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Exercice 1
Soit B = (e1, e2, e3) une base de R3.

Soit f ∈ L(R3) tel que matB(f) =



−8 −8 −12
−2 0 −2
9 8 13


 = A.

1. Déterminons Kerf

Soit X =




x
y
z


 ∈ R3.

X ∈ Kerf ⇐⇒ AX = 0 ⇐⇒


−8 −8 −12
−2 0 −2
9 8 13







x
y
z


 =




0
0
0




⇐⇒



−8x− 8y − 12z = 0
−2x− 2z = 0

9x + 8y + 13z = 0

⇐⇒




x = −z
−8(−z)− 8y − 12z = 0
9(−z) + 8y + 13z = 0

⇐⇒




x = −z
−8y − 4z = 0
8y + 4z = 0

⇐⇒




x = −z
y = −1/2z
z = z

Donc on a

Kerf = V ect







−1
−1/2

1







Déterminons donc la dimension et une base de Kerf .

En posant u =




−1
−1/2

1


, on a vu que Kerf = V ect (u).

Comme u est non nul, il est donc libre dans R3 : (u) est une base de Kerf et on en déduit que :

dim (Kerf) = 1

2. Quel est le rang de f (i.e. la dimension de Imf) ?
Puisque f est un endomorphisme de R3 espace vectoriel de dimension �nie, on peut appliquer le théorème du rang :

dim(R3) = dim (Kerf) + dim (Imf)

Donc on en déduit que rg(f) = dim (Imf) = dim(R3)− dim (Kerf) = 3− 1 = 2.
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rg(f) = 2

Cherchons une base de Imf .

Soit X =




x
y
z


 ∈ R3.

X ∈ Imf ⇐⇒ ∃α, β, γ ∈ R /




x
y
z


 =



−8 −8 −12
−2 0 −2
9 8 13







α
β
γ




⇐⇒ ∃α, β, γ ∈ R /




x
y
z


 =



−8α− 8β − 12γ

−2α− 2γ
9α + 8β + 13γ




⇐⇒ ∃α, β, γ ∈ R /




x
y
z


 = α



−8
−2
9


 + β



−8
0
8


 + γ



−12
−2
13




On a ainsi que Imf = V ect






−8
−2
9


 ,



−8
0
8


 ,



−12
−2
13





.

Or, on a vu que dim(Imf) = 2. Donc la famille précédente est bien génératrice mais est forcément liée.
Cherchons donc une sous-famille de deux vecteurs qui, elle, soit libre.

Choisissons U =



−8
−2
9


 et V =



−8
0
8


. Ces deux vecteurs ne sont pas colinéaires (à cause du 0 dans

V ), donc forment une famille libre.
On a alors que Imf = V ect (U, V ), avec (U, V ) libre : c'est ainsi une base de Imf .

Imf = V ect






−8
−2
9


 ,



−8
0
8







3. Montrons que R3 = Imf ⊕Kerf .

Il s'agit ici de montrer que
{

Imf ∩Kerf = {0}
R3 = Imf + Kerf

Déterminons Imf ∩Kerf .

Soit X =




x
y
z


 ∈ Imf ∩Kerf .

On a écrit que Kerf = V ect(u), donc ici : X ∈ Kerf ⇐⇒ ∃a ∈ R /




x
y
z


 = a




−1
−1/2

1




De plus, X ∈ Imf ⇐⇒ ∃α, β, γ ∈ R /




x
y
z


 =



−8α− 8β − 12γ

−2α− 2γ
9α + 8β + 13γ




Donc si X véri�e les deux équations précédentes, on a nécessairement :


−8α− 8β − 12γ

−2α− 2γ
9α + 8β + 13γ


 =




−a
−a/2

a




On obtient alors le système suivant :
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


−8α− 8β − 12γ = −a

−2α− 2γ = −a/2
9α + 8β + 13γ = a

L3←L3+L1

=⇒



−8α− 8β − 12γ = −a

−2α− 2γ = −a/2
α + γ = 0

Les deux dernières équations du système fournissent bien que a = 0. On en tire que X =




0
0
0


 et on a

ainsi montré que Imf ∩Kerf ⊂ {0}.
Mais la réciproque est claire. En e�et, comme Imf et Kerf sont des sev de R3, ils contiennent l'élément
neutre : on a toujours {0} ⊂ Imf ∩Kerf .
Donc on a bien l'égalité cherchée : Imf ∩Kerf = {0}.
Montrons à présent que Imf +Kerf = R3.

