Etudiant 1:

Exercice 1:

- 1. On considère la fonction $f:(x,y)\mapsto x^2y$. Calculer $\frac{\partial f}{\partial x}(x,y)$ et $\frac{\partial f}{\partial y}(x,y)$.
- 2. Soient les fonctions suivantes : $u(t) = \ln(t)$, $v(t) = \frac{1}{t}$, $g = u \circ f$, h(x,t) = f(x,v(t)), k(t) = f(u(t),v(t)). Calculer :
 - les dérivées partielles de g par rapport à x et y en (x,y)
 - les dérivées partielles de h par rapport à x et t en (x,t)
 - la dérivée k'(t).

Exercice 2:

Soit X_n suivant une loi $\mathcal{P}(n\lambda)$. La suite (X_n) converge-t-elle en loi? Même question pour X_n qui suit une loi $\mathcal{N}(m, n\sigma^2)$.

Etudiant 2:

Exercice 1:

Soit X suivant une loi exponentielle de paramètre 1. On note pour tout $n \ge 1$, $Y_n = e^{-X + \frac{1}{n}}$ et $Y = e^{-X}$.

- 1. Montrer que Y est une variable à densité et déterminer sa loi.
- 2. Montrer que Y_n converge en loi vers Y.

Exercice 2:

- 1. Soit f la fonction définie par $f(x,y)=x^y$. Sur quel ouvert Ω de \mathbb{R}^2 la fonction f est-elle définie? Calculer le gradient de f en A, pour $A \in \Omega$.
- 2. Soit $n \geq 1$. On définit pour tout t > 0, $u(t) = t^n$ et $v(t) = \ln(t)$. On définies les fonctions suivantes : g(x,y) = v(f(x,y)), h(t,y) = f(u(t),y), j(x,t) = f(x,v(t)) et k(t) = f(u(t),v(t)). Calculer les dérivées partielles par rapport à x et y de la fonction g en $(x,y) \in \Omega$, puis celles de h, j et k par rapport à la variable t, pour x > 0, $y \in \mathbb{R}$ et t > 0.
- 3. Calculer la dérivée directionnelle $f_U(A)$ lorsque A=(2,1), U=(1,2).

Etudiant 3:

Exercice 1:

On pose f(0,0) = g(0,0) = 0 et pour $(x,y) \neq (0,0)$, on définit

$$f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}, \quad g(x,y) = \frac{xy}{x^2 + y^2}$$

- 1. Montrer que f est continue en (0,0) et que q n'est pas continue en (0,0)
- 2. Calculer les gradients de f et de g en $A=(x_0,y_0)\neq (0,0)$. Peut-on les calculer en (0,0)?
- 3. Peut-on calculer une dérivée directionnelle $f'_U(O)$ ou $g'_U(O)$ lorsque O=(0,0) et $U(\alpha,\beta)$?
- 4. Sur quelle partie de \mathbb{R}^2 , les fonctions f et g sont-elles de classe \mathcal{C}^1 ?

Exercice 2:

Soit $(X_n)_n$ une suite de VAR de Bernoulli indépendantes de paramètre p. On pose pour $n \ge 1$, $Y_n = X_n X_{n+1}$.

- 1. Préciser la loi de Y_n .
- 2. Démontrer que $S_n = \frac{Y_1 + \ldots + Y_n}{n}$ converge en probabilité vers la variable certaine p^2 . La suite (S_n) converge-t-elle en loi?

Exercices supplémentaires

Exercice 1

On considère la fonction

$$f: \begin{array}{ccc} \mathbb{R}^2 \setminus \{(0,0)\} & \to & \mathbb{R} \\ (x,y) & \mapsto & \frac{x+y}{x^2+y^2} \end{array}$$

- 1. Justifier que f est bornée sur $\Delta = \{(x,y) \in \mathbb{R}^2 \mid 3x + y \le 6, x y \le 2, x \ge 1\}$.
- 2. On note $\partial \Delta$ le bord de Δ .
 - (a) Préciser un système d'équations définissant $\partial \Delta$.
 - (b) Justifier que f admet un minimum et un maximum sur $\partial \Delta$.
 - (c) Déterminer $\min_{\partial \Delta} f$ et $\max_{\partial \Delta} f$ et préciser les points $\partial \Delta$ où ils sont atteints.

Exercice 2

même exercice avec
$$f(x,y)=\frac{x-y}{x+y}$$
 et $\Delta=\{(x,y)\in\mathbb{R}^2\ /\ x\leq 4,y\leq 3,x+y\geq 2\}.$

Exercice 3 On considère l'espace vectoriel \mathbb{R}^n muni de son produit scalaire canonique. Soit $A \in \mathbb{R}^n$. On pose

$$\forall X \in \mathbb{R}^n, \quad f(X) = \frac{\arctan(\langle A, X \rangle)}{1 + ||X||^2}$$

Montrer que f est définie et continue sur \mathbb{R}^n .

Exercice 4

- 1. Montrer que la fonction $f:(x_1,\ldots,x_n)\mapsto x_1^2+\cdots+x_n^2$ admet n pour minimum sur l'hyperplan d'équation $x_1+\cdots+x_n=n$.
- 2. Déterminer le minimum de la somme des puissances n-ièmes de deux nombres réels strictement positifs dont la somme vaut n.

Exercice 5

Soit $(X_n)_n$ une suite de VARD deux à deux indépendantes possédant toutes une espérance et une variance. On suppose que

$$\lim_{n \to +\infty} \frac{E(X_1) + \dots + E(X_n)}{n} = M \quad \text{et} \quad \lim_{n \to +\infty} \frac{V(X_1) + \dots + V(X_n)}{n^2} = 0$$

Montrer que $S_n = \frac{X_1 + \dots + X_n}{n}$ converge en probabilité vers la variable certaine égale à M.

Exercice 6

Combien de fois suffit-il de lancer une pièce de monnaie équilibrée pour être sûr d'avoir au moins 99% de chances d'obtenir autant de piles que de faces à 1% près?

Exercice 7

On considère la fonction f définie par $f(x,y) = 2x^2y - xy^2$. On considère le point A(1,0) et le point B = (3,4). On peut poser H = B - A. Déterminer un point $C = A + \theta H$ du segment A(1,0) tel que

$$f(B) - f(A) = \langle \nabla f_C, B - A \rangle = \langle \nabla f_{A+\theta H}, H \rangle$$