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Overview

• Dynamical percolation

• Conservative dynamics on percolation
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“standard” dynamical percolation

Start with an initial configuration ωt=0 at p = pc(T) = pc(Z2) = 1/2.

And let evolve each edge (or site) independently at rate 1. This gives a
Markov process (ωt)t≥0 on critical percolation configurations.
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Main results known

Theorem (Schramm, Steif, 2005)
On the triangular lattice T, there exist exceptional times t for which
0 ωt←→∞. Furthermore, a.s.

dimH(Exc) ∈
[1
6
,
31
36

]
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Main results (continued)

Theorem (G. , Pete, Schramm, 2008)
• On the square lattice Z2, there are exceptional times as well (with

dimH(Exc) ≥ ε > 0 a.s.)

• On the triangular lattice T
• a.s. dimH(Exc) = 31

36
• There exist exceptional times Exc(2) such that

0
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Strategy: noise sensitivity of percolation

t

ωt ωt+ε

n



Strategy: noise sensitivity of percolation



Large scale properties are encoded by Boolean functions of
the ‘inputs’

b · n

a · n

Let fn : {−1, 1}O(1)n2 → {0, 1} be
the Boolean function defined as
follows

fn(ω) :=

{
1 if left-right crossing
0 else

Theorem (Benjamini, Kalai, Schramm, 1998)
For any fixed t > 0:

Cov
[
fn(ω0) , fn(ωt)

]
−→
n→∞

0

We say in such a case that (fn)n≥1 is noise sensitive.
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Main tool to study noise sensitivity: Fourier analysis
Decompose f : {−1, 1}m → {0, 1} into “Fourier” series

f (ω) =
∑

S

f̂ (S)χS(ω) ,

where χS(x1, . . . , xm) :=
∏

i∈S xi .

E
[
f (ω0) f (ωt)

]
= E

[(∑

S1

f̂ (S1)χS1(ω0)
)(∑

S2

f̂ (S2)χS2(ωt)
)]

=
∑

S

f̂ (S)2 E
[
χS(ω0)χS(ωt)

]

=
∑

S

f̂ (S)2 e−t |S |

Thus the covariance can be written:

E
[
f (ω0) f (ωt)

]
− E

[
f (ω)

]2
=
∑

S 6=∅
f̂ (S)2 e−t |S |
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Fourier spectrum of critical percolation

b · n

a · n

Let fn, n ≥ 1 be Boolean functions defined
above.
One is interested in the shape of their
Fourier spectrum.

∑
|S|=k f̂n(S)2

k. . . . . .

?

∑
|S|=k f̂n(S)2

k. . . . . .

?
At which speed
does the Spectral
mass “spread” as
the scale n goes to
infinity ?
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Percolation undergoing conservative dynamics
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The system evolves according to the symmetric exclusion
process

Let (ωP
t )t≥0 be a sample of a symmetric exclusion process with symmetric

kernel P(x , y), (x , y) ∈ Z2 × Z2 or (x , y) ∈ T× T

We distinguish 2 cases:
(a) Nearest neighbor dynamics:

P(x , y) =
1

degree
1x∼y

(b) Medium-range dynamics:

P(x , y) � 1
‖x − y‖2+α

for some exponent α > 0
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What we can and cannot :-( prove about these dynamics

1. Let’s start with the bad news: we don’t know if there are exceptional
times for ωP

t .

2. If the dynamics is medium-range with exponent α > 0 (recall
P(x , y) � ‖x − y‖−2−α), then we get quantitative bounds on the
noise sensitivity of the crossing events fn under ωP

t . More precisely:

Theorem (Broman, G., Steif, 2011)

If P is any transition kernel with exponent α > 0, then on Z2,site, Z2,bond

or T, at the critical point, one has

Cov(fn(ωP
0 ), fn(ωP

t )) −→
n→∞

0

Furthermore, one can choose t = tn ≥ n−β(α).
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In other words, for medium-range exclusion dynamics
(α > 0), we also obtain this “picture”

t

ωt ωt+ε

n



Which approach for this problem ?

Two strategies:

1. Either the noise sensitivity results for the iid case transfer to these
conservative dynamics ?

2. Or an “appropriate” spectral approach ?

strategy 1. is “hopeless” since

Fact
There exist Boolean functions (fn)n which are highly noise sensitive to i.i.d.
noise but which are stable to symmetric exclusion P- dynamics.
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What about the spectral approach ?
Natural attempt: decompose our Boolean function f on a basis of
eigenvectors which diagonalize the generator L = LP of our P-exclusion
process.

But there are difficulties:

1. In the finite volume case, such a
basis obviously exists, but it
highly depends on P and it is
not very “explicit”.

2. In the infinite volume case, LP
is of course non-compact and it
seems that it does not have
pure-point spectrum.

fn : {−1, 1}n2 → {0, 1}

(χS)S⊂[m]

i.i.d. basis:i.i.d. basis:

fn : {−1, 1}n2 → {0, 1}

(χS)S⊂[m]

i.i.d. basis: “exclusion”
basis:
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The key identity
We decompose f on the classical “i.i.d.” basis even though it does not
diagonalize our exclusion process:

E
[
f (ωP

0 ) f (ωP
t )
]

= E
[(∑

S

f̂ (S)χS(ωP
0 )
)(∑

S ′

f̂ (S ′)χS ′(ωP
t )
)]

=
∑

S ,S ′

f̂ (S)f̂ (S ′) E
[
χS(ωP

0 )χS ′(ωP
t )
]

=
∑

|S |=|S ′|
f̂ (S)f̂ (S ′) E

[
χS(ωP

0 )χS ′(ωP
t )
]

=
∑

|S |=|S ′|
f̂ (S)f̂ (S ′)Pt(S,S′)

where Pt(S,S′) is the probability that the set S travels in time t towards
the set S ′ under the exclusion process.
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E
[
fn(ωP

0 ) fn(ωP
t )
]

=
∑

|S |=|S ′|
f̂n(S)f̂n(S ′)Pt(S,S′)

” = ”
〈
f̂n , Pt ? f̂n

〉

We would like to prove that for large scale n, the vectors {f̂n(S)}S and
{Pt ? f̂n(S)}S are almost orthogonal.

Unfortunately, we know much more on the vector {f̂n(S)2} than on
{f̂n(S)}:
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The spectral measure νfn

Definition
Recall that fn is the Boolean function:

b · n

a · n

Define the spectral measure
of fn as follows:

νfn(S = S) := f̂n(S)2

In particular S can be
considered as a random
subset of [0, an]× [0, bn].

We can prove the following:

Proposition (asymptotic singularity)
For any medium-range exponent α > 0 and any fixed t > 0: as n→∞,
the measures νfn and Pt ? νfn are asymptotically mutually singular
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Why does this imply noise sensitivity ?

Fact
• If φ2 and ψ2 are the densities of two probability measures on R, then

∫
φ ψ ≤ 2

√∫
φ2 ∧ ψ2

• In particular, if the two corresponding probability measures are almost
singular with respect to each other then

∫
φψ is small.

Take

{
φ2 ≡ f̂n(S)2

ψ2 ≡ Pt

[
(f̂n)2

]
(S)

this gives that

〈√
f̂n(S)2,

√
Pt

[
(f̂n)2

]
(S)
〉

is small.

By Cauchy-Schwartz, one concludes that
〈
f̂n(S), Pt ? f̂n(S)

〉
is small.
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Singularity in the medium-range case (α > 0)
(Recall P(x , y) � 1

‖x−y‖2+α )

n

Sfn
∼ νfn

|Sfn
| ≈ n3/4

(GPS 2008)
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