Déterminant de Cauchy

Francinou-Gianella-Nicolas, Oraux X-ENS Algèbre 2, page 23

Théorème: Soient $(\alpha_1, \ldots, \alpha_n) \in \mathbb{C}^n$ et $(\beta_1, \ldots, \beta_n) \in \mathbb{C}^n$ tels que pour tout $i, j \in \{1, \ldots, n\}, \ \alpha_i + \beta_j \neq 0$. Alors:

$$\det\left(\frac{1}{\alpha_i + \beta_j}\right)_{1 \le i, j \le n} = \frac{\prod\limits_{1 \le i < j \le n} (\alpha_j - \alpha_i)(\beta_j - \beta_i)}{\prod\limits_{1 \le i, j \le n} (\alpha_i + \beta_j)}$$

1ère méthode

On note D le déterminant à calculer. On multiplie chaque colonne C_j par $\alpha_n + \beta_j, 1 \leq j \leq n$. On obtient :

$$D = \frac{1}{(\alpha_n + \beta_1) \dots (\alpha_n + \beta_n)} \begin{vmatrix} \frac{\alpha_n + \beta_1}{\alpha_1 + \beta_1} & \dots & \frac{\alpha_n + \beta_n}{\alpha_1 + \beta_n} \\ \vdots & & \vdots \\ \frac{\alpha_n + \beta_1}{\alpha_{n-1} + \beta_1} & \dots & \frac{\alpha_n + \beta_n}{\alpha_{n-1} + \beta_n} \\ 1 & \dots & 1 \end{vmatrix}$$

Dans ce dernier déterminant, le terme d'indice (i, j) est pour i < n

$$\frac{\alpha_n + \beta_j}{\alpha_1 i + \beta_j} = 1 + \frac{\alpha_n - \alpha_i}{\alpha_i + \beta_j}$$

En retranchant la dernière ligne à toutes les autres, on obtient donc

$$D = \frac{1}{(\alpha_n + \beta_1) \dots (\alpha_n + \beta_n)} \begin{vmatrix} \frac{\alpha_n - \alpha_1}{\alpha_1 + \beta_1} & \cdots & \cdots & \frac{\alpha_n - \alpha_1}{\alpha_1 + \beta_n} \\ \vdots & & \vdots \\ \frac{\alpha_n - \alpha_{n-1}}{\alpha_{n-1} + \beta_1} & \cdots & \cdots & \frac{\alpha_n - \alpha_{n-1}}{\alpha_{n-1} + \beta_n} \\ 1 & \cdots & \cdots & 1 \end{vmatrix}$$

$$= \frac{(\alpha_n - \alpha_1) \dots (\alpha_n - \alpha_{n-1})}{(\alpha_n + \beta_1) \dots (\alpha_n + \beta_n)} \begin{vmatrix} \frac{1}{\alpha_1 + \beta_1} & \cdots & \cdots & \frac{1}{\alpha_1 + \beta_n} \\ \vdots & & & \vdots \\ \frac{1}{\alpha_{n-1} + \beta_1} & \cdots & \cdots & \frac{1}{\alpha_{n-1} + \beta_n} \\ 1 & \cdots & \cdots & 1 \end{vmatrix}$$

car $\alpha_n - \alpha_i$ est facteur de tous les coefficients de la *i*-ième ligne. Retranchons maintenant la dernière colonne à toutes les autres, on obtient :

$$D = \frac{(\alpha_n - \alpha_1) \dots (\alpha_n - \alpha_{n-1})}{(\alpha_n + \beta_1) \dots (\alpha_n + \beta_n)} \begin{bmatrix} \left(\frac{\beta_n - \beta_j}{(\alpha_i + \beta_j)(\alpha_i + \beta_n)}\right)_{1 \le i, j \le n-1} \\ 0 \dots \dots \dots \dots \dots 0 \end{bmatrix} \times \begin{bmatrix} \frac{\beta_n - \beta_j}{(\alpha_i + \beta_j)(\alpha_i + \beta_n)} \\ 0 \dots \dots \dots \dots \dots \dots 0 \end{bmatrix}$$

et en développant selon la dernière ligne

$$D = \frac{(\alpha_n - \alpha_1) \dots (\alpha_n - \alpha_{n-1})}{(\alpha_n + \beta_1) \dots (\alpha_n + \beta_n)} \det \left(\frac{\beta_n - \beta_j}{(\alpha_i + \beta_j)(\alpha_i + \beta_n)} \right)_{1 \le i, j \le n-1}$$

Comme $(\beta_n - \beta_j)$ est en facteur dans la j-ième colonne et $(\alpha_i + \beta_n)$ dans la i-ième ligne, on a

$$D = \frac{(\alpha_n - \alpha_1) \dots (\alpha_n - \alpha_{n-1})(\beta_n - \beta_1) \dots (\beta_n - \beta_{n-1})}{(\alpha_n + \beta_1) \dots (\alpha_n + \beta_n)(\alpha_1 + \beta_n) \dots (\alpha_{n-1} + \beta_n)} \det \left(\frac{1}{\alpha_i + \beta_j}\right)_{1 \le i, j \le n-1}$$

1

Le résultat découle alors d'une récurrence immédiate sur n.

