Cours:	Commentaires :	Cours:	Commentaires :	Cours:	Commentaires :
$DL(0)$ de $\ln(1-x)$ (sans preuve) Inégalité de Cauchy-Schwarz et cas d'égalité.		DL(0) de Arctan x (sans preuve) Formes linéaires et produit scalaire.		Obtention du $DL(0)$ de Arcsin x .	
Exercice 1:		Exercice 1 :		Exercice 1:	
Soit $E=\mathbb{R}^3$. Déterminer la matrice dans la base canonique de E de la projection orthogonale sur le plan P d'équation $x-2y+z=0$ Soit $u=(1,2,3)$. Déterminer l'image de u par la symétrie orthogonale par rapport à P^\perp .		Soit $E = \mathbb{R}^4$ et $F = \left\{ X, \left \begin{array}{c} x+y+z+t=0 \\ x-y+z-t=0 \end{array} \right. \right\}$ Déterminer une b.o.n. de F^{\perp} . Ecrire la matrice dans la base canonique de E de la projection orthogonale sur F . Calculer $d(u,F)$ où $u=(1,2,3,4)$.		Soit $E = \mathbb{R}_2[X]$ et $\varphi : E^2 \to \mathbb{R}$, $\varphi(P,Q) = \sum_{k=0}^2 P(k)Q(k)$ 1. Montrer que φ est un produit scalaire sur E . 2. Déterminer une base orthonormale de $F = \{P \in E \mid P(0) = 0\}$ relativement à ce produit scalaire. 3. Déterminer une base de F^{\perp} .	
Exercice 2:		Exercice 2:		Exercice 2:	
Soit $f \in \mathcal{L}(E)$ tel que $\forall x \in E, < f(x) x >= 0$ Montrer que $\mathrm{Ker}(f) = (\mathrm{Im}(f))^{\perp}$.		Soit p un projecteur de E . Montrer que p est un projecteur orthogonal si et seulement si $\forall x,y \in E, < p(x) y> = < x p(y)>$		Soit $f \in \mathcal{L}(E)$ tel que pour tous $x, y \in E$, $< f(x) y> = < x f(y)>$ Montrer que $\mathrm{Ker}(f) = (\mathrm{Im}(f))^{\perp}$.	
Exercice 3 : Etudier les branches infinies de la fonction $x\mapsto x\mathrm{Arctan}\ \frac{x}{x-1}$		Exercice 3: Déterminer un développement asymptotique en $+\infty$ avec reste en $o\left(\frac{1}{x}\right)$ de $\sqrt{x+\sqrt{x}}-\sqrt{x}$		Exercice 3 : Déterminer les branches infinies de la fonction $x \mapsto \sqrt[3]{x^2(x-2)}$	