Etudiant 1:

Exercice:

Soit $n \geq 1$. On note $E = \mathbb{R}_n[X]$ et on considère l'application $\varphi: E^2 \to \mathbb{R}$ définie par

$$\varphi(P,Q) = \int_0^{+\infty} P(t)Q(t)e^{-t}dt$$

- 1. Montrer que φ est bien définie, puis montrer que c'est un produit scalaire sur E. On pose $\|P\|=\sqrt{\varphi(P,P)}$.
- 2. Soit T le polynôme défini par $T(X) = 1 + \frac{X^n}{n!}$. Calculer ||T||.
- 3. On pose $I=\frac{T}{\|T\|}.$ On définit l'application θ qui, à tout polynôme P de E associe $2\varphi(P,I)I-P.$
 - (a) Montrer que θ est un automorphisme de E et déterminer θ^{-1} .
 - (b) Montrer que pour tout P de E, $\|\theta(P)\| = \|P\|$
 - (c) Déterminer les valeurs propres possibles de θ .
 - (d) θ est-il diagonalisable?

Etudiant 2:

Exercice 1:

Soit $n \geq 2$. Soit u l'endomorphisme de \mathbb{R}^n dont la matrice dans la base cano-

nique de
$$\mathbb{R}^n$$
 est donnée par : $A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 0 & \cdots & 0 \\ \vdots & 0 & & \vdots \\ 1 & 0 & \cdots & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$

- 1. Préciser le rang de cette matrice, puis déterminer une base de Im(u) et de Ker(u).
- 2. Déterminer les valeurs propres et les sous-espaces propres de *u*. Cet endomorphisme est-il diagonalisable?

Exercice 2:

Pour $P, Q \in \mathbb{R}[X]$, on définit

$$\varphi(P,Q) = \int_{-\infty}^{+\infty} e^{-t^2/2} P(t) Q(t) dt$$

Montrer que φ est un produit scalaire sur $\mathbb{R}[X]$.

Etudiant 3:

Exercice:

Soit $(a, b) \in \mathbb{R}^2$, avec a < b.

1. Soient a_1, \ldots, a_n des entiers naturels deux à deux distincts. Montrer que la famille des fonctions $f_k : [a, b] \to \mathbb{R}$, définies par

$$f_k(x) = e^{a_k x}$$

pour $k \in \{1, ..., n\}$ est libre dans l'espace $C^0([a, b], \mathbb{R})$.

2. Soit $f \in C^0([a, b], \mathbb{R})$, strictement positive. On pose pour tout $(i, j) \in \{1, \dots, n\}^2$,

$$a_{i,j} = \int_a^b e^{(i+j)t} f(t)dt$$

On note $A=(a_{i,j})_{1\leq i,j\leq n}$ et on considère l'application $\varphi:\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}$ définie par

$$\varphi(x,y) = {}^{t}XAY$$

où X et Y sont les matrices de coordonnées respectives de x et y dans la base canonique de \mathbb{R}^n .

Montrer que φ est un produit scalaire sur \mathbb{R}^n .

Exercices supplémentaires

Exercice 1

Soient E un \mathbb{K} -ev de dimension finie et $f \in \mathcal{L}(E)$ tels que $f^2 - 3f + 2Id_E = 0$.

- 1. Montrer que f est inversible et exprimer son inverse en fonction de f.
- 2. Montrer que $E = \text{Ker}(f Id_E) \oplus \text{Ker}(f 2Id_E)$.
- 3. f est-il diagonalisable?

Exercice 2

Soit E un \mathbb{C} -ev et $f \in \mathcal{L}(E)$ tel que $f^3 = -f$. Montrer que $E = \text{Ker}(f) \oplus \text{Im}(f)$.

Exercice 3 Soit
$$A = \begin{pmatrix} 0 & -8 \\ 4 & 12 \end{pmatrix}$$
.

- 1. Trouver $P \in GL_2(\mathbb{R})$ et D diagonale tels que $D = P^{-1}AP$.
- 2. Soit B tel que BA = AB. Montrer que tout vecteur propre de A est vecteur propre de B. En déduire que $P^{-1}BP$ est diagonale dès que B commute avec A.
- 3. Trouver toutes les matrices M réels d'ordre 2 telles que $M^2=A$.
- 4. Même question avec $A)I_2$, puis $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.