Etudiant 1:

Exercice 1 : Soit F la fonction définie sur \mathbb{R} par $\forall x \in \mathbb{R}$, $F(x) = \frac{1}{1 + e^{-x}}$.

- 1. (a) Montrer que F est la fonction de répartition d'une variable aléatoire X à densité, dont on déterminera une densité.
 - (b) Montrer que X admet des moments d'ordre n pour tout $n \ge 1$.
- 2. On pose $Y = \frac{e^X 1}{e^X + 1}$.
 - (a) Déterminer la fonction de répartition et une densité de Y.
 - (b) La variable aléatoire Y admet-elle une espérance? Si oui, la calculer.

Exercice 2:

Soit f la fonction définie par f(t) = 0 si t < 0 et $f(t) = te^{-t}$ sinon.

- 1. Montrer que f est une densité de probabilité. Soit X une VAR de densité f.
- 2. Déterminer la loi des VAR $Y = \lfloor X \rfloor$ et Z = X Y.

Etudiant 2:

Exercice 1:

Soit f la fonction définie par f(x) = 0 si $x \le 0$ et $f(x) = xe^{-x^2/2}$ si x > 0.

- 1. Montrer que f est une densité.
- 2. Soit X une variable aléatoire admettant f pour densité. Déterminer la fonction de répartition de X.
- 3. On pose $Y = X^2$. Déterminer la loi de Y.

Exercice 2 : Soient X et Y deux variables aléatoires indépendantes de loi exponentielle de paramètre 1.

- 1. Soit t > 0. Déterminer une densité de la variable $W_t = Y tX$.
- 2. Déterminer, s'il existe, le moment d'ordre n (avec $n \geq 1$) de W_t .
- 3. En déduire une densité de la variable $Z = \frac{Y}{X}$.
- 4. Déterminer la loi de la variable $U = \frac{X}{X + Y}$.

Etudiant 3:

Exercice 1 : Soit pour tout $x \in \mathbb{R}$, $f(x) = \frac{a}{x^2 + 1}$

- 1. Déterminer a pour que f soit une densité.
- 2. Déterminer une densité de $Y = e^X$ et une densité de $Z = X^2$.

Exercice 2 : Soit U une variable aléatoire réelle suivant la loi uniforme sur [0,1[.

Soit $\lambda > 0$. On considère les variables aléatoires suivantes :

$$V = -\frac{1}{\lambda}\ln(1-U), \quad W = \lfloor V \rfloor, \quad Y = V - W, \quad Z = -\frac{1}{\lambda}\ln(1-Y)$$

- 1. Déterminer les lois de V et W.
- 2. Déterminer une densité de Y ainsi que son espérance.
- 3. Déterminer une densité de Z.
- 4. On considère la variable aléatoire $X=\min(1,V).$

Déterminer la fonction de répartition de X.