On a déjà une inclusion : Imf +Kerf ⊂ R3 car la somme de deux sev de R3 est toujours incluse dans R3.
Regardons donc les dimensions.
On a la formule suivante :

dim (Imf + Kerf) = dim (Imf) + dim (Kerf)− dim (Imf ∩Kerf)

Or, ici on a Imf ∩Kerf = {0} donc dim (Imf ∩Kerf) = 0.
On a donc :

dim (Imf + Kerf) = dim (Imf) + dim (Kerf) = 2 + 1 = 3 = dim(R3)

En conclusion, on a
{

Imf + Kerf ⊂ R3

dim (Imf + Kerf) = dim(R3)
. D'où Imf + Kerf = R3.

Comme on a montré précédemment que Imf ∩Kerf = {0}, on peut bien écrire que la somme est directe :

R3 = Imf ⊕Kerf

4. On considère les vecteurs v1 = e1 − e3 , v2 = −6e2 + 3e3 et v3 = 2e1 + e2 − 2e3.
Montrons que B′ = (v1, v2, v3) est une base de R3.
Véri�ons déjà que B′ est bien libre dans R3. Regardons donc det(v1, v2, v3).
Pour cela, écrivons v1, v2, v3 en vecteurs :

v1 =




1
0
−1


 , v2 =




0
−6
3


 , v3 =




2
1
−2




Le déterminant vaut alors :

det(v1, v2, v3) =

∣∣∣∣∣∣

1 0 2
0 −6 1
−1 3 −2

∣∣∣∣∣∣
= 12 + 0 + 0− 12− 3− 0 = −3 6= 0

Donc (v1, v2, v3) est une famille libre dans R3 qui est de dimension 3, c'est donc bien une base de R3.

5. Calculons f(w) pour w = −4e1 − 6e2 + 7e3.

f(w) = f(−4e1 − 6e2 + 7e3)
= −4f(e1)− 6f(e2) + 7f(e3)
= −4(−8e1 − 2e2 + 9e3)− 6(−8e1 + 8e3) + 7(−12e1 − 2e2 + 13e3)
= 32e1 + 8e2 − 36e3 + 48e1 − 48e3 − 84e1 − 14e2 + 91e3

= −4e1 − 6e2 + 7e3

= w

Donc
f(w) = w
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6. Calculons f(v1), f(v2) et f(v3).

f(v1) = f(e1 − e3)
= f(e1)− f(e3)
= (−8e1 − 2e2 + 9e3)− (−12e1 − 2e2 + 13e3)
= 4e1 − 4e3

= 4(e1 − e3)
= 4v1

f(v2) = f(−6e2 + 3e3)
= −6f(e2) + 3f(e3)
= −6(−8e1 + 8e3) + 3(−12e1 − 2e2 + 13e3)
= 12e1 − 6e2 − 9e3

= 12(e1 − e3) + (−6e2 + 3e3)
= 12v1 + v2

f(v3) = f(2e1 + e2 − 2e3)
= 2f(e1) + f(e2)− 2f(e3)
= 2(−8e1 − 2e2 + 9e3) + (−8e1 + 8e3)− 2(−12e1 − 2e2 + 13e3)
= (−16− 8 + 24)e1 + (−4 + 4)e2 + (18 + 8− 26)e3

= 0

Donc
f(v1) = 4v1 , f(v2) = 12v1 + v2 , f(v3) = 0

Ecrivons à présent la matrice de f dans la base B′ :

