Master M2 SITN, Université Claude Bernard, Lyon 1

Logiciel SAS, année 2014-2015

Examen du 8 Décembre 2014 Durée 3 heures: documents autorisés

NB: Chaque étudiant enregistre son programme dans un fichier sauvé sous le nom: "nom_prénom.sas" Ne pas oublier d'écrire en tête de programme, en commentaire, le nom et le prénom. A la fin de l'examen le fichier sera enregistré sur la clé USB fournie

Ecrivez, en commentaire, où commence chaque exercice et la réponse à chaque question.

EXERCICE 1

Le fichier de données, appelé Mercury.txt, se trouve sur ma page web

http://math.univ-lyon1.fr/~gciuperca/enseign.html

La description des données sur la dernière page du présent sujet. Les variables sont dans l'ordre donnée dans cette description.

(Le fichier de données provient de l'adresse internet "http://lib.stat.cmu.edu/DASL/Datafiles/MercuryinBass.html")

- 1) Enregistrez le fichier sur votre ordinateur, en gardant le même nom pour le fichier. Créez un tableau SAS, appelé *Mercury*, à partir du fichier *Mercury.txt*, contenant toutes les observations et toutes les variables.
- 2) Affichez le tableau SAS Mercury. Quel est le nombre d'observations du fichier?
- 3) La variable "age_data" est un indicateur sur la disponibilité des données sur l'âge des poissons: 1 si on dispose de l'âge et 0 si on ne dispose pas de l'âge. C'est pourquoi, on va partager le tableau Mercury en deux tableaux. Ces deux nouveaux tableaux ne doivent plus contenir la variable "age_data".
 - Créez le tableau SAS, qu'on va appeler *Mercury_age*, qui contient toutes les observations du tableau *Mercury* pour lesquelles on connaît l'âge du poisson.
 - Créez le tableau SAS, qu'on va appeler *no_age*, qui contient toutes les observations du tableau *Mercury* pour lesquelles on ne connaît pas l'âge du poisson.

Spécifiez pour chacun des deux tableaux le nombre d'observations et de variables.

- **4)** Réalisez une analyse descriptive univariée sur les variables *Alkalinity*, *pH*, *Calcium*, *Chlorophyll*, *Avg_Mercury*, *No.samples*, *min*, *max*, *3_yr_Standard* du tableau de données *Mercury_age*. Pour le même tableau de données, testez si les variables *Alkalinity*, *pH* sont corrélées avec les variables *Avg_Mercury*, *3_yr_Standard*.
- Il y a-t-il des données manquantes dans le tableau de données Mercury_age?
- 5) Pour le tableau de données *Mercury_age*, testez si les variables *Avg_Mercury* et 3_yr_Standard sont de loi Normale.

Tracez l'histogramme des variables $Avg_Mercury$ et $3_yr_Standard$ et aussi la densité de la loi Normale correspondante.

- 6) En utilisant le tableau de données Mercury_age, créez deux nouvelles variables:
 - log_alkalility qui sera le logarithme de la variable Avg_Mercury.
 - log_yrstd qui sera le logarithme de la variable 3_yr_Standard.
- 7) Est-ce que les variables $log_alkalility$ et log_yrstd sont de loi Normale? Si oui, tracez les histogrammes correspondantes.
- 8) Quelles sont les moyennes des variables loq_alkalility et loq_yrstd?
- 9) Est-ce que les variables log_alkalility et log_yrstd ont la même moyenne (faire un test d'hypothèse)?

EXERCICE 2 (à utiliser PROC IML)

On utilise le tableau *Mercury* créé à l'Exercice 1, question 1).

- 1) Lire, dans une matrice, qu'on va noter X, toutes les observations des variables Alkalinity, pH, $Avg_Mercury$, $3_yr_Standard$ du tableau SAS Mercury.
- 2) Créez une nouvelle variable V qui sera la différence des variables $Avg_Mercury$ et $3_yr_Standard$. Affichez la variable V.
- 3) On crée maintenant la variable Z qui aura les valeurs:

-1 si
$$V < 0$$
;
0 si $V = 0$;
1 si $V > 0$;

Affichez les deux vecteurs V et Z et vérifiez que vous avez fait la bonne transformation.

- 4) Créer Créez une nouvelle matrice, notée Y, en concaténant la colonne de la matrice X et les vecteurs V et Z. Vérifiez (par affichage) qu'à la question précédente vous avez fait la bonne transformation.
- 5) Créer un tableau SAS appelé nouveau qui va contenir toutes les variables de la matrice Y. Quittez PROC IML.

EXERCICE 3

A partir du tableau de données créé à l'Exercice 1, question 1) et du tableau nouveau créé à l'Exercice 2, question 5), créez un nouveau tableau, appelé final. Ce tableau doit contenir seulement les variables ID, Lake, Alkalinity, pH, Calcium, Cholophyll, Avg_Mercury, No.samples, min, max, 3_yr_Standard, age_data, V, Z. Affichez le nouveau tableau.

EXERCICE 4 (à utiliser PROC GPLOT)

On utilise le tableau final créé à l'Exercice 3.

Tracer le graphique de la variable pH en abscisse, fonction de la variable Alkalinity en ordonnée. Les points de représentation sont "*" et la courbe, obtenue par interpolation, sera de couleur bleu. Donner un titre à ce graphique et pour les axes, spécifier les noms des variables (le nom de l'Alkalinity sera en noir et le nom du pH sera en en vert).

EXERCICE 5 (à utiliser les macros SAS)

- 1) Créez une macro-variable *tableau* associée au nom du tableau *final*, créé à l'Exercice 3. Créez également les macro-variables:
- V1 correspondant à la variable pH.
- V2 correspondant à la variable Alkalinity.
- V3 correspondant à la variable Calcium.
- V4 correspondant à la variable Avg_Mercury.
- 2) Ecrivez un programme macro (paramétré) avec trois paramètres en entrée. Ce macro-programme doit réaliser un modèle de régression linéaire d'une variable fonction de deux autres variables. La procédure SAS incluse dans le macro-programme doit utiliser comme tableau en entrée la macro-variable correspondant du tableau tableau.

Appliquez pour les macro-variables V4 fonction de V1 et V2.

Appliquez pour les macro-variables V4 fonction de V1 et V3.

Remarque La procédure SAS qui fait une régression multiple est PROC REG, avec une description à l'adresse:

 $http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/\ viewer.htm \# statug_reg_sect006.htm$

Vous trouvez aussi une description de la procédure dans la documentation écrite par N. COQUE(que je vous ai distribuée), page 38.

<i>Idée:</i>	pour	ce que	l'on	vous	demande	\grave{a}	l'Exercice	5,	$il\ faut$	$sp\'{e}cifier$	seulement	les	instructions	PROC
REG	et Mo	ODEL												