Etudiant 1:

Cours:

Valeurs propres, vecteurs propres et sous-espaces propres d'une matrice.

Exercice 1:

Montrer que
$$M = \begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix}$$
 est inversible et déterminer son inverse.

Exercice 2:

Déterminer les valeurs propres et les sous-espaces propres de la matrice

$$A = \left(\begin{array}{ccc} 6 & 3 & 3\\ -1 & 4 & -1\\ -1 & -5 & 2 \end{array}\right)$$

Etudiant 2:

Cours:

Transposée d'une matrice, définition et propriétés.

Exercice 1:

Soit A la matrice
$$\begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 3 & -2 \end{pmatrix}$$
.

Déterminer les valeurs propres et les sous-espaces propres de A.

Exercice 2:

On considère la matrice
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}$$
.

- 1. Calculer $A^3 3A^2 + 3A I$.
- 2. En déduire que A est inversible et calculer son inverse.

Etudiant 3:

Cours:

Matrices inversibles : définition.

Inversibilité d'une matrice triangulaire, diagonale.

Exercice 1:

$$A = \left(\begin{array}{ccc} -1 & a & a \\ 1 & -1 & 0 \\ -1 & 0 & -1 \end{array}\right)$$

Calculer $(A+I)^3$. En déduire le calcul de A^n , $\forall n \geq 1$.

Exercice 2:

On considère la matrice
$$A = \begin{pmatrix} 0 & -2 & 0 \\ -2 & 0 & 0 \\ 2 & 2 & 2 \end{pmatrix}$$
.

Déterminer ses valeurs propres, ses vecteurs propres et ses sous-espaces propres.

Exercices supplémentaires

Exercice 1

Vérifier si les matrices suivantes sont inversibles, et calculer si possible leur inverse :

$$A = \begin{pmatrix} 3 & 2 & -1 \\ 1 & -1 & 1 \\ 2 & -4 & 5 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 2 & 4 \\ 1 & -2 & -1 \\ 2 & 0 & 3 \end{pmatrix}, \qquad D = \begin{pmatrix} 3 & 2 & 1 \\ -1 & 2 & -1 \\ 0 & 1 & -2 \end{pmatrix}$$

Exercice 2
Soit
$$A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$$
.

1. Montrer qu'il existe deux suites réelles (a_n) et (b_n) telles que

$$\forall n \in \mathbb{N}, \quad A^n = a_n I + b_n A$$

2. Exprimer a_n et b_n en fonction de n et en déduire l'expression de A^n .

1. Soit
$$A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
. Calculer $A^3 - 3A^2 + 2A - 2I$. En déduire que A est inversible et calculer son inverse.

2. Soit
$$B = \begin{pmatrix} 2 & -4 & 3 \\ 1 & -2 & 0 \\ -2 & 2 & 3 \end{pmatrix}$$
. Calculer $B^3 - 3B^2 + 6B + 6I$. En déduire que B est inversible et calculer son inverse.

Exercice 4

Soit
$$m \in \mathbb{R}$$
 et A la matrice $\begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 2-m & m-2 & m \end{pmatrix}$.

Exercice 5

Soit $A=(a_{i,j})_{i,j}$ la matrice carrée d'ordre $n\geq 1$ définie par $a_{i,i}=0$ et $a_{i,j}=1$ si $i\neq j$. Montrer que A est inversible et calculer son inverse.