Théorème des extremas liés

Gourdon, Analyse, pages 311-314-321

Théorème:

Soit U un ouvert non vide de \mathbb{R}^n , $p \geq 1$ et $f, g_1, g_2, \ldots, g_p \in \mathcal{C}^1(U, \mathbb{R})$. On pose

$$A = \{x \in U / g_1(x) = \ldots = g_p(x) = 0\}$$

Si $f_{|A}$ admet un extremum relatif en $a \in A$ et si les formes linéaires dg_{1a}, \ldots, dg_{pa} sont linéairement indépendantes, alors il existe des réels $\alpha_1, \ldots, \alpha_p$ tels que

$$df_a = \sum_{k=1}^p \alpha_k dg_{k_a}$$

Notons tout d'abord que $p \leq n$. En effet, les p formes linéaires $dg_{1_a}, \ldots, dg_{p_a}$ sont linéairement indépendantes dans le dual de \mathbb{R}^n . Mais l'espace dual $(\mathbb{R}^n)^*$ est de dimension n. Ainsi, on obtient bien $p \leq n$.

1er cas : p = n.

Le théorème est alors évident. En effet, les n formes linéaires dg_{1a}, \ldots, dg_{na} étant linéairement indépendantes, elles constituent une base de $(\mathbb{R}^n)^*$. Bref, comme $df_a \in (\mathbb{R}^n)^*$, il existe bien des réels $\alpha_1, \ldots, \alpha_n$ tels que $df_a = \sum_{k=1}^n \alpha_k dg_{ka}$.

Remarque: A ce stade, le cas particulier n=1 a été entièrement traité (car alors on a a fortiori p=n=1). On pourra donc supposer à présent $n \geq 2$.

2ème cas : $1 \le p \le n - 1$.

Identifions alors \mathbb{R}^n à $\mathbb{R}^s \times \mathbb{R}^p$. Ainsi, on notera $a = (a_s, a_p)$. De plus, tout élément de \mathbb{R}^n sera écrit (x, y) = $(x_1,\ldots,x_s,y_1,\ldots,y_p)$.

Les formes linéaires $(dg_{ia})_{i=1...p}$ étant linéairement indépendantes, elles constituent une famille de rang p dans $(\mathbb{R}^n)^*$. Ainsi, la matrice

$$A = \begin{pmatrix} \frac{\partial g_1}{\partial x_1}(a) & \cdots & \frac{\partial g_1}{\partial x_s}(a) & \frac{\partial g_1}{\partial y_1}(a) & \cdots & \frac{\partial g_1}{\partial y_p}(a) \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_p}{\partial x_1}(a) & \cdots & \frac{\partial g_p}{\partial x_s}(a) & \frac{\partial g_p}{\partial y_1}(a) & \cdots & \frac{\partial g_p}{\partial y_n}(a) \end{pmatrix} \in \mathcal{M}_{p,n}(\mathbb{R})$$

est de rang p. De A, on peut extraire une matrice de $GL_p(\mathbb{R})$. Quitte à changer le nom des variables, on peut supposer que

$$\begin{pmatrix} \frac{\partial g_1}{\partial y_1}(a) & \cdots & \frac{\partial g_1}{\partial y_p}(a) \\ \vdots & \ddots & \vdots \\ \frac{\partial g_p}{\partial y_1}(a) & \cdots & \frac{\partial g_p}{\partial y_p}(a) \end{pmatrix} \in GL_p(\mathbb{R})$$

En d'autres termes, $\det \left(\frac{\partial g_i}{\partial y_j}(a)\right)_{i,j=1...p} \neq 0.$ Définissons alors $g: \begin{array}{ccc} U & \to & \mathbb{R}^p \\ z & \mapsto & (g_1(z),\ldots,g_p(z)) \end{array}$

D'après le théorème des fonctions implicites, il existe donc un voisinage ouvert O de a_s , un voisinage ouvert V de (a_s, a_p) une application $\psi \in \mathcal{C}^1(O, \mathbb{R}^p)$ tel que pour tout $(x, y) \in V$ avec $x \in O, g(x, y) = 0$ si et seulement si $y = \psi(x)$.

Finalement, il existe un voisinage ouvert W de a inclus dans V et un voisinage ouvert Ω de a_s inclus dans O tels que

$$(1) A \cap W = \{(x, \psi(x)) / x \in \Omega\}$$

Par ailleurs, $a_s \in O$ et $(a_s, a_p) \in V$. De plus, $g(a_s, a_p) = 0$. Alnsi dono

$$(2) a_p = \psi(a_s)$$

Définissons alors $h: \begin{array}{ccc} O & \to & \mathbb{R} \\ x & \mapsto & f(x, \psi(x)) \end{array}$. Notons que $h \in \mathcal{C}^1(O, \mathbb{R})$.

