Fiche 2 - Espaces affines, applications affines

Exercice 1

- 1. (a) Rappeler la définition d'un espace affine (X, \vec{E}) en termes d'opération de groupe.
 - (b) Si \mathbb{K} est un corps commutatif, donner la structure affine de \mathbb{K}^n explicitement.
 - (c) Montrer que si $\overrightarrow{F} \subset \mathbb{K}^n$ est un sous-espace, alors pour tout $\overrightarrow{r} = (r_1, \dots, r_n) \in \mathbb{K}^n$, le sous-ensemble $\overrightarrow{r} + \overrightarrow{F} = \{\overrightarrow{r} + \overrightarrow{u}, \overrightarrow{u} \in \overrightarrow{F}\}$ est un espace affine.
- 2. Soient deux espaces vectoriels \overrightarrow{E} et \overrightarrow{F} , $f: \overrightarrow{E} \to \overrightarrow{F}$ une application linéaire et $\overrightarrow{b} \in \overrightarrow{F}$. Montrer que l'ensemble des solutions \overrightarrow{x} de l'équation linéaire

$$f(\overrightarrow{x}) = \overrightarrow{b}$$

(s'il n'est pas vide) est un espace affine dont on déterminera la direction.

3. Soient $(a_0, a_1, \ldots, a_n) \in \mathbb{R}^{n+1}$ et $\varphi : \mathbb{R} \to \mathbb{R}$ une application continue. L'ensemble des applications $f : \mathbb{R} \to \mathbb{R}$ de classe C^n qui sont solutions de l'équation différentielle :

$$a_n f^{(n)} + a_{n-1} f^{(n-1)} + \ldots + a_0 f = \varphi$$

est-il un espace affine? Dans l'affirmative, quelle est sa dimension lorsque n=2?

4. Montrer que l'ensemble A des matrices 3×3 de la forme :

$$\left(\begin{array}{cccc}
1+a-b & a-b & 0 \\
0 & 2 & 2a-b \\
0 & 0 & 3
\end{array}\right)$$

pour $a, b \in \mathbb{R}$, est un espace affine.

(Indication: c'est un sous-espace affine de l'espace vectoriel $\mathcal{M}_3(\mathbb{R})$).

5. Soient $(a_0, a_1, \dots, a_{k-1}) \in \mathbb{R}^k$ et $b \in \mathbb{R}$. L'ensemble des suites $(u_n)_{n \in \mathbb{N}}$ de nombres réels vérifiant

$$u_{n+k} + a_{k-1}u_{n+k-1} + \ldots + a_1u_{n+1} + a_0u_n = b$$

est-il un espace affine?

6. Même question pour l'ensemble des applications $f: \mathbb{R} \to \mathbb{R}$ vérifiant

$$\forall x \in \mathbb{R}, \quad f(x+1) = f(x) + 1$$

Exercice 2

On considère dans l'espace $\mathbb{R}^3 = \{(x, y, z), x, y, z \in \mathbb{R}\}$, les plans P_0 et P_1 d'équations respectives z = 0 et z = 1. On désigne par \mathbb{P}^* l'ensemble des droites vectorielles supplémentaires de P_0 dans \mathbb{R}^3 .

- 1. Faire une figure
- 2. Donner une bijection de \mathbb{P}^* sur P_1 . En déduire, en revenant à la définition en terme de translations, que \mathbb{P}^* est un espace affine de direction P_0 .
- 3. En quoi \mathbb{P}^* diffère-t-il de la sphère unité \mathbb{S}_2 de \mathbb{R}^3 ? (Penser à la projection stéréographique)

Exercice 3

- 1. Soient E et F deux espaces affines de directions respectives \overrightarrow{E} et \overrightarrow{F} . Rappeler la définition d'une application affine $f: E \to F$.
- 2. Soient $f, f': E \to F$ deux applications affines.
 - (a) Montrer que $f \circ f'$ est affine.
 - (b) Montrer que f est bijective si et seulement si $\overrightarrow{f}: \overrightarrow{E} \to \overrightarrow{E}$ est bijective et dans ce cas, montrer que f^{-1} est affine.
- 3. Soit $f: E \to E$ une bijection affine et $O \in E$. Montrer qu'il existe un unique couple (g, τ) d'applications affines de X telles que :
 - -g(O) = O
 - τ est une translation
 - $-f=g\circ\tau$