A′ = matB′(f) =




4 12 0
0 1 0
0 0 0




7. Ecrivons la matrice de passage P de la base B à la base B′.

P = PBB′ =




1 0 2
0 −6 1
−1 3 −2




Calculons P−1.
On a montré à la question 4 que det(P ) = −3 6= 0. Donc P est bien inversible. On peut par exemple
calculer P−1 avec la formule de la comatrice :

P−1 =
1

det(P )
tcom(P ) = −1

3

t



9 −1 −6
6 0 −3
12 −1 −6


 =

1
3



−9 −6 −12
1 0 1
6 3 6




On a donc

P−1 =




−3 −2 −4
1/3 0 1/3
2 1 2




8. Retrouver A′ en utilisant P et P−1.
Comme A et A′ représentent le même endomorphisme f respectivement dans les bases B et B′, on a la
relation suivante :

A = PBB′ .A′.PB′ B = PA′P−1 ⇐⇒ A′ = PB′ B.A.PBB′ = P−1AP
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Donc en principe, en calculant P−1AP , on devrait retrouver l'expression de A′ trouvée précédemment :

P−1AP =




−3 −2 −4
1/3 0 1/3
2 1 2






−8 −8 −12
−2 0 −2
9 8 13







1 0 2
0 −6 1
−1 3 −2




=




−3 −2 −4
1/3 0 1/3
2 1 2







4 12 0
0 −6 0
−4 −9 0




=




4 12 0
0 1 0
0 0 0




On retrouve bien la matrice obtenue dans la question 6.

Exercice 2
Soit B une base de R3. Soit f un endomorphisme de R3 tel que

matB(f) =



−1 −2 4
−2 1 2
−3 −2 6


 = A.

1. Déterminons le polynôme caractéristique de f .
Le polynôme caractéristique de f est dé�ni par χ(λ) = det(f − λId) = det(A− λI3).

χ(λ) =

∣∣∣∣∣∣

−1− λ −2 4
−2 1− λ 2
−3 −2 6− λ

∣∣∣∣∣∣
= (−1− λ)(1− λ)(6− λ) + 12 + 16 + 12(1− λ) + 4(−1− λ)− 4(6− λ)
= (λ2 − 1)(6− λ) + 28 + 12− 12λ− 4− 4λ− 24 + 4λ

= (−λ3 + 6λ2 + λ− 6) + 12− 12λ
= −λ3 + 6λ2 − 11λ + 6 ( 1 est racine évidente...)
= (λ− 1)(−λ2 + 5λ− 6)
= −(λ− 1)(λ− 2)(λ− 3)

Donc
χ(λ) = −(λ− 1)(λ− 2)(λ− 3)

2. Déterminons les valeurs propres de f .
On sait que les valeurs propres de f sont exactement les racines du polynôme caractéristique. Les valeurs
propres de f sont donc exactement 1, 2 et 3.

Sp(f) = {1, 2, 3}

Déterminons les espaces propres de f .
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� λ = 1. Soit X =




x
y
z


 ∈ R3.

X ∈ E1(f) ⇐⇒ AX = 1.X ⇐⇒


−1 −2 4
−2 1 2
−3 −2 6







x
y
z


 =




x
y
z




⇐⇒




−x− 2y + 4z = x
−2x + y + 2z = y
−3x− 2y + 6z = z

⇐⇒



−2x− 2y + 4z = 0
−2x + 2z = 0

−3x− 2y + 5z = 0

⇐⇒




x = z
−2(z)− 2y + 4z = 0
−3(z)− 2y + 5z = 0

⇐⇒




x = z
−2y + 2z = 0
−2y + 2z = 0

⇐⇒




x = z
y = z
z = z

Donc on a E1(f) = V ect







1
1
1





 .

� λ = 2. Soit X =




x
y
z


 ∈ R3.

