Devoir 3 pour le 14 Mai

Corrigé

Exercice 1

Soit $E=\mathbb{R}_2[X]$ et soit $\varphi:E\to\mathbb{R}$ la forme bilinéaire symétrique définie par :

$$\varphi(P,Q) = P(0)Q(0) + P(1)Q(1) + P(2)Q(2)$$

- 1. Montrons que φ est un produit scalaire.
 - $-\varphi$ est une forme bilinéaire symétrique (d'après l'énoncé, mais facilement vérifiable)
 - $-\varphi$ est positive?

Soit $P \in E = \mathbb{R}_2[X]$. On a : $\varphi(P, P) = P(0)^2 + P(1)^2 + P(2)^2 \ge 0$.

Donc φ est bien positive.

 $-\varphi$ est définie?

Soit $P \in E = \mathbb{R}_2[X]$ tel que $\varphi(P, P) = 0$, on a alors $P(0)^2 + P(1)^2 + P(2)^2 = 0$, autrement dit P(0) = P(1) = P(2) = 0.

P est donc un polynôme de degré ≤ 2 , qui a au moins 3 racines réelles : c'est le polynôme nul. φ est donc bien définie.

 φ est ainsi une forme bilinéaire symétrique définie positive, c'est-à-dire un produit scalaire.

2. Précisons (sans calculs) le rang et la signature de la forme quadratique associée à φ .

Soit q la forme quadratique associée à φ . Considérons la réduction de Gauss de q en sommes (et différences) de carrés de formes linéaires indépendantes.

On sait que q est définie positive. On en déduit donc que les carrés présents dans la décomposition sont, d'une part tous positifs, et d'autre part en nombre égal à la dimension de l'espace E.

$$\boxed{rg(q) = 3} \qquad \boxed{sgn(q) = (3,0)}$$

3. Soit $F = \{P \in E \ / \ P(0) = 0\}$. Montrons que F est un sous-espace vectoriel de E et donner une base de F.

Posons $P \in E = \mathbb{R}_2[X]$. Alors il existe trois réels a_0, a_1, a_2 tels que $P = a_0 + a_1X + a_2X^2$.

$$P \in F \iff P(0) = 0 \iff a_0 + a_1.0 + a_2.0 = 0 \iff a_0 = 0 \iff P = a_1X + a_2X^2 \iff P \in Vect(X, X^2)$$

On a donc $F = Vect(X, X^2)$. Or la famille (X, X^2) est libre car ce sont des polynômes à degrés étagés. La famille (X, X^2) est donc une base de F.

4. Déterminer par le procédé d'orthonormalisation de Gram-Schmidt, une base orthonormale de F relativement au produit scalaire φ .

On part de la base (X, X^2) de F.

On pose donc $P_1 = \frac{X}{\|X\|}$.

Ici
$$\varphi(X, X) = 0.0 + 1.1 + 2.2 = 5$$
. Donc $||X|| = \sqrt{\varphi(X, X)} = \sqrt{5}$.

$$P_1 = \frac{1}{\sqrt{5}}X$$

On pose alors $P_2' = X^2 - \varphi(X^2, P_1)P_1$.

$$\varphi(X^2, P_1) = \varphi\left(X^2, \frac{1}{\sqrt{5}}X\right) = \frac{1}{\sqrt{5}}\varphi(X^2, X) = \frac{1}{\sqrt{5}}\left(0.0 + 1.1 + 2^2.2\right) = \frac{9}{\sqrt{5}}$$

On a donc $P'_2 = X^2 - \frac{9}{\sqrt{5}} \cdot \frac{1}{\sqrt{5}} X = X^2 - \frac{9}{5} X$. Il reste donc à normer P'_2 .

$$\varphi(P_2', P_2') = 0 + \left(1 - \frac{9}{5}\right)^2 + \left(4 - \frac{9}{5} \cdot 2\right)^2 = \frac{16}{25} + \frac{4}{25} = \frac{20}{25} = \frac{4}{5} \implies ||P_2'|| = \frac{2}{\sqrt{5}}$$

$$P_2 = \frac{\sqrt{5}}{2} \left(X^2 - \frac{1}{5} X \right)$$

Les vecteurs P_1 et P_2 obtenus forment alors une base orthonormale de F pour le produit scalaire φ .

5. Déterminer la dimension et une base de F^{\perp} .

On sait que $\dim(F) + \dim(F^{\perp}) = \dim(E)$ donc ici $\dim(F^{\perp}) = 3 - 2 = 1$.

$$\dim(F^{\perp}) = 1$$

On cherche donc un polynôme P, de degré ≤ 2 , qui soit orthogonal à la fois à X et à X^2 .

$$\left\{ \begin{array}{l} \varphi(P,X)=0 \\ \varphi(P,X^2)=0 \end{array} \right. \iff \left\{ \begin{array}{l} 0+P(1)+2P(2)=0 \\ 0+P(1)+4P(2)=0 \end{array} \right. \iff \left\{ \begin{array}{l} P(1)=0 \\ P(2)=0 \end{array} \right.$$

Le polynôme P cherché est donc un polynôme de degré inférieur ou égal à 2, et qui admet (au moins) comme racines 1 et 2. On a ainsi :

$$F^{\perp} = Vect\left((X-1)(X-2)\right)$$

Exercice 2

Dans E euclidien, on note $\langle x|y \rangle$ le produit scalaire de E.

