Exercice 1 : Nature de la série de terme général $u_n = \frac{\operatorname{ch}(n)}{\operatorname{ch}(2n)}$	Commentaires :	Exercice 1 : Nature de l'intégrale $\int_{-\infty}^{+\infty} \frac{t}{1+t^3} dt$	Commentaires :	Exercice 1 : Développer en série entière autour de 0 la fonction définie par : $f(x) = \ln(x^2 - 5x + 4)$	Commentaires :
Exercice 2: Soit $f \in \mathcal{L}(\mathbb{R}_n[X])$ défini par : $f(P(X)) = (X^2 - 1)P''(X) + 2XP'(X)$ Former la matrice de f dans la base canonique. Montrer que f est diagonalisable, déterminer ses valeurs propres et la dimension des sous-espaces propres associés.		Exercice 2: $A = \begin{pmatrix} 1 & 4 & 2 \\ 0 & -3 & -2 \\ 0 & 4 & 3 \end{pmatrix}$		Exercice 2: Résoudre le système différentiel suivant (dont les inconnues sont les fonctions réelles x , y et z de la variable t): $\begin{cases} x' &= y + z \\ y' &= z + x \\ z' &= x + y - e^t \end{cases}$	
Exercice 3 : Etudier et construire la courbe définie en polaire de la manière suivante $\rho = \sin\left(\frac{2\theta}{3}\right)$		Exercice 3 :		Exercice 3: Déterminer les droites du plan passant par le point $A(2,3)$ et tangente au cercle $\mathcal C$ d'équation : $x^2+y^2-2x+\frac{4}{5}=0$	