Sous-groupes finis du groupe des isométries

Combes, Algèbre et géométrie, page 171

Théorème : Soit G un sous-groupe fini, d'ordre $n \geq 2$, du groupe $SO_3(\mathbb{R})$ des déplacements de l'espace affine euclidien $E = E_3$. Alors, G est isomorphe à \mathbb{U}_n , ou à $D_{\frac{n}{2}}$ (n est alors pair), ou bien à l'un des trois groupes des déplacements qui conservent l'un des cinq polyèdres réguliers, c'est-à-dire isomorphe à \mathcal{A}_4 , \mathcal{S}_4 ou \mathcal{A}_5 .

Si g est une rotation non triviale, alors il existe deux points P et -P, appelés $p\hat{o}les$ de g, sur la sphère unité \mathbb{S}^2 , qui sont stables par g. On note \mathcal{P} l'ensemble des pôles des éléments de $G\setminus\{Id\}$. Puisqu'une rotation est une isométrie, G agit sur la sphère. D'autre part, si $h\in G$ et si P est un pôle de $g\in G$, alors $hgh^{-1}h(P)=hg(P)=h(P)$, ie h(P) est un pôle de hgh^{-1} donc G agit sur l'ensemble \mathcal{P} des pôles. Le nombre k d'orbites de cette action vérifie

$$k = \frac{1}{|G|} \sum_{g \in G} |\text{Fix}(g)| = \frac{1}{n} (|\mathcal{P}| + 2(n-1))$$

d'où puisque $2 \leq |\mathcal{P}| \leq 2(n-1)$,

$$2 \le k \le \frac{4(n-1)}{n} = 4\left(1 - \frac{1}{n}\right) < 4$$

ie k=2 ou 3.

Dans le cas où k=3, on note $\mathcal{P}_1,\mathcal{P}_2$ et \mathcal{P}_3 les orbites avec $|\mathcal{P}_1|\geq |\mathcal{P}_2|\geq |\mathcal{P}_3|$. Pour i=1,2,3, on note m_i l'ordre du stabilisateur d'un point de \mathcal{P}_i (ce qui ne dépend pas du point choisi) alors $m_i|\mathcal{P}_i|=n$ d'où $m_1\leq m_2\leq m_3$. Si P est un point de \mathcal{P}_1 , alors P est stabilisé par l'identité et par un élément g dont P est un pôle, d'où $m_1\geq 2$. On a $3n=|\mathcal{P}|+2(n-1)$ ie $|\mathcal{P}|=n+2$ d'où d'après l'équation aux classes

$$n+2 = |\mathcal{P}_1| + |\mathcal{P}_2| + |\mathcal{P}_3| = \frac{n}{m_1} + \frac{n}{m_2} + \frac{n}{m_3}$$

ie

$$\frac{1}{m_1} + \frac{1}{m_2} + \frac{1}{m_3} = 1 + \frac{2}{n}$$

On a donc $1 < \frac{3}{m_1}$, ie $m_1 = 2$, d'où

$$\frac{1}{m_2} + \frac{1}{m_3} = \frac{2}{n} + \frac{1}{2}$$

On a donc $\frac{1}{2} < \frac{2}{m_2}$ ie $m_2 = 2$ ou 3. Lorsque $m_2 = 3$, on obtient

$$\frac{1}{m_3} = \frac{2}{n} + \frac{1}{6}$$

ie $m_3 = 3,4$ ou 5. Ainsi, on est dans l'un des cas suivants :

- k = 2
- k = 3 et $m_2 = 2$
- $k = 3, m_2 = 3$ et $m_3 = 3$, alors $n = 12, |\mathcal{P}_1| = 6, |\mathcal{P}_2| = 4$ et $|\mathcal{P}_3| = 4$
- $k = 3, m_2 = 3$ et $m_3 = 4$, alors $n = 24, |\mathcal{P}_1| = 12, |\mathcal{P}_2| = 8$ et $|\mathcal{P}_3| = 6$
- k = 3, $m_2 = 3$ et $m_3 = 5$, alors n = 60, $|\mathcal{P}_1| = 30$, $|\mathcal{P}_2| = 20$ et $|\mathcal{P}_3| = 12$

1er cas: il y a k=2 orbites. Alors $|\mathcal{P}|=2$ et tous les éléments $g\in G$ distincts de l'identité admettent les deux points P et P' pour pôles ie ont tous le même axe de rotation donc stabilise tous le plan orthogonal à cet axe. A toute rotation g de G, on associe donc canoniquement une rotation f(g) de ce plan, ie on a un isomorphisme $f:G\to f(G)$. Ainsi f(G) est un sous-groupe d'ordre n du groupe des rotations de \mathbb{R}^2 donc est un groupe cyclique d'ordre n. On a donc $G\simeq \mathbb{Z}/n\mathbb{Z}$.