On dit qu'un endomorphisme f de E est antisymétrique si et seulement si

$$\forall x, y \in E, \quad \langle f(x)|y \rangle = -\langle x|f(y) \rangle$$

1. (a) Montrons que $\operatorname{Im}(f) = (\operatorname{Ker}(f))^{\perp}$.

Soient $x \in \text{Im}(f)$ et $y \in \text{Ker}(f)$. Autrement dit, f(y) = 0 et $\exists z \in E \ / \ x = f(z)$.

$$\langle x|y \rangle = \langle f(z)|y \rangle = -\langle z|f(y) \rangle = -\langle z|0 \rangle = 0$$

On a ainsi montré que n'importe quel élément de Im(f) est orthogonal à tous les éléments de Ker(f):

$$\operatorname{Im}(f) \subset (\operatorname{Ker}(f))^{\perp}$$

De plus, $\dim(\operatorname{Im}(f)) = \dim(E) - \dim(\operatorname{Ker}(f))$ d'après le théorème du rang.

Egalement, $\dim \left((\operatorname{Ker}(f))^{\perp} \right) = \dim(E) - \dim(\operatorname{Ker}(f))$ d'après le fait que $\operatorname{Ker}(f)$ et $(\operatorname{Ker}(f))^{\perp}$ sont supplémentaires.

Ainsi, on a
$$\left\{ \begin{array}{l} \operatorname{Im}(f) \subset (\operatorname{Ker}(f))^{\perp} \\ \dim (\operatorname{Im}(f)) = \dim (\operatorname{Ker}(f))^{\perp} \end{array} \right. \text{ D'où l'égalité cherchée} :$$

$$\operatorname{Im}(f) = \left(\operatorname{Ker}(f)\right)^{\perp}$$

(b) En déduire que E = Im(f) + Ker(f).

On a montré précédemment que $\operatorname{Im}(f) = (\operatorname{Ker}(f))^{\perp}$. On a donc ainsi $\operatorname{Im}(f) \cap \operatorname{Ker}(f) = \{0\}$. En effet, si $x \in \operatorname{Im}(f) \cap \operatorname{Ker}(f)$, on a $\langle x | x \rangle = 0$ car le premier x appartient à $\operatorname{Im}(f)$, et le deuxième x appartient à $\operatorname{Ker}(f)$. Or le produit scalaire est défini positif, on en déduit que x = 0.

On a toujours $\operatorname{Im}(f) + \operatorname{Ker}(f) \subset E$ car $\operatorname{Im}(f)$ et $\operatorname{Ker}(f)$ sont des sev de E.

Ici, $\dim(\operatorname{Im}(f) + \operatorname{Ker}(f)) = \dim(\operatorname{Im}(f)) + \dim(\operatorname{Ker}(f)) - \dim(\operatorname{Im}(f) \cap \operatorname{Ker}(f)) = \dim(\operatorname{Im}(f)) + \dim(\operatorname{Ker}(f)) = \dim(E)$ d'après le théorème du rang.

D'où l'égalité cherchée :

$$E = \operatorname{Im}(f) + \operatorname{Ker}(f)$$

(Remarque : la somme est même directe ici)

Montrons que $Ker(f) = Ker(f^2)$

 \subset Soit $x \in \text{Ker}(f)$, c'est-à-dire tel que f(x) = 0.

Alors $f^2(x) = f(f(x)) = f(0) = 0$. Donc $x \in \text{Ker}(f^2)$.

 \bigcirc . Soit $x \in \text{Ker}(f^2)$, c'est-à-dire tel que $f^2(x) = 0$.

Alors $f(x) \in \text{Im}(f) \cap \text{Ker}(f)$. D'où $f(x) = 0 : x \in \text{Ker}(f)$.

$$\operatorname{Ker}(f) = \operatorname{Ker}(f^2)$$

2. (a) Montrer que pour tout $x \in E$, on a $\langle f(x)|x \rangle = 0$.

En effet, pour tout $x \in E$, < f(x)|x> = - < x|f(x)> = - < f(x)|x>, vu la symétrie du produit scalaire et l'antisymétrie de f.

Donc:

$$\boxed{\forall x \in E, < f(x) | x >= 0}$$

(b) En déduire que s'il existe une valeur propre réelle de f, elle est nulle.

Supposons que λ soit une valeur propre réelle de f.

Cela signifie donc qu'il existe un vecteur x non nul, tel que $f(x) = \lambda x$.

