomized algorithm, let J = JA ⊂ [n] be the random set
of bits that are examined along the algorithm.

We are looking for algorithms which examine the least possible number of
bits. This can be quantified by the revealment:

δ = δA := sup
i∈[n]

P
[
i ∈ J

]
.
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Examples
• For the Majority function Φn:

δ ≈ 1
• Recursive Majority:
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Percolation is very suitable to randomized algorithms

?

fn = 0fn = 0

fn = 1
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Revealment for percolation

Proposition (Schramm, Steif, 2005)
On the triangular lattice, a slight modification of the above randomized
algorithm gives a small revealment for the left-right Boolean functions fn
of order

δn ≈ n−1/4
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How is it related with the Fourier expansion of f ?

Theorem (Schramm, Steif, 2005)
Let f : {−1, 1}n → R be a real-valued function. Let A be a randomized
algorithm computing f whose revealment is δ = δA.

Then, for any k = 1, 2, . . . the Fourier coefficients of f satisfy

∑

|S |=k

f̂ (S)2 ≤ k δ ‖f ‖2
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