Montrer de plus que $g \circ \tau = \tau \circ g$ si et seulement si $\overrightarrow{f}(\overrightarrow{u}) = \overrightarrow{u}$ où \overrightarrow{u} est le vecteur de la translation τ .

Exercice 4

Soit X un espace affine (réel) de direction $\overrightarrow{E}, f: X \to X$ une application affine et :

$$X_f = \{ x \in X / f(x) = x \}$$

l'ensemble des points fixes de f.

- 1. Montrer que $X_f \subset X$ est soit vide, soit un sous-espace affine de X dont on déterminera la direction.
- 2. Soit D une droite affine. Montrer que si $f:D\to D$ est affine et admet deux points fixes, alors f est l'application identité.
- 3. Soit P un plan affine et $D, D' \subset P$ deux droites affines distinctes, sécantes en $O \in P$ et de direction respectives $Vect(\overrightarrow{u})$ et $Vect(\overrightarrow{v})$. Au point $M = O + \overrightarrow{OM} = O + x\overrightarrow{u} + y\overrightarrow{v}$, on associe p(M) défini par $\overrightarrow{Op(M)} = x\overrightarrow{u}$. L'application p est la projection sur D parallèlement à D'.
 - (a) Faire un dessin de la situation.
 - (b) Montrer que p est une application affine.
 - (c) Déterminer l'ensemble des points fixes de p.
 - (d) Une application affine $f: P \to P$ admettant deux points fixes est-elle l'identité?
- 4. Soient A, B, C trois points non alignés du plan P. On note :
 - $-h_1$ la projection sur la droite (BC) parallèlement à la droite (CA).

- $-h_2$ la projection sur la droite (CA) parallèlement à la droite (AB).
- $-h_3$ la projection sur la droite (AB) parallèlement à la droite (BC).

On pose $h = h_3 \circ h_2 \circ h_1$ et $f = h \circ h$.

- (a) Faire une figure
- (b) Montrer que la restriction de f à la droite (AB) est l'identité. Qu'est l'application $f: P \to P$?

Exercice 5 : Symétries affines.

- 1. Une application affine $f: X \to X$ telle que $f \circ f = Id$ est appelée une symétrie de X. On aimerait obtenir une version affine de l'exercice 6 de la Fiche 1.
 - (a) Soit M un point de X. Montrer que le point milieu du segment [M, f(M)] défini par :

$$[M, f(M)] = \{M + t \overrightarrow{M} f(M), \ t \in [0, 1]\}$$

est un point fixe de f.

- (b) Donner l'ensemble des points fixes de f.
- (c) Donner deux sous-espaces \overrightarrow{f} stables V^+ et V^- tels que $\overrightarrow{X} = V^+ \oplus V^-$.
- (d) Donner f(M) pour tout $M \in X$.
- 2. Esquisser les symétries de \mathbb{R}^2 et de \mathbb{R}^3 en fonction de la dimension du sous-espace de ses points fixes.

Exercice 6 : Symétries (suite)

Soient P_1, \ldots, P_n , n points de l'espace affine X. Le but de cet exercice est de répondre au problème (*) suivant :

Peut-on trouver n points M_1, \ldots, M_n de X tels que pour tout $i \leq n-1$, P_i soit le point milieu du segment $[M_i, M_{i+1}]$ et P_n soit le point milieu du segment $[M_n, M_1]$?

On dit que f est une symétrie de centre P si P est l'unique point fixe de f. Soit f_i la symétrie de centre P_i .

