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L2 MASS41 Algebre

Devoir 1 pour le 12 Mars

Corrigé
Exercice 1
Soit B = (e1, €2, e3) une base de R3.
-8 -8 —12
Soit f € L(R3) tel que matg(f)=| -2 0 -2 | =A.
9 8 13

1. Déterminons Kerf

x
Soit X = y | eR.
z
-8 -8 —12 x 0
X e Kerf —= AX =0 = (2 0 -2 y | =10
9 8 13 z 0
—8r —8y—12z = 0
= { —2x — 2z =0
9r+8y + 13z = 0
x = —z
— {8(z)8y12z =0
9(—2)+8y+13z = 0
x = —z
= {8y4z =0
8y+4z = 0
r = —z
= {y = —1/2z
z = z
Donc on a
-1
Kerf = Vect —1/2
1

Déterminons donc la dimension et une base de Kerf.

-1
En posant u=| —1/2 |, on a vu que Kerf = Vect (u).
1

Comme u est non nul, il est donc libre dans R? : (u) est une base de Kerf et on en déduit que :

’dim (Kerf) = 1‘

2. Quel est le rang de f (i.e. la dimension de Imf) ?

Puisque f est un endomorphisme de R? espace vectoriel de dimension finie, on peut appliquer le théoréme du rang :

dim(R?) = dim (Kerf) + dim (Im f)

Donc on en déduit que rg(f) = dim (Imf) = dim(R3) — dim (Kerf) =3 — 1 = 2.



Cherchons une base de Imf.

x
Soit X =| y | €R3.
z
x -8 -8 —12 o
Xe Imf << 3Fo,B,7yeR/ y |=1 -2 0 =2 16
z 9 8 13 ot
T —8a — 83 — 12y
— Jda,B,7€R/ y | = —2a — 2
z 9a + 83 + 13y
T —8 -8 —12
— da,B,7€R/ y | =al -2 | +0 0 +v| -2
z 9 8 13
-8 -8 —12
On a ainsi que Imf = Vect -2 1, 0 ) -2
9 8 13

Or, on a vu que dim(Imf) = 2. Donc la famille précédente est bien génératrice mais est forcément liée.
Cherchons donc une sous-famille de deux vecteurs qui, elle, soit libre.

-8 -8
Choisissons U = | —2 | etV = 0 ]. Ces deux vecteurs ne sont pas colinéaires (a cause du 0 dans
9 8

V'), donc forment une famille libre.
On a alors que Imf = Vect (U, V), avec (U, V) libre : c’est ainsi une base de Imf.

-8 -8
Imf =Vect -2 1, 0
9 8

. Montrons que R? = Imf @ Kerf.

Imf NKerf = {0}

Il s’agit ici de montrer que { R3 = Tm f + Kerf

Déterminons Imf N Kerf.
T

Soit X =1 y | € ImfnKerf.
z

On a écrit que Kerf = Vect(u), doncici : X e Kerf <= JacR/ [ vy | =a| —1/2

x —8a — 80 — 12y
De plus, X € Imf <= Ja, B3,y € R/ y | = —20 — 2y

z 9a + 86 + 13~
Donc si X vérifie les deux équations précédentes, on a nécessairement :

—8a — 86 — 127 —a
—2a — 2y =1 —a/2
9a + 83 + 13~ a

On obtient alors le systéme suivant :



—8a -84 —-12y = -—a LaeLstly —8a—84—-12y = -—a
—200 — 2y = —a/2 = —200 — 2y = —a/2
9a+88+13y = a o+ =0
0
Les deux derniéres équations du systéme fournissent bien que a = 0. On en tire que X = | 0 | et on a
0

ainsi montré que Imf N Kerf C {0}.

Mais la réciproque est claire. En effet, comme Imf et Kerf sont des sev de R3, ils contiennent 1’élément
neutre : on a toujours {0} C Imf NKerf.

Donc on a bien I'égalité cherchée : Imf N Kerf = {0}.

Montrons a présent que Imf + Kerf = R3.

On a déja une inclusion : Imf 4+ Kerf C R? car la somme de deux sev de R? est toujours incluse dans R3.
Regardons donc les dimensions.

On a la formule suivante :
dim (Imf + Kerf) = dim (Imf) + dim (Ker f) — dim (Im f N Kerf)

Or, ici on a Imf N Kerf = {0} donc dim (Imf N Kerf) = 0.
On a donc :

dim (Imf + Kerf) = dim (Imf) + dim (Kerf) = 2+ 1 = 3 = dim(R?)
Imf + Kerf C R3
dim (Imf + Kerf) = dim(R3)
Comme on a montré précédemment que Imf NKerf = {0}, on peut bien écrire que la somme est directe :

En conclusion, on a { Dot Imf + Kerf = R3.

