Cours:	Commentaires :	Cours:	Commentaires :	Cours:	Commentaires :
Propriétés et non-propriétés des équivalents (pour ln, +, et exp)		Description de plusieurs méthodes pour montrer qu'une suite est convergente.		Equivalent de $\sin u_n$ et $\cos u_n - 1$ quand $u_n \to 0$.	
Exercice 1:		Exercice 1 :		Exercice 1:	
Etudier la limite de la suite $(u_n)_{n\in\mathbb{N}}$ définie par		Etudier la limite de la suite $(u_n)_{n\in\mathbb{N}}$ définie par		Etudier la limite de la suite $(u_n)_{n\in\mathbb{N}}$ définie par	
$u_n = \left(1 + \sin\frac{1}{n}\right)^n$		$u_n = \sqrt[n]{n^2 + n + 1}$		$u_n = \frac{n^{\sqrt{n+1}}}{(n+1)^{\sqrt{n}}}$	
Exercice 2:		Exercice 2:		Exercice 2:	
Soit (u_n) une suite décroissante de réels telle que $u_n + u_{n+1} \underset{+\infty}{\sim} \frac{1}{n}$ Déterminer la limite de (u_n) et donner un équivalent simple de u_n quand n tend vers $+\infty$.		Soit (u_n) une suite décroissante de réels, de limite nulle. On pose pour tout $n \in \mathbb{N}$, $S_n = \sum_{k=0}^n (-1)^k u_k$ Montrer que (S_n) converge.		Montrer que la suite définie par $\begin{cases} u_0 > 0 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{\sum_{i=0}^n u_i} \end{cases}$ diverge vers $+\infty$ et donner un équivalent de u_n quand n tend vers $+\infty$.	
Exercice 3:		Exercice 3:		Exercice 3:	
Soit $a \in \mathbb{C}$. Et udier la convergence de la suite complexe $(z_n)_{n \in \mathbb{N}}$ définie par $ \left\{ \begin{array}{l} z_0 = a \\ \forall n \in \mathbb{N}, \ z_{n+1} = \frac{z_n + z_n }{2} \end{array} \right. $		On pose $S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$ 1. Justifier que $\frac{1}{\sqrt{n+1}} \le 2\left(\sqrt{n+1} - \sqrt{n}\right) \le \frac{1}{\sqrt{n}}$ 2. Déterminer la limite de (S_n) puis déterminer un équivalent simple de (S_n) . (on pourra poser $u_n = S_n - 2\sqrt{n}$).		On considère deux suites (u_n) et (v_n) définies par $\begin{cases} u_0 > v_0 > 0 \\ \forall n \geq 0, u_{n+1} = \frac{u_n + v_n}{2} \\ \forall n \geq 0, v_{n+1} = \frac{2u_n v_n}{u_n + v_n} \end{cases}$ Montrer que les deux suites (u_n) et (v_n) convergent.	