La restriction de f à A admettant un extremum local en $a \in A \cap W$, on déduit de (1) et (2) que h admet un extremum local en a_s . Ceci implique alors que pour tout $i=1\ldots s, \frac{\partial h}{\partial x_i}(a_s)=0$. Bref, par définition de h, il vient que

(3)
$$\forall i = 1 \dots s, \quad \frac{\partial f}{\partial x_i}(a) + \sum_{j=1}^p \frac{\partial f}{\partial y_i}(a) \frac{\partial \psi_j}{\partial y_i}(a) = 0$$

Par ailleurs, pour tout $x \in \Omega$, $g(x, \psi(x)) = 0$. Ainsi,

(4)
$$\forall k = 1 \dots p, \forall i = 1 \dots s, \quad \frac{\partial g_k}{\partial x_i}(a) + \sum_{j=1}^p \frac{\partial g_k}{\partial y_j}(a) \frac{\partial \psi_j}{\partial y_i}(a) = 0$$

Introduisons alors la matrice

$$B = \begin{pmatrix} \frac{\partial f}{\partial x_1}(a) & \cdots & \frac{\partial f}{\partial x_s}(a) & \frac{\partial f}{\partial y_1}(a) & \cdots & \frac{\partial f}{\partial y_p}(a) \\ \frac{\partial g_1}{\partial x_1}(a) & \cdots & \frac{\partial g_1}{\partial x_s}(a) & \frac{\partial g_1}{\partial y_1}(a) & \cdots & \frac{\partial g_1}{\partial y_p}(a) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial g_p}{\partial x_1}(a) & \cdots & \frac{\partial g_p}{\partial x_s}(a) & \frac{\partial g_p}{\partial y_1}(a) & \cdots & \frac{\partial g_p}{\partial y_p}(a) \end{pmatrix} \in \mathcal{M}_{p+1,n}(\mathbb{R})$$

Les relations (3) et (4) prouvent que les s premières colonnes de B s'expriment linéairement en fonction des p dernières. Bref, le rang de B est inférieur ou égal à p.

Ainsi, les p+1 lignes de la matrice B sont liées. Il existe donc des réels non tous nuls $\beta_1, \ldots, \beta_{p+1}$ tels que

(5)
$$\beta_1 dg_{1a} + \ldots + \beta_p dg_{pa} + \beta_{p+1} df_a = 0$$

Comme la famille $(dg_{1a}, \ldots, dg_{pa})$ est libre, on a nécessairement $\beta_{p+1} \neq 0$.

Pour tout $i=1\dots p$, posons alors $\alpha_i=-\frac{\beta_i}{\beta_{p+1}}$. Dans ce cas, l'égalité (5) conduit exactement à $df_a=\sum\limits_{i=1}^p\alpha_idg_{i_a}$.

Application : Pour tous réels $x_1, \ldots x_n$ positifs, on a l'inégalité arithmético-géométrique :

$$(x_1 \dots x_n)^{\frac{1}{n}} \le \frac{x_1 + \dots + x_n}{n}$$

Soit s>0. Considérons l'application $g: \begin{array}{ccc} \mathbb{R}^n & \to & \mathbb{R} \\ (x_1,\dots,x_n) & \mapsto & x_1+\dots+x_n-s \end{array}$. Posons alors $K_s=\{x\in(\mathbb{R}^+)^n\mid g=0\}$. De plus, soit U l'ouvert $(\mathbb{R}^+)^n$ et A l'ensemble $\{x\in U\mid g(x)=0\}\subset K_s$. L'ensemble K_s , fermé borné de \mathbb{R}^n , est un espace compact. Par ailleurs, l'application f est continue sur \mathbb{R}^n et a fortiori

Ainsi, f possède un maximum sur K_s , maximum atteint par exemple en $a \in K_s$. Montrons donc que $a \in A$, afin d'appliquer le théorème des extréma liés.

• Sur $K_s \setminus A$, f est identiquement nulle. De plus, $f(a) \ge f\left(\frac{s}{n}, \dots, \frac{s}{n}\right) > 0$. Le point a est donc nécessairement dans A. Dans ce cas, si $a = (a_1, \dots, a_n)$, pour tout $i = 1 \dots n$, $a_i \ne 0$.

Ainsi donc, $f_{|A|}$ admet un maximum en a.

Or f et g sont de classe \mathcal{C}^1 sur U. D'après le théorème précédent, il existe donc $\alpha \in \mathbb{R}$ tel que $df_a = \alpha dg_a$.

Bref, pour tout $i = 1 \dots n$, $\frac{\partial f}{\partial x_i}(a) = \frac{\partial g}{\partial x_i}(a)$. Le calcul des dérivées partielles montre alor que

(6)
$$\forall i = 1 \dots n, \ \frac{f(a)}{a_i} = \alpha$$

Mais f(a) > 0, ainsi $f(a) \neq 0$ et donc $\alpha \neq 0$. Bref, de (6), on déduit que les $(a_i)_{i=1...n}$ sont tous égaux à la constante $C = \frac{f(a)}{a}$.

Mais $a \in A$, ce qui donne $\sum_{i=1}^{n} a_i - s = 0$, soit encore nC - s = 0.

Finalement, sur K_s , f atteint son maximum en $\left(\frac{s}{n}, \dots, \frac{s}{n}\right)$. En d'autres termes,

(7)
$$\forall x \in K_s, \ f(x) \le f\left(\frac{s}{n}, \dots, \frac{s}{n}\right) = \left(\frac{s}{n}\right)^n$$

• Soit alors $x = (x_1, \ldots, x_n) \in U$.

En appliquant l'inégalité (7) à $s = \sum_{i=1}^{n} x_i > 0$ et $x \in K_s$, il vient ainsi $(f(x))^{\frac{1}{n}} \leq \frac{1}{n} \sum_{i=1}^{n} x_i$

La définition de f donne finalement $(x_1 \dots x_n)^{\frac{1}{n}} \leq \frac{1}{n} \sum_{i=1}^{n} x_i$.

Cette inégalité restant valable sur $(\mathbb{R}^+)^n$, l'inégalité arithmético-géométrique est finalement démontrée.