X ∈ E2(f) ⇐⇒ AX = 2.X ⇐⇒


−1 −2 4
−2 1 2
−3 −2 6







x
y
z


 =




2x
2y
2z




⇐⇒




−x− 2y + 4z = 2x
−2x + y + 2z = 2y
−3x− 2y + 6z = 2z

⇐⇒



−3x− 2y + 4z = 0 (L1)
−2x− y + 2z = 0 (L2)
−3x− 2y + 4z = 0 (L3)

⇐⇒




x = 0 (L1 − 2L2)
y = 2z
z = z

Donc on a E2(f) = V ect







0
2
1





 .
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� λ = 3. Soit X =




x
y
z


 ∈ R3.

X ∈ E2(f) ⇐⇒ AX = 3.X ⇐⇒


−1 −2 4
−2 1 2
−3 −2 6







x
y
z


 =




3x
3y
3z




⇐⇒




−x− 2y + 4z = 3x
−2x + y + 2z = 3y
−3x− 2y + 6z = 3z

⇐⇒



−4x− 2y + 4z = 0 (L1)
−2x− 2y + 2z = 0 (L2)
−3x− 2y + 3z = 0 (L3)

⇐⇒




2x + y − 2z = 0 (L1)
−2x + 2z = 0 (L1 − L2)
−x + z = 0 (L1 − L3)

⇐⇒
{

x = z
y = 0

Donc on a E3(f) = V ect







1
0
1





 .

3. Montrons que f est diagonalisable.
On a trouvé 3 valeurs propres pour un endomorphisme de R3 de dimension 3, donc f est bien diagonali-
sable.

Comme argument, on peut utiliser également le fait que le polynôme était scindé simple, qui est une
condition su�sante de diagonalisabilité.

4. Déterminons une base B′ dans laquelle la matrice de f est diagonale.

On pose u1 =




1
1
1


, u2 =




0
2
1


, u3 =




1
0
1


.

On a donc vu précédemment que

f(u1) = u1, f(u2) = 2u2, f(u3) = 3u3

Véri�ons que B′ = (u1, u2, u3) est bien une base de R3. Montrons déjà que B′ est libre dans R3.

det(u1, u2, u3) =

∣∣∣∣∣∣

1 0 1
1 2 0
1 1 1

∣∣∣∣∣∣
= 2 + 1− 2 = 1 6= 0

Donc (u1, u2, u3) est libre dans R3, de dimension 3 : c'est donc une base de R3.
Si on note A′ la matrice de l'endomorphisme f dans la nouvelle base B′, on a :

A′ = matB′(f) =




1 0 0
0 2 0
0 0 3




5. Ecrivons la matrice de passage P de la base B à B′.
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P représente la matrice qui exprime les nouveaux vecteurs (ceux de B′) dans l'ancienne base (ceux de B) :

P =




1 0 1
1 2 0
1 1 1




Calculons P−1.
Le déterminant de P a été calculé à la question précédente : det(P ) = 1 6= 0, donc P est bien inversible.
On a alors :

P−1 =
1

det(P )
tcom(P ) =

t



2 −1 −1
1 0 −1
−2 1 2


 =




2 1 −2
−1 0 1
−1 −1 2




P−1 =




2 1 −2
−1 0 1
−1 −1 2




6. Calcul de An pour tout n ≥ 1.

On a vu que A = PA′P−1. D'où, pour tout n ≥ 1, :

An = PA′P−1.PA′P−1. . . . .PA′P−1 = P
(
A′

)n
P−1

Comme A′n =




1 0 0
0 2n 0
0 0 3n


, on a :

An = P (A′)nP−1 =




1 0 1
1 2 0
1 1 1







1 0 0
0 2n 0
0 0 3n







2 1 −2
−1 0 1
−1 −1 2




=




1 0 1
1 2 0
1 1 1







2 1 −2
−2n 0 2n

−3n −3n 2.3n




=




2− 3n 1− 3n −2 + 2.3n

2− 2n+1 1 −2 + 2n+1

2− 2n − 3n 1− 3n −2 + 2n + 2.3n




Ainsi, ∀n ≥ 1, An =




2− 3n 1− 3n −2 + 2.3n

2− 2n+1 1 −2 + 2n+1

2− 2n − 3n 1− 3n −2 + 2n + 2.3n



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