2ème cas : il y a k=3 orbites et $m_1=m_2=2$. On a alors $|\mathcal{P}|=n+2$ et

$$|\mathcal{P}_3| = |\mathcal{P}| - |\mathcal{P}_1| - |\mathcal{P}_2| = n + 2 - \frac{n}{2} - \frac{n}{2} = 2$$

On note P et -P les deux pôles de \mathcal{P}_3 . Le stabilisateur G_P de P est d'ordre $\frac{n}{2}$ et (en raisonnant comme dans le premier cas) est cyclique, ie est isomorphe à $\mathbb{Z}/\frac{n}{2}\mathbb{Z}$. Si $g \in G$ ne stabilise pas P, alors on a g.P = -P et g.(-P) = P donc g est un demi-tour; en particulier, tout $g \in G$ qui ne stabilise pas P est d'ordre 2. On en déduit que $G \simeq \langle a, b | a^n, (ab)^2 \rangle \simeq D_{\frac{n}{2}}$.

3ème cas : il y a k=3 orbites et $m_2=m_3=3$. Alors n=12, $|\mathcal{P}_1|=6$, $|\mathcal{P}_2|=4$ et $|\mathcal{P}_3|=4$. Toute rotation g de G laisse \mathcal{P}_2 stable donc induit une permutation s_g de \mathcal{P}_2 ie on a un morphisme

$$s: \begin{array}{ccc} G & \to & S_4 \\ g & \mapsto & s_g \end{array}$$

Soit $g \in \text{Ker}s$, alors s_g est l'identité, ie g stabilise les quatre points de S ce qui n'est possible que si g est l'identité. Il en résulte que s(G) est un sous-groupe de S_4 isomorphe à G ie G est isomorphe à un sous-groupe d'ordre 12 de S_4 donc est isomorphe à A_4 .

4ème cas : il y a k=3 **orbites et** $m_2=3$ **et** $m_3=4$. Alors n=24, $|\mathcal{P}_1|=12$, $|\mathcal{P}_2|=8$ et $|\mathcal{P}_3|=6$. Les pôles de $|\mathcal{P}_1|$ et $|\mathcal{P}_3|$ ne sont pas d'ordre 3 et si un pôle P est d'ordre 3 alors il en est de même de -P; on peut donc écrire $|\mathcal{P}_2|=\{\pm P_1,\ldots,\pm P_4\}$. Toute rotation $g\in G$ non triviale admet soit l'un des couples $\pm P_i$ pour pôles, soit n'admet pas de pôle dans $|\mathcal{P}_2|$ donc G agit par permutation sur les couples $(P_i,-P_i)$, ie on a un morphisme

$$s: \begin{array}{ccc} G & \to & S_4 \\ g & \mapsto & s_g \end{array}$$

Soit $g \in \text{Ker}s$, alors g stabilise chaque couple $\{-P_i, P_i\}$. Si on a $g.P_i = -P_i$ alors g n'a que deux pôles donc il existe $k \neq l$ distincts de i tels que $g.P_k = -P_k$ et $g.P_l = -P_l$. Or (O, P_i, P_k, P_l) forme un repère cartésien : en effet, si h stabilise P_1 alors il s'agit d'une rotation d'angle $\pm \frac{2\pi}{3}$ qui permute P_1, \ldots, P_4 donc les points P_j pour $j \neq 1$ forment un triangle équilatéral. Ainsi g change l'orientation du repère (O, P_i, P_k, P_l) . Par conséquent, g n'inverse pas les points de $|\mathcal{P}_2|$ ie admet chaue point de $|\mathcal{P}_2|$ pour point fixe et c'est donc l'identité. Ainsi g réalise une injection de g dans g ie g est un groupe (isomorphe à g donc) d'ordre 24 qui est un sous-groupe de g donc g est isomorphe à g.

Le dernier cas se traite de manière analogue, on admettra le résultat.