La condition précédente nous donne alors que :

$$0 = \langle f(x) | x \rangle = \langle \lambda x | x \rangle = \lambda \langle x | x \rangle = \lambda ||x||^2$$

Comme x est non nul, on a $||x|| \neq 0$, d'où nécessairement $\lambda = 0$.

$$Sp(f) = \{0\}$$

3. On suppose dans cette question que E de dimension 3 et soit $\mathcal{B} = (e_1, e_2, e_3)$ une base orthonormale de E. Démontrer que la matrice de f dans la base \mathcal{B} est de la forme :

$$A = \left(\begin{array}{ccc} 0 & -p & -q \\ p & 0 & -r \\ q & r & 0 \end{array}\right)$$

– Posons $f(e_1)=me_1+pe_2+qe_3$ (En effet, (e_1,e_2,e_3) est une base de E). Alors :

$$\langle f(e_1)|e_1 \rangle = m$$
 , $\langle f(e_1)|e_2 \rangle = p$, $\langle f(e_1)|e_3 \rangle = q$

Or, on a vu que $\langle f(e_1)|e_1 \rangle = 0$, donc $\boxed{m=0}$

Cela justifie donc l'écriture de la première colonne de la matrice A.

- Posons $f(e_2) = ae_1 + be_2 + ce_3$. Alors:

$$< f(e_2)|e_1> = a$$
 , $< f(e_2)|e_2> = b$, $< f(e_2)|e_3> = c$

Or, on a vu que $\langle f(e_2)|e_2 \rangle = 0$, donc b = 0.

De plus, $a = \langle f(e_2) | e_1 \rangle = -\langle e_2 | f(e_1) \rangle = -p$. Donc a = -p

Posons alors r = c

 $- f(e_3) = xe_1 + ye_2 + ze_3$ Alors:

$$\langle f(e_3)|e_1 \rangle = x$$
 , $\langle f(e_3)|e_2 \rangle = y$, $\langle f(e_3)|e_3 \rangle = z$

Or, on a vu que $< f(e_3)|e_3> = 0$, donc z = 0.

De plus, $x = \langle f(e_3) | e_1 \rangle = -\langle e_3 | f(e_1) \rangle = -q$. Donc x = -q

De même, $y = \langle f(e_3) | e_2 \rangle = -\langle e_3 | f(e_2) \rangle = -r$. Donc y = -r

L'écriture de la matrice de f dans la base $\mathcal B$ est donc :

$$A = \left(\begin{array}{ccc} 0 & -p & -q \\ p & 0 & -r \\ q & r & 0 \end{array}\right)$$

4. (a) Montrer que $f \circ f$ est un endomorphisme symétrique de E.

Soient $x, y \in E$. Il faut donc vérifier que $\langle f \circ f(x) | y \rangle = \langle x | f \circ f(y) \rangle$.

$$< f \circ f(x)|y> = - < f(x)|f(y)> = - (- < x|f \circ f(y)>) = < x|f \circ f(y)>$$

Donc $f \circ f$ est bien un endomorphisme symétrique de E.

(b) Montrer que toute valeur propre de $f \circ f$ est négative ou nulle.

Soit λ une valeur propre de $f \circ f$: il existe donc x un vecteur non nul tel que $f \circ f(x) = \lambda x$. On a donc:

$$< x|f \circ f(x) > = \begin{cases} < x \ lambdax > = \lambda ||x||^2 \\ - < f(x)|f(x) > = -||f(x)||^2 \end{cases}$$

On a ainsi $\lambda ||x||^2 \le 0$, autrement dit $\lambda \le 0$.

$$\boxed{Sp(f \circ f) \subset \mathbb{R}^-}$$

(c) Pourquoi l'endomorphisme $f \circ f$ admet-il au moins une valeur propre non nulle?

 $f \circ f$ étant un endomorphisme symétrique, f est en particulier diagonalisable. Il existe donc une base \mathcal{B}_0 dans laquelle la matrice de $f \circ f$ soit :

$$D = \begin{pmatrix} \lambda_1 & & 0 \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}$$

où $\lambda_1, \ldots, \lambda_n$ sont les valeurs propres de $f \circ f$.

Si les valeurs propres étaient toutes nulles, alors la matrice D serait la matrice nulle, et l'endomorphisme $f\circ f$ serait nul. Or f est supposé non nul , donc $f\circ f$ également. Ce cas est donc impossible. Il existe donc nécessairement au moins une valeur propre non nulle.

(d) Soit u un vecteur propre de $f\circ f$ associé à une valeur propre λ . Montrer que la famille (u,f(u)) est libre.

Soit u un vecteur propre de $f \circ f$. u est donc un vecteur non nul, tel que $f \circ f(u) = \lambda u$. Or, comme f est antisymétrique, la question (2) a. nous donne que :

$$< u|f(u)> = 0$$

On a donc que les vecteurs u et f(u) sont orthogonaux, et comme u est non nul, la famille (u, f(u)) est bien libre.