- 1. Montrer que pour tout $i \geq 2$, $M_i = f_{i-1} \circ f_{i-2} \circ \ldots \circ f_1(M_1)$.
- 2. En déduire que le problème (*) admet une solution si et seulement si $f_n \circ f_{n-1} \circ \ldots \circ f_1$ admet un point fixe.
- 3. Montrer que si n est impair, il y a une solution unique.
- 4. Si n est pair, donner une condition nécessaire et suffisante pour qu'il existe au moins une solution. Est-elle unique?
- 5. Illustration dans le plan \mathbb{R}^2 : faire la construction explicite pour $P_1=(-1,1), P_2=\left(0,\frac{1}{2}\right),$ $P_3=(1,1), P_4=(1,-1), P_5=(-1,-1)$ ainsi que pour l'hexagone régulier.
- 6. Déduire qu'étant donnés trois points P,Q,R, il existe un unique triangle dont le milieu des côtés sont ces points.
- 7. Montrer que pour que quatre points soient les milieux des côtés d'un quadrilatère, il faut et il suffit qu'ils soient les sommets d'un parallélogramme.

3

Exercice 7

Soit X un espace affine réel de direction \overrightarrow{E} , de dimension n.

- 1. Décrire l'ensemble des applications affines de X qui transforment toute droite en une droite parallèle.
- 2. Montrer que l'ensemble \mathcal{H} des bijections affines f de X pour lesquelles $\overrightarrow{f} = \rho Id_{\overrightarrow{E}}, \rho \in \mathbb{R}^*$, est un sous-groupe du groupe affine GA(X). Ce sous-groupe est appelé le **groupe des** homothéties-translations de X.
- 3. Décrire GA(X) lorsque n=1.
- 4. Montrer que $h \in \mathcal{H} \setminus \{Id_X\}$ admet un point fixe I si et seulement si $\rho \neq 1$. Montrer que I est alors l'unique point fixe de h. On dit que ρ est le **rapport** et I le **centre** de l'homothétie h.
- 5. On dit que deux applications $f, f': X \to X$ commutent si $\forall x \in X, \ f(f'(x)) = f'(f(x))$. Deux éléments $h, h' \in \mathcal{H} \setminus \{Id_X\}$ commutent-ils?
- 6. Montrer que si les points A, B, C sont alignés, alors il existe $h \in \mathcal{H}$ telle que h(A) = A et h(B) = C. h est-elle unique?
- 7. Utiliser les homothéties-translations pour démontrer le **Théorème de Désargues**:

 Soient ABC et A'B'C' deux triangles sans sommet commun et à côtés respectivement parallèles. Alors les droites (AA'), (BB') et (CC') sont concourantes ou parallèles.

Exercice 8 (Partiel Avril 2006)

Soient E un plan affine de direction \overrightarrow{E} , muni d'un produit scalaire < .|.> et h, h' deux homothéties de E de rapports respectifs $\rho \neq 1$ et $\rho' \neq 1$ et de centres I, I' avec $I \neq I'$.

- 1. (a) Montrer que $\forall M \in E \setminus \{I\}$, I appartient à la droite (Mh(M)).
 - (b) On suppose $\rho \rho' \neq 1$. Montrer que le centre I'' de l'homothétie $h \circ h'$ appartient à la droite (II').

(On ne demande pas d'expliciter I'')

- 2. (a) Soient $C = \{M \in E \ / \ < \overrightarrow{\Omega M} | \overrightarrow{\Omega M} > = R^2\}$ le cercle de centre Ω et de rayon R et h une homothétie de E (de centre I et de rapport ρ). Montrer que h(C) est un cercle dont on déterminera le cercle et le rayon.
 - (b) Soient \mathcal{C} et \mathcal{C}' deux cercles de E de centres Ω et Ω' et de rayons R et R' avec $R \neq R'$. Montrer qu'il y a exactement deux homothéties h^{\pm} (h^{+} de rapport positif et h^{-} de rapport négatif) telles que $h^{\pm}(\mathcal{C}) = \mathcal{C}'$.
 - (c) En considérant les images $h^{\pm}(D)$ de la droite D de la figure 1, donner une construction géométrique simple des centres I^{\pm} des homothéties h^{\pm}
- 3. On considère à présent trois cercles C_1 , C_2 , C_3 de E de centres et de rayons respectifs Ω_1 , Ω_2 , Ω_3 ; R_1 , R_2 , R_3 (centres et rayons deux à deux distincts). Soient h_i^{\pm} , $1 \leq i \leq 3$, les homothéties telles que

