ALGEBRE

Contrôle Continu

Vendredi 18 Avril 2003

Durée: 1H30

Les calculatrices et les documents sont interdits

Exercice 1. Dans le \mathbb{R} -espace vectoriel \mathbb{R}^3 on considère les vecteurs :

$$v_1 = (1, 0, 1), \quad v_2 = (2, 1, -1), \quad v_3 = (1, 1, 0), \quad v_4 = (1, -1, 1)$$

- 1) Les familles $\{v_1, v_2\}$, $\{v_1, v_2, v_3\}$, $\{v_1, v_2, v_3, v_4\}$ sont-elles libres? génératrices?
- 2) Soit $F := Vect(v_1, v_2)$ et $G := Vect(v_3, v_4)$ les sous-espaces vectoriels de \mathbb{R}^3 engendrés respectivement par $\{v_1, v_2\}$ et $\{v_3, v_4\}$. Déterminer $F \cap G$ et F + G. $F \cup G$ est-il un espace vectoriel?
- 3) Soit $H := \{(x, y, z) \in \mathbb{R}^3 : x y = 0 \text{ et } x + z = 0\}.$

Montrer que H est un sous-espace vectoriel de \mathbb{R}^3 . Qu'est géométriquement cet ensemble ? Est-ce que $\mathbb{R}^3 = F \oplus H$?

Exercice 2. Soit E un espace vectoriel de dimension finie et f un endomorphisme de E; f^2 désigne $f \circ f$.

- 1) Montrer que $Im\ f^2\subset Im\ f$ et $Ker\ f\subset Ker\ f^2$.
- 2) Montrer les implications suivantes :

$$Im \ f = Im \ f^2 \Longrightarrow Ker \ f = Ker \ f^2 \Longrightarrow E = Ker \ f \oplus Im \ f \Longrightarrow Im \ f = Im \ f^2$$

Que peut-on en conclure?

Exercice 3. On considère le \mathbb{R} -espace vectoriel \mathbb{R}^4 muni de sa base canonique (e_1, e_2, e_3, e_4) . Soit F le sous-espace vectoriel de \mathbb{R}^4 engendré par les vecteurs u = (1, 1, -1, 1), v = (1, 0, 2, 0) et w = (0, 1, 1, 1).

Montrer que u, v et w sont linéairement indépendants.

Déterminer par leurs coordonnées sur la base duale $(e_1^*, e_2^*, e_3^*, e_4^*)$ de la base canonique de \mathbb{R}^4 , les éléments d'une base de l'orthogonal F^{\perp} de F.

Exercice 4. Soit E un espace vectoriel de dimension finie, soient F et G deux sous-espaces vectoriels de E.

Déterminer la dimension de l'orthogonal de $F \cap G$ en fonction des dimensions de E, F, G et F + G.

Exercice 5. On désigne par F un espace vectoriel de dimension 3 sur \mathbb{R} et par $B = (e_1, e_2, e_3)$ une base de F.

On considère l'endomorphisme f de F dont la matrice A dans la base B est $\begin{pmatrix} 2 & -2 & -1 \\ 0 & 1 & -2 \\ 0 & -2 & 1 \end{pmatrix}$.

- 1) Déterminer f.
- 2) Déterminer Ker f, donner la dimension et une base de Ker f.
- 3) Quel est le rang de f ? Donner une base de $Im\ f$.
- 4) On considère les 3 vecteurs $v_1 = e_1$, $v_2 = -e_1 + e_2$, $v_3 = e_1 e_2 + e_3$.

Montrer que (v_1, v_2, v_3) est une base de F, on la notera B'.

5) Exprimer $f(v_1)$, $f(v_2)$, $f(v_3)$ en fonction de v_1, v_2, v_3 .

Donner la matrice A' de f dans la base B'.

- 6) Ecrire la matrice de passage P de la base B à la base B'. Calculer P^{-1} .
- 7) A est-elle inversible? si oui donner son inverse.
- 8) Calculer A^n pour tout entier naturel n.