Devoir 3 pour le 14 Mai

Exercice 1

Soit $E = \mathbb{R}_2[X]$ et soit $\varphi : E \to \mathbb{R}$ la forme bilinéaire symétrique définie par :

$$\varphi(P,Q) = P(0)Q(0) + P(1)Q(1) + P(2)Q(2)$$

- 1. Montrer que φ est un produit scalaire.
- 2. Préciser et justifier (sans calculs) le rang et la signature de la forme quadratique associée à φ .
- 3. Soit $F = \{P \in E \mid P(0) = 0\}$. Montrer que F est un sous-espace vectoriel de E et donner une base de F.
- 4. Déterminer par le procédé d'orthonormalisation de Gram-Schmidt, une base orthonormale de F relativement au produit scalaire φ .
- 5. Déterminer la dimension et une base de F^{\perp} .

Exercice 2

Dans E euclidien, on note $\langle x|y \rangle$ le produit scalaire de E.

Soit f un endomorphisme non nul de E. On suppose que f est antisymétrique, c'est-à-dire

$$\forall x, y \in E, \quad \langle f(x)|y \rangle = -\langle x|f(y) \rangle$$

- 1. (a) Démontrer que $\operatorname{Im}(f) = (\operatorname{Ker}(f))^{\perp}$.
 - (b) En déduire que E = Im(f) + Ker(f) et que $\text{Ker}(f) = \text{Ker}(f^2)$.
- 2. (a) Montrer que pour tout $x \in E$, on a $\langle f(x)|x \rangle = 0$.
 - (b) En déduire que s'il existe une valeur propre réelle de f, elle est nulle.
- 3. On suppose dans cette question que E de dimension 3 et soit $\mathcal{B} = (e_1, e_2, e_3)$ une base orthonormale de E. Démontrer que la matrice de f dans la base \mathcal{B} est de la forme :

$$A = \left(\begin{array}{ccc} 0 & -p & -q \\ p & 0 & -r \\ q & r & 0 \end{array}\right)$$

Indication: on pour comparer $< f(e_i)|e_j > et < f(e_j)|e_i > pour tout i \neq j$.

- 4. (a) Montrer que $f \circ f$ est un endomorphisme symétrique de E.
 - (b) Montrer que toute valeur propre de $f \circ f$ est négative ou nulle.
 - (c) Pourquoi l'endomorphisme $f \circ f$ admet-il au moins une valeur propre non nulle? Justifier votre réponse.
 - (d) Soit u un vecteur propre de $f \circ f$ associé à une valeur propre λ . Montrer que la famille (u, f(u)) est libre.