Irréductibilité de Φ_p dans $\mathbb{Q}[X]$ Francinou-Gianella-Nicolas, Oraux X-ENS Algèbre 1, page 173

Exercice: Soit $\omega = e^{\frac{2i\pi}{p}}$ où p est premier et $\Phi_p = X^{p-1} + \ldots + X + 1$ (p-ième polynôme cyclotomique).

- 1. On admet que Φ_p est irréductible dans $\mathbb{Q}[X]$. Démontrer que l'ensemble \mathcal{I} des polynômes annulateurs de ω dans $\mathbb{Q}[X]$ est $\Phi_p\mathbb{Q}[X]$.
- 2. Montrer que le polynôme $(X+1)^{p-1}+\ldots+(X+1)+1$ est irréductible dans
- 3. En déduire que Φ_p est irréductible dans $\mathbb{Q}[X]$.
- 4. Démontrer que $\mathbb{Q}\left[e^{\frac{2i\pi}{p}}\right]=\{Q(\omega)\ ,\ Q\in\mathbb{Q}[X]\}$ est un corps, appelé corps cyclotomique. Quelle est sa dimension comme espace vectoriel sur \mathbb{Q} ?
- 1. Posons $\mathcal{I} = \{Q \in \mathbb{Q}[X], \ Q(\omega) = 0\}$. \mathcal{I} est un idéal de $\mathbb{Q}[X]$ en tant que noyau du morphisme d'algèbre $Q \in \mathbb{Q}[X] \mapsto Q(\omega) \in \mathbb{C}$. Nous savons que tout idéal de $\mathbb{Q}[X]$ est principal. Comme I est non nul, il existe donc un unique polynôme unitaire Q tel que $\mathcal{I} = Q\mathbb{Q}[X]$. Or, nous savons que $\Phi_p(\omega)=0$, puisque $(\omega-1)\Phi_p(\omega)=\omega^p-1=1-1=0$. On en déduit que Q divise Φ_p , puisque $\Phi_p \in \mathcal{I}$. Comme $Q \neq 1$ et comme Φ_p est supposé irréductible, on a nécessairement $Q = \Phi_p$. On conclut

$$\mathcal{I} = \Phi_p \mathbb{Q}[X]$$

2. Posons $U = (X+1)^{p-1} + \ldots + (X+1) + 1 = \Phi_p(X+1)$, c'est-à-dire

$$U = \frac{1 - (X+1)^p}{1 - (X+1)} = \frac{(X+1)^p - 1}{X}$$
$$= X^{p-1} + \binom{p}{p-1} X^{p-2} + \dots + \binom{p}{2} X + \binom{p}{1} \in \mathbb{Z}[X]$$

Pour montrer que U est irréductible, nous allons utiliser le critère d'Eisenstein avec le nombre premier p.

Critère d'Eisenstein : Soit $A = a_n X^n + \dots + a_1 X + a_0 \in \mathbb{Z}[X]$ et p un nombre premier. On suppose que

- (i) p ne divise pas a_0
- (ii) p divise a_0, a_1, \dots, a_{n-1} (iii) p^2 ne divise pas a_0

Alors A est irréductible dans $\mathbb{Q}[X]$.

Les hypothèses (i) et (iii) sont clairement vérifiées ici. Il s'agit de vérifier (ii), c'est-à-dire que les $\binom{p}{k}$ sont divisibles par p pour $1 \le k \le p-1$. En effet, si $1 \le k \le p-1$, on a $k!\binom{p}{k} = p(p-1)\dots(p-k+1)$. Donc p divise $k!\binom{p}{k}$. Comme k < p, p est premier avec k! donc divise $\binom{p}{k}$. On conclut à l'aide du critère d'Eisenstein que U est irréductible.

3. Supposons Φ_p composé et posons $\Phi_p = BC$ où B, C sont dans $\mathbb{Q}[X]$ avec $\deg B < \deg \Phi_p$ et $\deg C < G$ $\deg \Phi_p$. On a alors $U = \Phi_p(X+1) = B(X+1)C(X+1)$. Comme $\deg B(X+1) = \deg B < \deg U$ et $\deg C(X+1) = \deg C < \deg U$, il en résulte que U n'est pas irréductible, ce qui est faux.

1

Conclusion : $\Phi_p = X^{p-1} + \ldots + X + 1$ est irréductible dans $\mathbb{Q}[X]$.

4. Φ_p est le polynôme unitaire de plus petit degré annulant ω . Donc la famille $(1, \omega, \dots, \omega^{p-2})$ est libre sur $\mathbb Q$ (toute combinaison linéaire non triviale nulle offrirait un polynôme non nul, de degré strictement inférieur à p-1, annulant ω). Si $Q \in \mathbb Q[X]$ et si on note R le reste de Q modulo Φ_p , il vient $Q(\omega) = R(\omega)$ puisque $\Phi_p(\omega) = 0$, ce qui montre que

$$\mathbb{Q}[\omega] = Vect(1, \omega, \dots, \omega^{p-2})$$

Ainsi, le système $(1, \omega, \dots, \omega^{p-2})$ est une base du \mathbb{Q} -espace vectoriel $\mathbb{Q}[\omega]$ et

$$\boxed{\dim \mathbb{Q}\left[e^{\frac{2i\pi}{p}}\right] = p - 1}$$

Reste à démontrer que $\mathbb{Q}\left[e^{\frac{2i\pi}{p}}\right]$ est un corps. En premier lieu, $\mathbb{Q}[\omega]$ est l'image par le morphisme d'algèbre $P\mapsto P(\omega)$ de l'algèbre $\mathbb{Q}[X]$; c'est donc une sous-algèbre de la \mathbb{Q} -algèbre \mathbb{C} et en particulier un sous-anneau de \mathbb{C} . Soit x un élément non nul de $\mathbb{Q}[\omega]$. Il existe $R\in\mathbb{Q}[X]$ non nul de degré strictement inférieur à p-1 tel que $x=R(\omega)$. Comme Φ_p est irréductible, il est premier avec R. Il existe donc $(U,V)\in\mathbb{Q}[X]^2$ tel que $U\Phi_p+VR=1$. En ω , cela donne $U(\omega)\times 0+V(\omega)x=1$, soit $V(\omega)x=1$ et $V(\omega)\in\mathbb{Q}[\omega]$ est l'inverse de x.

En conclusion, $\mathbb{Q}\left[e^{\frac{2i\pi}{p}}\right]$ est un corps de dimension p-1 sur \mathbb{Q} .