Etudiant 1:

Cours: Théorème du rang, énoncé et étapes de la démonstration.

Soit E un \mathbb{R} -espace vectoriel de base $\mathcal{B} = (\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$. On pose $\overrightarrow{u_1} = \overrightarrow{e_2} + \overrightarrow{e_3}$, $\overrightarrow{u_2} = \overrightarrow{e_1} + \overrightarrow{e_3}, \ \overrightarrow{u_3} = \overrightarrow{e_1} + \overrightarrow{e_2}.$

1. Montrer que $\mathcal{B}' = (\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3})$ est une base de E et déterminer les matrices de passage entre les deux bases.

2. Soit
$$f \in \mathcal{L}(E)$$
 de matrice $A = \begin{pmatrix} 0 & -1 & 1 \\ -1/2 & -1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 \end{pmatrix}$ dans la base \mathcal{B} .

Déterminer la matrice de f dans la base \mathcal{B}'

Exercice 2:

Soit E un ev de dimension 3, et f un endomorphisme de E tel que $f^2 \neq 0$ et $f^3 = 0$. Soit $\overrightarrow{x_0}$ tel que $f^2(\overrightarrow{x_0}) \neq \overrightarrow{0}$.

- 1. Montrer que $(\overrightarrow{x_0}, f(\overrightarrow{x_0}), f^2(\overrightarrow{x_0}))$ est une base de E et déterminer la matrice de f dans cette base.
- 2. Montrer que rg(f) = 2.
- 3. Montrer que l'ensemble des endomorphismes de E qui commutent avec fest un sous-espace vectoriel de $\mathcal{L}(E)$ de base (Id_E, f, f^2) .

Etudiant 2:

Cours: Formules de changement de base.

Exercice 1:

Soit f un endomorphisme non nul de \mathbb{R}^3 tel que $f^2 = 0$.

- 1. Montrer que $\operatorname{Im}(f) \subset \operatorname{Ker}(f)$.
- 2. En déduire que le rang de f est 1.
- 3. Montrer qu'il existe une base dans laquelle la matrice de f est

$$\left(\begin{array}{ccc} 0 & 0 & a \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right), \quad a \in \mathbb{R}^*$$

Exercice 2:

Soit E un K-ev de dimension finie et f un endomorphisme de E tel que $f^3 = f$. Montrer que $E = \operatorname{Ker}(f) \oplus \operatorname{Im}(f)$.

Etudiant 3:

Cours:

Théorème de la base incomplète.

Exercice 1:

Exercice 1: Soit $f \in \mathcal{L}(\mathbb{R}^3)$ canoniquement associé à la matrice $A = \begin{pmatrix} 3 & -1 & 1 \\ 2 & 0 & 1 \\ 1 & -1 & 2 \end{pmatrix}$.

- 1. Montrer que $(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})$ est une base de \mathbb{R}^3 où $\overrightarrow{a} = (0, 1, 1), \overrightarrow{b} = (1, 1, 0),$
- __2. Ecrire la matrice de f dans la base $(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})$. En déduire A^n pour $n \ge 1$.

Exercice 2:

Soit E un espace vectoriel et $f \in \mathcal{L}(E)$ tel que $f^2 - 3f + 2Id = 0$.

- 1. Montrer que f est bijective et déterminer f^{-1} .
- 2. Montrer que $Ker(f Id) \oplus Ker(f 2Id) = E$.

Exercices supplémentaires

Exercice 1

Soit E un espace vectoriel et $f,g\in\mathcal{L}(E)$ tels que $f\circ g\circ f=f$ et $g\circ f\circ g=g$. Montrer que $E=\mathrm{Im}(f)\oplus\mathrm{Ker}(g)$.

Exercice 2

Soient $f, g, h \in \mathcal{L}(E)$ tels que $f \circ g = h, g \circ h = f$, et $h \circ f = g$. Montrer que f, g h ont même noyau et même image.

Exercice 3

Soient f_1 , f_2 et f_3 les applications réelles définies par :

$$\forall x \in \mathbb{R}, \quad f_1(x) = e^{-x}, \quad f_2(x) = (x+1)e^{-x}, \quad f_3(x) = (x^2-1)e^{(x-1)}$$

Soit E l'espace vectoriel engendré par ces 3 applications.

- 1. Déterminer une base $\mathcal B$ de E, en déduire la dimension de E.
- 2. Soit D l'application d'efinie sur E par : $\forall f \in E, D(f) = f'$.
- 3. Montrer que $D \in \mathcal{L}(E)$ et déterminer la matrice A de D dans la base \mathcal{B} .
- 4. Calculez A^n pour $n \ge 1$.
- 5. Soit f l'application définie sur \mathbb{R} par $f(x) = (x^2 + x + 1)e^{-x}$. Calculer $f^{(n)}$.
- 6. Démontrer que D est un automorphisme de E. Déterminer D^{-1} et sa matrice relativement à la base \mathcal{B} .

Exercice 4

Soient $p, q \in \mathcal{L}(E)$. Montrer l'équivalence

 $p \circ q = p$ et q = p = q $\iff p$ et q sont des projecteurs de même noyau