Devoir pour le 22 Octobre

Problème 1 (Partiel Avr.2006)

Soient E un plan affine de direction \overrightarrow{E} , muni d'un produit scalaire < .|.> et h, h' deux homothéties de E de rapports respectifs $\rho \neq 1$ et $\rho' \neq 1$ et de centres I, I' avec $I \neq I'$.

- 1. (a) Montrer que $\forall M \in E \setminus \{I\}$, I appartient à la droite (Mh(M)).
 - (b) On suppose $\rho\rho'\neq 1$. Montrer que le centre I'' de l'homothétie $h\circ h'$ appartient à la droite (II').

(On ne demande pas d'expliciter I")

- 2. (a) Soient $C = \{M \in E \ / \ < \overrightarrow{\Omega M} | \overrightarrow{\Omega M} > = R^2\}$ le cercle de centre Ω et de rayon R et h une homothétie de E (de centre I et de rapport ρ). Montrer que h(C) est un cercle dont on déterminera le cercle et le rayon.
 - (b) Soient \mathcal{C} et \mathcal{C}' deux cercles de E de centres Ω et Ω' et de rayons R et R' avec $R \neq R'$. Montrer qu'il y a exactement deux homothéties h^{\pm} (h^{+} de rapport positif et h^{-} de rapport négatif) telles que $h^{\pm}(\mathcal{C}) = \mathcal{C}'$.
 - (c) En considérant les images $h^{\pm}(D)$ de la droite D de la figure 1 de l'Annexe, donner une construction géométrique simple des centres I^{\pm} des homothéties h^{\pm}
- 3. On considère à présent trois cercles C_1 , C_2 , C_3 de E de centres et de rayons respectifs Ω_1 , Ω_2 , Ω_3 ; R_1 , R_2 , R_3 (centres et rayons deux à deux distincts). Soient h_i^{\pm} , $1 \leq i \leq 3$, les homothéties telles que

$$h_3^{\pm}(\mathcal{C}_1) = \mathcal{C}_2, \quad h_1^{\pm}(\mathcal{C}_2) = \mathcal{C}_3, \quad h_2^{\pm}(\mathcal{C}_3) = \mathcal{C}_1$$

On notera I_i^{\pm} les centres de $h_i^{\pm},\,1\leq i\leq 3$

- (a) Représenter les six centres d'homothéties I_i^\pm sur la figure 2 de l'Annexe.
- (b) Déterminer $h_2^+ \circ h_1^- \circ h_3^-$.
- (c) En déduire que les points I_1^- , I_2^+ , I_3^- sont alignés.
- (d) En procédant par analogie, montrer que les points I_1^+ , I_2^+ , I_3^+ sont alignés.

Problème 2 (Partiel Nov.2006)

On considère l'espace affine \mathbb{R}^3 . Un triplet (D_1, D_2, D_3) de droites affines de \mathbb{R}^3 de vecteurs directeurs respectifs $\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}$ esr appelé un **triplexe** si :

- (i) $D_1 \cap D_2 = D_1 \cap D_3 = D_2 \cap D_3 = \emptyset$
- (ii) $(\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3})$ est une base de l'espace vectoriel \mathbb{R}^3 .

Partie I

Dans cette partie, on se propose d'étudier l'opération du groupe affine $GA(\mathbb{R}^3)$ sur l'ensemble des triplexes de \mathbb{R}^3 .

Par convention, si A désigne un sous-espace affine de \mathbb{R}^3 , on notera \overrightarrow{A} sa direction.

- 1. Montrer que l'image $(f(D_1), f(D_2), f(D_3))$ de tout triplexe (D_1, D_2, D_3) par une bijection affine $f \in GA(\mathbb{R}^3)$ est encore un triplexe.
- 2. Rappeler une condition nécessaire et suffisante pour que deux sous-espaces affines A et A' de \mathbb{R}^3 soient d'intersection non vide.
- 3. Pour un triplexe (D_1, D_2, D_3) , on désigne par $P_{i,j}$ (i < j) le plan affine contenant D_i et de direction $\overrightarrow{P_{i,j}} = \overrightarrow{D_i} + \overrightarrow{D_j}$.
 - (a) Montrer que D_1 coupe $P_{2,3}$ en un point a_1 , que D_2 coupe $P_{1,3}$ en un point a_2 et que D_3 coupe $P_{1,2}$ en un point a_3 .
 - (b) Montrer qu'il existe trois vecteurs $\overrightarrow{v_i} \in \overrightarrow{D_i}$, $1 \leq i \leq 3$, tels que

$$\overrightarrow{a_1a_2} = \overrightarrow{v_3}$$
 , $\overrightarrow{a_1a_3} = \overrightarrow{v_1} + \overrightarrow{v_2}$

(On pourra observer qu'on a aussi $a_2 \in P_{2,3}$, $a_1 \in P_{1,3}$, et $a_1 \in P_{1,2}$)

Montrer ensuite que $\overrightarrow{v_i} \neq \overrightarrow{0}$, $1 \leq i \leq 3$.

