Master Pro M1, MAIM, Université Claude Bernard, Lyon1

Techniques Probabilites et Statistiques

année 2006-2007

Examen du 29 Mai 2007

Une feuille A4 avec les formules, tables des lois admises, autres documents interdits.

Téléphones portables interdits. Calculatrice autorisée

Durée 3h (le sujet est sur 3 pages)

Exercice 1. (9 points)

Soit (X, Y) un couple aléatoire de densité:

$$f(x, y; \theta) = \begin{cases} \theta^{-2} x^{1/\theta - 1} e^{-y/\theta} & 0 < x \le 1; y \ge 0 \\ 0 & \text{sinon} \end{cases}$$

où θ est un paramètre réel strictement positif que l'on se propose d'estimer à partir d'un échantillon $(X_1, Y_1), ..., (X_n, Y_n)$ de couples indépendants de même loi que (X, Y).

- 1) Calculer les lois marginales de X et Y. Que remarque-t-on? (1.5 points)
- 2) Déterminer la loi de probabilité de $Z = -\log(X)$. (1.5 points)
- 3) Déterminer l'estimateur du maximum de vraisemblance $\hat{\theta}_n$ de θ . (1 point)
- 4) En supposant connu que les variables aléatoires Y_i et Z_i ont la même loi, de densité: $\theta^{-1}e^{-\frac{x}{\theta}}\mathbb{1}_{x>0}$, étudier les propriétés de $\hat{\theta}_n$: bias, convergence, efficacité. (3 points)
- 5) Trouver un intervalle de confiance (asymptotique) de niveau 1α , $\alpha \in (0,1)$, pour θ à partir de lois usuelles. (2 points)

Exercice 2. (6 points)

Soit ε_{ij} , i=1,...,k j=1,...,n, des variables i.i.d., de loi normale centrée réduite. Soit $m_1,...,m_k \in \mathbb{R}$, on pose $Y_{ij}=m_i+\varepsilon_{ij}$ un modèle d'analyse de variance, pour i=1,...,k et j=1,...,n.

- 1) Quels sont les estimateurs du maximum de vraisemblance \hat{m}_i de m_i (i = ,...,k)? (1 point)
- 2) On se propose de construire une statistique de test pour les hypothèses

non linéaires:

$$H_0: \sum_{i=1}^k m_i^2 = 1, \qquad H_1: \sum_{i=1}^k m_i^2 \neq 1$$

Pour cela on propose d'utiliser la statistique de test

$$T_n = \sqrt{n}(\sum_{i=1}^k \hat{m}_i^2 - 1)$$

Montrer que T_n peut s'écrire sous la forme suivante:

$$T_n = \frac{1}{\sqrt{n}} \sum_{i=1}^k (U_i^n)^2 + 2 \sum_{i=1}^k (U_i^n) m_i + \sqrt{n} (\sum_{i=1}^k m_i^2 - 1)$$

- où $(U_i^n)_{i=1,\dots,k}$ sont i.i.d. de loi $\mathcal{N}(0,1)$. (1 point) 3) On suppose que H_0 est vérifiée. Montrer que $\frac{1}{\sqrt{n}} \sum_{i=1}^k (U_i^n)^2$ converge en probabilité vers 0. En déduire que T_n converge en loi. Préciser la loi limite. (2 points)
- 4) On suppose que H_1 est vérifiée. En utilisant la question précédente, montrer que $\lim_{n\to\infty} |T_n| = +\infty$, presque sûrement. (1 point)
- 5) Déduire des questions précédentes une procédure de test pour décider entre H_0 et H_1 . (1 point)

Exercice 3. (5 points)

Un médicament est administré selon un plan séquentiel à un groupe de sept sujets sains. L'administration A est l'administration de référence (sujets à jeun, monothérapie), l'administration B est faite après un petit déjeuner normal et l'administration C après un petit déjeuner riche en lipides. Le dosage sanguin du médicament (en ng/l) donne les résultats:

Sujets	Admin. A	Admin. B	Admin. C	Moyenne
1	57	61	47	55
2	61	66	52	59.67
3	81	85	69	78.33
4	100	103	87	96.67
5	75	82	67	74.67
6	88	97	75	86.67
7	102	115	83	100
Moyenne	80.57	87	68.57	78.72

(Les données sont extraites de M. Doly, J.-C. Vennat, J.-M. Cardot, P. Cardot-Eléments de statistique et de probabilités, page 202)

On veut étudier le dosage sanguin du médicament fonction du repas pris (Administration) et du sujet.

- 1) Ecrivez le modèle associé. (1 point)
- 2) Etudiez si le modèle écrit précédement est significatif. (1 point)
- **3)** Pour le modèle écrit à 1), est-ce que le petit déjeuner influe le dosage sanguin du médicament? (1 point)
- 4) Pour le modèle écrit à 1), les sujets ont-ils le même dosage sanguin du médicament? $(1\ point)$
- 5) Interprétez les estimations des effets des facteurs. (1 point)

Note: a) Les tests sont à faire pour un seuil $\alpha = 0.05$. Ecrire les hypothèses à tester, les modèles correspondants, les statistiques de test et leurs loi.

- b) On connaît:
 - la somme totale ST=6704.4
 - $3[23.72^2 + 19.05^2 + 0.39^2 + 17.95^2 + 4.05^2 + 7.95^2 + 21.28^2] = 5341$
 - $\bullet \ 7[1.85^2 + 8.28^2 + 10.15^2] = 1225$