Fiche 3 - Barycentres, convexité

Définition:

Soit V un espace vectoriel. Si $F \subset V$ est une partie de V, le sous-espace < F > engendré par F est défini comme le plus petit (pour l'inclusion) sous-espace vectoriel de V qui contient F. Le sous-espace < F > coincide avec l'ensemble des combinaisons linéaires des éléments de F.

Soit E un espace affine. Si $X \subset E$ est une partie de l'espace affine E le sous-espace affine engendré par X que l'on notera aussi < X >, est le plus petit (pour l'inclusion) sous-espace affine de E contenant X.

Exercice 1: Familles affinement libres

Soit E un espace affine de direction \overrightarrow{E} et $\mathcal{P} = \{P_0, P_1, \dots, P_k\} \subset E$.

- 1. Déterminer $< P_0 >, < P_0, P_1 >, < \mathcal{P} >.$
- 2. On dit que \mathcal{P} est **affinement libre** si les vecteurs $\overrightarrow{P_0P_1}, \overrightarrow{P_0P_2}, \dots, \overrightarrow{P_0P_k}$, forment une famille libre de \overrightarrow{E} .

Montrer alors que pour tout $i_0 \in \{0, \dots, k\}$, la famille $(\overrightarrow{P_{i_0}P_j})_{j \neq i_0}$ est libre dans \overrightarrow{E} .

- 3. On suppose que \mathcal{P} est affinement libre. Soit F un second espace affine et $\mathcal{P}' = \{P'_0, P'_1, \dots, P'_k\} \subset F$.
 - (a) Montrer qu'il existe une application affine $f: E \to F$ vérifiant

$$\forall i = 0..k, \ f(P_i) = P_i'$$

- (b) Montrer que cette application est unique si et seulement si m = n.
- (c) Montrer que $f(\langle P_0, P_1, \dots, P_k \rangle) = \langle P'_0, P'_1, \dots, P'_k \rangle$.
- 4. Illustration: Déterminer une application affine $f: \mathbb{R}^2 \to \mathbb{R}^2$ telle que :

$$f(0,0) = (3,3)$$
 , $f(1,0) = (1,-1)$, $f(0,1) = (-1,-1)$

5. Cas général : Soient $A \subset E$ et $B \subset F$ deux sous-espaces affines. Donner une procédure pour construire une application affine $f: E \to F$ telle que $f(A) \subset B$.

Définition:

Soit E un espace affine réel. Soit $P=(P_0,P_1,\ldots,P_k)\in E^{k+1}$ et $a_0,a_1,\ldots,a_k,\,k+1$ nombres réels tels que $\sum_{i=0}^k a_i \neq 0$.

On appelle barycentre G des points pondérés $(P_i, a_i)_{i=0..k}$ l'unique point de E tel que :

$$\sum_{i=0}^{k} a_i \overrightarrow{GP_i} = \overrightarrow{0}$$

Si M est un point arbitraire de E, on a :

$$G = M + \sum_{i=0}^{k} \left(\frac{a_i}{\sum_{i=0}^{k} a_i} \right) \overrightarrow{MP_i}$$

Exercice 2 : Coordonnées barycentriques

1. Soit $\mathcal{B} = (P_0, P_1, \dots, P_n)$ une base affine de E. Montrer que l'application :

$$f: \begin{array}{ccc} \mathbb{R}^{n+1} & \to & E \\ (a_0, \dots, a_n) & \mapsto & Bar((P_i, a_i)_{i=0\dots n}) \end{array}$$

est surjective.

Si $M = f(a_0, \ldots, a_n)$, on dit que (a_0, a_1, \ldots, a_n) sont les coordonnées barycentriques du point M dans la base affine \mathcal{B} .

2. Soit H l'hyperplan de \mathbb{R}^{n+1} d'équation $a_0 + a_1 + \ldots + a_n = 1$. Montrer que la restriction de f à H est un isomorphisme d'espaces affines.

Exercice 3

Soit (P_0, P_1, \ldots, P_n) une base affine de l'espace affine réel E.

Soit
$$(a_0, a_1, \dots, a_n) \in \mathbb{R}^{n+1}$$
 vérifiant $\forall i = 0..n, a_i > 0$ et $\sum_{i=0}^n a_i = 1$.