Pour la suite, on notera $\mathcal{R}_{(D_1,D_2,D_3)}$ la base affine $(a_1,a_1+\overrightarrow{v_1},a_1+\overrightarrow{v_2},a_1+\overrightarrow{v_3})$ ainsi construite.

4. Soient (D'_1, D'_2, D'_3) un second triplexe, $P'_{i,j}$, (i < j), (resp. a') les plans (resp. les points d'intersection) définis comme à la question 3.

On suppose que f est une bijection affine telle que $f(D_i) = D'_i$, pour i = 1..3.

- (a) Montrer que $f(P_{i,j}) = P'_{i,j}$
- (b) Montrer que $f(a_i) = a'_i$ pour i = 1..3.
- (c) Montrer que $f\left(\mathcal{R}_{(D_1,D_2,D_3)}\right) = \mathcal{R}_{(D'_1,D'_2,D'_3)}$. (On pourra calculer $\overrightarrow{f}(\overrightarrow{a_1a_2})$ et $\overrightarrow{f}(\overrightarrow{a_1,a_3})$)
- (d) En déduire qu'il existe au plus une bijection affine f telle que $f(D_i) = D'_i$, i = 1..3.
- 5. Montrer à l'aide des questions précédentes que l'opération du groupe affine sur l'ensemble $\mathcal T$ des triplexes, définie par :

$$\varphi: \begin{array}{ccc} GA(\mathbb{R}^3) \times \mathcal{T} & \longrightarrow & \mathcal{T} \\ (f, (D_1, D_2, D_3)) & \longmapsto & (f(D_1), f(D_2), f(D_3)) \end{array}$$

est une opération simple et transitive.

6. Peut-on aussi conclure qu'il en est de même si on se place dans un espace affine réel quelconque de dimension 3? Justifier votre réponse.

2

Partie II

Soit $(\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$ la base canonique de \mathbb{R}^3 . On considère le cube \mathcal{C} défini par

$$C = \{(x_1, x_2, x_3) / \forall i = 1..3, 0 \le x_i \le 1\}$$

Pour la suite du problème, on fixe un triplexe de référence $(D_i)_{i=1..3}$ en choisissant trois arêtes du cube C comme suit :

- D_1 est la droite affine passant par (0,0,1) et dirigée par $\overrightarrow{e_1}$.
- D_2 est la droite affine passant par (1,0,0) et dirigée par $\overrightarrow{e_2}$.
- D_3 est la droite affine passant par (0,1,0) et dirigée par $\overrightarrow{e_3}$.

On se propose dans cette partie d'étudier l'ensemble des bijections affines qui stabilisent la réunion $T = D_1 \cup D_2 \cup D_3$ des droites du triplexe de référence (D_1, D_2, D_3) .

- 1. Faire une figure
- 2. (a) Montrer que l'ensemble G_T des bijections affines $f \in GA(\mathbb{R}^3)$ telles que f(T) = T est un sous-groupe du groupe affine $GA(\mathbb{R}^3)$.
 - (b) Montrer que si $f \in G_T$, alors $\forall i = 1..3$, il existe $j \in \{1, 2, 3\}$ tel que $f(D_i) = D_j$.
 - (c) En déduire, à l'aide de la partie I, que le groupe G_T est isomorphe au groupe des permutations de l'ensemble $\{D_1, D_2, D_3\}$.
- 3. (a) Soit $f \in G_T$ l'application telle que $f(D_1) = D_2$, $f(D_2) = D_1$ et $f(D_3) = D_3$. Expliciter f à l'aide de la partie I, puis montrer que f stabilise l'ensemble des sommets du cube C.
 - On admettra pour la suite que l'application $h \in G_T$ telle que $h(D_1) = D_1$, $h(D_2) = D_3$ et $h(D_3) = D_2$ stabilise aussi les sommets du cube.
 - (b) Déduire de ce qui précède que toute bijection $g \in G_T$ stabilise l'ensemble des sommets du cube \mathcal{C} et qu'il existe un point fixe $a^* \in \mathbb{R}^3$ commun à tous les éléments de G_T que l'on déterminera.
- 4. Soit à présent (D_1, D_2, D_3) un triplexe arbitraire de \mathbb{R}^3 . En guise de conclusion, que peut-on dire du sous-groupe des bijections affines f telles que $f(D_1 \cup D_2 \cup D_3) = D_1 \cup D_2 \cup D_3$?

Figure 1

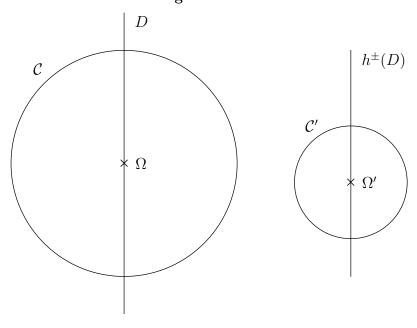


Figure 2

