ALGEBRE DEVOIR no 3

Exercice 1. On considère les éléments $f_1^*,\,f_2^*,\,f_3^*$ de $(\mathbb{R}^3)^*$ définis par :

$$f_1^*(x,y,z) = 2x - 3y + 7z,$$
 $f_2^*(x,y,z) = 2x + y + z,$ $f_3^*(x,y,z) = 4x + y - 3z.$

1) Montrer que (f_1^*, f_2^*, f_3^*) constitue une base de $(\mathbb{R}^3)^*$.

Trouver les composantes de f_1^*, f_2^*, f_3^* sur la base duale (e_1^*, e_2^*, e_3^*) de la base canonique (e_1, e_2, e_3) de \mathbb{R}^3 .

- 2) Déterminer par leurs composantes sur la base canonique (e_1, e_2, e_3) les vecteurs de la base duale (f_1, f_2, f_3) de la base (f_1^*, f_2^*, f_3^*) .
- 3) Soit F le sous-espace vectoriel de $(\mathbb{R}^3)^*$ engendré par f_1^* et f_2^* . Déterminer une base de l'orthogonal de F.

Exercice 2. Calculer le déterminant suivant :

$$\Delta = \begin{vmatrix} 2+2a & 2+16a & 0 & 2+4a & 2+8a \\ 4 & 256 & 0 & 16 & 64 \\ 3 & 81 & 0 & 9 & 27 \\ 7 & 12 & 3 & 26 & -8 \\ 2 & 16 & 0 & 4 & 8 \end{vmatrix}$$

Exercice 3. Soit σ la permutation des entiers de 1 à 10 définie ci-dessous :

Soit $P_{\sigma} := (p_{ij})_{1 \leq i,j \leq 10}$ la matrice 10×10 telle que :

$$p_{ij} = 1 \text{ si } \sigma(j) = i, \quad p_{ij} = 0 \text{ sinon.}$$

Quel est le déterminant de P_{σ} ?

Exercice 4.

- 1) Montrer que les vecteurs u:=(3,0,1), v:=(-2,-1,-1) et w:=(1,0,0) forment une base de \mathbb{R}^3 .
- 2) Soit $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ l'endomorphisme dont la matrice par rapport à la base canonique est :

$$A = \left(\begin{array}{rrr} -1 & -2 & 6 \\ -1 & 0 & 3 \\ -1 & -1 & 4 \end{array}\right).$$

Donner la matrice de f par rapport à la base (u, v, w).

3) Sans déterminer les sous-espaces propres, montrer que f n'est pas diagonalisable.

Exercice 5. Soit E un espace vectoriel de dimension finie sur un corps commutatif \mathbb{K} , on dit qu'un endomorphisme f de E est un projecteur de E si et seulement si $f \circ f = f$. Soit p un projecteur de E.

- 1) Déterminer les valeurs propres de p.
- 2) Montrer que $Ker(Id_E p) = Im(p)$.
- 3) Montrer que $E = Im(p) \oplus Ker(p)$.
- 4) p est-il diagonalisable?