On considère les barycentres $G = Bar((P_i, a_i)_{i=0..n})$ et $G_j = Bar((P_i, a_i)_{i \neq j})$

- 1. Faire un dessin de la situation pour n=2 et n=3
- 2. Montrer que pour tous $i \neq j$, $\langle G_i, P_i \rangle \cap \langle G_j, P_j \rangle = \langle G \rangle$.

Exercice 4

1. Soient P et Q deux points de l'espace affine E. A un point M de E, on associe l'isobarycentre

$$f(M) = Bar((P, 1), (Q, 1), (M, 1))$$

Montrer que l'application $f: E \to E$ ainsi définie est affine.

2. Généraliser au cas de k points P_1, P_2, \ldots, P_k de E.

Exercice 5

Soient $\mathcal{P} = \{P_0, P_1, \dots, P_k\} \subset E$ et $(a_0, a_1, \dots, a_k) \in \mathbb{R}^{k+1}$. Soit $f: E \to E$ une application affine.

- 1. Montrer que $f\left(Bar\left((P_i, a_i)_{i=0..k}\right)\right) = Bar\left((f(P_i), a_i)_{i=0..k}\right)$
- 2. Montrer que si f est injective et si $\forall i = 0..k, f(P_i) \in \mathcal{P}$, alors f admet au moins un point fixe.
- 3. On suppose qu'il existe $n \geq 1$ tel que $\forall M \in E, f^n(M) = M$
 - (a) Montrer que f est une bijection affine.
 - (b) Montrer que f admet un point fixe.
 - (c) Construire explicitement une application affine $f: \mathbb{R}^2 \to \mathbb{R}^2$ vérifiant $f^3 = Id_E$.

Exercice 6

Rappel : Soit V un espace vectoriel. Si $F, F' \subset V$ sont deux sous-espaces vectoriels de V, alors la réunion $F \subset F'$ est un sous-espace vectoriel si et seulement si $F \subset F'$ ou $F' \subset F$. En général $F \subset F'$ n'est donc pas un sous-espace vectoriel de V.

Le plus petit sous-espace vectoriel de V contenant la réunion $F \subset F'$ est la somme de F et F':

$$\langle F \cup F' \rangle = F + F'$$

Le but de cet exercice est de déterminer l'analogue de cette construction en géométrie affine.

Soient A, A' deux sous-espaces affines de l'espace affine réel (E, \overrightarrow{E}) de directions \overrightarrow{F} et $\overrightarrow{F'}$.

- 1. En distinguant les situations $A \cap A' \neq \emptyset$ et $A \cap A' = \emptyset$, déterminer $A \cup A' > \emptyset$ et sa dimension. ($Rappel: A \cap A' \neq \emptyset \Leftrightarrow \exists M \in A, \exists M' \in A' / \overrightarrow{MM'} \in \overrightarrow{F} + \overrightarrow{F'}$)

Exercice 7

- 1. Soit A un sous-espace affine de (E, \overrightarrow{E}) et $M \in E \setminus A$. Montrer qu'il existe un et un seul sous-espace affine A' parallèle à A contenant M.
- 2. On suppose $\dim(E) \geq 2$. Soient H, H' deux hyperplans distincts de E.
 - (a) Montrer que $H \cap H' = \emptyset$ si et seulement si H et H' sont parallèles.
 - (b) Montrer que si $H \cap H' \neq \emptyset$, alors $\dim(H \cap H') = \dim E 2$.
- 3. Soient A et A' deux sous-espaces affines disjoints de direction \overrightarrow{F} et $\overrightarrow{F'}$. Montrer qu'il existe deux hyperplans parallèles H, H' distincts tels que $A \subset H$ et $A' \subset H'$.

Définition:

Soit E un espace affine. Une partie $C \subset E$ est dite **convexe** si pour tous points M, P de C, le segment [M, P] défini par :

$$[M,P] = \left\{ Bar \left(\begin{array}{cc} p & q \\ 1-t & 1+t \end{array} \right), \ t \in [0,1] \right\}$$

est continue dans C.

Remarque :on peut définir de manière équivalente le segment [M, P] comme l'ensemble des barycentres des points pondérés (M, a), (P, b) avec $a, b \ge 0$ tels que a + b = 1.