$$h_3^{\pm}(\mathcal{C}_1) = \mathcal{C}_2, \quad h_1^{\pm}(\mathcal{C}_2) = \mathcal{C}_3, \quad h_2^{\pm}(\mathcal{C}_3) = \mathcal{C}_1$$

On notera I_i^\pm les centres de $h_i^\pm,\,1\leq i\leq 3$

- (a) Représenter les six centres d'homothéties I_i^{\pm} sur la figure en bas de page.
- (b) Déterminer $h_2^+ \circ h_1^- \circ h_3^-$.
- (c) En déduire que les points $I_1^-,\,I_2^+,\,I_3^-$ sont alignés.
- (d) En procédant par analogie, montrer que les points I_1^+ , I_2^+ , I_3^+ sont alignés.

4

Figure 1

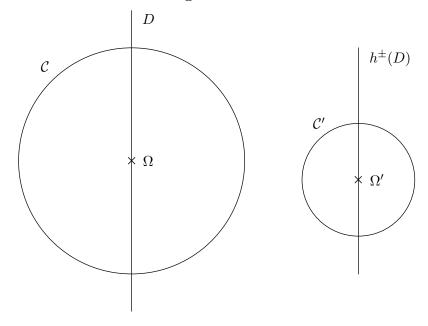
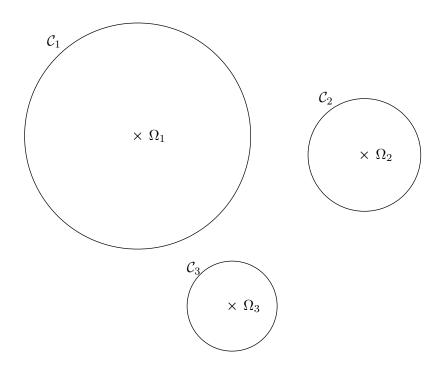


Figure 2



Exercice 9 (Partiel Avril 2004)

Soit \mathcal{P} un plan affine réel. On se donne quatre droites de \mathcal{P} telles que deux quelconques d'entre elles ne soient pas parallèles et trois quelconques d'entre elles ne soient pas concourantes. Soit (A,B,C,D,E,F) l'ensemble de leurs six points d'intersection avec : A,B,C alignés, de même que C,D,E; E,F,B; A,F,D.

1. Faire une figure.

Soit I (resp. J, resp. K) le milieu de [AE] (resp. [BD], resp. [CF]). Soit h l'homothétie de centre A et de rapport 2, on notera alors $\beta = h(J)$, et $\alpha = h(K)$. Soient h_1 l'homothétie de centre E telle que $h_1(F) = B$ et h_2 l'homothétie de centre E telle que $h_2(C) = D$.

- 2. Montrer que $h_1 \circ h_2 = h_2 \circ h_1$
- 3. (a) Montrer que les droites (αC) et AF) sont parallèles ainsi que les droites (βB) et (AD). En déduire que (βB) et (αC) sont parallèles.
 - (b) Montrer que $h_1(D)$ est sur la droite (βB) .
 - (c) En déduire que l'image par $h_1 \circ h_2$ de la droite (αC) est la droite (βB) .
- 4. En faisant un travail analogue à celui décrit dans la question précédente, montrer que l'image par $h_2 \circ h_1$ de la droite (αF) est la droite (βD) .
- 5. En déduire que $h_1 \circ h_2(\alpha) = h_2 \circ h_1(\alpha) = \beta$.
- 6. Montrer que E, β, α sont alignés. En déduire que I,J,K sont alignés.