R? = Imf @ Ker f

4. On considére les vecteurs v1 =e; —eg , vy = —b6ey + 3e3 et vy = 2eq + ey — 2es.
Montrons que B’ = (v, v9,v3) est une base de R3.

Vérifions déja que B est bien libre dans R3. Regardons donc det(vy, va,v3).
Pour cela, écrivons vy, ve, v3 en vecteurs :

1 0 2
v = 0 , va= | —6 , U3 = 1
-1 3 -2
Le déterminant vaut alors :
1 0
det(vi,ve,v3) =] 0 -6 1 [=1240+40—-12-3-0=-3#0
-1 3 =2

Donc (v1,v2,v3) est une famille libre dans R? qui est de dimension 3, c’est donc bien une base de R3.

5. Calculons f(w) pour w = —4e; — 6eg + Tes.

fw) = f(—4e; — 6eg + Tes)
= —4f(e1) —6f(e2) + 7f(e3)
= —4(—861 — 2e9 + 963) - 6(—861 + 863) + 7(—1261 — 2e9 + 1363)
= 32e1 + 8ey — 36e3 + 48¢1 — 48e3 — 84e; — 1dey + 9les
= —4e; — 6eg + Teg
= w

Donc



6. Calculons f(v1), f(v2) et f(vs).

fv1) = flex —e3)
= fle1) — f(e3)
= (—8e1 —2ey +9e3) — (—12e1 — 2e3 + 13e3)

= 461 — 463
= 4(61 — 63)
= 41}1

f(v2) = f(—6ez+ 3e3)

—6/f(e2) +3f(es)

—6(—861 + 863) + 3(—1261 — 2e9 + 1363)
12e; — 6eg — 9eg3

= 12(61 — 63) + (—662 + 363)

= 12v; + vy

flvs) = [f(2e1+ €2 — 2e3)

2f(ex1) + f(e2) — 2f(e3)

= 2(—861 — 2e9 + 963) + (—861 + 863) — 2(—1261 — 2e9 + 1363)
(—16 — 8 + 24)e1 + (—4 + 4)eq + (18 + 8 — 26)es

=0

Donc

’f(v1)=4’01‘ ; ’f(vz):12v1+v2‘ . | fws) =0

Ecrivons a présent la matrice de f dans la base B’ :

4 12 0
A'=matg(f)= 0 1 0
0 0 O
7. Ecrivons la matrice de passage P de la base B a la base B'.
1 0 2
-1 3 =2

Calculons P 1.

On a montré a la question 4 que det(P) = —3 # 0. Donc P est bien inversible. On peut par exemple
calculer P~1 avec la formule de la comatrice :

) L[ 9 -1 -6 L[ 9 6 12
P! = tcom(P) = —= 6 0 -3 |=-1 0 1
det(P) 5 \12 -1 6/) 3\ 6 3 6
On a donc
-3 -2 —4
Pt=11/3 0 1/3
2 1 2

8. Retrouver A’ en utilisant P et P~ 1.

Comme A et A’ représentent le méme endomorphisme f respectivement dans les bases B et B, on a la
relation suivante :

A= PBB’-A/-PB’B =PAP! —= A= Pg g A Pgp = plAp



Donc en principe, en calculant P~'AP, on devrait retrouver lexpression de A’ trouvée précédemment :

-3 -2 —4 -8 -8 —12 1 0 2
PlAP = /3 0 1/3 -2 0 -2 0 -6 1
2 1 2 9 8 13 -1 3 -2
-3 -2 4 4 12 0
= /3 0 1/3 0 -6 0
2 1 2 —4 -9 0
4 12 0
= [0 1 0
0 0 0

On retrouve bien la matrice obtenue dans la question 6.

Exercice 2

Soit B une base de R3. Soit f un endomorphisme de R? tel que

-1 -2 4
matp(f)=1 -2 1 2 | =A.
-3 -2 6

1. Déterminons le polynéme caractéristique de f.

Le polynome caractéristique de f est défini par x(\) = det(f — A d) = det(A — \I3).

—1— —2 4
x(\) = 1-X 2
-2 6\
= (-1— )\)( — N6 =N 4124164+ 12(1 — X) +4(—1— ) —4(6 — \)
= (A2 =1)(6—X)+28+12 12\ —4 — 4\ — 24 4 4\
= (=N 4+6X2+ X —6)+12—12)

= A 46A2-11A+6 (1 est racine évidente...)
= A=1)(=A\45\—-6)
= —(A=-DHA-2)(A-3)

Donc

X)) =-( -1 -2)A-3)]

2. Déterminons les valeurs propres de f.

On sait que les valeurs propres de f sont exactement les racines du polynéme caractéristique. Les valeurs
propres de f sont donc exactement 1, 2 et 3.