Si P_1, \ldots, P_k désignent des points de E, on appelle **enveloppe convexe** de ces points, notée $Conv(P_1, \ldots, P_k)$ l'intersection de toutes les parties convexes contenant P_1, \ldots, P_k .

Exercice 8

- 1. Intuitivement, quelle est l'enveloppe convexe de trois points non alignés dans \mathbb{R}^2 ?, de quatre points non coplanaires dans \mathbb{R}^3 ? D'une étoile dans le plan?
- 2. Soient P_1, \ldots, P_k des points de E. On définit

$$[P_1, \dots, P_k] = \left\{ Bar \begin{pmatrix} P_1 & \cdots & P_k \\ a_1 & \cdots & a_k \end{pmatrix}, \ a_i \ge 0, \sum_{i=1}^k a_i = 1 \right\}$$

l'ensemble des barycentres à poids positifs des points $(P_i)_{i=1..k}$.

En procédant par récurrence sur le nombre de points k, montrer que

$$Conv(P_1,\ldots,P_k)=[P_1,\ldots,P_k]$$

3. Vérifier que l'image par une application affine $f: E \to E$ de l'enveloppe convexe de (P_1, \ldots, P_k) est l'enveloppe convexe de $(f(P_1), \ldots, f(P_k))$.

4. Soit $\mathcal{C} \subset \mathbb{R}^3$ le cube dont les sommets de la face inférieure sont en (0,0,0),(1,0,0),(0,1,0),(1,1,0). Soit T le tétraèdre de sommets (0,0,0),(1,1,0),(0,0,1),(0,1,1) et T' le tétraèdre dont les sommets coincident avec les quatre autres sommets de \mathcal{C} .

Donner une application affine f telle que f(T) = T'.

Exercice 9 : Théorème de Gauss-Lucas

Soient k nombres complexes z_1, \ldots, z_k que l'on confondra avec leur image dans le plan complexe. En considérant \mathbb{C} comme \mathbb{R} -espace vectoriel de dimension 2, on peut donc considérer l'enveloppe convexe $[z_1, \ldots, z_k]$.

1. Posons le polynôme P par :

$$P(X) = (X - z_1)^{n_1} (X - z_2)^{n_2} \dots (X - z_k)^{n_k} \in \mathbb{C}[X], \ n_i \in \mathbb{N}^*$$

En déterminant la fraction rationnelle $\frac{P'(X)}{P(X)}$, montrer que les racines de P' distinctes de z_1, \ldots, z_k appartiennent à l'intérieur de $[z_1, \ldots, z_k]$ (les points intérieurs sont les barycentres à coefficients strictement positifs).

2. Si $P(X) = (X - a_1) \dots (X - a_k)$ et $P'(X) = n(X - b_1) \dots (X - b_{n-1})$, montrer que l'isobarycentre des racines de P coincide avec l'isobarycentre des racines de P'.

Exercice 10 : Coordonnées barycentriques dans un triangle

Soit ABC un triangle non aplati du plan \mathbb{R}^2 que l'on supposera muni de la distance euclidienne usuelle. On notera les longueurs des côtés a=BC, b=AC, c=AB. On notera les angles aux sommets \widehat{A},\widehat{B} et \widehat{C} .

1. Montrer que les médianes du triangle ABC sont concourantes au point

$$G = bar \left(\begin{array}{ccc} A & B & C \\ 1 & 1 & 1 \end{array} \right)$$

2. Montrer que les hauteurs du triangle ABC sont concourantes au point

$$H = bar \left(\begin{array}{ccc} A & B & C \\ \tan \widehat{A} & \tan \widehat{B} & \tan \widehat{C} \end{array} \right)$$

3. Montrer que les médiatrices du triangle ABC sont concourantes au point

$$O = bar \left(\begin{array}{ccc} A & B & C \\ \tan \widehat{B} + \tan \widehat{C} & \tan \widehat{A} + \tan \widehat{C} & \tan \widehat{A} + \tan \widehat{B} \end{array} \right)$$

4. Montrer que les bissectrices du triangle ABC sont concourantes au point

$$I = bar \left(\begin{array}{ccc} A & B & C \\ a & b & c \end{array} \right)$$