Etudiant 1:

Cours:

Montrer que si (f_n) est une suite de fonctions continues qui CVU vers f sur [a,b], alors :

$$\lim_{n \to \infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} f(x) dx$$

Exercice 1:

Etudier les convergences de la suite de fonction, définie par $f_n(x) = xe^{x/n}$ pour $x \ge 0$.

Exercice 2:

Après en avoir montré la convergence, calculer les sommes suivantes :

$$\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} \quad , \quad \sum_{k=1}^{+\infty} \frac{1}{k(2k-1)}$$

(on rappelle que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi}{6}$.

Etudiant 2:

Cours:

Définir clairement les différents types de convergence pour une série de fonction. Rappeler les liens entre ces convergences.

Exercice 1:

Etudier les convergences de la suite de fonction, définie par $f_n(x) = \frac{n(x^3 + x)e^{-x}}{nx + 1}$ pour $x \ge 0$.

Exercice 2:

Etudier la convergence de la série de terme genéral :

$$u_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^2}$$

Etudiant 3:

Cours:

Enoncer la définition et les propriétés du rayon de convergence d'une série entière.

Exercice 1

Etudier les convergences de la suite de fonction, définie par $f_n(x) = nxe^{-nx}\sin x$ pour $x \ge 0$.

Exercice 2:

Soit (u_n) une suite réelle strictement positive. On pose pour tout $n \ge 0$, $v_n = \frac{u_n}{1 + u_n}$

Montrer que les séries $\sum u_n$ et $\sum v_n$ sont de même nature.

Exercices supplémentaires:

Exercice 1:

Pour $x \in \left[0, \frac{\pi}{2}\right]$, on pose $f_n(x) = n \sin(x) \cos^n(x)$.

1. Déterminer la limite simple de la suite de fonctions (f_n)

2. Calculer
$$I_n = \int_0^{\pi/2} f_n(x) dx$$
. La suite (f_n) converge-t-elle uniformement?

3. Justifier qu'il y a convergence uniforme sur tout segment inclus dans $\left]0,\frac{\pi}{2}\right]$.

Exercice 2:

Soit (f_n) la suite de fonctions définies sur [0,1] par $f_n(x) = n^2 x (1-nx)$ si $x \in \left[0,\frac{1}{n}\right]$ et $f_n(x) = 0$ sinon.

1. Etudlier la limite simple de la suite (f_n)

2. Calculer
$$I_n = \int_0^1 f_n(x) dx$$
. La suite (f_n) converge-t-elle uniformément?

3. Etudier la convergence uniforme sur [a, 1] avec a > 0.

Exercice 3:

Pour
$$n \ge 2$$
, on pose $\sigma_n = \sum_{k=1}^n \sin(k)$ et $S_n = \sum_{k=1}^n \frac{\sin(k)}{k}$.

1. Montrer que la suite $(\sigma_n)_{n\geq 1}$ est bornée.

2. En déduire que la suite $(S_n)_{n\geq 1}$ converge