Etudiant 1:

Exercice 1:

Déterminer la matrice dans la base canonique de \mathbb{R}^3 de la projection orthogonale sur le plan vectoriel F d'équation :

$$x + y - 4z = 0$$

Exercice 2:

Soit f un endomorphisme symétrique de E, i.e.

$$\forall x, y \in E, \quad \langle x | f(y) \rangle \langle f(x) | y \rangle.$$

- 1. Montrer que les sous-espaces propres de f sont orthogonaux deux à deux.
- 2. Montrer que si Ker(f) et Im(f) sont supplémentaires et orthogonaux.

Etudiant 2:

Exercice:

Soit $n \geq 1$. On note $E = \mathbb{R}_n[X]$ et on considère l'application $\varphi : E^2 \to \mathbb{R}$ définie par

$$\varphi(P,Q) = \int_0^{+\infty} P(t)Q(t)e^{-t}dt$$

- 1. Montrer que φ est bien définie, puis montrer que c'est un produit scalaire sur E. On pose $||P|| = \sqrt{\varphi(P,P)}$.
- 2. Soit T le polynôme défini par $T(X) = 1 + \frac{X^n}{n!}$. Calculer ||T||.
- 3. On pose $I = \frac{T}{\|T\|}$. On définit l'application θ qui, à tout polynôme P de E associe $2\varphi(P,I)I P$.
 - (a) Montrer que θ est un automorphisme de E et déterminer θ^{-1} .
 - (b) Montrer que pour tout P de E, $\|\theta(P)\| = \|P\|$
 - (c) Déterminer les valeurs propres possibles de θ .
 - (d) θ est-il diagonalisable?

Etudiant 3:

Exercice 1:

Montrer que l'application

$$(u,v) \mapsto \operatorname{Re}(u\overline{v})$$

est un produit scalaire sur le \mathbb{R} -espace vectoriel \mathbb{C} .

Quelle est sa norme euclidienne associée?

Exercice 2:

Soit \mathcal{B} la base canonique de \mathbb{R}^3 , et

$$\mathcal{C} = \left(\left(\begin{array}{c} 1\\1\\0 \end{array} \right), \left(\begin{array}{c} -1\\0\\-1 \end{array} \right), \left(\begin{array}{c} 2\\1\\0 \end{array} \right) \right).$$

Montrer qu'il existe un unique produit scalaire φ sur \mathbb{R}^3 dont on exprimera la matrice dans la base canonique \mathcal{B} , tel que \mathcal{C} soit une base orthonormale de \mathbb{R}^3 .