Etudiant 1:

Dérivation d'une application réciproque. Théorème, interprétation géométrique et_exemple.

Exercice 1:

Factoriser les polynômes suivants :

$$P(X) = -X^{3} + X^{2} + 10X + 8, \quad Q(X) = X^{3} - X + 3.$$

Exercice 2:

Soit (u_n) la suite définie par $u_0 \in [0,1]$ et $\forall n \in \mathbb{N}, u_{n+1} = u_n - u_n^2$. On admettra que la suite (u_n) est à termes dans [0,1].

- 1. Montrer que la suite (u_n) est convergente et déterminer sa limite.
- 2. Déterminer la nature (et somme?) de la série de terme général u_n^2 .
- 3. Montrer que la série de terme général $\ln\left(\frac{u_{n+1}}{u_n}\right)$ est divergente.

Calculer les dérivées n-ièmes de $x\mapsto \frac{1}{x+1}$ et $x\mapsto \frac{x}{x+1}$ sur un domaine de définition à déterminer.

Etudiant 2:

Fonctions convexes, points d'inflexions : définitions et caractérisations.

Exercice 1:

Déterminer la convergence (et la somme?) de la série $\sum_{n\geq 1} \ln\left(\frac{(n+1)^2}{n(n+2)}\right)$.

Exercice 2:

Factoriser les polynômes suivants :

$$P(X) = X^3 + 2X^2 - 21X + 18$$
, $Q(X) = -X^3 + 2X^2 - X + 12$.

Exercice 3:

Soit f la fonction définie sur \mathbb{R} par $f(x) = \ln(1 + e^x)$.

Montrer que f admet une réciproque, et déterminer sa dérivée et sa convexité.

Etudiant 3:

Cours:

Définition d'une série convergente, d'une série absolument convergente. Exemples.

Exercice 1:

Factoriser les polynômes suivants :

$$P(X) = X^3 + X + 12$$
, $Q(X) = X^3 + 4X^2 - 7X - 10$.

Exercice 2:

Montrer que $\forall n \geq 1, \frac{1}{4n^2-1} = \frac{1}{2} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right)$. En déduire la convergence ou non de la série numérique $\sum_{n \geq 1} \frac{1}{4n^2-1}$.

Exercice 3:

Soit f la fonction définie par f(0) = 1 et $\forall x > 0, f(x) = x^3 \ln x + 1$.

- 1. Montrer que f est de classe C^2 sur $[0, +\infty[$.
- 2. Déterminer les intervalles sur lesquels f est convexe.
- 3. Préciser les points d'inflexions de f.

Exercices supplémentaires

Exercice 1:

Soit f la fonction définie sur $[-1, +\infty[$ par $f(x) = \sqrt{1+x}$. Soit $(u_n)_n$ la suite définie par $u_0 = 0$ et $\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n)$.

- 1. Déterminer l'unique point fixe α de f.
- 2. Montrer que pour tout $n \in \mathbb{N}, u_n \in [0, 2]$.
- 3. Montrer que pour tout $n \in \mathbb{N}, |u_{n+1} \alpha| \leq \frac{1}{2}|u_n \alpha|$.
- 4. En déduire que la suite (u_n) est convergente et déterminer sa limite.
- 5. Déterminer un entier N tel que $|u_N \alpha| \le 10^{-4}$.

Exercice 2:

Soit $f: [-1, +\infty[\to \mathbb{R} \text{ définie par } \forall x \ge -1, f(x) = (x+1)^2 e^{-x}.$ Soit $(u_n)_n$ la suite définie par $u_0 = 3/2$ et $\forall n \ge 0, u_{n+1} = f(u_n)$.

- 1. Dresser le tableau de variation de f sur $[-1, +\infty[$.
- 2. Montrer que l'équation f(x) = x d'inconnue $x \in [1, 3/2]$ admet une unique solution notée α .
- 3. Montrer que $\forall n \geq 0, u_n \in [1, 3/2]$
- 4. Montrer que $\forall n \in \mathbb{N}, |u_{n+1} \alpha| \leq \frac{1}{2}|u_n \alpha|$.
- 5. En déduire que la suite (u_n) converge et donner sa limite.

Exercice 3:

Soit la suite $(u_n)_n$ définie par $u_0 = 0$ et $u_{n+1} = \frac{e^{u_n}}{u_n + 2}$ pour n > 0.

- 1. Montrer que la suite est bien définie pour tout $n \geq 0$
- 2. Soit f la fonction définie sur [0,1] par $f(x)=\frac{e^x}{x+2}$. Montrer que $\forall x \in [0,1], \frac{1}{4} \leq f'(x) \leq \frac{2}{3}$
- 3. Montrer que l'équation f(x) = x admet une unique solution α dans [0,1].
- 4. Montrer que $\forall n \in \mathbb{N}, |u_{n+1} \alpha| \le 2/3|u_n \alpha|$.
- 5. En déduire la convergence de la suite (u_n) et sa limite.

Exercice 4:

- 1. Vérifier que $\forall n \geq 1, \frac{1}{n(n+1)} = \frac{1}{n} \frac{1}{n+1}$
- 2. En déduire la convergence (et la somme) de la série numérique $\sum_{n>1} \frac{1}{n(n+1)}$.

Exercice 5:

- 1. Montrer que, pour tout $k \in \mathbb{N}^*$, $\ln(k+1) \ln(k) \le \frac{1}{k}$
- 2. En déduire la nature de la série $\sum_{k>1} \frac{1}{k}$.

Exercice 6:

- $1. \ \text{Montrer que} \ \forall n \geq 2, \quad \frac{1}{n} \frac{1}{n+1} \leq \frac{1}{n^2} \leq \frac{1}{n-1} \frac{1}{n}.$
- 2. En déduire la convergence de la série $\sum_{n\geq 1}\frac{1}{n^2}$