’Sp(f) = {1’273}‘

Déterminons les espaces propres de f.



-A=15Soit X=| vy

X e E(f)

€ R3.

= AX=1X <=

Donc on a | Eq(f) = Vect 1

T
—A=2 S0t X=| vy
z

X e Ex(f)

Donc on a | Ex(f) = Vect 2

(
|
|
|
|
|

-1 -2 4 x
-2 1 2 y | =
-3 -2 6 z
—rx—2y+4z = =z
—2z4+y+22 =y
—3r—-2y+62 = =z
—2x—-2y+4z = 0
—2z 4 2z =0
-3z —-2y+5z = 0
x = z
—2(z) —2y+4z = 0

—3(2) —2y+5z = 0

x = Z

—2y+2z =

@)

—2y+2z = 0

r = Z

y =
z = Z

—r—2y+4z = 2
—2z4+y+2z2 = 2y
-3z —-2y+62z = 2z

—3x—2y+4z = 0
—2x—y+2z = 0
-3z —-2y+4z = 0
x = 0 (L;—2Ly)
y = 2z

z =z



~A=3.Soit X=| y | €R3.

z
-1 -2 4 T 3z
X e BEyf) — AX=3X — -2 1 2 y | =1 3y
-3 -2 6 z 3z

—r—2y+4z = 3x

S —2z4+y+22 = 3y

-3z —-2y+62z = 3z

— — — = /= /0

—dr—2y+4z = 0 (L1)
—2rx—2y+2z = 0 (L2)
-3z —-2y+32z = 0 (L3)
2r4+y—22z = 0 (Ly)
<~ —2x+2z =0 (L1 — Lz)
—Tr+z = 0 (Ll - Lg)
O T
y = 0
1
Donc on a | E3(f) = Vect 0
1

3. Montrons que f est diagonalisable.

On a trouvé 3 valeurs propres pour un endomorphisme de R? de dimension 3, donc f est bien diagonali-
sable.

Comme argument, on peut utiliser également le fait que le polynome était scindé simple, qui est une
condition suffisante de diagonalisabilité.

4. Déterminons une base B’ dans laquelle la matrice de f est diagonale.

1 0 1
Onposeur=\ 1|, uo=| 2 |, us=1 0
1 1 1

On a donc vu précédemment que
flur) =wr, flug) = 2us, f(us) = 3us

Vérifions que B’ = (u1, uz, u3) est bien une base de R3. Montrons déja que B’ est libre dans R3.

det(ul, ug, U3) =

— =

0 1
2 0|=2+41-2=1#0
11

Donc (u1,uz,u3) est libre dans R3, de dimension 3 : ¢’est donc une base de R3.
Si on note A’ la matrice de I'endomorphisme f dans la nouvelle base B/, on a :

10
A = matg (f) = 0 2
0 0

w o o

5. Ecrivons la matrice de passage P de la base B a B'.



P représente la matrice qui exprime les nouveaux vecteurs (ceux de B’) dans 'ancienne base (ceux de B) :

Y
|
— = =
_= N O
=

Calculons P~ 1.

Le déterminant de P a été calculé a la question précédente : det(P) =1 # 0, donc P est bien inversible.
On a alors :

) e/ 2 -1 -1 2 1 -2
P = Lcom(P) = 1 0 -1 ]=|-1 0 1
det(P) 9 1 2 1 -1 2

2 1 -2

Pl=| -1 0 1

1 -1 2

. Calcul de A" pour tout n > 1.
On a vu que A = PA’P~!. D’ot, pour tout n > 1, :

A" = PA'PLPAPL .. PAP =P (A)" P!

1 0 O
Comme A= 0 2 0 |,ona:
0o o0 3"
1 01 1 0 O 2 1 -2
A" = P(APTL = 1 20 0 2" 0 -1 0 1
1 11 0o o0 3" -1 -1 2
1 01 2 1 -2
= 1 2 0 =2" 0 2m
1 1 1 -3* =3" 2.3"
2-3" 1-3" —242.3"
— 2_2n+1 1 _2+2n+1

2-2"-3" 1-3" —-242"423"

2-3" 1-3" —2423"
Ainsi, Vn > 1, |A" = 2 — ontl 1 —2 4 2ntl
22" —-3" 1-3" —242" 423"




