Etudiant 1:

Exercice 1:

Soit A une matrice symétrique telle que $\operatorname{Sp}(A) \subset \mathbb{R}^{+*}$. $B \in \mathbb{R}^2$. On pose $\forall X \in \mathbb{R}^n, \ f(X) = \frac{1}{2} \, ^t X A X - \, ^t B X = \frac{1}{2} < A X, X > - < B, X >$.

- 1. Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R}^n .
- 2. Soit $X_1 \in \mathbb{R}^n$. Montrer que $\forall H \in \mathbb{R}^n, \ f(X_1+H) = f(X_1) + \langle AX_1 B, H \rangle + \frac{1}{2} \langle AH, H \rangle.$
- 3. En déduire le DL d'ordre 1 de f au voisinage de X_1 et $\nabla f(X_1)$.
- 4. Montrer que f possède un unique point critique et qu'en ce point f possède un minimum global.

Exercice 2:

Soient U,V et W trois variables aléatoires sur (Ω,\mathcal{A},P) indépendantes, ayant même loi, d'espérance $m\neq 0$ et de variance $\sigma^2\neq 0$.

Déterminer x, y et z dans \mathbb{R} pour que la variable T = xU + yV + zW ait pour espérance m et une variance minimale.

Etudiant 2:

Exercice:

Soit $F: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $F(x,y) = 3x^4 - 4x^2y + y^2$.

- 1. (a) Justifier que F est de classe C^2 sur \mathbb{R}^2 .
 - (b) Déterminer $D = \{(x, y) \in \mathbb{R}^2 / F(x, y) = 0\}.$
 - (c) Etudier le signe de F(x,y) et représenter graphiquement l'ensemble \mathcal{P} (respectivement \mathcal{N} des points M du plan de coordonnées (x,y) vérifiant $F(x,y) \geq 0$ (resp. $F(x,y) \leq 0$).
 - (d) La fonction F admet-elle des extremums locaux? globaux?
 - (e) Montrer que la restriction de F à toute droite passant par l'origine 0 = (0,0) admet un minimum strict en 0.
- 2. (a) Montrer qu'il existe deux réels α et β tels que $\forall (x,y) \in \mathbb{R}^2 \setminus D$,

$$\frac{\frac{\partial F}{\partial y}(x,y)}{F(x,y)} = \frac{\alpha}{y - x^2} + \frac{\beta}{y - 3x^2}$$

(b) Soit $a \in \mathbb{R}$. Déterminer les intervalles I de \mathbb{R} et les fonctions g d'une variable réelle, définies et dérivables sur I, telles que, pour tout $t \in I$, $F(a,t)g'(t) = \frac{\partial F}{\partial t}(a,t)g(t). \text{ Y a-t-il des solutions sur } I = \mathbb{R} ?$

Etudiant 3:

Exercice:

Soit $n \geq 2$ et $A \in \mathcal{M}_n(\mathbb{R})$.

- 1. Dans cette question n = 3 et $A = \begin{pmatrix} -2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$.
 - (a) Déterminer Ker(A).
 - (b) Soit $f: \mathbb{R}^3 \to \mathbb{R}$, $f(X) = {}^t X A X$. Justifier que f est positive sur \mathbb{R}^3 et déterminer ses extremums globaux.
- 2. On revient au cas général. Soit $f: \mathbb{R}^n \to \mathbb{R}$, $f(x) = \langle Ax, x \rangle$.
 - (a) Justifier que f est de classe \mathcal{C}^1 et écrire la formule de Taylor à l'ordre 1 en $x\in\mathbb{R}^n.$
 - (b) Montrer que $\forall x, u \in \mathbb{R}^n, \langle Au, x \rangle = \langle {}^tAx, u \rangle$. En déduire que

$$f(x+u) = f(x) + \langle (A + {}^{t}A)x, u \rangle + \langle Au, u \rangle$$

- (c) Justifier que $S = \{u \in \mathbb{R}^n \text{ tels que } ||u|| = 1\}$ est un fermé borné de \mathbb{R}^n . En déduire l'existence d'une fonction $\varepsilon : \mathbb{R}^n \to \mathbb{R}$ continue en 0 telle que $\varepsilon(0) = 0$ et $\forall u \in \mathbb{R}^n, \langle Au, u \rangle = ||u||\varepsilon(u)$.
- (d) Montrer que $\forall x \in \mathbb{R}^n$, $\nabla f(x) = (A + {}^tA)x$.
- (e) On suppose que A et symétrique et $\forall x \in \mathbb{R}^n, \langle Ax, x \rangle \geq 0$. Montrer que

$$\{x \in \mathbb{R}^n, f(x) = 0\} \subset \{x \in \mathbb{R}^n, \nabla f(x) = 0\}$$

puis que

$$\{x \in \mathbb{R}^n, f(x) = 0\} = \operatorname{Ker}(A)$$

Que dire des extremums de f?

Exercices supplémentaires

Exercice 1

Soient a, b et c sont trois réels tels que $0 < a \le b \le c$.

$$\forall X = (x, y, z) \in \mathbb{R}^3, \ f(X) = ax^2 + by^2 + cz^2$$

Trouver le maximum et le minimum de f sur $D = \{(x, y, z) \in (\mathbb{R}^+)^3 / x + y + z = 1\}.$

Exercice 2

Etudier les extremums de la fonction $f(x, y, z) = x - y + z^2$, puis les extremums sous la contrainte $x - e^y - z = 0$.