2ème méthode

Il s'agit de mettre en action les idées du calcul du déterminant de Vandermonde. Tout d'abord le déterminant est nul dès que deux α_i sont égaux (resp. deux β_j) puisque deux lignes (resp. deux colonnes) sont alors identiques. Nous supposerons maintenant les α_i (resp. les β_i) deux à deux distincts.

Posons

$$F(X) = \begin{vmatrix} \frac{1}{\alpha_1 + \beta_1} & \frac{1}{\alpha_1 + \beta_2} & \cdots & \frac{1}{\alpha_1 + \beta_n} \\ \vdots & \vdots & & \vdots \\ \frac{1}{\alpha_{n-1} + \beta_1} & \frac{1}{\alpha_{n-1} + \beta_2} & \cdots & \frac{1}{\alpha_{n-1} + \beta_n} \\ \frac{1}{X + \beta_1} & \frac{1}{X + \beta_2} & \cdots & \frac{1}{X + \beta_n} \end{vmatrix} \in \mathbb{C}(X)$$

En imaginant le développement de ce déterminant selon la dernière ligne, on convient que F est la somme de n fractions nulles ou de degré -1 et donc deg $F \leq -1$. Toujours avec ce développement, on peut réduire au même dénominateur pour mettre F sous la forme

$$F = \frac{P(X)}{(X + \beta_1)(X + \beta_2)\dots(X + \beta_n)}$$

On a donc deg $P \le n-1$. Les α_i $(1 \le i \le n-1)$ ne sont pas pôles de F et $F(\alpha_i) = 0$ (en substituant α_i à X, le déterminant présente deux lignes identiques). Donc $P(\alpha_i) = 0$. Les α_i étant deux à deux distincts et deg $P \le n-1$, il existe $\lambda \in \mathbb{R}$ avec

$$P = \lambda(X - \alpha_1)(X - \alpha_2) \dots (X - \alpha_{n-1})$$

Il s'agit de calculer λ . Multiplions F par $X + \beta_n$

$$(X+\beta_n)F = \begin{vmatrix} \frac{1}{\alpha_1+\beta_1} & \cdots & \cdots & \frac{1}{\alpha_1+\beta_n} \\ \vdots & \vdots & & \vdots \\ \frac{1}{\alpha_{n-1}+\beta_1} & \cdots & \cdots & \frac{1}{\alpha_{n-1}+\beta_n} \\ \frac{X+\beta_n}{X+\beta_1} & \cdots & \frac{X+\beta_n}{X+\beta_{n-1}} & 1 \end{vmatrix} = \lambda \frac{(X-\alpha_1)\dots(X-\alpha_{n-1})}{(X+\beta_1)\dots(X+\beta_{n-1})}$$

et évaluons en $-\beta_n$:

$$\begin{vmatrix} \frac{1}{\alpha_1+\beta_1} & \cdots \frac{1}{\alpha_1+\beta_{n-1}} & \times \\ \vdots & & \vdots & \vdots \\ \frac{1}{\alpha_{n-1}+\beta_1} & \cdots & \frac{1}{\alpha_{n-1}+\beta_{n-1}} & \times \\ 0 & \cdots & 0 & 1 \end{vmatrix} = \lambda \frac{(-1)^{n-1}(\beta_n+\alpha_1)\dots(\beta_n+\alpha_{n-1})}{(-1)^{n-1}(beta_n-\beta_1)\dots(\beta_n-\beta_{n-1})}$$

En développant ce déterminant par rapport à la dernière ligne, il vient

$$1 \times \left| \begin{array}{ccc} \frac{\frac{1}{\alpha_1 + \beta_1}}{\frac{1}{\alpha_{n-1} + \beta_1}} & \cdots & \frac{1}{\alpha_1 + \beta_{n-1}} \\ \vdots & & \vdots \\ \frac{1}{\alpha_{n-1} + \beta_1} & \cdots & \frac{1}{\alpha_{n-1} + \beta_{n-1}} \end{array} \right| = \lambda \frac{(\beta_n + \alpha_1) \dots (\beta_n + \alpha_{n-1})}{(\beta_n - \beta_1) \dots (\beta_n - \beta_{n-1})}$$

d'où

$$\lambda = \begin{vmatrix} \frac{1}{\alpha_1 + \beta_1} & \cdots & \frac{1}{\alpha_1 + \beta_{n-1}} \\ \vdots & & \vdots \\ \frac{1}{\alpha_{n-1} + \beta_1} & \cdots & \frac{1}{\alpha_{n-1} + \beta_{n-1}} \end{vmatrix} \frac{(\beta_n - \beta_1) \dots (\beta_n - \beta_{n-1})}{(\beta_n + \alpha_1) \dots (\beta_n + \alpha_{n-1})}$$

Le déterminant cherché, $F(\alpha_n)$ est donc égal à

$$\begin{vmatrix} \frac{1}{\alpha_1 + \beta_1} & \cdots \frac{1}{\alpha_1 + \beta_{n-1}} \\ \vdots \\ \frac{1}{\alpha_{n-1} + \beta_1} & \cdots & \frac{1}{\alpha_{n-1} + \beta_{n-1}} \end{vmatrix} \begin{vmatrix} \prod_{i < n} (\beta_n - \beta_i) \prod_{i < n} (\alpha_n - \alpha_i) \\ \prod_{i < n} (\beta_n + \alpha_i) \prod_{i \le n} (\alpha_i + \beta_n) \end{vmatrix}$$

On établit par récurrence la formule du déterminant de Cauchy.