Devoir 2 pour le 23 Avril

Exercice 1

Soit φ la forme bilinéaire de $(\mathbb{R}_2[X])^2$ définie par :

$$\forall P, Q \in \mathbb{R}_2[X]$$
 , $\varphi(P, Q) = P(1)Q(-1) + P(-1)Q(1)$

- 1. Montrer que φ est une forme bilinéaire symétrique et donner sa matrice par rapport à la base canonique de $\mathbb{R}_2[X]$.
- 2. On considère la famille $\mathcal{B}'=(1-X^2,X,X^2).$
 - (a) Montrer que \mathcal{B}' est une base de $\mathbb{R}_2[X]$ et déterminer la matrice de φ dans cette base.
 - (b) En déduire l'expression, dans cette base, de φ et de la forme quadratique q associée.
 - (c) Déterminer l'ensemble J_q des vecteurs isotropes pour q.
- 3. Soit $F = \{ P \in \mathbb{R}_2[X] / P(0) = 0 \}$.
 - (a) Montrer que F est un sous-espace vectoriel de $\mathbb{R}_2[X]$ et déterminer une base de F.
 - (b) Déterminer l'orthogonal de F relativement à φ .

Exercice 2

On considère l'espace vectoriel $E = \mathbb{R}^4$. On note \mathcal{B} une base (e_1, e_2, e_3, e_4) de E. Soient $a, b, c \in \mathbb{R}$ et q la forme quadratique définie par :

$$q(x) = x_1^2 + 2x_2^2 + x_3^2 + ax_4^2 + 2x_1x_2 + 4bx_1x_3 + 4bx_2x_3 + 2cx_2x_4$$

où (x_1, x_2, x_3, x_4) sont les composantes de x dans la base \mathcal{B} .

- 1. Déterminer la forme polaire de q ainsi que la matrice de q dans la base \mathcal{B} .
- 2. Donner une réduction en carrés de Gauss de la forme quadratique q.
- 3. Préciser le rang et la signature de q en fonction des paramètres réels a, b et c.
- 4. Dans le cas où (a, b, c) = (2, 0, 1), déterminer une base de E qui soit q-orthogonale.